

# PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com



# SAR COMPLIANCE EVALUATION REPORT

**Applicant Name:** 

Panasonic Corporation of North America One Panasonic Way, 4B-8 Secaucus, NJ 07094 **United States** 

**Date of Testing:** 01/14/09 - 11/06/09 **Test Site/Location:** 

PCTEST Lab, Columbia, MD, USA

**Test Report Serial No.:** 0910051841.ACJ

ACJ9TGCF-H12 FCC ID:

**APPLICANT:** PANASONIC CORPORATION OF NORTH AMERICA

850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and **EUT Type:** 

Bluetooth

Certification **Application Type:** 

FCC Rule Part(s): CFR §2.1093; FCC/OET Bulletin 65 Supplement C [July 2001]

**FCC Classification:** PCS Licensed Transmitter (PCB) Digital Transmission System (DTS)

Model(s): CF-H1mk2 Family

Tx Frequency: 824.20 - 848.80 MHz (Cellular GSM) / 1850.20 - 1909.80 MHz (GSM PCS)

> 826.40 - 846.60 MHz (Cellular WCDMA) / 1852.4 - 1907.6 MHz (PCS WCDMA) 824.70 - 848.31 MHz (Cellular CDMA) / 1851.25 - 1908.75 MHz (PCS CDMA)

32.9 dBm GSM 850 / 30.18 dBm GSM 1900 **Conducted Power:** 

24.67 dBm UMTS V / 24.38 dBm UMTS II

24.76 dBm Cell. CDMA EVDO / 23.48 dBm PCS CDMA EVDO 13.59 dBm IEEE 802.11b / 14.94 dBm - 802.11g / 14.93 dBm - 802.11n 13.88 dBm IEEE 802.11a 5.2GHz / 13.74 dBm IEEE 802.11n 5.2GHz 13.62 dBm IEEE 802.11a 5.3GHz / 12.73 dBm IEEE 802.11n 5.3GHz 14.04 dBm IEEE 802.11a 5.5GHz / 13.67 dBm IEEE 802.11n 5.5GHz

13.46 dBm IEEE 802.11a 5.8GHz / 12.79 dBm IEEE 802.11n 5.8GHz 0.251 W/kg GSM 850 Body SAR / 0.555 W/kg GSM 1900 Body SAR

0.487 W/kg UMTS V Body SAR / 0.985 W/kg UMTS II Body SAR

0.427 W/kg Cellular CDMA EVDO Body SAR / 0.650 W/kg PCS CDMA EVDO Body SAR

0.136 W/kg IEEE 802.11b / 0.138 W/kg - 802.11g, 0.126 W/kg - 802.11n 2.4GHz

0.293 W/kg IEEE 802.11a 5.2GHz / 0.253 W/kg IEEE 802.11n 5.2GHz 0.286 W/kg IEEE 802.11a 5.3GHz / 0.170 W/kg IEEE 802.11n 5.3GHz 0.331 W/kg IEEE 802.11a 5.5GHz / 0.286 W/kg IEEE 802.11n 5.5GHz 0.152 W/kg IEEE 802.11a 5.8GHz / 0.266 W/kg IEEE 802.11n 5.8GHz

Pre-Production [S/N: 9HKSA00095] **Test Device Serial No.:** 

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.



Max. SAR Measurement:



| FCC ID: ACJ9TGCF- | CID: ACJ91GCF-H12                          |                                                                                                     | PETEST    | SAR COMPLIANCE REPORT | <b>Panasonic</b> | Review<br>Quality | <b>ed by:</b><br>Manager |
|-------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|-----------------------|------------------|-------------------|--------------------------|
| Filename:         | Test Dates                                 | :                                                                                                   | EUT Type: |                       |                  |                   | Page 1 of 33             |
| 0910051841.ACJ    | 01/14/09 -                                 | 11/14/09 - 11/06/09 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |           |                       |                  |                   |                          |
| @ 2000 DCTE       | © 2000 PCTECT Engineering Laboratory, Inc. |                                                                                                     |           |                       |                  |                   |                          |

# TABLE OF CONTENTS

| 1  | INTRODUCTION                          | 3    |
|----|---------------------------------------|------|
| 2  | TEST SITE LOCATION                    | 4    |
| 3  | SAR MEASUREMENT SETUP                 | 5    |
| 4  | DASY E-FIELD PROBE SYSTEM             | 7    |
| 5  | PROBE CALIBRATION PROCESS             | 8    |
| 6  | PHANTOM AND EQUIVALENT TISSUES        | 9    |
| 7  | DOSIMETRIC ASSESSMENT & PHANTOM SPECS | 10   |
| 8  | NOTEBOOK PCS                          | 11   |
| 9  | RF EXPOSURE LIMITS                    | 12   |
| 10 | MEASUREMENT UNCERTAINTIES             | 13   |
| 11 | SYSTEM VERIFICATION                   | 14   |
| 12 | FCC 3G MEASUREMENT PROCEDURES         | 16   |
| 13 | SAR DATA SUMMARY                      | 21   |
| 14 | EQUIPMENT LIST                        | . 25 |
| 15 | CONCLUSION                            | 27   |
| 16 | REFERENCES                            | 28   |
| 17 | SAR TEST SETUP PHOTOGRAPHS            | 30   |

| FCC ID: ACJ9TGCF-H12                                                                                            |  | /\- | PCTEST    | SAR COMPLIANCE REPORT | <b>Panasonic</b> | Review Quality I | <b>ed by:</b><br>Manager |
|-----------------------------------------------------------------------------------------------------------------|--|-----|-----------|-----------------------|------------------|------------------|--------------------------|
| Filename: Test Dates:                                                                                           |  |     | EUT Type: |                       |                  |                  | Page 2 of 33             |
| 0910051841.ACJ 01/14/09 - 11/06/09 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Blueto |  |     |           |                       |                  | Bluetooth        | Faye 2 01 33             |
| © 2000 DCTECT Engineering Laboratory, Inc.                                                                      |  |     |           |                       |                  |                  | DEV/70                   |

## 1 INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.[1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz[2] and Health Canada RF Exposure Guidelines Safety Code 6 [26]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [3] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

## 1.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density ( $\rho$ ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$S A R = \frac{d}{d t} \left( \frac{d U}{d m} \right) = \frac{d}{d t} \left( \frac{d U}{\rho d v} \right)$$

Figure 1-1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 $\sigma$  = conductivity of the tissue-simulating material (S/m)  $\rho$  = mass density of the tissue-simulating material (kg/m<sup>3</sup>)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

| FCC ID: ACJ9TGCF-H12                       |  |  | PCTEST       | SAR COMPLIANCE REPORT | <b>Panasonic</b> | Review<br>Quality | <b>ed by:</b><br>Manager |
|--------------------------------------------|--|--|--------------|-----------------------|------------------|-------------------|--------------------------|
| Filename: Test Dates:                      |  |  | EUT Type:    |                       |                  |                   | Page 3 of 33             |
| 0910051841.ACJ 01/14/09 - 11/06/09         |  |  | 850/1900 CDM | rage 3 01 33          |                  |                   |                          |
| © 2009 PCTEST Engineering Laboratory, Inc. |  |  |              |                       |                  |                   | REV 7.0                  |

11/02/09

### 2 **TEST SITE LOCATION**

#### 2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC (See Figure 2).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia. Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV



Figure 2-1 Map of the Greater Baltimore and Metropolitan Washington, D.C. area

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

### 2.2 **Test Facility / Accreditations:**

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.



- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data



| FCC ID: ACJ9TGCF-                          | FCC ID: ACJ9TGCF-H12                                                                                             |  | PCTEST    | SAR COMPLIANCE REPORT | Panasonic | Review<br>Quality | ed by:<br>Manager |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|-----------|-----------------------|-----------|-------------------|-------------------|
| Filename: Test Dates:                      |                                                                                                                  |  | EUT Type: |                       |           |                   | Page 4 of 33      |
| 0910051841.ACJ                             | 10051841.ACJ 01/14/09 - 11/06/09 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |  |           |                       |           | rage 4 01 33      |                   |
| © 2009 PCTEST Engineering Laboratory, Inc. |                                                                                                                  |  |           |                       |           |                   | REV 7.0           |

### 3 SAR MEASUREMENT SETUP

### 3.1 Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Pentium 4 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

### 3.2 System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Gateway Pentium 4 2.53 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

### 3.3 **System Electronics**

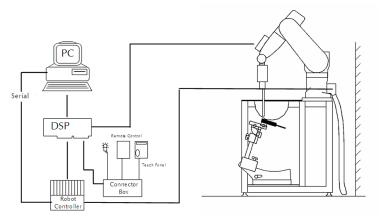



Figure 3-1 **SAR Measurement System Setup** 

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [7].

| FCC ID: ACJ9TGCF-H12                     |                                                                                                                    | /\_ | PCTEST | SAR COMPLIANCE REPORT | <b>Panasonic</b> | Reviewe<br>Quality N | •            |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----|--------|-----------------------|------------------|----------------------|--------------|
| Filename:                                | lename: Test Dates:                                                                                                |     |        |                       |                  |                      | Page 5 of 33 |
| 0910051841.ACJ                           | 0910051841.ACJ 01/14/09 - 11/06/09 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |     |        |                       |                  | rage 5 01 33         |              |
| © 2009 PCTEST Engineering Laboratory Inc |                                                                                                                    |     |        |                       |                  |                      | REV 7.0      |

© 2009 PCTEST Engineering Laboratory, Inc.

# 3.4 Automated Test System Specifications

**Positioner** 

Robot: Stäubli Unimation Corp. Robot RX60L

Repeatability: 0.02 mm

No. of Axes: 6

Data Acquisition Electronic System (DAE)

Cell Controller

Processor: Pentium 4 Clock Speed: 2.53 GHz

Operating System: Windows XP Professional

**Data Converter** 

Features: Signal Amplifier, multiplexer, A/D converter & control logic

Software: DASY4, SEMCAD software

Connecting Lines: Optical Downlink for data and status info

Optical upload for commands and clock

PC Interface Card

Function: 166MHz low power Pentium MMX 32MB chipdisk

Link to DAE

16-bit A/D converter for surface detection system

Two Serial & Ethernet link to robotics Direct emergency stop output for robot

Phantom

Type: SAM Twin Phantom (V4.0)

Shell Material: Composite
Thickness: 2.0 ± 0.2 mm



Figure 3-2
DASY4 SAR Measurement System

| FCC ID: ACJ9TGCF | -H12                  |          |              | SAR COMPLIANCE REPORT                                                           | <b>Panasonic</b> | Review<br>Quality | <b>ed by:</b><br>Manager |  |
|------------------|-----------------------|----------|--------------|---------------------------------------------------------------------------------|------------------|-------------------|--------------------------|--|
| Filename:        | Filename: Test Dates: |          |              |                                                                                 |                  |                   | Page 6 of 33             |  |
| 0910051841.ACJ   | 01/14/09 -            | 11/06/09 | 850/1900 CDM | 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |                  |                   |                          |  |

## DASY E-FIELD PROBE SYSTEM

### 4.1 **Probe Measurement System**



Figure 4-1 SAR System

The SAR measurements were conducted with the dosimetric probe EX3DV4. designed in the classical triangular configuration [7] (see Figure 4-3) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach

and looks for the maximum using a 2nd order fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

### 4.2 **Probe Specifications**

Model: ES3DV3, EX3DV4

10 MHz - 6.0 GHz (EX3DV4) Frequency 10 MHz – 4 GHz (ES3DV3) Range:

In brain and muscle simulating tissue at Calibration: Frequencies from 835 up to 5800MHz ± 0.2 dB (30 MHz to 6 GHz) for EX3DV4 Linearity: ± 0.2 dB (30 MHz to 4 GHz) for ES3DV3

**Dynamic Range:** 10 mW/kg - 100 W/kg

**Probe Length:** 330 mm

**Probe Tip** 

20 mm Length:

**Body Diameter:** 12 mm

**Tip Diameter:** 2.5 mm (3.9mm for ES3DV3) Tip-Center: 1 mm (2.0 mm for ES3DV3) Application: SAR Dosimetry Testing

> Compliance tests of mobile phones Dosimetry in strong gradient fields



Figure 4-2 **Near-Field Probe** 



Figure 4-3 Triangular Probe Configuration

| FCC ID: ACJ9TGCF-H12                      |                                                                                                        | //_ | PETEST    | SAR COMPLIANCE REPORT | <b>Panasonic</b> | Reviewo      | ed by:<br>Manager |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|-----------|-----------------------|------------------|--------------|-------------------|
| Filename:                                 | Test Dates                                                                                             | :   | EUT Type: |                       |                  |              | Page 7 of 33      |
| 0910051841.ACJ                            | CJ 01/14/09 - 11/06/09 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |     |           |                       |                  | rage / 01 33 |                   |
| © 2000 DCTCT Engineering Laboratory, Inc. |                                                                                                        |     |           |                       |                  |              | DEV/70            |

# 5 PROBE CALIBRATION PROCESS

## 5.1 Dosimetric Assessment Procedure

Each E-Probe/Probe amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

# 5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm<sup>2</sup>.

# 5.3 Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t$  = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 $\Delta T$  = temperature increase due to RF exposure.

SAR is proportional to  $\Delta T/\Delta t$ , the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

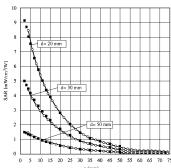



Figure 5-1 E-Field and Temperature measurements at 900MHz [7]

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where:

 $\sigma$  = simulated tissue conductivity,

= Tissue density (1.25 g/cm3 for brain tissue)

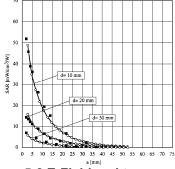



Figure 5-2 E-Field and temperature measurements at 1.9GHz [7]

| FCC ID: ACJ9TGCF-H12                                                    |  |           | PETEST | SAR COMPLIANCE REPORT           | Panasonic                 | Reviewe<br>Quality I | <b>ed by:</b><br>Manager |
|-------------------------------------------------------------------------|--|-----------|--------|---------------------------------|---------------------------|----------------------|--------------------------|
| Filename: Test Dates:                                                   |  | EUT Type: |        |                                 |                           | Page 8 of 33         |                          |
| 0910051841.ACJ 01/14/09 - 11/06/09 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HS |  |           |        | A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO | Handheld PC with WLAN and | Bluetooth            | Faye 0 01 33             |
| © 2000 PCTEST Engineering Laboratory Inc.                               |  |           |        |                                 |                           |                      | DEV/70                   |

© 2009 PCTEST Engineering Laboratory, Inc.

### 6 PHANTOM AND EQUIVALENT TISSUES

#### 6.1 SAM Phantoms



Figure 6-1 **SAM Phantoms** 

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [11][12]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 5.1)

### 6.2 **Brain & Muscle Simulating Mixture Characterization**



Figure 6-2 **Head Simulated** 

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution (see Table 6-1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table. Other head and body tissue parameters that have not been specified in IEEE-1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove [13].(See Table 6-1)

Table 6-1 Composition of the Brain & Muscle Tissue Equivalent Matter

|                      | _                        | • • • • |       |       | _     |       |       |       |             |            |            |        |       | - 4   |       |       |       |       |       |       |       |
|----------------------|--------------------------|---------|-------|-------|-------|-------|-------|-------|-------------|------------|------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Frequency<br>(MHz)   | 300                      | 4       | 50    | 835   |       | 900   |       | 1450  |             | 18         | 800        |        | 19    | 000   | 1950  | 2000  | 23    | 100   | 24    | 150   | 3000  |
| Recipe#              | 1                        | 1       | 3     | 1     | 1     | 2     | 3     | 1     | 1           | 2          | 2          | 3      | 1     | 2     | 4     | 1     | 1     | 2     | 2     | 3     | 2     |
|                      | Ingredient (% by weight) |         |       |       |       |       |       |       |             |            |            |        |       |       |       |       |       |       |       |       |       |
| 1,2-Pro-<br>panediol |                          |         |       |       |       | 64.81 |       |       |             |            |            |        |       |       |       |       |       |       |       |       |       |
| Bactericide          | 0.19                     | 0.19    | 0.50  | 0.10  | 0.10  |       | 0.50  |       |             |            |            | 0.50   |       |       |       |       |       |       |       | 0.50  |       |
| Diacetin             |                          |         | 48.90 |       |       |       | 49.20 |       |             |            |            | 49.43  |       |       |       |       |       |       |       | 49.75 |       |
| DGBE                 |                          |         |       |       |       |       |       | 45.41 | 47.00       | 13.84      | 44.92      |        | 44.94 | 13.84 | 45.00 | 50.00 | 50.00 | 7.99  | 7.99  |       | 7.99  |
| HEC                  | 0.98                     | 0.98    |       | 1.00  | 1.00  |       |       |       |             |            |            |        |       |       |       |       |       |       |       |       |       |
| NaC1                 | 5.95                     | 3.95    | 1.70  | 1.45  | 1.48  | 0.79  | 1.10  | 0.67  | 0.36        | 0.35       | 0.18       | 0.64   | 0.18  | 0.35  |       |       |       | 0.16  | 0.16  |       | 0.16  |
| Sucrose              | 55.32                    | 56.32   |       | 57.00 | 56.50 |       |       |       |             |            |            |        |       |       |       |       |       |       |       |       |       |
| Triton X-100         |                          |         |       |       |       |       |       |       |             | 30.45      |            |        |       | 30.45 |       |       |       | 19.97 | 19.97 |       | 19.97 |
| Water                | 37.56                    | 38.56   | 48.90 | 40.45 | 40.92 | 34.40 | 49.20 | 53.80 | 52.64       | 55.36      | 54.90      | 49.43  | 54.90 | 55.36 | 55.00 | 50.00 | 50.00 | 71.88 | 71.88 | 49.75 | 71.88 |
|                      |                          |         |       |       |       |       |       | 3     | feasured.   | dielectric | parameo    | ers    |       |       |       |       |       |       |       |       |       |
| e' <sub>r</sub>      | 46.00                    | 43.4    | 44.3  | 41.6  | 41.2  | 41.8  | 42.7  | 40.9  | 39.3        | 41         | 40.4       | 39.2   | 39.9  | 41    | 40.1  | 37    | 36.8  | 41.1  | 40.3  | 39.2  | 37.9  |
| σ(S/m)               | 0.86                     | 0.85    | 0.9   | 0.9   | 0.98  | 0.97  | 0.99  | 1.21  | 1.39        | 1.38       | 1.4        | 1.4    | 1.42  | 1.38  | 1.41  | 1.4   | 1.51  | 1.55  | 1.88  | 1.82  | 2.46  |
| Temp. (°C)           | 22                       | 22      | 20    | 22    | 22    | 22    | 20    | 22    | 22          | 21         | 22         | 20     | 21    | 21    | 20    | 22    | 22    | 20    | 20    | 20    | 20    |
|                      |                          |         |       |       |       |       |       | Tar   | get dielect | nic parau  | neters (Ts | ble 2) |       |       |       |       |       |       |       |       |       |
| é <sub>r</sub>       | 45.30                    | 43      | .50   | 41.5  |       | 41.50 |       | 40.5  |             |            |            | 40     | 0.0   |       |       |       | 39    | .80   | 3     | 9.2   | 38.5  |
| e <sub>r</sub>       |                          |         |       |       |       |       |       | 1.2   |             |            |            |        | .4    |       |       |       | 1.    |       |       |       | 2.4   |

The formulas containing Triton X-100 and corresponding measured parameters are under review and verification

| FCC ID: ACJ9TGCF-H12 |              | /\_     | PETEST'      | SAR COMPLIANCE REPORT             | <b>Panasonic</b>          | Review<br>Quality | <b>ed by:</b><br>Manager |
|----------------------|--------------|---------|--------------|-----------------------------------|---------------------------|-------------------|--------------------------|
| Filename:            | Test Dates   | :       | EUT Type:    |                                   |                           |                   | Page 9 of 33             |
| 0910051841.ACJ       | 01/14/09 - 1 | 1/06/09 | 850/1900 CDM | A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO F | Handheld PC with WLAN and | Bluetooth         | raye 9 01 33             |

# 7 DOSIMETRIC ASSESSMENT & PHANTOM SPECS

## 7.1 Measurement Procedure

The evaluation was performed using the following procedure:

- The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed point was measured and used as a reference value.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.0mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value of the scan is specified by the scan is set, the spatial peak scan is set, the spatial peak scan is set, the scan is scan is set, the scan is set, the scan is set, the scan is set,



Figure 7-1 Sample SAR Area Scan

points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see Figure 7-1):

- a. The data at the surface was extrapolated, since the center of the dipoles is 2.7mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. The extrapolation was based on a least square algorithm [15]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions) [15][16]. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 1, was re-measured. If the value changed by more than 5%, the evaluation is repeated.

# 7.2 Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 7-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.



Figure 7-2 SAM Twin Phantom Shell

| FCC ID: ACJ9TGCF- | CJ9TGCF-H12  |         | SAR COMPLIANCE REPORT | <b>Panasonic</b> | Reviewe<br>Quality I |  |               |
|-------------------|--------------|---------|-----------------------|------------------|----------------------|--|---------------|
| Filename:         | Test Dates   | :       | EUT Type:             |                  |                      |  | Page 10 of 33 |
| 0910051841.ACJ    | 01/14/09 - 1 | 1/06/09 | 850/1900 CDM          | raye 10 01 33    |                      |  |               |
|                   |              |         |                       |                  |                      |  |               |

### 8.1 SAR for Notebooks and Lap-touching Devices

Lap-touching devices that have transmitting antennas located less than 20 cm from the lap of the user require routine SAR evaluation. Such devices are considered portable and are capable of being held to the body. Devices are to be setup touching the phantom and are configured with maximum output power during SAR assessment for a worst-case SAR evaluation.



Figure 8-1 **Notebook Setup for SAR** 

### 8.2 Test Conditions and Positioning for Convertible and Slate Tablet Computers



Figure 8-2 **Tablet Computer Form Factors** 

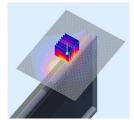



Figure 8-3 **Tablet PC Body SAR** 

KDB 447498. Tablet computers are tested in a lap-held position (Laptop) with the bottom of the computer in direct contact against a flat phantom for all user-enabled portrait and landscape positions.

The WWAN Tx antenna side edge (Left Edge) of the tablet was tested for SAR. Since the Top. Right and Bottom sides of the tablet are greater than 20 cm from the WWAN transmit antenna. WWAN SAR testing was not performed on those sides. See operational description of the laptop for more details on the antennas in the body for the WWAN transmitter.

The WLAN Tx antenna side edge (Tablet Right) of the tablet was tested for SAR. Since the Top, Left and Bottom sides of the tablet are greater than 20 cm from the WLAN transmit antenna, WWAN SAR testing was not performed on those sides. See operational description of the laptop for more details on the antennas in the body for the WLAN transmitter.

Therefore, the only condition applicable to RF Exposure is the Tablet mode on the left side closest to the WWAN transmit antenna, the Tablet mode on the right side closest to the WLAN transmit antenna and the condition where the tablet is placed on the lap.

#### 8.3 Simultaneous Transmission

KDB 616217. The equation n = P/(60/f)-1 is used to calculate minimum antenna separation distance before simultaneous SAR measurements are necessary, where P is the antenna's output power and f is the frequency in GHz of the simultaneous antenna. For the worst-case WLAN(a) 5.8GHz mode where P = 15.96 dBm or 39.45 mW, and f = 5.745, n is calculated to be 2.78. The minimum separation distance is then calculated to be at least  $(5 + \frac{1}{2}n)$  cm or 6.39 cm.

The WWAN and WLAN antenna separation distance for the EUT is 11.5 cm, there a simultaneous SAR evaluation is not required.

| FCC ID: ACJ9TGCF-H12                       |  | //_       | CTEST                                                                           | SAR COMPLIANCE REPORT | <b>Panasonic</b> | Reviewe<br>Quality I | ed by:<br>Manager |
|--------------------------------------------|--|-----------|---------------------------------------------------------------------------------|-----------------------|------------------|----------------------|-------------------|
| Filename: Test Dates:                      |  | EUT Type: |                                                                                 |                       |                  | Page 11 of 33        |                   |
| 0910051841.ACJ 01/14/09 - 11/06/09         |  |           | 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |                       |                  |                      | Fage 110133       |
| © 2009 PCTEST Engineering Laboratory, Inc. |  |           |                                                                                 |                       |                  |                      | DEV/70            |

# 9 RF EXPOSURE LIMITS

## 9.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

## 9.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 9-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

| HUMAN EXPOSURE LIMITS                           |                                                                       |                                                               |  |  |  |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                                 | UNCONTROLLED<br>ENVIRONMENT<br>General Population<br>(W/kg) or (mW/g) | CONTROLLED<br>ENVIRONMENT<br>Occupational<br>(W/kg) or (mW/g) |  |  |  |  |  |  |  |  |
| SPATIAL PEAK SAR<br>Brain                       | 1.6                                                                   | 8.0                                                           |  |  |  |  |  |  |  |  |
| SPATIAL AVERAGE SAR<br>Whole Body               | 0.08                                                                  | 0.4                                                           |  |  |  |  |  |  |  |  |
| SPATIAL PEAK SAR<br>Hands, Feet, Ankles, Wrists | 4.0                                                                   | 20                                                            |  |  |  |  |  |  |  |  |

<sup>1</sup> The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

| FCC ID: ACJ9TGCF                   | -H12                                       |  | PETEST        | SAR COMPLIANCE REPORT | Panasonic | Reviewe<br>Quality I | <b>ed by:</b><br>Manager |
|------------------------------------|--------------------------------------------|--|---------------|-----------------------|-----------|----------------------|--------------------------|
| Filename: Test Dates:              |                                            |  | EUT Type:     | EUT Type:             |           |                      |                          |
| 0910051841.ACJ 01/14/09 - 11/06/09 |                                            |  | 850/1900 CDM/ | Page 12 of 33         |           |                      |                          |
|                                    | © 2000 DCTEST Engineering Laboratory, Inc. |  |               |                       |           |                      | DEV/70                   |

© 2009 PCTEST Engineering Laboratory, Inc.

<sup>2</sup> The Spatial Average value of the SAR averaged over the whole body.

<sup>3</sup> The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

# 10 MEASUREMENT UNCERTAINTIES

| а                                                                             | b            | С     | d     | e=     | f              | g              | h =            | i =            | k              |
|-------------------------------------------------------------------------------|--------------|-------|-------|--------|----------------|----------------|----------------|----------------|----------------|
|                                                                               |              |       |       | f(d,k) |                |                | c x f/e        | c x g/e        |                |
| Uncertainty                                                                   | IEEE         | Tol.  | Prob. |        | C <sub>i</sub> | C <sub>i</sub> | 1gm            | 10gms          |                |
| Component                                                                     | 1528<br>Sec. | (± %) | Dist. | Div.   | 1gm            | 10 gms         | U <sub>i</sub> | u <sub>i</sub> | V <sub>i</sub> |
|                                                                               | 360.         | (,    |       |        |                |                | (± %)          | (± %)          |                |
| Measurement System                                                            |              |       |       |        |                |                | , ,            |                |                |
| Probe Calibration                                                             | E2.1         | 6.6   | N     | 1      | 1.0            | 1.0            | 6.6            | 6.6            | $\infty$       |
| Axial Isotropy                                                                | E2.2         | 0.25  | N     | 1      | 0.7            | 0.7            | 0.2            | 0.2            | œ              |
| Hemishperical Isotropy                                                        | E2.2         | 1.3   | N     | 1      | 1.0            | 1.0            | 1.3            | 1.3            | $\infty$       |
| Boundary Effect                                                               | E2.3         | 0.4   | N     | 1      | 1.0            | 1.0            | 0.4            | 0.4            | oo             |
| Linearity                                                                     | E2.4         | 0.3   | N     | 1      | 1.0            | 1.0            | 0.3            | 0.3            | oc             |
| System Detection Limits                                                       | E2.5         | 5.1   | N     | 1      | 1.0            | 1.0            | 5.1            | 5.1            | $\infty$       |
| Readout Electronics                                                           | E2.6         | 1.0   | N     | 1      | 1.0            | 1.0            | 1.0            | 1.0            | oc .           |
| Response Time                                                                 | E2.7         | 0.8   | R     | 1.73   | 1.0            | 1.0            | 0.5            | 0.5            | 8              |
| Integration Time                                                              | E2.8         | 2.6   | R     | 1.73   | 1.0            | 1.0            | 1.5            | 1.5            | $\infty$       |
| RF Ambient Conditions                                                         | E6.1         | 3.0   | R     | 1.73   | 1.0            | 1.0            | 1.7            | 1.7            | × ×            |
| Probe Positioner Mechanical Tolerance                                         | E6.2         | 0.4   | R     | 1.73   | 1.0            | 1.0            | 0.2            | 0.2            | $\infty$       |
| Probe Positioning w/ respect to Phantom                                       | E6.3         | 2.9   | R     | 1.73   | 1.0            | 1.0            | 1.7            | 1.7            | $\infty$       |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E5           | 1.0   | R     | 1.73   | 1.0            | 1.0            | 0.6            | 0.6            | 8              |
| Test Sample Related                                                           |              |       |       |        |                |                |                |                |                |
| Test Sample Positioning                                                       | E4.2         | 6.0   | N     | 1      | 1.0            | 1.0            | 6.0            | 6.0            | 287            |
| Device Holder Uncertainty                                                     | E4.1         | 3.32  | R     | 1.73   | 1.0            | 1.0            | 1.9            | 1.9            | $\infty$       |
| Output Power Variation - SAR drift measurement                                | 6.6.2        | 5.0   | R     | 1.73   | 1.0            | 1.0            | 2.9            | 2.9            | $\infty$       |
| Phantom & Tissue Parameters                                                   |              |       |       |        |                |                |                |                |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | E3.1         | 4.0   | R     | 1.73   | 1.0            | 1.0            | 2.3            | 2.3            | $\infty$       |
| Liquid Conductivity - deviation from target values                            | E3.2         | 5.0   | R     | 1.73   | 0.64           | 0.43           | 1.8            | 1.2            | $\infty$       |
| Liquid Conductivity - measurement uncertainty                                 | E3.3         | 3.8   | N     | 1      | 0.64           | 0.43           | 2.4            | 1.6            | 6              |
| Liquid Permittivity - deviation from target values                            | E3.2         | 5.0   | R     | 1.73   | 0.60           | 0.49           | 1.7            | 1.4            | oc             |
| Liquid Permittivity - measurement uncertainty                                 | E3.3         | 4.5   | N     | 1      | 0.60           | 0.49           | 2.7            | 2.2            | 6              |
| Combined Standard Uncertainty (k=1)                                           | 1            | 1     | RSS   | 1      | 1              | 1              | 12.4           | 12.0           | 299            |
| Expanded Uncertainty                                                          |              |       | k=2   |        |                |                | 24.7           | 24.0           |                |
| (95% CONFIDENCE LEVEL)                                                        |              |       |       |        |                |                |                |                |                |

The above measurement uncertainties are according to I Std. 1528-2003

| FCC ID: ACJ9TGCF-                                                                  | -H12             |                           | PETEST*                            | SAR COMPLIANCE REPORT    | Panasonic | Review<br>Quality | ed by:<br>Manager   |
|------------------------------------------------------------------------------------|------------------|---------------------------|------------------------------------|--------------------------|-----------|-------------------|---------------------|
| Filename:         Test Dates:           0910051841.ACJ         01/14/09 - 11/06/09 |                  | EUT Type:<br>850/1900 CDN | MA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO H | andheld PC with WLAN and | Bluetooth | Page 13 of 33     |                     |
| © 2009 PCTE                                                                        | ST Engineering L | aboratory,                | Inc.                               |                          |           |                   | REV 7.0<br>11/02/09 |

# 11 SYSTEM VERIFICATION

### 11.1 Tissue Verification

Table 11-1
Measured Tissue Properties

| Calibrated<br>Date: | Tissue<br>Type | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity, σ<br>(S/m) | Measured<br>Dielectric<br>Constant, ε | TARGET<br>Conductivity, σ<br>(S/m) | TARGET<br>Dielectric<br>Constant, ε | % dev σ | % dev ε |
|---------------------|----------------|--------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|---------|---------|
|                     |                | 820                            | 0.964                                | 53.33                                 | 0.97                               | 55.20                               | -0.62%  | -3.39%  |
| 10/05/2009          | 835M           | 835                            | 0.978                                | 53.20                                 | 0.97                               | 55.20                               | 0.82%   | -3.62%  |
|                     |                | 850                            | 0.993                                | 53.02                                 | 0.97                               | 55.20                               | 2.37%   | -3.95%  |
|                     |                | 1850                           | 1.496                                | 51.19                                 | 1.52                               | 53.30                               | -1.58%  | -3.96%  |
| 10/05/2009          | 1900M          | 1880                           | 1.515                                | 51.37                                 | 1.52                               | 53.30                               | -0.33%  | -3.62%  |
|                     |                | 1910                           | 1.551                                | 51.28                                 | 1.52                               | 53.30                               | 2.04%   | -3.79%  |
|                     |                | 820                            | 0.971                                | 53.52                                 | 0.97                               | 55.20                               | 0.10%   | -3.04%  |
| 10/26/2009          | 835M           | 835                            | 0.986                                | 53.38                                 | 0.97                               | 55.20                               | 1.65%   | -3.30%  |
|                     |                | 850                            | 1.000                                | 53.22                                 | 0.97                               | 55.20                               | 3.09%   | -3.59%  |
|                     |                | 1850                           | 1.506                                | 51.74                                 | 1.52                               | 53.30                               | -0.92%  | -2.93%  |
| 10/26/2009          | 1900M          | 1880                           | 1.537                                | 51.67                                 | 1.52                               | 53.30                               | 1.12%   | -3.06%  |
|                     |                | 1910                           | 1.572                                | 51.53                                 | 1.52                               | 53.30                               | 3.42%   | -3.32%  |
|                     |                | 820                            | 0.957                                | 52.63                                 | 0.97                               | 55.20                               | -1.34%  | -4.66%  |
| 11/02/2009          | 835M           | 835                            | 0.965                                | 52.67                                 | 0.97                               | 55.20                               | -0.52%  | -4.58%  |
|                     |                | 850                            | 0.982                                | 52.53                                 | 0.97                               | 55.20                               | 1.24%   | -4.84%  |
|                     |                | 1850                           | 1.479                                | 51.05                                 | 1.52                               | 53.30                               | -2.70%  | -4.22%  |
| 11/02/2009          | 1900M          | 1880                           | 1.505                                | 50.84                                 | 1.52                               | 53.30                               | -0.99%  | -4.62%  |
|                     |                | 1910                           | 1.546                                | 50.66                                 | 1.52                               | 53.30                               | 1.71%   | -4.95%  |
| 01/12/2009          | 2450M          | 2450                           | 1.890                                | 51.29                                 | 1.95                               | 52.70                               | -3.08%  | -2.68%  |
| 01/12/2009          | 5300M          | 5300                           | 5.660                                | 47.31                                 | 5.42                               | 48.90                               | 4.43%   | -3.25%  |
| 01/12/2009          | 5500M          | 5500                           | 5.680                                | 46.77                                 | 5.65                               | 48.60                               | 0.53%   | -3.77%  |
| 01/12/2009          | 5800M          | 5800                           | 6.170                                | 48.49                                 | 6.00                               | 48.20                               | 2.83%   | 0.60%   |

Note: KDB 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2).

## 11.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container.
   Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively,  $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$ ,  $\omega$  is the angular frequency, and  $j = \sqrt{-1}$ .

| FCC ID: ACJ9TGCF-                          | ·H12 |  | CTEST        | SAR COMPLIANCE REPORT            | Panasonic                 | Review<br>Quality | ed by:<br>Manager   |
|--------------------------------------------|------|--|--------------|----------------------------------|---------------------------|-------------------|---------------------|
| Filename: Test Dates:                      |      |  | EUT Type:    |                                  |                           |                   | Page 14 of 33       |
| 0910051841.ACJ 01/14/09 - 11/06/09         |      |  | 850/1900 CDN | NA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO | Handheld PC with WLAN and | Bluetooth         | Fage 14 01 33       |
| © 2009 PCTEST Engineering Laboratory, Inc. |      |  |              |                                  |                           |                   | REV 7.0<br>11/02/09 |

# 11.3 Test System Verification

Prior to assessment, the system is verified to  $\pm 10\%$  of the manufacturer SAR result on the reference dipole at the time of calibration, by using the below system validation kit(s).

**Table 11-2 System Verification Results** 

|            | System Verification TARGET & MEASURED |                     |                       |                              |              |                |                                       |                                       |                  |  |  |  |
|------------|---------------------------------------|---------------------|-----------------------|------------------------------|--------------|----------------|---------------------------------------|---------------------------------------|------------------|--|--|--|
| Date:      | Amb.<br>Temp (°C)                     | Liquid<br>Temp (°C) | Input<br>Power<br>(W) | Tissue<br>Frequency<br>(MHz) | Dipole<br>SN | Tissue<br>Type | Targeted<br>SAR <sub>1g</sub><br>(mW) | Measured<br>SAR <sub>1g</sub><br>(mW) | Deviation<br>(%) |  |  |  |
| 10/07/2009 | 23.7                                  | 22.1                | 0.060                 | 835                          | 4d047        | Muscle         | 0.59                                  | 0.631                                 | 7.09%            |  |  |  |
| 10/26/2009 | 23.9                                  | 22                  | 0.080                 | 835                          | 4d047        | Muscle         | 0.79                                  | 0.847                                 | 7.82%            |  |  |  |
| 11/06/2009 | 23.7                                  | 22.1                | 0.060                 | 835                          | 4d047        | Muscle         | 0.59                                  | 0.622                                 | 5.57%            |  |  |  |
| 10/05/2009 | 23.6                                  | 22.6                | 0.100                 | 1900                         | 5d080        | Muscle         | 4.05                                  | 3.98                                  | -1.73%           |  |  |  |
| 10/26/2009 | 23.2                                  | 22.8                | 0.100                 | 1900                         | 502          | Muscle         | 4.15                                  | 4.35                                  | 4.82%            |  |  |  |
| 11/06/2009 | 23.6                                  | 22.2                | 0.100                 | 1900                         | 502          | Muscle         | 4.15                                  | 4.27                                  | 2.89%            |  |  |  |
| 01/14/2009 | 22.5                                  | 21.3                | 0.100                 | 2450                         | 797          | Brain          | 5.41                                  | 5.27                                  | -2.59%           |  |  |  |
| 01/15/2009 | 22.4                                  | 21.2                | 0.100                 | 5200                         | 1007         | Muscle         | 7.23                                  | 7.14                                  | -1.24%           |  |  |  |
| 01/15/2009 | 22.4                                  | 21.2                | 0.100                 | 5500                         | 1007         | Muscle         | 7.68                                  | 7.81                                  | 1.69%            |  |  |  |
| 01/15/2009 | 224                                   | 21.2                | 0.100                 | 5800                         | 1007         | Muscle         | 6.73                                  | 6.98                                  | 3.71%            |  |  |  |

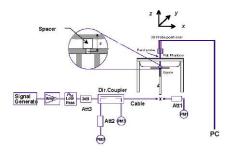



Figure 11-1 System Verification Setup Diagram



Figure 11-2 **System Verification Setup Photo** 

| FCC ID: ACJ9TGCF-                          | FCC ID: ACJ9TGCF-H12 |          | PCTEST                     | SAR COMPLIANCE REPORT                                                          | Panasonic | Review          | •             |  |
|--------------------------------------------|----------------------|----------|----------------------------|--------------------------------------------------------------------------------|-----------|-----------------|---------------|--|
|                                            |                      |          | GONEERING ENFORMEDRY, INC. |                                                                                |           | Quality Manager |               |  |
| Filename: Test Dates: EUT                  |                      |          | EUT Type:                  |                                                                                |           |                 | Page 15 of 33 |  |
| 0910051841.ACJ                             | 01/14/09 -           | 11/06/09 | 850/1900 CDM               | 50/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |           |                 |               |  |
| © 2000 DCTECT Engineering Laboratory, Inc. |                      |          |                            |                                                                                |           |                 | DEV/70        |  |

### 12 FCC 3G MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

# Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [4]. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, it was configured with the base station simulator. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

## SAR Measurement Conditions for CDMA2000

The following procedures were followed according to FCC "SAR Measurement Procedures for 3G Devices" v02, October 2007.

### 12.2.1 **Output Power Verification**

See 3GPP2 C.S0011/TIA-98-E as recommended by "SAR Measurement Procedures for 3G Devices" v02, October 2007. Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in "All Up" condition. .

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 13-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH0 and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 13-2 was applied.
- 5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

**Table 12-1** Parameters for Max. Power for RC1

| Parameter              | Units        | Value |
|------------------------|--------------|-------|
| Ĭor                    | dBm/1.23 MHz | -104  |
| Pilot E <sub>c</sub>   | dB           | -7    |
| Traffic E <sub>c</sub> | dB           | -7.4  |

**Table 12-2** Parameters for Max. Power for RC3

| Parameter              | Units        | Value |
|------------------------|--------------|-------|
| Îor                    | dBm/1.23 MHz | -86   |
| Pilot E <sub>c</sub>   | dB           | -7    |
| Traffic E <sub>c</sub> | dB           | -7.4  |

### 12.2.2 **Body SAR Measurements**

SAR for body exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. SAR for multiple code channels (FCH + SCH<sub>n</sub>) is not required when the maximum average output of each RF channel is less than ¼ dB higher than that measured with FCH only. Otherwise, SAR is measured on the maximum output channel (FCH + SCH<sub>n</sub>) with FCH at full rate and SCH<sub>0</sub> enabled at 9600 bps using the exposure configuration that results in the highest SAR for that channel with FCH only. When multiple code channels are enabled, the DUT output may shift by more than

| FCC ID: ACJ9TGCF-H12               |                                            |  | PETEST"      | SAR COMPLIANCE REPORT | Panasonic | Review<br>Quality | ed by:<br>Manager |
|------------------------------------|--------------------------------------------|--|--------------|-----------------------|-----------|-------------------|-------------------|
| Filename:                          | Filename: Test Dates:                      |  | EUT Type:    |                       |           |                   | Page 16 of 33     |
| 0910051841.ACJ 01/14/09 - 11/06/09 |                                            |  | 850/1900 CDM | rage 10 01 33         |           |                   |                   |
| © 2009 PCTE                        | © 2009 PCTEST Engineering Laboratory, Inc. |  |              |                       |           |                   | REV 7.0           |

0.5 dB and lead to higher SAR drifts and SCH dropouts. Body SAR was measured using TDSO / SO32 with power control bits in the "All Up"

Body SAR in RC1 is not required when the maximum average output of each channel is less than 1/4 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate, using the body exposure configuration that results in the highest SAR for that channel in RC3.

### 12.2.3 **Handsets with EVDO**

For handsets with Ev-Do capabilities, when the maximum average output of each channel in Rev. 0 is less than ½ dB higher than that measured in RC3 (1x RTT), body SAR for EV-DO is not required. Otherwise, SAR for Rev. 0 is measured on the maximum output channel at 153.6 kbps using the body exposure configuration that results in the highest SAR for that channel in RC3. SAR for Rev. A is not required when the maximum average output of each channel is less than that measured in Rev. 0 or less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel for Rev. A using a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations. A Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots should be configured in the downlink for both Rev. 0 and Rev. A.

### 12.3 **SAR Measurement Conditions for UMTS**

### 12.3.1 **Output Power Verification**

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

#### 12.3.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 1/4 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

## **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

### 12.3.4 Handsets with HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than 1/4 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

| FCC ID: ACJ9TGCF- | ·H12             | -//-      | PETEST       | SAR COMPLIANCE REPORT           | <b>Panasonic</b>          | Review<br>Quality | ed by:<br>Manager |
|-------------------|------------------|-----------|--------------|---------------------------------|---------------------------|-------------------|-------------------|
| Filename:         | Test Dates       | :         | EUT Type:    |                                 |                           |                   | Page 17 of 33     |
| 0910051841.ACJ    | 01/14/09 - 1     | 11/06/09  | 850/1900 CDM | A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO | Handheld PC with WLAN and | Bluetooth         | Faye 17 01 33     |
|                   | ST Engineering I | ahoratory | lnc          |                                 |                           |                   | DE\/ 7 0          |

# 12.4 RF Conducted Powers:

|          |         | RF Conducted Power Table   |                            |                            |                            |  |  |
|----------|---------|----------------------------|----------------------------|----------------------------|----------------------------|--|--|
|          |         | GPRS                       | GPRS Data EDGE Data        |                            |                            |  |  |
| Band     | Channel | GPRS<br>[dBm]<br>1 Tx Slot | GPRS<br>[dBm]<br>2 Tx Slot | EDGE<br>[dBm]<br>1 Tx Slot | EDGE<br>[dBm]<br>2 Tx Slot |  |  |
|          | 128     | 32.90                      | 32.84                      | 27.82                      | 27.79                      |  |  |
| Cellular | 190     | 32.58                      | 32.55                      | 27.57                      | 27.54                      |  |  |
|          | 251     | 32.09                      | 32.05                      | 27.19                      | 27.16                      |  |  |
|          | 512     | 29.79                      | 29.74                      | 20.80                      | 20.81                      |  |  |
| PCS      | 661     | 30.18                      | 30.12                      | 21.20                      | 21.16                      |  |  |
|          | 810     | 30.11                      | 30.05                      | 21.21                      | 21.16                      |  |  |

| Band     | Channel<br>F-RC | TDSO<br>SO32<br>[dBm]<br>RC3 | 1x EvDO<br>Rev. 0<br>[dBm] | 1x EvDO<br>Rev. 0<br>[dBm] | 1x EvDO<br>Rev. A<br>[dBm] | 1x EvDO<br>Rev. A<br>[dBm] |
|----------|-----------------|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|          | Vocoder<br>Rate | N/A                          | (FTAP)<br>N/A              | (RTAP)<br>N/A              | (FETAP)<br>N/A             | (RETAP)<br>N/A             |
|          | 1013            | 24.68                        | 24.76                      | 24.15                      | 24.97                      | 23.86                      |
| Cellular | 384             | 24.58                        | 24.38                      | 23.67                      | 24.61                      | 23.72                      |
|          | 777             | 24.57                        | 24.36                      | 23.67                      | 24.57                      | 23.67                      |
|          | 25              | 25.04                        | 24.98                      | 24.76                      | 25.17                      | 24.24                      |
| PCS      | 600             | 25.08                        | 24.90                      | 25.00                      | 25.07                      | 24.28                      |
|          | 1175            | 25.11                        | 24.87                      | 24.63                      | 24.97                      | 24.01                      |

| 3GPP<br>Release | Mode   | 3GPP 34.121<br>Subtest | Cellu | lar Band [ | dBm]  | PC    | S Band [di | Bm]   | βс    | βd    | βc/βd | HSDPA<br>FRC | MPR |
|-----------------|--------|------------------------|-------|------------|-------|-------|------------|-------|-------|-------|-------|--------------|-----|
| Version         |        | Subtest                | 4132  | 4183       | 4233  | 9262  | 9400       | 9538  |       |       |       | TRO          |     |
| 99              | WCDMA  | 12.2 kbps RMC          | 24.67 | 24.51      | 24.46 | 24.32 | 24.38      | 24.02 | -     | -     | -     | -            | -   |
| 6               |        | Subtest 1              | 24.65 | 24.48      | 24.42 | 24.27 | 24.36      | 24.01 | 2/15  | 15/15 | 2/15  | H-SET 1      | 0   |
| 6               | HSDPA  | Subtest 2              | 24.69 | 24.50      | 24.41 | 24.15 | 24.42      | 24.00 | 12/15 | 15/15 | 12/15 | H-SET 1      | 0   |
| 6               | HODI A | Subtest 3              | 24.15 | 23.95      | 23.84 | 23.78 | 23.95      | 23.48 | 15/15 | 8/15  | 15/8  | H-SET 1      | 0.5 |
| 6               |        | Subtest 4              | 24.17 | 23.98      | 23.86 | 23.82 | 23.98      | 23.48 | 15/15 | 4/15  | 15/4  | H-SET 1      | 0.5 |
| 6               |        | Subtest 1              | 24.63 | 24.43      | 24.42 | 24.35 | 24.45      | 23.87 | 11/15 | 15/15 | 11/15 | H-SET 1      | 0   |
| 6               |        | Subtest 2              | 22.62 | 22.40      | 22.38 | 22.32 | 22.43      | 21.89 | 6/15  | 15/15 | 6/15  | H-SET 1      | 2   |
| 6               | HSUPA  | Subtest 3              | 23.65 | 23.36      | 23.37 | 23.31 | 23.40      | 22.81 | 15/15 | 9/15  | 15/9  | H-SET 1      | 1   |
| 6               |        | Subtest 4              | 22.57 | 22.33      | 22.32 | 22.24 | 22.47      | 21.90 | 2/15  | 15/15 | 2/15  | H-SET 1      | 2   |
| 6               |        | Subtest 5              | 24.59 | 24.34      | 24.31 | 24.27 | 24.41      | 23.81 | 15/15 | 15/15 | 15/15 | H-SET 1      | 0   |

| FCC ID: ACJ9TGCF                | -H12                       |            | PETEST                    | SAR COMPLIANCE REPORT               | Panasonic                 | Review Quality | ed by:<br>Manager   |
|---------------------------------|----------------------------|------------|---------------------------|-------------------------------------|---------------------------|----------------|---------------------|
| <b>Filename:</b> 0910051841.ACJ | Test Dates<br>01/14/09 - 1 |            | EUT Type:<br>850/1900 CDN | //A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO H | Handheld PC with WLAN and | Bluetooth      | Page 18 of 33       |
| © 2009 PCTE                     | ST Engineering L           | aboratory, | Inc.                      |                                     |                           |                | REV 7.0<br>11/02/09 |

WLAN(b) Output Power

| ii |         |                        |                                       |                                    |  |  |  |  |  |
|----------------------------------------|---------|------------------------|---------------------------------------|------------------------------------|--|--|--|--|--|
| Freq<br>[MHz]                          | Channel | Data<br>Rate<br>[Mbps] | Average<br>Measured<br>Power<br>[dBm] | Peak<br>Measured<br>Power<br>[dBm] |  |  |  |  |  |
| 2412                                   | 1       | 1                      | 13.54                                 | 16.84                              |  |  |  |  |  |
|                                        |         | 2                      | 13.58                                 | 16.87                              |  |  |  |  |  |
|                                        |         | 5.5                    | 13.59                                 | 16.89                              |  |  |  |  |  |
|                                        |         | 11                     | 13.58                                 | 16.88                              |  |  |  |  |  |
| 2437                                   | 6       | 1                      | 12.32                                 | 15.55                              |  |  |  |  |  |
|                                        |         | 2                      | 12.34                                 | 15.58                              |  |  |  |  |  |
|                                        |         | 5.5                    | 12.33                                 | 15.58                              |  |  |  |  |  |
|                                        |         | 11                     | 12.33                                 | 15.58                              |  |  |  |  |  |
| 2462                                   | 11      | 1                      | 12.18                                 | 15.41                              |  |  |  |  |  |
|                                        |         | 2                      | 12.12                                 | 15.36                              |  |  |  |  |  |
|                                        |         | 5.5                    | 12.09                                 | 15.27                              |  |  |  |  |  |
|                                        |         | 11                     | 12.04                                 | 15.24                              |  |  |  |  |  |

| WLAN(g)       | Output I | Power                  |                                       |                                    | V |
|---------------|----------|------------------------|---------------------------------------|------------------------------------|---|
| Freq<br>[MHz] | Channel  | Data<br>Rate<br>[Mbps] | Average<br>Measured<br>Power<br>[dBm] | Peak<br>Measured<br>Power<br>[dBm] |   |
| 2412          | 1        | 6                      | 12.56                                 | 22.19                              |   |
|               |          | 9                      | 12.49                                 | 22.04                              |   |
|               |          | 12                     | 12.73                                 | 22.22                              |   |
|               |          | 18                     | 12.43                                 | 21.75                              |   |
|               |          | 24                     | 12.37                                 | 22.34                              |   |
|               |          | 36                     | 12.69                                 | 22.36                              |   |
|               |          | 48                     | 12.47                                 | 21.51                              |   |
|               |          | 54                     | 12.37                                 | 22.50                              |   |
| 2437          | 6        | 6                      | 14.76                                 | 23.84                              |   |
|               |          | 9                      | 14.77                                 | 23.76                              |   |
|               |          | 12                     | 14.79                                 | 23.89                              |   |
|               |          | 18                     | 14.94                                 | 23.79                              |   |
|               |          | 24                     | 14.88                                 | 24.07                              |   |
|               |          | 36                     | 14.78                                 | 23.88                              |   |
|               |          | 48                     | 13.49                                 | 22.48                              |   |
|               |          | 54                     | 11.38                                 | 21.37                              |   |
| 2462          | 11       | 6                      | 11.24                                 | 20.69                              | L |
|               |          | 9                      | 11.26                                 | 20.62                              | L |
|               |          | 12                     | 11.66                                 | 21.31                              | L |
|               |          | 18                     | 11.70                                 | 20.81                              |   |
|               |          | 24                     | 11.64                                 | 21.48                              |   |
|               |          | 36                     | 11.59                                 | 21.23                              |   |
|               |          | 48                     | 11.73                                 | 20.66                              | L |
|               |          | 54                     | 10.75                                 | 20.78                              | L |

|               | ) Output F |              |                     | Average                    | Peak                       |
|---------------|------------|--------------|---------------------|----------------------------|----------------------------|
| Freq<br>[MHz] | Channel    | MCS<br>Index | Data Rate<br>[Mbps] | Measured<br>Power<br>[dBm] | Measured<br>Power<br>[dBm] |
| 2422          | 3          | HT0          | 13.5/15             | 9.92                       | 19.02                      |
|               |            | HT1          | 27/30               | 10.01                      | 19.16                      |
|               |            | HT2          | 40/45               | 9.98                       | 19.34                      |
|               |            | HT3          | 54/60               | 9.98                       | 19.24                      |
|               |            | HT4          | 81/90               | 9.92                       | 18.69                      |
|               |            | HT5          | 108/120             | 9.96                       | 19.39                      |
|               |            | HT6          | 121.5/135           | 9.99                       | 18.58                      |
|               |            | HT7          | 135/150             | 10.02                      | 19.03                      |
| 2437          | 6          | HT0          | 13.5/15             | 14.91                      | 23.32                      |
|               |            | HT1          | 27/30               | 14.90                      | 23.01                      |
|               |            | HT2          | 40/45               | 14.89                      | 23.49                      |
|               |            | HT3          | 54/60               | 14.85                      | 23.47                      |
|               |            | HT4          | 81/90               | 14.93                      | 23.39                      |
|               |            | HT5          | 108/120             | 13.48                      | 22.58                      |
|               |            | HT6          | 121.5/135           | 11.27                      | 19.74                      |
|               |            | HT7          | 135/150             | 9.43                       | 18.18                      |
| 2452          | 9          | HT0          | 13.5/15             | 12.75                      | 21.47                      |
|               |            | HT1          | 27/30               | 12.80                      | 21.32                      |
|               |            | HT2          | 40/45               | 12.81                      | 21.54                      |
|               |            | HT3          | 54/60               | 12.78                      | 21.58                      |
|               |            | HT4          | 81/90               | 12.81                      | 21.57                      |
|               |            | HT5          | 108/120             | 12.80                      | 22.06                      |
|               |            | HT6          | 121.5/135           | 10.99                      | 19.46                      |
|               |            | HT7          | 135/150             | 9.16                       | 17.87                      |

| FCC ID: ACJ9TGCF- | H12              | /\-       | PETEST       | SAR COMPLIANCE REPORT           | <b>Panasonic</b>          | Review Quality I | <b>ed by:</b><br>Manager |
|-------------------|------------------|-----------|--------------|---------------------------------|---------------------------|------------------|--------------------------|
| Filename:         | Test Dates       | :         | EUT Type:    |                                 |                           |                  | Page 19 of 33            |
| 0910051841.ACJ    | 01/14/09 - 1     | 11/06/09  | 850/1900 CDM | A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO | Handheld PC with WLAN and | Bluetooth        | Page 19 01 33            |
| @ 2000 DCTE       | CT Engineering I | abaratan: |              |                                 |                           |                  | DEV/70                   |

WLAN(a) 5.8GHz Output Power

| WLAN(a) 5.8GHz Output Power |         |                        |                                       |                                    |  |  |  |  |
|-----------------------------|---------|------------------------|---------------------------------------|------------------------------------|--|--|--|--|
| Freq<br>[MHz]               | Channel | Data<br>Rate<br>[Mbps] | Average<br>Measured<br>Power<br>[dBm] | Peak<br>Measured<br>Power<br>[dBm] |  |  |  |  |
| 5745                        | 149     | 6                      | 15.78                                 | 23.63                              |  |  |  |  |
|                             |         | 9                      | 15.96                                 | 23.78                              |  |  |  |  |
|                             |         | 12                     | 15.89                                 | 23.85                              |  |  |  |  |
|                             |         | 18                     | 15.86                                 | 23.70                              |  |  |  |  |
|                             |         | 24                     | 15.91                                 | 23.88                              |  |  |  |  |
|                             |         | 36                     | 15.87                                 | 23.85                              |  |  |  |  |
|                             |         | 48                     | 14.22                                 | 22.52                              |  |  |  |  |
|                             |         | 54                     | 12.16                                 | 21.63                              |  |  |  |  |
| 5785                        | 157     | 6                      | 15.28                                 | 23.38                              |  |  |  |  |
|                             |         | 9                      | 15.33                                 | 23.51                              |  |  |  |  |
|                             |         | 12                     | 15.34                                 | 23.61                              |  |  |  |  |
|                             |         | 18                     | 15.38                                 | 23.41                              |  |  |  |  |
|                             |         | 24                     | 15.33                                 | 23.69                              |  |  |  |  |
|                             |         | 36                     | 15.34                                 | 23.61                              |  |  |  |  |
|                             |         | 48                     | 13.79                                 | 22.16                              |  |  |  |  |
|                             |         | 54                     | 11.85                                 | 21.23                              |  |  |  |  |
| 5825                        | 165     | 6                      | 15.04                                 | 23.27                              |  |  |  |  |
|                             |         | 9                      | 14.98                                 | 23.26                              |  |  |  |  |
|                             |         | 12                     | 14.97                                 | 23.39                              |  |  |  |  |
|                             |         | 18                     | 15.00                                 | 23.11                              |  |  |  |  |
|                             |         | 24                     | 14.94                                 | 23.51                              |  |  |  |  |
|                             |         | 36                     | 14.85                                 | 23.31                              |  |  |  |  |
|                             |         | 48                     | 13.29                                 | 21.69                              |  |  |  |  |
|                             |         | 54                     | 10.85                                 | 20.24                              |  |  |  |  |

| WLAN(n) 5.8GHz Output Power |
|-----------------------------|
|-----------------------------|

| WLAN(n) 5.8GHz Output Power |         |              |                     |                                       |                                    |  |  |  |  |
|-----------------------------|---------|--------------|---------------------|---------------------------------------|------------------------------------|--|--|--|--|
| Freq<br>[MHz]               | Channel | MCS<br>Index | Data Rate<br>[Mbps] | Average<br>Measured<br>Power<br>[dBm] | Peak<br>Measured<br>Power<br>[dBm] |  |  |  |  |
| 5755                        | 151     | HT0          | 13.5/15             | 15.35                                 | 23.31                              |  |  |  |  |
|                             |         | HT1          | 27/30               | 15.33                                 | 23.26                              |  |  |  |  |
|                             |         | HT2          | 40/45               | 15.34                                 | 23.27                              |  |  |  |  |
|                             |         | HT3          | 54/60               | 15.35                                 | 23.37                              |  |  |  |  |
|                             |         | HT4          | 81/90               | 15.38                                 | 23.37                              |  |  |  |  |
|                             |         | HT5          | 108/120             | 13.61                                 | 22.66                              |  |  |  |  |
|                             |         | HT6          | 121.5/135           | 11.79                                 | 20.57                              |  |  |  |  |
|                             |         | HT7          | 135/150             | 10.02                                 | 18.47                              |  |  |  |  |
| 5795                        | 159     | HT0          | 13.5/15             | 14.74                                 | 22.98                              |  |  |  |  |
|                             |         | HT1          | 27/30               | 14.73                                 | 22.89                              |  |  |  |  |
|                             |         | HT2          | 40/45               | 15.11                                 | 23.24                              |  |  |  |  |
|                             |         | HT3          | 54/60               | 15.12                                 | 23.27                              |  |  |  |  |
|                             |         | HT4          | 81/90               | 15.09                                 | 23.21                              |  |  |  |  |
|                             |         | HT5          | 108/120             | 13.35                                 | 22.48                              |  |  |  |  |
|                             |         | HT6          | 121.5/135           | 11.53                                 | 19.63                              |  |  |  |  |
|                             |         | HT7          | 135/150             | 9.78                                  | 18.22                              |  |  |  |  |



Figure 12-1
Power Measurement Setup

| FCC ID: ACJ9TGCF | -H12             |           | PCTEST       | SAR COMPLIANCE REPORT           | <b>Panasonic</b>          | Review<br>Quality | <b>ed by:</b><br>Manager |
|------------------|------------------|-----------|--------------|---------------------------------|---------------------------|-------------------|--------------------------|
| Filename:        | Test Dates       | :         | EUT Type:    |                                 |                           |                   | Page 20 of 33            |
| 0910051841.ACJ   | 01/14/09 - 1     | 1/06/09   | 850/1900 CDM | A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO | Handheld PC with WLAN and | Bluetooth         | Faye 20 01 33            |
| © 2009 PCTE      | ST Engineering L | ahoratory | Inc          |                                 |                           |                   | REV 7.0                  |

# 13 SAR DATA SUMMARY

# 13.1 Body SAR Results

|         |      |                                                               | M     | EASUR           | EMENT I  | RESULT   | S                              |               |               |        |
|---------|------|---------------------------------------------------------------|-------|-----------------|----------|----------|--------------------------------|---------------|---------------|--------|
| FREQU   | ENCY | Modulation                                                    |       | ed Power<br>Bm] | Test     | LCD Side | Slots                          | Spacing       | Protocol      | SAR    |
| MHz     | Ch.  |                                                               | Start | End             | Position |          |                                | (cm)          |               | (W/kg) |
| 836.60  | 384  | EVDO Cellular Rev.0                                           | 24.38 | 24.44           | Laptop   | -        |                                | 0.0           | FTAP, Rev0    | 0.055  |
| 836.60  | 384  | EVDO Cellular Rev.0                                           | 24.38 | 24.81           | Edge     | Left     |                                | 0.0           | FTAP, Rev0    | 0.427  |
| 1880.00 | 600  | EVDO PCS Rev.0                                                | 23.40 | 23.43           | Laptop   | -        |                                | 0.0           | FTAP, Rev0    | 0.029  |
| 1880.00 | 600  | EVDO PCS Rev.0                                                | 23.40 | 24.05           | Edge     | Left     |                                | 0.0           | FTAP, Rev0    | 0.650  |
| 836.6   | 190  | GPRS850                                                       | 31.55 | 31.61           | Laptop   | -        | 2x                             | 0.0           | N/A           | 0.064  |
| 836.6   | 190  | GPRS850                                                       | 31.55 | 31.80           | Edge     | Left     | 2x                             | 0.0           | N/A           | 0.251  |
| 1880.0  | 661  | GPRS1900                                                      | 28.62 | 28.66           | Laptop   | -        | 2x                             | 0.0           | N/A           | 0.044  |
| 1880.0  | 661  | GPRS1900                                                      | 28.62 | 29.18           | Edge     | Left     | 2x                             | 0.0           | N/A           | 0.555  |
| 836.60  | 4183 | WCDMA850                                                      | 24.51 | 24.56           | Laptop   | -        |                                | 0.0           | HSPA Inactive | 0.048  |
| 836.60  | 4183 | WCDMA850                                                      | 24.51 | 25.00           | Edge     | Left     |                                | 0.0           | HSPA Inactive | 0.487  |
| 1880.00 | 9400 | WCDMA1900                                                     | 24.38 | 24.46           | Laptop   | -        |                                | 0.0           | HSPA Inactive | 0.083  |
| 1852.4  | 9262 | WCDMA1900                                                     | 24.32 | 25.31           | Edge     | Left     |                                | 0.0           | HSPA Inactive | 0.985  |
| 1880.00 | 9400 | WCDMA1900                                                     | 24.38 | 25.32           | Edge     | Left     |                                | 0.0           | HSPA Inactive | 0.938  |
| 1907.6  | 9538 | WCDMA1900                                                     | 24.73 | Edge            | Left     |          | 0.0                            | HSPA Inactive | 0.707         |        |
|         |      | EEE C95.1 1992 - SAFI<br>Spatial Peak<br>led Exposure/General |       |                 |          |          | Body<br>W/kg (mV<br>ged over 1 |               |               |        |

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Batteries are fully charged for all readings.
- 5. Liquid tissue depth is 15.1 cm.  $\pm$  0.1.
- 6. Device was tested using a fixed spacing.
- 7. WCDMA mode was tested under RMC 12.2 kbps with HSPA Inactive.
- 8. Justification for reduced test configurations: This model supports EV-DO. The maximum average output of each channel in RC3 (1x RTT) and Rev. A is less than ¼ dB higher than that measured in Rev. 0. Therefore Body SAR is not required for RC3 (1x RTT) and Rev. A mode.
- 9. All other time averaged powers for the other multi-slot modes were evaluated to be significantly lower than that of the other GPRS multi-slot time-averaged powers. The worst-case results are reported.
- 10. The device tested in January was electrically identical in WLAN module, WLAN Tx antennas and external CF-H1 housing as that of the device in November.

| FCC ID: ACJ9TGCF | -H12             |            | PCTEST       | SAR COMPLIANCE REPORT              | Panasonic                | Review    | ed by:<br>Manager |
|------------------|------------------|------------|--------------|------------------------------------|--------------------------|-----------|-------------------|
| Filonome         | Toot Dates       |            | EUT Times    |                                    |                          | Quality   | wanager           |
| Filename:        | Test Dates       | •          | EUT Type:    |                                    |                          |           | Page 21 of 33     |
| 0910051841.ACJ   | 01/14/09 - 1     | 11/06/09   | 850/1900 CDI | MA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO H | andheld PC with WLAN and | Bluetooth | 1 490 21 01 00    |
| © 2009 PCTE      | ST Engineering L | aboratory, | Inc.         |                                    |                          |           | REV 7.0           |
|                  |                  |            |              |                                    |                          |           | 11/02/09          |

# 13.2 IEEE 802.11b/11g/11n Body SAR Results

|       |             |               | ı         | MEASUR          | EMENT RESU      | LTS     |              |        |         |
|-------|-------------|---------------|-----------|-----------------|-----------------|---------|--------------|--------|---------|
| FREQU | JENCY       | Modulation    |           | ed Power<br>Bm] | Test Position   | Spacing | Data Rate    | SAR    | Remarks |
| MHz   | Ch.         | Modulation    | Start     | End             | rest rosition   | (cm)    | (Mbps)       | (W/kg) | Remarks |
| 2412  | 1           | DSSS          | 13.54     | 13.67           | Laptop          | 0.0     | 1            | 0.051  | 802.11b |
| 2437  | 6           | DSSS          | 12.32     | 12.50           | Laptop          | 0.0     | 1            | 0.052  | 802.11b |
| 2462  | 11          | DSSS          | 12.18     | 12.30           | Laptop          | 0.0     | 1            | 0.047  | 802.11b |
| 2412  | 1           | OFDM          | 12.56     | 12.54           | Laptop          | 0.0     | 6            | 0.051  | 802.11g |
| 2437  | 6           | OFDM          | 14.76     | 14.84           | Laptop          | 0.0     | 6            | 0.061  | 802.11g |
| 2462  | 11          | OFDM          | 11.24     | 11.43           | Laptop          | 0.0     | 6            | 0.060  | 802.11g |
| 2422  | 3           | OFDM          | 9.92      | 9.99            | Laptop          | 0.0     | 13.5         | 0.060  | 802.11n |
| 2437  | 6           | OFDM          | 14.91     | 15.07           | Laptop          | 0.0     | 13.5         | 0.064  | 802.11n |
| 2452  | 9           | OFDM          | 12.75     | 12.93           | Laptop          | 0.0     | 13.5         | 0.061  | 802.11n |
| 2412  | 1           | DSSS          | 13.54     | 13.64           | Tablet Right    | 0.0     | 1            | 0.096  | 802.11b |
| 2437  | 6           | DSSS          | 12.32     | 12.21           | Tablet Right    | 0.0     | 1            | 0.136  | 802.11b |
| 2462  | 11          | DSSS          | 12.18     | 12.33           | Tablet Right    | 0.0     | 1            | 0.126  | 802.11b |
| 2412  | 1           | OFDM          | 12.56     | 12.60           | Tablet Right    | 0.0     | 6            | 0.121  | 802.11g |
| 2437  | 6           | OFDM          | 14.76     | 14.69           | Tablet Right    | 0.0     | 6            | 0.138  | 802.11g |
| 2462  | 11          | OFDM          | 11.24     | 11.29           | Tablet Right    | 0.0     | 6            | 0.103  | 802.11g |
| 2422  | 3           | OFDM          | 9.92      | 10.12           | Tablet Right    | 0.0     | 13.5         | 0.114  | 802.11n |
| 2437  | 6           | OFDM          | 14.91     | 14.83           | Tablet Right    | 0.0     | 13.5         | 0.126  | 802.11n |
| 2452  | 9           | OFDM          | 12.75     | 12.78           | Tablet Right    | 0.0     | 13.5         | 0.116  | 802.11n |
| ANS   | SI / IEEE C | 95.1 2005 - S | AFETY LI  | МІТ             | Body            |         |              |        |         |
|       |             | Spatial Peak  |           |                 | 1.6 W/kg (mW/g) |         |              |        |         |
| Unco  | ntrolled E  | xposure/Gen   | eral Popu | lation          |                 | averag  | jed over 1 g | gram   |         |

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Batteries are fully charged for all readings. Standard batteries were investigated.
- 4. Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is 15.1 cm.  $\pm$  0.1.

| FCC ID: ACJ9TGCF-H12         CAPCTEST         SAR COMPLIANCE REPORT           Filename:         Test Dates:         EUT Type:           0910051841.ACJ         01/14/09 - 11/06/09         850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO           © 2009 PCTEST Engineering Laboratory, Inc.         10.00 | Panasonic        | Review<br>Quality | ed by:<br>Manager |                                     |                          |  |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-------------------|-------------------------------------|--------------------------|--|---------------------|
|                                                                                                                                                                                                                                                                                                           |                  |                   |                   | MA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Ha | andheld PC with WLAN and |  | Page 22 of 33       |
| © 2009 PCTE                                                                                                                                                                                                                                                                                               | ST Engineering L | aboratory,        | Inc.              |                                     |                          |  | REV 7.0<br>11/02/09 |

# 13.3 IEEE 802.11a/11n 5.2 - 5.3GHz Body SAR Results

|       |             |                |           | MEASUI          | REMENT RES    | ULTS    |            |        |                |
|-------|-------------|----------------|-----------|-----------------|---------------|---------|------------|--------|----------------|
| FREQL | JENCY       | - Modulation   |           | ed Power<br>Bm] | Test Position | Spacing | Data Rate  | SAR    | - Remarks      |
| MHz   | Ch.         | Modulation     | Start     | End             | 100110011011  | (cm)    | (Mbps)     | (W/kg) | romano         |
| 5200  | 40          | OFDM           | 13.67     | 13.83           | Laptop        | 0.0     | 6          | 0.086  | 802.11a 5.2GHz |
| 5240  | 48          | OFDM           | 13.38     | 13.55           | Laptop        | 0.0     | 6          | 0.106  | 802.11a 5.2GHz |
| 5260  | 52          | OFDM           | 13.46     | 13.63           | Laptop        | 0.0     | 6          | 0.092  | 802.11a 5.3GHz |
| 5300  | 60          | OFDM           | 12.66     | 12.73           | Laptop        | 0.0     | 6          | 0.109  | 802.11a 5.3GHz |
| 5190  | 38          | OFDM           | 12.06     | 12.17           | Laptop        | 0.0     | 13.5       | 0.056  | 802.11n 5.2GHz |
| 5230  | 46          | OFDM           | 13.74     | 13.82           | Laptop        | 0.0     | 13.5       | 0.084  | 802.11n 5.2GHz |
| 5270  | 54          | OFDM           | 12.58     | 12.74           | Laptop        | 0.0     | 13.5       | 0.087  | 802.11n 5.3GHz |
| 5310  | 62          | OFDM           | 12.00     | 12.14           | Laptop        | 0.0     | 13.5       | 0.062  | 802.11n 5.3GHz |
| 5200  | 40          | OFDM           | 13.67     | 13.86           | Tablet Right  | 0.0     | 6          | 0.293  | 802.11a 5.2GHz |
| 5240  | 48          | OFDM           | 13.38     | 13.44           | Tablet Right  | 0.0     | 6          | 0.198  | 802.11a 5.2GHz |
| 5260  | 52          | OFDM           | 13.46     | 13.62           | Tablet Right  | 0.0     | 6          | 0.286  | 802.11a 5.3GHz |
| 5300  | 60          | OFDM           | 12.66     | 12.64           | Tablet Right  | 0.0     | 6          | 0.158  | 802.11a 5.3GHz |
| 5190  | 38          | OFDM           | 12.06     | 12.17           | Tablet Right  | 0.0     | 13.5       | 0.253  | 802.11n 5.2GHz |
| 5230  | 46          | OFDM           | 13.74     | 13.77           | Tablet Right  | 0.0     | 13.5       | 0.249  | 802.11n 5.2GHz |
| 5270  | 54          | OFDM           | 12.58     | 12.66           | Tablet Right  | 0.0     | 13.5       | 0.170  | 802.11n 5.3GHz |
| 5310  | 62          | OFDM           | 12.00     | 12.09           | Tablet Right  | 0.0     | 13.5       | 0.143  | 802.11n 5.3GHz |
| ANS   | SI / IEEE ( | C95.1 2005 - S | AFETY LI  | MIT             |               |         | Body       |        |                |
|       |             | Spatial Peak   |           | 1.6 W/kg (mW/g) |               |         |            |        |                |
| Unco  | ntrolled E  | xposure/Gen    | eral Popu | lation          |               | ave     | raged over | 1 gram |                |

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July
- 2. All modes of operation were investigated, and worst-case results are reported.
- Batteries are fully charged for all readings. Standard batteries were investigated.
   Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is 15.1 cm.  $\pm$  0.1

| FCC ID: ACJ9TGCF- | FCC ID: ACJ91GCF-F12 |         | SAR COMPLIANCE REPORT |                                 | Panasonic                 | <b>Review</b><br>Quality | ed by:<br>Manager |
|-------------------|----------------------|---------|-----------------------|---------------------------------|---------------------------|--------------------------|-------------------|
| Filename:         | Test Dates           | :       | EUT Type:             |                                 |                           |                          | Page 23 of 33     |
| 0910051841.ACJ    | 01/14/09 - 1         | 1/06/09 | 850/1900 CDM          | A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO | Handheld PC with WLAN and | Bluetooth                | Fage 23 01 33     |

# 13.4 IEEE 802.11a/11n 5.5 - 5.8GHz Body SAR Results

|       |             |                               |       | MEASU           | REMENT RES         | BULTS   |           |        |                |
|-------|-------------|-------------------------------|-------|-----------------|--------------------|---------|-----------|--------|----------------|
| FREQL | JENCY       | Modulation                    |       | ed Power<br>Bm] | Test Position      | Spacing | Data Rate | SAR    | Remarks        |
| MHz   | Ch.         |                               | Start | End             |                    | (cm)    | (Mbps)    | (W/kg) |                |
| 5540  | 108         | OFDM                          | 13.35 | 13.48           | Laptop             | 0.0     | 6         | 0.101  | 802.11a 5.5GHz |
| 5580  | 116         | OFDM                          | 14.13 | 14.31           | Laptop             | 0.0     | 6         | 0.096  | 802.11a 5.5GHz |
| 5600  | 120         | OFDM                          | 14.04 | 14.12           | Laptop             | 0.0     | 6         | 0.096  | 802.11a 5.5GHz |
| 5660  | 132         | OFDM                          | 13.03 | 13.18           | Laptop             | 0.0     | 6         | 0.082  | 802.11a 5.5GHz |
| 5745  | 149         | OFDM                          | 13.20 | 13.35           | Laptop             | 0.0     | 6         | 0.068  | 802.11a 5.8GHz |
| 5785  | 157         | OFDM                          | 12.48 | 12.62           | Laptop             | 0.0     | 6         | 0.092  | 802.11a 5.8GHz |
| 5825  | 165         | OFDM                          | 11.99 | 12.17           | Laptop             | 0.0     | 13.5      | 0.090  | 802.11a 5.8GHz |
| 5510  | 102         | OFDM                          | 12.47 | 12.61           | Laptop             | 0.0     | 13.5      | 0.081  | 802.11n 5.5GHz |
| 5590  | 118         | OFDM                          | 13.67 | 13.87           | Laptop             | 0.0     | 13.5      | 0.087  | 802.11n 5.5GHz |
| 5670  | 134         | OFDM                          | 12.69 | 12.87           | Laptop             | 0.0     | 13.5      | 0.062  | 802.11n 5.5GHz |
| 5755  | 151         | OFDM                          | 12.79 | 13.31           | Laptop             | 0.0     | 13.5      | 0.103  | 802.11n 5.8GHz |
| 5795  | 159         | OFDM                          | 12.19 | 12.38           | Laptop             | 0.0     | 13.5      | 0.079  | 802.11n 5.8GHz |
| 5540  | 108         | OFDM                          | 13.35 | 13.50           | Tablet Right       | 0.0     | 6         | 0.195  | 802.11a 5.5GHz |
| 5580  | 116         | OFDM                          | 14.13 | 14.16           | Tablet Right       | 0.0     | 6         | 0.331  | 802.11a 5.5GHz |
| 5600  | 120         | OFDM                          | 14.04 | 13.97           | Tablet Right       | 0.0     | 6         | 0.307  | 802.11a 5.5GHz |
| 5660  | 132         | OFDM                          | 13.03 | 13.18           | Tablet Right       | 0.0     | 6         | 0.132  | 802.11a 5.5GHz |
| 5745  | 149         | OFDM                          | 13.20 | 13.30           | Tablet Right       | 0.0     | 6         | 0.152  | 802.11a 5.8GHz |
| 5785  | 157         | OFDM                          | 12.48 | 12.34           | Tablet Right       | 0.0     | 6         | 0.112  | 802.11a 5.8GHz |
| 5825  | 165         | OFDM                          | 11.99 | 11.98           | Tablet Right       | 0.0     | 13.5      | 0.142  | 802.11a 5.8GHz |
| 5510  | 102         | OFDM                          | 12.47 | 12.63           | Tablet Right       | 0.0     | 13.5      | 0.136  | 802.11n 5.5GHz |
| 5590  | 118         | OFDM                          | 13.67 | 13.54           | Tablet Right       | 0.0     | 13.5      | 0.286  | 802.11n 5.5GHz |
| 5670  | 134         | OFDM                          | 12.69 | 12.54           | Tablet Right       | 0.0     | 13.5      | 0.103  | 802.11n 5.5GHz |
| 5755  | 151         | OFDM                          | 12.79 | 12.97           | Tablet Right       | 0.0     | 13.5      | 0.266  | 802.11n 5.8GHz |
| 5795  | 159         | OFDM                          | 12.19 | 12.38           | Tablet Right       | 0.0     | 13.5      | 0.236  | 802.11n 5.8GHz |
| ANS   | SI / IEEE C | 95.1 2005 - S<br>Spatial Peak |       | 1               | Body<br>.6 W/kg (m | W/g)    |           |        |                |
| Unco  | ntrolled E  | xposure/Gen                   |       |                 | raged over         | C,      |           |        |                |

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2. All modes of operation were investigated, and worst-case results are reported.
- Batteries are fully charged for all readings. Standard batteries were investigated.
   Tissue parameters and temperatures are listed on the SAR plots.
- 5. Liquid tissue depth is 15.1 cm.  $\pm$  0.1

| FCC ID: ACJ9TGCF- | -H12              |            | PETEST'      | SAR COMPLIANCE REPORT               | Panasonic                 | Review<br>Quality | <b>ed by:</b><br>Manager |
|-------------------|-------------------|------------|--------------|-------------------------------------|---------------------------|-------------------|--------------------------|
| Filename:         | name: Test Dates: |            | EUT Type:    |                                     |                           |                   | Page 24 of 33            |
| 0910051841.ACJ    | 01/14/09 - 1      | 11/06/09   | 850/1900 CDN | /IA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO F | landheld PC with WLAN and | Bluetooth         | Fage 24 01 33            |
| © 2009 PCTE       | ST Engineering L  | aboratory, | Inc.         |                                     |                           |                   | REV 7.0<br>11/02/09      |

### 14 **EQUIPMENT LIST**

# 1/12/09 - 1/15/09 Tests:

| Manufacturer    | Model    | Description                       | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------|----------|-----------------------------------|------------|--------------|------------|---------------|
| Agilent         | 8648D    | (9kHz-4GHz) Signal Generator      | 10/11/2007 | Biennial     | 10/11/2009 | 3613A00315    |
| Agilent         | 8753E    | (30kHz-6GHz) Network Analyzer     | 3/12/2008  | Annual       | 3/12/2009  | JP38020182    |
| Agilent         | E5515C   | Wireless Communications Test Set  | 9/10/2008  | Biennial     | 9/10/2010  | GB41450275    |
| Agilent         | E5515C   | Wireless Communications Test Set  | 6/8/2007   | Biennial     | 6/8/2009   | GB46110872    |
| Agilent         | E5515C   | Wireless Communications Test Set  | 6/8/2007   | Biennial     | 6/8/2009   | GB46310798    |
| Agilent         | E6651A   | Mobile WiMAX Tester               | 8/23/2007  | Biennial     | 8/23/2009  | MY47310109    |
| Agilent         | E8257D   | (250kHz-20GHz) Signal Generator   | 3/8/2007   | Biennial     | 3/8/2009   | MY45470194    |
| Gigatronics     | 80701A   | (0.05-18GHz) Power Sensor         | 8/18/2008  | Annual       | 8/18/2009  | 1833460       |
| Gigatronics     | 8651A    | Universal Power Meter             | 8/18/2008  | Annual       | 8/18/2009  | 8650319       |
| Index SAR       | IXTL-010 | Dielectric Measurement Kit        | N/A        |              | N/A        | N/A           |
| Index SAR       | IXTL-030 | 30MM TEM line for 6 GHz           | N/A        |              | N/A        | N/A           |
| Rohde & Schwarz | CMU200   | Base Station Simulator            | 7/23/2008  | Annual       | 7/23/2009  | 109892        |
| Rohde & Schwarz | CMU200   | Base Station Simulator            | 5/29/2008  | Annual       | 5/29/2009  | 836371/0079   |
| Rohde & Schwarz | NRVD     | Dual Channel Power Meter          | 8/20/2008  | Biennial     | 8/20/2010  | 101695        |
| Rohde & Schwarz | NRVS     | Single Channel Power Meter        | 7/3/2007   | Biennial     | 7/3/2009   | 835360/0079   |
| Rohde & Schwarz | NRV-Z32  | Peak Power Sensor (100uW-2W)      | 12/5/2008  | Biennial     | 12/5/2010  | 100155        |
| Rohde & Schwarz | NRV-Z33  | Peak Power Sensor (1mW-20W)       | 12/5/2008  | Biennial     | 12/5/2010  | 100004        |
| Rohde & Schwarz | NRV-Z53  | Power Sensor                      | 7/3/2007   | Biennial     | 7/3/2009   | 846076/0007   |
| SPEAG           | D1450V2  | 1450 MHz SAR Dipole               | 6/11/2007  | Biennial     | 6/11/2009  | 1025          |
| SPEAG           | D1765V2  | 1765 MHz SAR Dipole               | 6/11/2007  | Biennial     | 6/11/2009  | 1008          |
| SPEAG           | D1900V2  | 1900 MHz SAR Dipole               | 1/23/2007  | Biennial     | 1/23/2009  | 502           |
| SPEAG           | D1900V2  | 1900 MHz SAR Dipole               | 1/23/2007  | Biennial     | 1/23/2009  | 5d080         |
| SPEAG           | D2300V2  | 2300 MHz SAR Dipole               | 3/6/2008   | Biennial     | 3/6/2010   | 1008          |
| SPEAG           | D2450V2  | 2450 MHz SAR Dipole               | 9/26/2007  | Biennial     | 9/26/2009  | 719           |
| SPEAG           | D2450V2  | 2450 MHz SAR Dipole               | 1/17/2007  | Biennial     | 1/17/2009  | 797           |
| SPEAG           | D2600V2  | 2600 MHz SAR Dipole               | 1/30/2008  | Biennial     | 1/30/2010  | 1004          |
| SPEAG           | D5GHzV2  | 5 GHz SAR Dipole                  | 9/25/2007  | Biennial     | 9/25/2009  | 1007          |
| SPEAG           | D5GHzV2  | 5 GHz SAR Dipole                  | 1/24/2007  | Biennial     | 1/24/2009  | 1057          |
| SPEAG           | D835V2   | 835 MHz SAR Dipole                | 8/27/2007  | Biennial     | 8/27/2009  | 4d026         |
| SPEAG           | D835V2   | 835 MHz SAR Dipole                | 1/8/2007   | Biennial     | 1/8/2009   | 4d047         |
| SPEAG           | DAE3     | Dasy Data Acquisition Electronics | 10/17/2008 | Annual       | 10/17/2009 | 455           |
| SPEAG           | DAE4     | Dasy Data Acquisition Electronics | 1/30/2008  | Annual       | 1/30/2009  | 649           |
| SPEAG           | DAE4     | Dasy Data Acquisition Electronics | 8/25/2008  | Annual       | 8/25/2009  | 665           |
| SPEAG           | DAE4     | Dasy Data Acquisition Electronics | 6/26/2008  | Annual       | 6/26/2009  | 704           |
| SPEAG           | DAE4     | Dasy Data Acquisition Electronics | 7/30/2008  | Annual       | 7/30/2009  | 859           |
| SPEAG           | EX3DV4   | SAR Probe                         | 1/31/2008  | Annual       | 1/31/2009  | 3550          |
| SPEAG           | EX3DV4   | SAR Probe                         | 8/26/2008  | Annual       | 8/26/2009  | 3561          |
| SPEAG           | EX3DV4   | SAR Probe                         | 6/26/2008  | Annual       | 6/26/2009  | 3589          |

| FCC ID: ACJ91GCF-R12 |                                           | PETEST  | SAR COMPLIANCE REPORT | Panasonic                         | Review<br>Quality         | <b>ed by:</b><br>Manager |               |
|----------------------|-------------------------------------------|---------|-----------------------|-----------------------------------|---------------------------|--------------------------|---------------|
| Filename:            | Test Dates                                | :       | EUT Type:             |                                   |                           |                          | Page 25 of 33 |
| 0910051841.ACJ       | 01/14/09 -                                | 1/06/09 | 850/1900 CDM          | A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO I | Handheld PC with WLAN and | Bluetooth                | Fage 25 01 55 |
| © 2009 PCTE          | © 2009 PCTEST Engineering Laboratory, In- |         |                       |                                   |                           |                          | REV 7.0       |

## 10/05/09 - 11/06/09 Tests:

| Manufacturer    | Model    | Description                       | Cal Date  | Cal Interval | Cal Due   | Serial Number |
|-----------------|----------|-----------------------------------|-----------|--------------|-----------|---------------|
| Agilent         | 8648D    | (9kHz-4GHz) Signal Generator      | 9/19/2009 | Biennial     | 9/19/2011 | 3613A00315    |
| Agilent         | 8753E    | (30kHz-6GHz) Network Analyzer     | 3/25/2009 | Annual       | 3/25/2010 | JP38020182    |
| Agilent         | E5515C   | Wireless Communications Test Set  | 9/10/2009 | Annual       | 9/10/2010 | GB46110872    |
| Agilent         | E5515C   | Wireless Communications Test Set  | 9/11/2009 | Annual       | 9/11/2010 | GB46310798    |
| Agilent         | E5515C   | Wireless Communications Test Set  | 8/25/2009 | Annual       | 8/25/2010 | GB41450275    |
| Agilent         | E8257D   | (250kHz-20GHz) Signal Generator   | 3/25/2009 | Biennial     | 3/25/2011 | MY45470194    |
| Gigatronics     | 80701A   | (0.05-18GHz) Power Sensor         | 9/9/2009  | Annual       | 9/9/2010  | 1833460       |
| Gigatronics     | 8651A    | Universal Power Meter             | 9/9/2009  | Annual       | 9/9/2010  | 8650319       |
| Index SAR       | IXTL-010 | Dielectric Measurement Kit        | N/A       |              | N/A       | N/A           |
| Index SAR       | IXTL-030 | 30MM TEM line for 6 GHz           | N/A       |              | N/A       | N/A           |
| Rohde & Schwarz | CMU200   | Base Station Simulator            | 9/11/2009 | Annual       | 9/11/2010 | 836371/0079   |
| Rohde & Schwarz | CMU200   | Base Station Simulator            | 4/6/2009  | Annual       | 4/6/2010  | 833855/0010   |
| Rohde & Schwarz | CMU200   | Base Station Simulator            | 9/4/2009  | Annual       | 9/4/2010  | 109892        |
| Rohde & Schwarz | NRVD     | Dual Channel Power Meter          | 8/20/2008 | Biennial     | 8/20/2010 | 101695        |
| Rohde & Schwarz | NRV-Z32  | Peak Power Sensor (100uW-2W)      | 12/5/2008 | Biennial     | 12/5/2010 | 100155        |
| Rohde & Schwarz | NRV-Z33  | Peak Power Sensor (1mW-20W)       | 12/5/2008 | Biennial     | 12/5/2010 | 100004        |
| SPEAG           | D1450V2  | 1450 MHz SAR Dipole               | 5/20/2009 | Biennial     | 5/20/2011 | 1025          |
| SPEAG           | D1765V2  | 1765 MHz SAR Dipole               | 5/19/2009 | Biennial     | 5/19/2011 | 1008          |
| SPEAG           | D1900V2  | 1900 MHz SAR Dipole               | 1/20/2009 | Biennial     | 1/20/2011 | 502           |
| SPEAG           | D1900V2  | 1900 MHz SAR Dipole               | 8/18/2009 | Biennial     | 8/18/2011 | 5d080         |
| SPEAG           | D2300V2  | 2300 MHz SAR Dipole               | 3/6/2008  | Biennial     | 3/6/2010  | 1008          |
| SPEAG           | D2450V2  | 2450 MHz SAR Dipole               | 8/27/2009 | Biennial     | 8/27/2011 | 719           |
| SPEAG           | D2450V2  | 2450 MHz SAR Dipole               | 1/8/2009  | Biennial     | 1/8/2011  | 797           |
| SPEAG           | D2600V2  | 2600 MHz SAR Dipole               | 8/12/2009 | Biennial     | 8/12/2011 | 1004          |
| SPEAG           | D5GHzV2  | 5 GHz SAR Dipole                  | 8/19/2009 | Biennial     | 8/19/2011 | 1007          |
| SPEAG           | D5GHzV2  | 5 GHz SAR Dipole                  | 1/15/2009 | Biennial     | 1/15/2011 | 1057          |
| SPEAG           | D835V2   | 835 MHz SAR Dipole                | 1/19/2009 | Biennial     | 1/19/2011 | 4d047         |
| SPEAG           | D835V2   | 835 MHz SAR Dipole                | 8/24/2009 | Biennial     | 8/24/2011 | 4d026         |
| SPEAG           | DAE4     | Dasy Data Acquisition Electronics | 5/14/2009 | Annual       | 5/14/2010 | 704           |
| SPEAG           | DAE4     | Dasy Data Acquisition Electronics | 5/25/2009 | Annual       | 5/25/2010 | 665           |
| SPEAG           | DAE4     | Dasy Data Acquisition Electronics | 1/21/2009 | Annual       | 1/21/2010 | 649           |
| SPEAG           | ES3DV2   | SAR Probe                         | 9/18/2009 | Annual       | 9/18/2010 | 3022          |
| SPEAG           | EX3DV4   | SAR Probe                         | 1/21/2009 | Annual       | 1/21/2010 | 3550          |
| SPEAG           | DAE4     | Dasy Data Acquisition Electronics | 7/21/2009 | Annual       | 7/21/2010 | 859           |
| SPEAG           | D750V3   | 750 MHz Dipole                    | 2/19/2009 | Biennial     | 2/19/2011 | 1003          |
| Rohde & Schwarz | CMU200   | Base Station Simulator            | 6/12/2009 | Annual       | 6/12/2010 | 836536/0005   |
| Speag           | ES3DV3   | SAR Probe                         | 4/15/2009 | Annual       | 4/15/2010 | 3213          |
| Speag           | ES3DV3   | SAR Probe                         | 4/15/2009 | Annual       | 4/15/2010 | 3209          |
| Rohde & Schwarz | SMIQ03B  | Signal Generator                  | 5/21/2009 | Annual       | 5/21/2010 | 832810/021    |
| Speag           | D1640V2  | 1640 MHz Dipole                   | 8/21/2008 | Biennial     | 8/21/2010 | 321           |
| Rohde & Schwarz | CMW500   | LTE Base Station Simulator        | 8/25/2009 | Annual       | 8/25/2010 | 100976        |

### Notes:

The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by PCTEST prior to SAR evaluation. The brain simulating material is calibrated by PCTEST using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

| FCC ID: ACJ9TGCF-H12 |              | SAR COMPLIANCE RE |                                                                                 | SAR COMPLIANCE REPORT | <b>Panasonic</b> | Reviewed by: Quality Manager |               |
|----------------------|--------------|-------------------|---------------------------------------------------------------------------------|-----------------------|------------------|------------------------------|---------------|
| Filename:            | Test Dates:  |                   | EUT Type:                                                                       |                       |                  |                              | Page 26 of 33 |
| 0910051841.ACJ       | 01/14/09 - 1 | 1/06/09           | 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |                       |                  | Fage 20 01 33                |               |

### 15 CONCLUSION

#### 15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

| FCC ID: ACJ9TGCF-H12 |              | PCTEST SA |              | SAR COMPLIANCE REPORT           | Panasonic                 | Reviewed by: Quality Manager |               |
|----------------------|--------------|-----------|--------------|---------------------------------|---------------------------|------------------------------|---------------|
| Filename:            | Test Dates:  |           | EUT Type:    | EUT Type:                       |                           |                              |               |
| 0910051841.ACJ       | 01/14/09 - 1 | 1/06/09   | 850/1900 CDM | A/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO | Handheld PC with WLAN and | Bluetooth                    | Page 27 of 33 |

## 16

## REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01). Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [5] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments. IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9]K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

| FCC ID: ACJ9TGCF-H12                       |              | /\_     | PETEST*                                                                           | SAR COMPLIANCE REPORT | Panasonic | Reviewe<br>Quality I | ed by:<br>Manager |
|--------------------------------------------|--------------|---------|-----------------------------------------------------------------------------------|-----------------------|-----------|----------------------|-------------------|
| Filename:                                  | Test Dates:  |         | EUT Type:                                                                         |                       |           |                      | Page 28 of 33     |
| 0910051841.ACJ                             | 01/14/09 - 1 | 1/06/09 | 9 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |                       |           |                      | Fage 20 01 33     |
| © 2009 PCTEST Engineering Laboratory, Inc. |              |         |                                                                                   |                       |           |                      | RFV 7.0           |

© 2009 PCTEST Engineering Laboratory, Inc.

- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [21] FCC SAR Measurement Procedures for 3G Devices v2.0, October 2007
- [22] SAR Measurement procedures for IEEE 802.11a/b/g rev 1.2, May 2007
- [23] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [24] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [25] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 2, November 2005
- [26] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 1999
- [27] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas v01r05 #648474, September 2008
- [28] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz 3 GHz, Rev 1.1, January 2007
- [29] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, #616217, v01r01, April 2008
- [30] FCC SAR Measurement Requirements for 3 6 GHz Rev1.1, October 2006
- [31] FCC Mobile Portable RF Exposure Procedure D01 v03r03, KDB 447498, Jan. 2009
- [32] FCC SAR Procedures for Dongle Transmitters D02 v01, KDB 447498, Dec. 2008
- [33] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.

| FCC ID: ACJ9TGCF-H12                       |                                    | CA F | SAR COMPLIANCE REPORT |                                                                                 | Panasonic   | Reviewed by:    |               |
|--------------------------------------------|------------------------------------|------|-----------------------|---------------------------------------------------------------------------------|-------------|-----------------|---------------|
|                                            |                                    | γ.   |                       |                                                                                 | Fallasolilo | Quality Manager |               |
| Filename:                                  | Test Dates                         | :    | EUT Type:             |                                                                                 |             |                 | Page 29 of 33 |
| 0910051841.ACJ                             | 051841.ACJ 01/14/09 - 11/06/09 850 |      |                       | 850/1900 CDMA/GSM/WCDMA/GPRS/EDGE/HSPA/EVDO Handheld PC with WLAN and Bluetooth |             |                 | Fage 29 01 33 |
| © 2009 PCTEST Engineering Laboratory, Inc. |                                    |      |                       |                                                                                 |             |                 | REV 7.0       |

11/02/09