

PCTEST Engineering Laboratory, Inc.

6660-B Dobbin Road • Columbia, MD 21045 • U.S.A. TEL (410) 290-6652 • FAX (410) 290-6654 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE

Matsushita Electric Industrial Co., Ltd.

1006 Oaza Kadoma

Kadoma, Osaka 571 Japan Attention: Rich Mullen (PSCD) Dates of Tests: June 5-6, 2002 Test Report S/N: B.220507295.BEJ Test Site: PCTEST Lab., MD U.S.A.

FCC ID

ACJ96NKX-HGW600

APPLICANT

Matsushita Electric Industrial Co., Ltd.

Rule Part(s): FCC Part 15 Subpart B

Equipment Class: Class B Peripheral Device/Composite Device (JBP)

Standard(s): EN55022: 1998

EUT Type: Camera Control Unit

Max. RF Power: 0.198W (EIRP)
Model(s): KX-HGW600

This equipment has been shown to be in compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-1992. (See Test Report if any modifications were made for compliance.) These measurements were performed with no deviation from the standards.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

NVLAP accreditation does not constitute and product endorsement by NVLAP or any agency of the United States Government. PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Approved Signatories:

Randy Ortanez – President Alfred Cirwithian – Vice-President

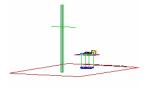

> Randy Ortanez President

TABLE OF CONTENTS

AIIA	CHMENT A: COVER LETTER(S)	
ATTA	CHMENT B: ATTESTATION STATEMENT(S)	
ATTA	CHMENT C: TEST REPORT	
1.1	SCOPE	1
2.1	INTRODUCTION (SITE DESCRIPTION)	2
3.1	PRODUCTION INFORMATION	3
4.1	DESCRIPTION OF TESTS (CONDUCTED)	4
4.3	DESCRIPTION OF TESTS (RADIATED)	5
5.1	LIST OF SUPPORT EQUIPMENT	6
6.1	TEST DATA (CONDUCTED)	7
7.1	TEST DATA (RADIATED)	8-9
8.1	SAMPLE CALCULATIONS	10
9.1	ACCURACY OF MEASUREMENT	11
10.1	LIST OF TEST EQUIPMENT	12
11.1	TEST SOFTWARE USED	13
12.1	CONCLUSION	14
ATTA	CHMENT D: TEST PLOTS	
ATTA	CHMENT E: FCC ID LABEL & LOCATION	
ATTA	CHMENT F: BLOCK DIAGRAM(S)	
ATTA	CHMENT G: TEST SETUP PHOTOGRAPHS	
ATTA	CHMENT H: EXTERNAL PHOTOGRAPHS	
ATTA	CHMENT I: INTERNAL PHOTOGRAPHS	
ΔΤΤΔ	CHMENT J. USER'S MANUAI	

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

Applicant Name: Matsushita Electric Industrial Co., Ltd.

Address: 1006 Oaza Kadoma

Kadoma, Osaka 571 JAPAN

Attention: Rich Mullen (PSCD)

ACJ96NKX-HGW600 FCC ID:

Equipment Class: B Digital Device / Peripheral (JBP)

EUT Type: Camera Control Unit

Model(s): KX-HGW600

Freq. Range: 2412.0 - 2462.0 MHz

USOC Jack: **RJ-45**

Rule Part(s): FCC Part 15 Subpart B ANSI C63.4 (1992) Test Procedure(s): Dates of Tests:

June 5-6, 2002

Place of Tests: PCTEST Lab, Columbia, MD U.S.A.

Test Report S/N: B.220507295.BEJ

2.1 INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-1992) was used in determining radiated and conducted emissions emanating from **PANASONIC Camera Control Unit FCC ID**: ACJ96NKX-HGW600.

These measurement tests were conducted at *PCTEST Engineering Laboratory, Inc.* facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

2.2 PCTEST Location

The map at right shows the location of the PCTEST Lab, its proximity to the FCC Lab, the Columbia vicinity area, the Baltimore-Washington International (BWI) airport, and the city of Baltimore, and the Washington, D.C. area. (see Figure 1).

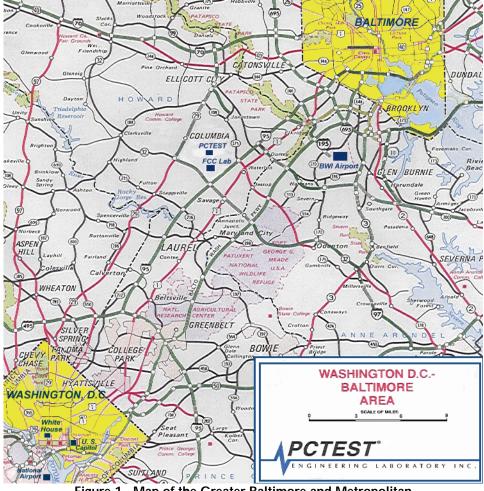


Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

Test Report S/N: B.220507295.BEJ FCC Class B
Dates of Tests: June 5-6, 2002 Certification

3.1 Product Information

3.2 Equipment Description

The Equipment Under Test (EUT) is the PANASONIC Camera Control Unit FCC ID: ACJ96NKX-HGW600.

Frequency Range(s): 2412.0 – 2462.0 MHz

Power Supply: DC-12V IN Approx. 10W (max)

Dimensions (WxHxD): 42 mm x 260 mm x 150 mm

Weight (Net): 500 g

EMI Suppression Devices:

~ No modifications were made to the device.

4.1 Description of Tests

4.2 Powerline Conducted RFI (150kHz- 30MHz)

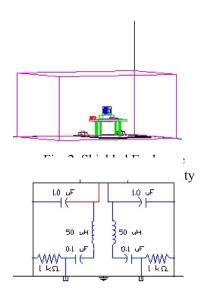


Fig. 3. LISN Schematic Diagram

The powerline conducted RFI measurements were performed according to CISPR 22. The EUT was placed on a non-conducting 1.0 by 1.5 meter table which is 0.8 meters in height and 0.40 meters away from the vertical wall of the shielded enclosure (see Figure 2). Power to the EUT is provided through a Rohde & Schwarz 50 Ω / 50 uH Line Impedance Stabilization Network (LISN) and the support equipment through a separate Solar 50 Ω / 50 uH Line- Conducted Test Facility LISN. Sufficient time for the EUT, support equipment, and test equipment were allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME. The spectrum was scanned from 150kHz to 30 MHz. Each maximum EME was remeasured using an EMI receiver. The detector function of the receiver was set to CISPR quasi- peak and average mode with the bandwidth set to 9 kHz. Each emission was maximized consistent with the typical applications by varying the configuration of the test sample. Interface cables were connected to the available interface ports of the test unit. The effect of varying the position of cables was investigated to find the configuration that produces maximum Diagram emission. Excess cable lengths were bundled at the centre with 30- 40cm. in length. The worst-case configuration is noted in the test report and the photographs are attached. Each EME reported was calibrated using the Rohde & Schwarz SMX signal generator and are listed on Table 1.

RFI Conducted	FCC Class B	CISPR 22 Class B	
	Limits dB[uV/m]	Limits dB[uV/m]	
Freq. Range	FCC Class B	CISPR 22	CISPR 22
	Quasi-Peak	Quasi-Peak	Average
150 kHz – 0.5 MHz	48*	66 – 56**	56 – 46**
0.5 MHz – 5 MHz	48	56	46
5 MHz – 30 MHz	48	60 50	
* FCC Class D limits starts from 450 kl la			

* FCC Class B limits starts from 450 kHz.

Table 1, CISPR 22 Class B RFI Conducted Limits

^{**} Limit decreases linearly with the logarithm of frequency.

4.1 Description of Tests (continued)

4.3 Radiated Emissions

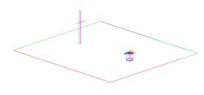


Fig. 4. Radiated Test @ 10-meters

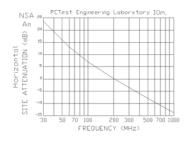


Fig. 5. NSA Theoretical Attenuation Curves (Horiz. Pol.)

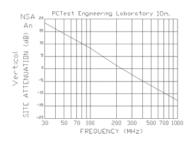


Fig. 6. NSA Theoretical Attenuation Curves (Vert. Pol.)

ITE Radiated Limits				
Frequency (MHz)	FCC Limit @ 3m. Quasi- Peak dB[μV/m]	FCC Limit @ 10m.* Quasi – Peak dB[μV/m]	CISPR Limit @ 10m. Quasi-Peak dB[μV/m]	
30-88	40.0	29.5	30.0	
88-216	43.5	33.0	30.0	
216-230	46.0	35.6	30.0	
230-960	46.0	35.6	37.0	
960-1000	54.0	43.5	37.0	
> 1000	54.0	43.5	No Specified limit	
* Limit extrapolated 20 dB/decade				

Table 2. Radiated Class B limits @ 10-meters

5.1 Support Equipment Used

1. PANASONIC WLAN FCC ID: ACJ96NKX-HGW600 (EUT)
Camera Control Unit

2. PANASONIC (TOUGHBOOK) Model: CF-28 S/N: 1GKYB02894

1.8 m. shielded DC power cord

0.4 m. shielded USB/ RJ45 cable (by: BELKIN)

3. H/P THINKJET Printer FCC ID: BS46XU2225C S/N: 2651S40366

1.8 m. unshielded AC power cord 1.0 m. shielded PARALLEL cable

4. LOGITECH Mouse Model: PZL210472 S/N: LZ60603191

1.6 m. shielded data cable

5. PANASONIC FCC ID: KX-HCM230

Network Camera (x3) 10.0 m. shielded DC power cord

9.5 m. unshielded twisted pair (UTP/ RJ45 ca.)

(See "Attachment H - Test Setup Photographs" for actual system test setup.)

6.1 LINE-CONDUCTED TEST DATA

6.2 Conducted Emissions

(See Data under PLOTS - Attachment D)

NOTES:

- 1. All modes of operation were investigated and the worst-case emissions are reported.
- 2. The CISPR RFI conducted limits are listed on Table 1 (Page 4).
- 3. Line A = Phase Line B = Neutral
- 4. Deviations to the Specifications: None

^{*} All readings are calibrated by HP8640B signal generator with accuracy traceable to the National Institute of Standards and Technology (formerly NBS).

^{**} Measurements using CISPR quasi-peak mode.

Test Report S/N: B.220507295.BEJ FCC Class B
Dates of Tests: June 5-6, 2002 Certification

7.1 RADIATED TEST DATA

7.2 Radiated Emissions

FREQ. (MHz)	Level* (dBμV/m)	AFCL** (dB)	POL (H/V)	Height (m)	Azimuth (° angle)	F/S (dBμV/m)	Margin*** (dB)
77.3	- 80.57	7.18	V	3.3	210	47.91	- 6.4
132.2	- 84.67	12.38	V	2.5	90	54.38	- 8.8
176.3	- 86.61	13.52	Н	2.4	160	49.60	- 9.6
209.8	- 89.65	16.95	V	2.4	210	51.93	- 9.2
331.2	- 89.72	21.72	V	2.3	190	89.18	- 7.0
452.7	- 94.86	24.96	V	1.2	30	71.66	- 8.9

Table 3. Radiated Measurements at 10-meters

NOTES:

- 1. All modes of operation were investigated, and the worst-case emissions are reported.
- 2. The radiated limits are listed on Table 2 (Page 5).

^{*} All readings are calibrated by HP8640B signal generator with accuracy traceable to the National Institute of Standards and Technology (formerly NBS).

^{**} AFCL = Antenna Factor (Roberts dipole) and Cable Loss (30 ft. RG58C/U).

^{***} Measurements using CISPR quasi-peak mode. Above 1GHz, peak detector function mode is used using a resolution bandwidth of 1MHz and a video bandwidth of 1MHz. The peak level complies with the average limit. Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.

8.1 Sample Calculations

$$dB\mu V = 20 \log_{10} (\mu V/m)$$

$$dB\mu V = dBm + 107$$

8.2 Example 1:

@ 20.3 MHz

Class B limit = $250 \mu V = 47.96 dB\mu V$

Reading = - 67.8 dBm (calibrated level)

Convert to $db\mu V$ = $-67.8 + 107 = 39.2 dB\mu V$

 $10^{(39.2/20)}$ = 91.2 μ V

Margin = 39.2 - 47.96 = -8.76

= 8.8 dB below limit

8.3 **Example 2**:

@ 66.7 MHz

Class B limit = $100 \mu V/m = 47.96 dB\mu V/m$ Reading = -76.0 dBm (calibrated level)

Convert to $db\mu V/m$ = - 76.0 + 107 = 31.0 $dB\mu V/m$

Antenna Factor + Cable Loss = 5.8 dB

Total = $36.8 \, dB\mu V/m$

Margin = 36.8 - 40.0 = -3.2

= 3.2 dB below limit

9.1 Accuracy of Measurement

9.2 Measurement Uncertainty Calculations:

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994).

Contribution	Probability	Uncertaint	y (± dB)
(Line Conducted)	Distribution	9kHz-150MHz	150-30MHz
Receiver specification	Rectangular	1.5	1.5
LISN coupling specification	Rectangular	1.5	1.5
Cable and input attenuator calibration	Normal (k=2)	0.3	0.5
Mismatch: Receiver VRC Γ_1 = 0.03			
LISN VRC Γ_R = 0.8 (9kHz) 0.2 (30MHz)	U-Shaped	0.2	0.35
Uncertainty limits 20Log(1 $\pm \Gamma_1 \Gamma_R$)			
System repeatability	Std. deviation	0.2	0.05
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	1.26	1.30
Expanded uncertainty	Normal (k=2)	2.5	2.6

Calculations for 150kHz to 30MHz:

$$u_{C}(y) = \sqrt{\sum_{i=1}^{m} u_{i}^{2}(y)} = \pm \sqrt{\frac{1.5^{2} + 1.5^{2}}{3} + (\frac{0.5}{2})^{2} + 0.35} = \pm 1.298dB$$

$$U = 2U_{C}(y) = \pm 2.6dB$$

Contribution	Probability	Uncertain	ties (± dB)
(Radiated Emissions)	Distribution	3 m	10 m
Ambient Signals		-	=
Antenna factor calibration	Normal (k=2)	± 1.0	± 1.0
Cable loss calibration	Normal (k=2)	± 0.5	± 0.5
Receiver specification	Rectangular	± 1.5	±1.5
Antenna directivity	Rectangular	+ 0.5 / - 0	+ 0.5
Antenna factor variation with height	Rectangular	± 2.0	± 0.5
Antenna phase centre variation	Rectangular	0.0	± 0.2
Antenna factor frequency interpolation	Rectangular	±. 0.25	± 0.25
Measurement distance variation	Rectangular	± 0.6	± 0.4
Site imperfections	Rectangular	± 2.0	± 2.0
Mismatch: Receiver VRC Γ_1 = 0.2 Antenna VRC Γ_R = 0.67 (Bi) 0.3 (Lp) Uncertainty limits 20Log(1 \pm Γ_1 Γ_R)	U-Shaped	+ 1.1 - 1.25	± 0.5
System repeatability	Std. Deviation	± 0.5	± 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+ 2.19 / - 2.21	+ 1.74 / - 1.72
Expanded uncertainty U	Normal (k=2)	+ 4.38 / - 4.42	+ 3.48 / - 3.44

Calculations for 3m biconical antenna. Coverage factor of k=2 will ensure that the level of confidence will be approximately 95%, therefore:

$$U=2u_{C}(y) = 2 x \pm 2.19 = \pm 4.38dB$$

10.1 Test Equipment

10.2 Type	Model Ca	I. Due Date	S/N
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	12/05/02	3638A08713
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	04/17/03	2542A11898
Spectrum Analyzer/Tracking Gen.	HP 8591A (9kHz-1.8GHz)	06/02/03	3144A02458
Spectrum Analyzer	HP 8591A (9kHz-1.8GHz)	10/15/02	3108A02053
Spectrum Analyzer	HP 8594A (9kHz-2.9GHz)	11/02/02	3051A00187
Signal Generator*	HP 8640B (500Hz-1GHz)	06/02/03	2232A19558
Signal Generator [*]	HP 8640B (500Hz-1GHz)	06/02/03	1851A09816
Signal Generator*	Rohde & Schwarz (0.1-1000MHz)	09/11/02	894215/012
Ailtech/Eaton Receiver	NM 37/57A-SL (30-1000MHz)	04/12/03	0792-03271
Ailtech/Eaton Receiver	NM 37/57A (30-1000MHz)	03/11/03	0805-03334
Ailtech/Eaton Receiver	NM 17/27A (O.1-32MHz)	09/17/02	0608-03241
Quasi-Peak Adapter	HP 85650A	08/09/02	2043A00301
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapter	03/11/03	0194-04082
RG58 Coax Test Cable	No. 167		n/a
Harmonic/Flicker Test System	HP 6841A (IEC 555-2/3)		3531A00115
Broadband Amplifier (2)	HP 8447D		1145A00470, 1937A03
Broadband Amplifier	HP 11947A (9kHz-200MHz)		2820A00300
Horn Antenna	EMCO Model 3115 (1-18GHz)		9704-5182
Horn Antenna	EMCO Model 3115 (1-18GHz)		9205-3874
Horn Antenna	EMCO Model 3116 (18-40GHz)		9203-2178
Biconical Antenna (4)	Eaton 94455/Eaton 94455-1/Sing	er 94455-1/Compliance	e Design 1295, 1332, 0355
_og-Spiral Antenna (3)	Ailtech/Eaton 93490-1		0608, 1103, 1104
Roberts Dipoles	Compliance Design (1 set) A100		5118
Ailtech Dipoles	DM-105A (1 set)		33448-111
EMCO LISN (2)	3816/2		1077, 1079
EMCO LISN	3725/2		2009
Microwave Preamplifier 40dB Gain	HP 83017A (0.5-26.5GHz)		3123A00181
Microwave Cables	MicroCoax (1.0-26.5GHz)		
Ailtech/Eaton Receiver	NM37/57A-SL		0792-03271
Spectrum Analyzer	HP 8591A		3034A01395
Modulation Analyzer	HP 8901A		2432A03467
NTSC Pattern Generator	Leader 408		0377433
Noise Figure Meter	HP 8970B		3106A02189
Noise Figure Meter	Ailtech 7510		TE31700
Noise Generator	Ailtech 7010		1473
Microwave Survey Meter	Holaday Model 1501 (2.450GHz)		80931
Digital Thermometer	Extech Instruments 421305		426966
Attenuator	HP 8495A (O-70dB) DC-4GHz		
Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz)		
Shielded Screen Room	RF Lindgren Model 26-2/2-0		6710 (PCT270)
	9		D2427 (DCT270)
Shielded Semi-Anechoic Chamber	Ray Proof Model S81		R2437 (PCT278)

^{*} Calibration traceable to the National Institute of Standards and Technology (NIST).

11.1 Test Software Used

- 10 CLS:COLOR 7,0
- 20 FOR I = 1 TO 80
- 30 PRINT H;
- 40 NEXT I
- 50 FOR K= 1 TO 25
- 60 LPRINT H;
- 70 NEXT K
- 80 OPEN COM1:1200,N,8,1,CS0,DS0" FOR OUTPUT AS #1
- 90 PRINT#1,ATDT,0123456789"
- 100 CLOSE:GOTO 20

NOTE: This is a sample of the basic program used during the test. However, during testing, a different software program may be used; whichever determines the worst-case condition. In addition, the program used also depends on the number and type of devices being tested.

Actual program used is the "H" pattern in Notepad under Windows environment. All resolution modes (1280x1024, 1024x768, 800x600, 640x480 Non-interlaced) were investigated and tested.

Test Report S/N: B.220507295.BEJ FCC Class B
Dates of Tests: June 5-6, 2002 Certification

12.1 Conclusion

The data collected shows that the **PANASONIC Camera Control Unit FCC ID: ACJ96NKX-HGW600** complies with §15.107 and §15.109 of the FCC Rules.