

Report No.: FR870418A

FCC RADIO TEST REPORT

FCC ID : ACJFZL1A

Equipment : Tablet Computer

Brand Name : Panasonic Model Name : FZ-L1AC Marketing Name : FZ-L1

Applicant : Panasonic Corporation of North America

Two Riverfront Plaza, 9th Floor, Newark, NJ 07102-5490

Manufacturer : Panasonic Mobile Communications Co., Ltd.

600 Saedo-cho, Tsuzuki-ku, Yokohama City 224-8539, Japan

Standard : FCC Part 15 Subpart C §15.247

The product was received on Jul. 04, 2018 and testing was started from Oct. 20, 2018 and completed on Nov. 01, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin

TEL: 886-3-327-3456

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Page Number

: 1 of 58

FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018 Report Version : 01

Report Template No.: BU5-FR15CBT Version 2.1

Table of Contents

Report No. : FR870418A

His	tory o	of this test report	3
Sur	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	13
	3.3	Dwell Time Measurement	19
	3.4	20dB and 99% Bandwidth Measurement	21
	3.5	Output Power Measurement	31
	3.6	Conducted Band Edges Measurement	32
	3.7	Conducted Spurious Emission Measurement	39
	3.8	Radiated Band Edges and Spurious Emission Measurement	49
	3.9	AC Conducted Emission Measurement	53
	3.10	Antenna Requirements	55
4	List o	of Measuring Equipment	56
5	Unce	ertainty of Evaluation	58
Apı	pendix	x A. Conducted Test Results	
Apı	pendix	x B. AC Conducted Emission Test Result	
Apı	pendix	x C. Radiated Spurious Emission	
Apı	pendix	x D. Radiated Spurious Emission Plots	
Apı	pendix	x E. Duty Cycle Plots	
Apı	pendix	x F. Setup Photographs	

TEL: 886-3-327-3456 : 2 of 58 Page Number : Nov. 13, 2018 FAX: 886-3-328-4978 Issued Date : 01

History of this test report

Report No. : FR870418A

Report No.	Version	Description	Issued Date
FR870418A	01	Initial issue of report	Nov. 13, 2018

TEL: 886-3-327-3456 Page Number : 3 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

Summary of Test Result

Report No. : FR870418A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4 15.247(a)(1) 20dB Bandwidth		Pass	-	
3.4 2.1049 99% Occupied Bandwidth		Reporting only	-	
3.5 15.247(b)(1) Peak Output Power		Pass	-	
3.6 15.247(d) Conducted Band Edges		Pass	-	
3.7 15.247(d) Conducted Spurious Emission		Pass	-	
3.8 15.247(d) Radiated Band Edges and Radiated Spurious Emission		Pass	Under limit 4.81 dB at 894.300 MHz	
3.9 15.207 AC Conducted Emission		Pass	Under limit 5.01 dB at 13.560 MHz	
3.10 15.203 & Antenna Requirement		Pass	-	

Reviewed by: Wii Chang

Report Producer: Maggie Chiang

TEL: 886-3-327-3456 Page Number : 4 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n, NFC, and GNSS.

Product Specification subjective to this standard				
Sample 1 With BCR Landscape				
Sample 2	With BCR Portrait			
Sample 3	Without BCR			
	WLAN: Monopole Antenna			
Antenna Type	Bluetooth: Monopole Antenna			
Antenna Type	GNSS: Monopole Antenna			
	NFC: Loop Antenna			

Report No.: FR870418A

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.				
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456			
Test Site No.	Sporton	Site No.			
rest site No.	TH05-HY	CO05-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
	03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

TEL: 886-3-327-3456 Page Number : 5 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR870418A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 6 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CBT Version 2.1

Page Number : 7 of 58
Issued Date : Nov. 13, 2018

Report No. : FR870418A

Report Version : 01

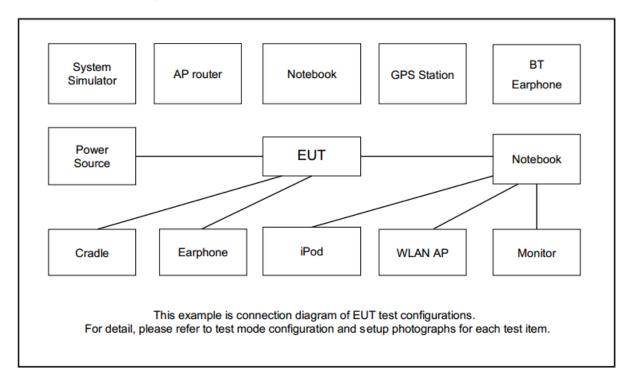
2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

Report No.: FR870418A

b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases					
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps Bluetooth EDR 2Mbps		Bluetooth EDR 3Mbps			
	GFSK	π/4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth EDR 3Mbps 8-DPSK					
	В	luetooth EDR 3Mbps 8-DPS	oK .			
Radiated	В	Mode 1: CH00_2402 MHz	K			
Radiated Test Cases	В	•	,K			
11000000	В	Mode 1: CH00_2402 MHz	oK.			
11000000		Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz				
Test Cases	Mode 1: WLAN (2.4GHz) L	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz	On + Earphone + SD Card +			

Remark:

- For radiated test cases, the worst mode data rate 3Mbps was reported only since the highest RF
 output power in the preliminary tests. The conducted spurious emissions and conducted band
 edge measurement for other data rates were not worse than 3Mbps, and no other significantly
 frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, the tests were performed with Sample 3.
- 3. Data Linking with Notebook means data application transferred mode between EUT and Notebook.

TEL: 886-3-327-3456 Page Number : 8 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

2.3 Connection Diagram of Test System

Report No.: FR870418A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8m
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0m	iPod
5.	IPod Earphone	Apple	N/A	FCC DoC	Shielded, 1.2m	N/A
6.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
7.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-3456 Page Number : 9 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No.: FR870418A

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$4.2 + 10 = 14.2$$
 (dB)

TEL: 886-3-327-3456 Page Number : 10 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

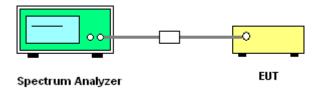
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Report No.: FR870418A

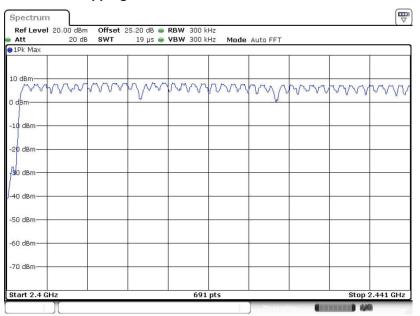

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

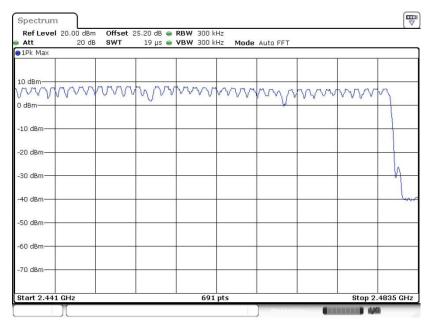
- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



TEL: 886-3-327-3456 Page Number : 11 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

3.1.5 Test Result of Number of Hopping Frequency


Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

Report No.: FR870418A

Date: 26.OCT.2018 05:49:59

Date: 26.OCT.2018 05:50:53

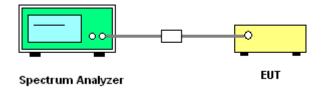
TEL: 886-3-327-3456 Page Number : 12 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR870418A

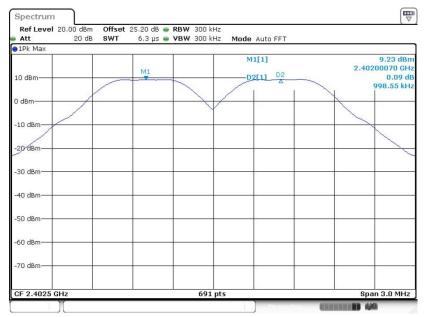

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

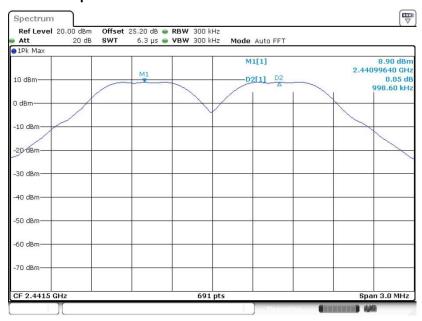
3.2.4 Test Setup


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

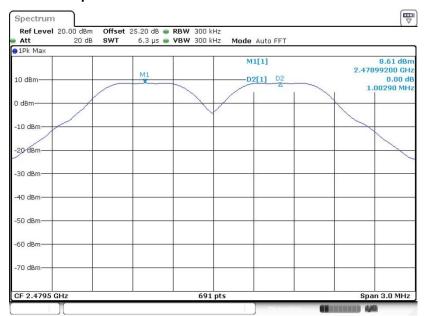
TEL: 886-3-327-3456 Page Number : 13 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<1Mbps>


Channel Separation Plot on Channel 00 - 01

Report No.: FR870418A

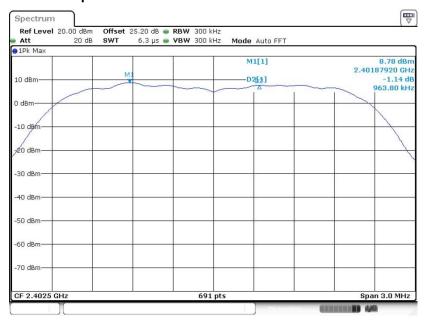
Date: 26.OCT.2018 05:57:05


Channel Separation Plot on Channel 39 - 40

Date: 26.OCT.2018 06:05:15

TEL: 886-3-327-3456 Page Number : 14 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

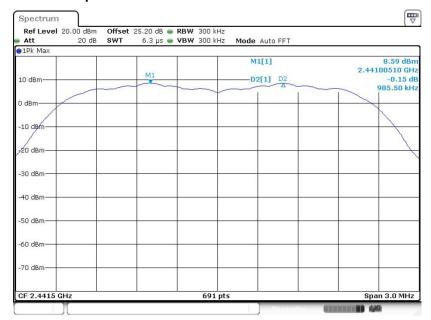
Channel Separation Plot on Channel 77 - 78



Report No.: FR870418A

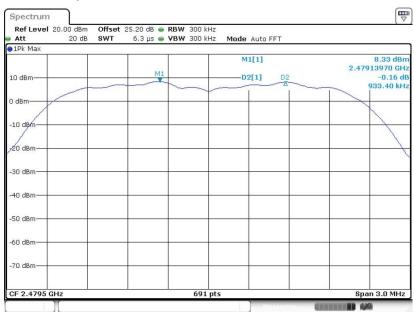
Date: 26.OCT.2018 06:09:24

<2Mbps>


Channel Separation Plot on Channel 00 - 01

Date: 26.OCT.2018 06:26:40

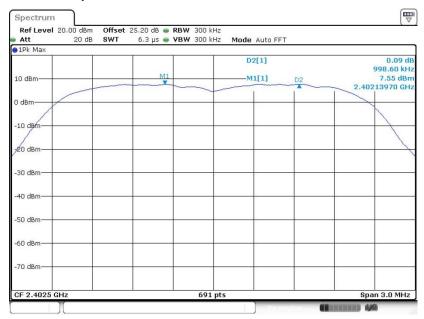
TEL: 886-3-327-3456 Page Number : 15 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018


Channel Separation Plot on Channel 39 - 40

Report No.: FR870418A

Date: 26.OCT.2018 06:33:41

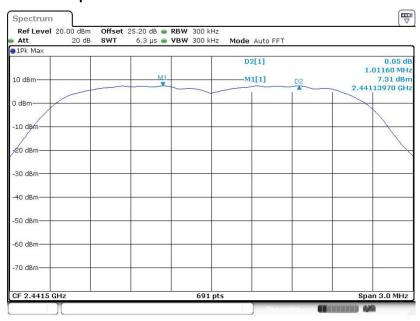
Channel Separation Plot on Channel 77 - 78



Date: 26.OCT.2018 06:40:01

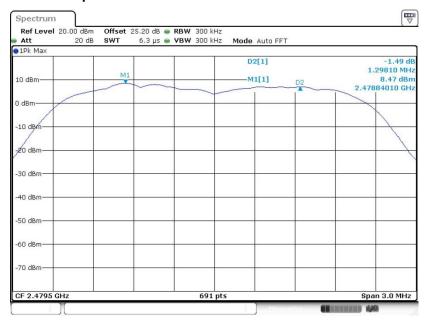
TEL: 886-3-327-3456 Page Number : 16 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<3Mbps>


Channel Separation Plot on Channel 00 - 01

Report No.: FR870418A

Date: 26.OCT.2018 06:48:20


Channel Separation Plot on Channel 39 - 40

Date: 26.OCT.2018 06:55:47

TEL: 886-3-327-3456 Page Number : 17 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

Channel Separation Plot on Channel 77 - 78

Report No.: FR870418A

Date: 26.OCT.2018 07:03:16

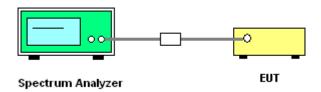
TEL: 886-3-327-3456 Page Number : 18 of 58
FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: FR870418A

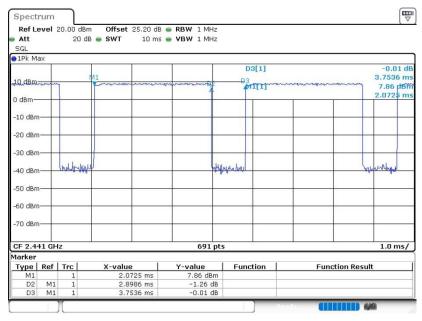

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup


3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 19 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

Package Transfer Time Plot

Report No.: FR870418A

Date: 20.0CT.2018 19:20:44

Remark:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-3456 Page Number : 20 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

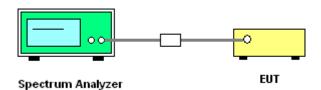
See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR870418A

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;


Trace = \max hold.

- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 21 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<1Mbps>

20 dB Bandwidth Plot on Channel 00

Report No.: FR870418A

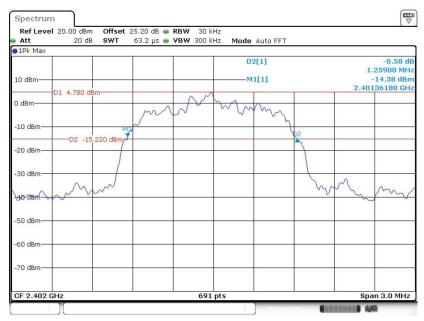
Date: 26.OCT.2018 05:58:30

20 dB Bandwidth Plot on Channel 39

Date: 26.OCT.2018 06:06:25

TEL: 886-3-327-3456 Page Number : 22 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

20 dB Bandwidth Plot on Channel 78



Report No.: FR870418A

Date: 26.OCT.2018 06:10:36

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 26.OCT.2018 06:28:25

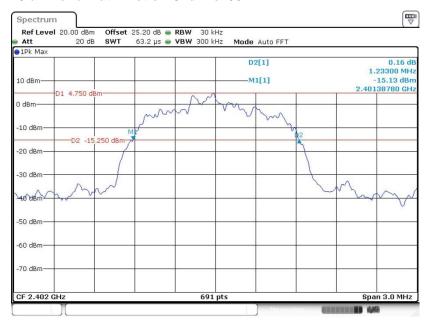
TEL: 886-3-327-3456 Page Number : 23 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

20 dB Bandwidth Plot on Channel 39

Report No.: FR870418A

Date: 26.OCT.2018 06:34:56

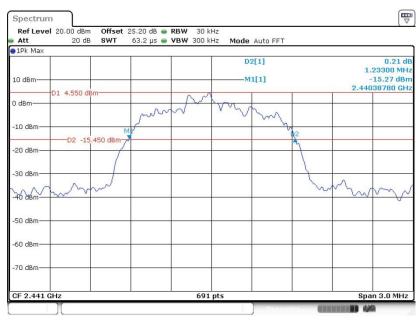
20 dB Bandwidth Plot on Channel 78



Date: 26.OCT.2018 06:42:05

TEL: 886-3-327-3456 Page Number : 24 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<3Mbps>


20 dB Bandwidth Plot on Channel 00

Report No.: FR870418A

Date: 26.OCT.2018 06:49:48

20 dB Bandwidth Plot on Channel 39

Date: 26.OCT.2018 06:57:27

TEL: 886-3-327-3456 Page Number : 25 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

20 dB Bandwidth Plot on Channel 78

Report No.: FR870418A

Date: 26.OCT.2018 07:04:22

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 26.OCT.2018 06:01:24

TEL: 886-3-327-3456 Page Number : 26 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

99% Occupied Bandwidth Plot on Channel 39

Report No.: FR870418A

Date: 26.OCT.2018 06:07:19

99% Occupied Bandwidth Plot on Channel 78

Date: 26.OCT.2018 06:14:02

TEL: 886-3-327-3456 Page Number : 27 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

Report No.: FR870418A

Date: 26.OCT.2018 06:29:51

99% Occupied Bandwidth Plot on Channel 39

Date: 26.OCT.2018 06:35:39

TEL: 886-3-327-3456 Page Number : 28 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

99% Occupied Bandwidth Plot on Channel 78



Report No.: FR870418A

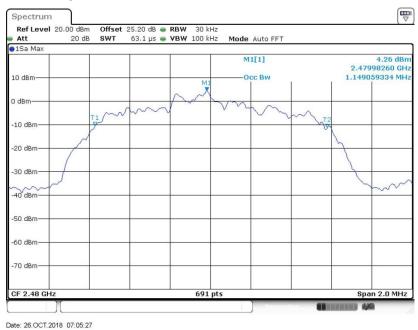
Date: 26.OCT.2018 06:43:45

<3Mbps>


99% Occupied Bandwidth Plot on Channel 00

Date: 26.OCT.2018 06:50:59

TEL: 886-3-327-3456 Page Number : 29 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018


99% Occupied Bandwidth Plot on Channel 39

Report No.: FR870418A

Date: 26.OCT.2018 06:58:05

99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

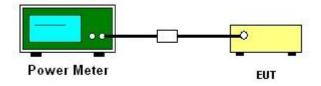
TEL: 886-3-327-3456 Page Number : 30 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

Report No.: FR870418A


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

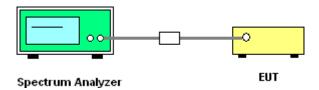
TEL: 886-3-327-3456 Page Number : 31 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR870418A

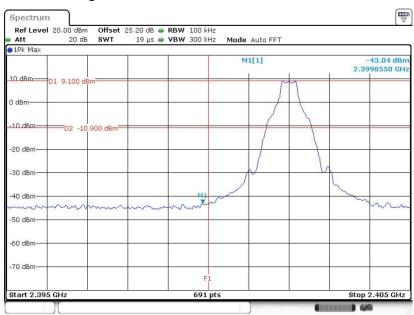

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

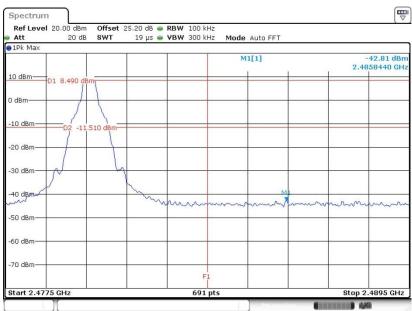
3.6.4 Test Setup



TEL: 886-3-327-3456 Page Number: 32 of 58
FAX: 886-3-328-4978 Issued Date: Nov. 13, 2018

3.6.5 Test Result of Conducted Band Edges

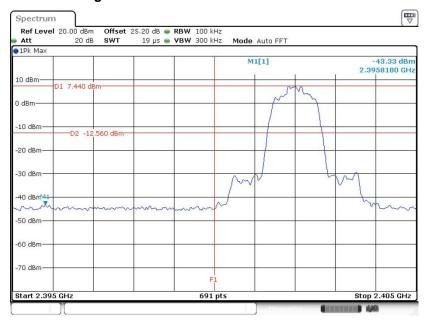
<1Mbps>


Low Band Edge Plot on Channel 00

Report No.: FR870418A

Date: 26.OCT.2018 06:00:11

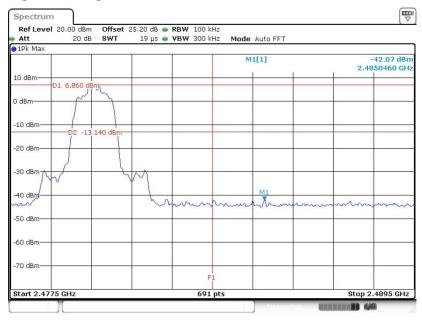
High Band Edge Plot on Channel 78



Date: 26.OCT.2018 06:12:49

TEL: 886-3-327-3456 Page Number : 33 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

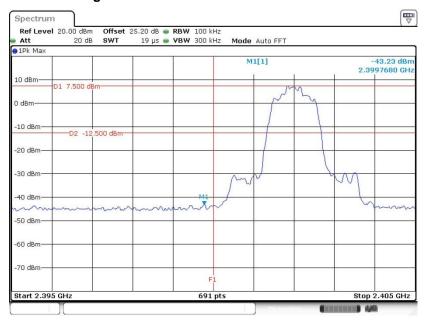
<2Mbps>


Low Band Edge Plot on Channel 00

Report No.: FR870418A

Date: 26.OCT.2018 06:29:15

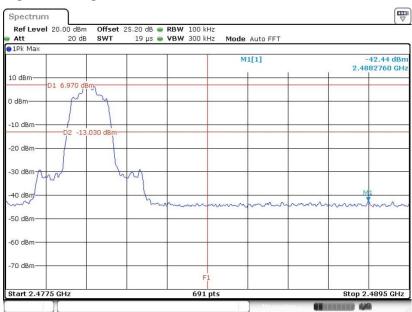
High Band Edge Plot on Channel 78



Date: 26.OCT.2018 06:43:08

TEL: 886-3-327-3456 Page Number : 34 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

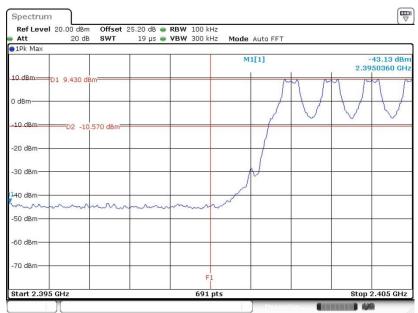
<3Mbps>


Low Band Edge Plot on Channel 00

Report No.: FR870418A

Date: 26.OCT.2018 06:50:21

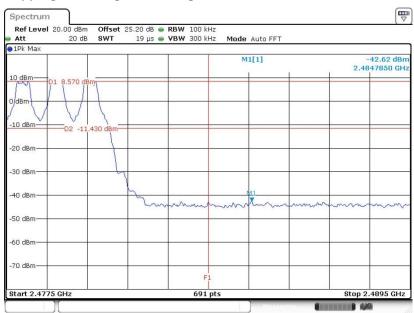
High Band Edge Plot on Channel 78


Date: 26.OCT.2018 07:05:47

TEL: 886-3-327-3456 Page Number : 35 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>


Hopping Mode Low Band Edge Plot

Report No.: FR870418A

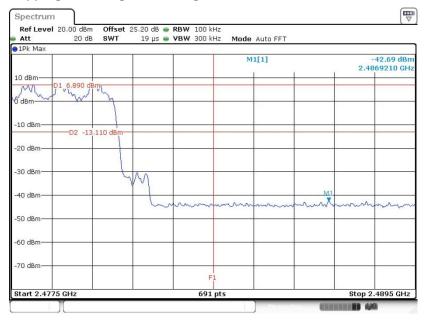
Date: 26.OCT.2018 05:54:56

Hopping Mode High Band Edge Plot

Date: 26.OCT.2018 05:55:18

TEL: 886-3-327-3456 Page Number : 36 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<2Mbps>


Hopping Mode Low Band Edge Plot

Report No.: FR870418A

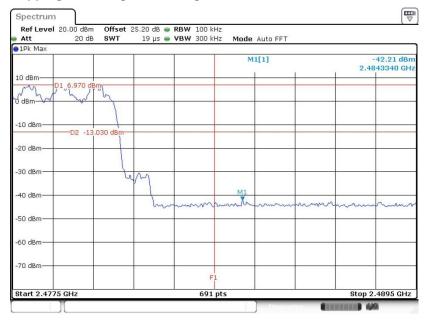
Date: 26.OCT.2018 05:53:29

Hopping Mode High Band Edge Plot

Date: 26.OCT.2018 05:53:51

TEL: 886-3-327-3456 Page Number : 37 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<3Mbps>


Hopping Mode Low Band Edge Plot

Report No.: FR870418A

Date: 26.OCT.2018 05:51:50

Hopping Mode High Band Edge Plot

Date: 26.OCT.2018 05:52:18

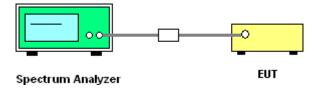
TEL: 886-3-327-3456 Page Number : 38 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR870418A

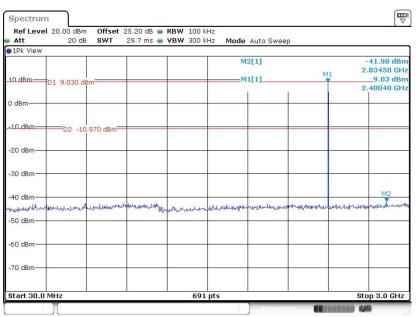

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

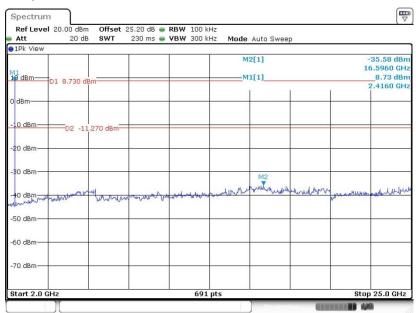
3.7.4 Test Setup



TEL: 886-3-327-3456 Page Number: 39 of 58
FAX: 886-3-328-4978 Issued Date: Nov. 13, 2018

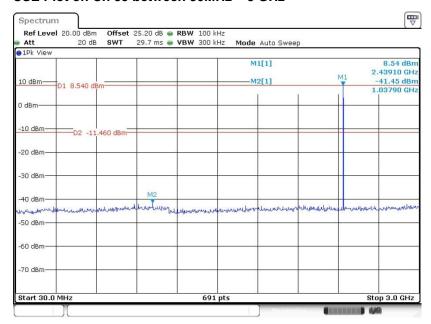
3.7.5 Test Result of Conducted Spurious Emission

<1Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

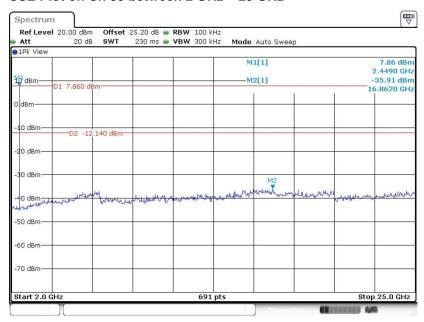
Report No.: FR870418A

Date: 26.OCT.2018 06:03:20


1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

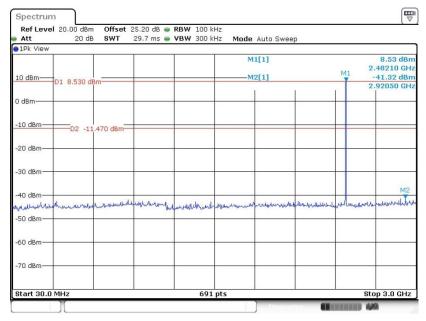
Date: 26.OCT.2018 06:03:49

TEL: 886-3-327-3456 Page Number : 40 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018


CSE Plot on Ch 39 between 30MHz ~ 3 GHz

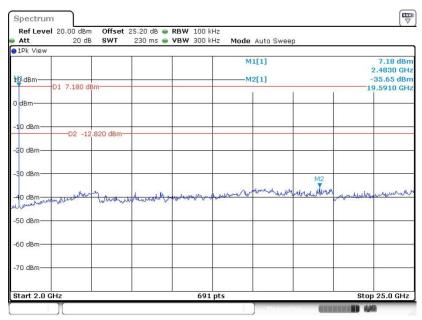
Report No.: FR870418A

Date: 26.OCT.2018 06:07:51


CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 26.OCT.2018 06:08:19

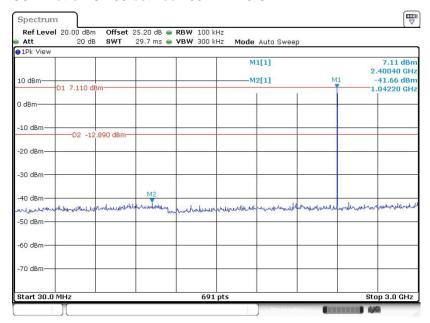
TEL: 886-3-327-3456 Page Number : 41 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018


CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR870418A

Date: 26.OCT.2018 06:14:56

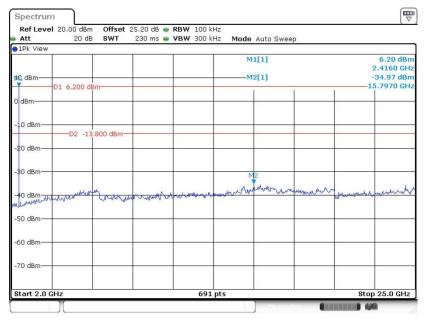
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz



Date: 26.OCT.2018 06:15:25

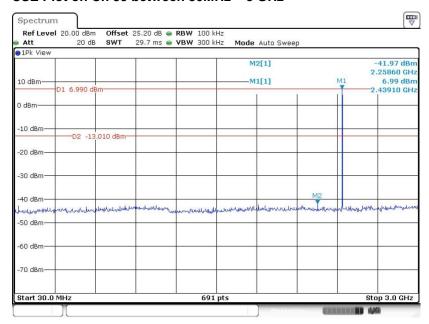
TEL: 886-3-327-3456 Page Number : 42 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<2Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

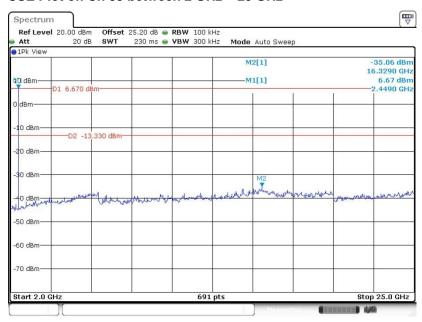
Report No.: FR870418A

Date: 26.OCT.2018 06:30:35


CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

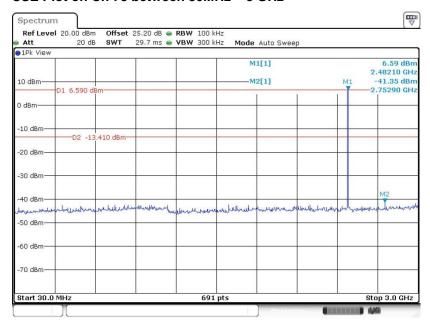
Date: 26.OCT.2018 06:31:05

TEL: 886-3-327-3456 Page Number : 43 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018


CSE Plot on Ch 39 between 30MHz ~ 3 GHz

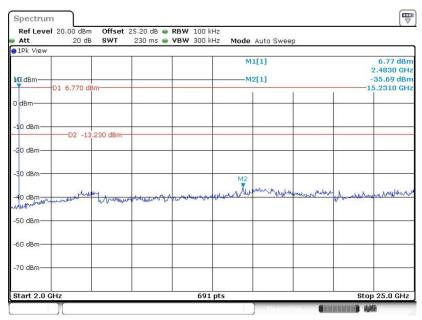
Report No.: FR870418A

Date: 26.OCT.2018 06:38:19


CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 26.OCT.2018 06:38:46

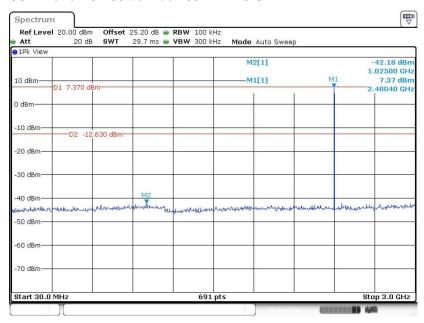
TEL: 886-3-327-3456 Page Number : 44 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018


CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR870418A

Date: 26.OCT.2018 06:44:22

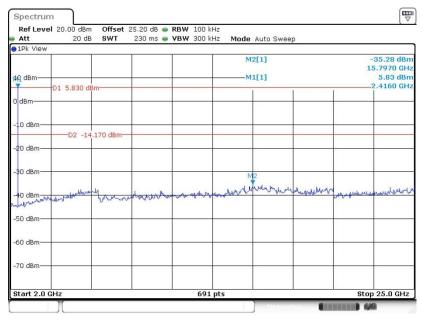
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz



Date: 26.OCT.2018 06:44:50

TEL: 886-3-327-3456 Page Number : 45 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018

<3Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Report No.: FR870418A

Date: 26.OCT.2018 06:52:19

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 26.OCT.2018 06:52:50

TEL: 886-3-327-3456 Page Number : 46 of 58 FAX: 886-3-328-4978 Issued Date : Nov. 13, 2018