

RADIO TEST REPORT

Test Report No. 14913527H-C-R1

Customer	Panasonic Automotive Systems Co., Ltd.
Description of EUT	Car Navigation
Model Number of EUT	AT2405
FCC ID	ACJ932AT2405
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	May 15, 2025
Remarks	-Bluetooth (BR / EDR) parts -Radiated Spurious Emission only

Representative Test Engineer	Approved By
Sone	T. Shimada
Tomoya Sone Engineer	Takumi Shimada Engineer ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 24.0

Test Report No. 14913527H-C-R1 Page 2 of 30

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14913527H-C

This report is a revised version of 14913527H-C. 14913527H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14913527H-C	December 19, 2024	-
(Original)			
1	14913527H-C-R1	May 15, 2025	APPENDIX 1: Test data
			Radiated Spurious Emission (Page 16 and 21)
			1) Corrected Duty Factor of 2354.0 MHz:
			- (hyphen) -> 1.1
			2) Added note *2)
			3) Deleted note (Page 16 only):
			"*These results have sufficient margin without
			taking account Duty cycle correction factor."

Test Report No. 14913527H-C-R1 Page 3 of 30

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test Specification, Procedures & Results	7
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission	
APPENDIX 1: Test data	
Burst rate confirmation	15
Radiated Spurious Emission	16
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of test setup	30
Radiated Spurious Emission	

Test Report No. 14913527H-C-R1 Page 5 of 30

SECTION 1: Customer Information

Company Name	Panasonic Automotive Systems Co., Ltd.*1)	
Company Name	Fallasonic Automotive Systems Co., Etc. 1)	
Address	4261, Ikonobe-cho, Tsuzuki-ku, Yokohama-shi, Kanagawa-ken 224-8520,	
	Japan	
Telephone Number	+81-50-1802-5117	
Contact Person	Daisuke Takahata	

^{*1)} The Grantee name in the FCC application is "Panasonic Corporation of North America".

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Car Navigation	
Model Number	AT2405	
Serial Number	Refer to SECTION 4.2	
Condition	Production prototype	
	(Not for Sale: This sample is equivalent to mass-produced items.)	
Modification	No Modification by the test lab	
Receipt Date	August 22, 2024	
Test Date	September 1 to October 16, 2024	

2.2 Product Description

General Specification

Rating	DC 13.2 V
Operating temperature	-30 deg. C to 65 deg. C

Test Report No. 14913527H-C-R1 Page 6 of 30

Radio Specification

Bluetooth (BR / EDR / BT LE)

Equipment Type	Transceiver	
Frequency of Operation	2402 MHz to 2480 MHz	
Type of Modulation	FHSS, GFSK / π/4-DQPSK, 8DPSK / GFSK	
Antenna Gain	4 dBi	

WLAN (IEEE802.11b/11g/11n-20/11ax-20)

112, 111 (1222221112, 113, 113, 11	 , ,	
Equipment Type	Transceiver	
Frequency of Operation	2412 MHz to 2462 MHz	
Type of Modulation	DSSS, OFDM	
	OFDMA (IEEE802.11ax only)	26/52/106/242-tone RU
Antenna Gain	4 dBi	

WLAN (IEEE802.11a/11n-20/11ac-20/11ax-20/11n-40/11ac-40/11ax-40/11ac-80/11ax-80)

Equipment Type	Transceiver	•
Frequency of Operation	20 MHz Band	5180 MHz to 5240 MHz
		5745 MHz to 5825 MHz
	40 MHz Band	5190 MHz to 5230 MHz
		5755 MHz to 5795 MHz
	80 MHz Band	5210 MHz, 5775 MHz
Type of Modulation	OFDM	
	OFDMA	20 MHz: 26/52/106/242-tone RU
	(IEEE802.11ax only)	40 MHz: 26/52/106/242/484-tone RU
		80 MHz: 26/52/106/242/484/996-tone RU
Antenna Gain	RF0: 5 dBi	
	RF1: 5 dBi	

Test Report No. 14913527H-C-R1 Page 7 of 30

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Spurious Emission &	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	7.8 dB 48.6 MHz,	Complied	Radiated (above 30 MHz)
Band Edge Compliance	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	Vertical, QP		*1)
	n, Inc.'s EMI Work Procedures: Wo uestions arise about test procedur			s-ULID-0035	93.
*1) Radiated te	est was selected over 30 MHz base	ed on section 15.247(d).			

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF part regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

No addition, exclusion nor deviation has been made from the standard.

Test Report No. 14913527H-C-R1 Page 8 of 30

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz	MHz Horizontal Vertical OO MHz Horizontal Vertical MHz Horizontal Vertical Vertical OO MHz Horizontal Vertical Vertical Vertical Terrical Vertical Vertical Vertical Vertical	dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	dB dB dB Vertical Horizontal Vertical Horizontal Vertical Horizontal Horizontal Vertical Horizontal Vertical Horizontal GB Vertical Horizontal GB GB GB dB dB	5.0	
		Vertical	dB	5.0
	200 MHz to 1000 MHz	Vertical z Horizontal Vertical Horizontal Vertical z Horizontal	dB	5.2
		Vertical	dB	6.2
10 m	30 MHz to 200 MHz	Horizontal	dB	5.5
		Vertical	dB	5.4
	200 MHz to 1000 MHz	Horizontal	dB	5.5
		Vertical	dB	5.5
3 m	1 GHz to 6 GHz		dB	5.1
	6 GHz to 18 GHz		dB	5.4
1 m	10 GHz to 18 GHz		dB	5.4
	18 GHz to 26.5 GHz	dB	5.3	
	26.5 GHz to 40 GHz		dB	4.8
0.5 m	26.5 GHz to 40 GHz		dB	5.0

Test Report No. 14913527H-C-R1 Page 9 of 30

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 14913527H-C-R1 Page 10 of 30

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
Bluetooth (BT)	BR / EDR, Payload: PRBS9
*EUT has the power s	settings by the software as follows;
Power Setting:	9 dBm

Software: bluetooth serial v3

(Date: 2024.06.25, Storage location: Driven by connected PC)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

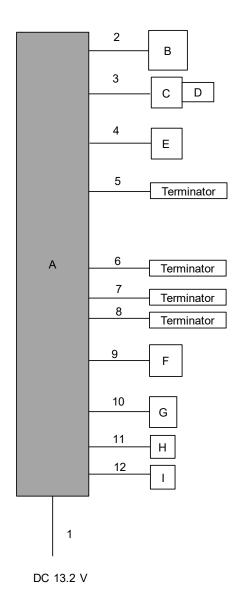
In addition, end users cannot change the settings of the output power of the product.

Details of Operating Mode(s)

Test Item	Mode	Hopping	Tested Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx 3DH5 *1)	Off	2480 MHz
Radiated Spurious Emission (Above 1 GHz)	Tx DH5	Off	2402 MHz
	Tx 3DH5		2441 MHz
			2480 MHz

^{*}As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)

Simultaneous transmission


l est Item	Mode *1)						
Radiated Spurious Emission	Tx, Hopping Off, DH5 2402 MHz + 11ax-20 [52-tone RU/Index 40] 5825 MHz						
*1) The test was conducted on representative mode, the worst mode of GHz band at Spurious emission test for BT							
and the mode had the highest pow	er at Antenna terminal conducted test for WLAN 5 GHz band.						

^{*2}DH mode (2Mb/s EDR: pi/4DQPSK) was excluded for other tests than power measurement by using 3DH mode (3 Mb/s EDR: 8DPSK) as a representative.

^{*}It is considered that the non-tested packet type (e.g. inquiry) can be omitted as it is complied with above all the test items based on Bluetooth Core specification.

^{*1)} Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

4.2 Configuration and Peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 14913527H-C-R1 Page 12 of 30

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Car Navigation	ar Navigation AT2405 500013		Panasonic Automotive	EUT
				Systems Co., Ltd.	
В	ADAS Jig	GVIF3OUT2A	8	Persol AVC	_
				Technology Co., Ltd.	
С	USB BOX	DEP38-10029	-	Japan Aviation	-
				Electronics Industry,	
				Ltd.	
D	USB Memory	RUF3-K16GB	P10416	Buffalo	-
Е	Steering switch	-	1400	Panasonic	-
F	GPS Antenna	ANN-MS	20N40132	U-Blox	-
G	Microphone	SDA3520A	4AC011628	Panasonic	-
Н	Microphone	SDA3520A	4AC011628	Panasonic	_
l	Amplifier	7669	01A230000384V	DENSO	-

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	4.3	Unshielded	Unshielded	-
2	Signal Cable	1.9	Unshielded	Unshielded	-
3	USB Cable	2.3	Shielded	Shielded	-
4	Signal Cable	4.3	Shielded	Shielded	-
5	XM Antenna Cable 3.0		Shielded Shielded		-
6	Signal Cable	1.0	Shielded	Shielded	-
7	FM Cable	3.0	Shielded	Shielded	-
8	FM Cable	3.0	Shielded	Shielded	-
9	GPS Antenna Cable	2.0	Shielded	Shielded	-
10	Signal Cable	4.3	Unshielded	Unshielded	-
11	Signal Cable	4.3	Unshielded	Unshielded	-
12	Signal Cable	3.0	Unshielded	Unshielded	-

Test Report No. 14913527H-C-R1 Page 13 of 30

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

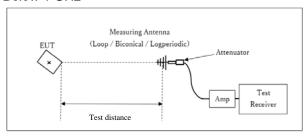
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below:

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

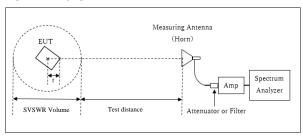
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9 (ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz	20 dBc	
Instrument used	Test Receiver	Spectrum Analyze	r	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz	RBW: 100 kHz
		VBW: 3 MHz	VBW: 3 MHz	VBW: 300 kHz
			Detector:	
			Power Averaging	
			(RMS)	
			Trace: 100 traces	
			Duty factor was added	
			to the results.	

Test Report No. 14913527H-C-R1 Page 14 of 30

Figure 1: Test Setup


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz to 10 GHz

- r: Radius of an outer periphery of EUT
- ×: Center of turn table

[1 GHz to 6 GHz]

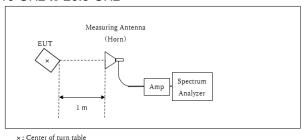
Distance Factor: 20 x log (3.8 m / 3.0 m) = 2.06 dB * Test Distance: (3 + SVSWR Volume /2) - r = 3.8 m

SVSWR Volume: 2.0 m

(SVSWR Volume has been calibrated based on CISPR

16-1-4.) r = 0.2 m

[6 GHz to 10 GHz]


Distance Factor: 20 x log (4.8 m / 3.0 m) = 4.09 dB
* Test Distance: (4.3 + SVSWR Volume /2) - r = 4.8 m

SVSWR Volume: 1.4 m

(SVSWR Volume has been calibrated based on CISPR

16-1-4.) r = 0.2 m

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

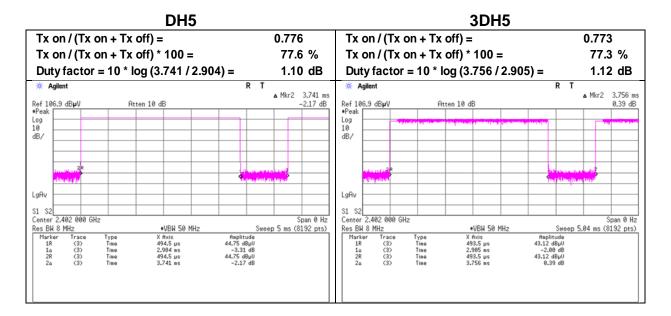
The test was made on EUT at the normal use position.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX Test Result : Pass

Test Report No. 14913527H-C-R1 Page 15 of 30


APPENDIX 1: Test data

Burst rate confirmation

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Date September 2, 2024
Temperature / Humidity 23 deg. C / 70 % RH
Engineer Tomoya Sone

Mode Tx

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 14913527H-C-R1 Page 16 of 30

Radiated Spurious Emission

Ise EMC Lab. Test place

Semi Anechoic Chamber No.4 No.4 No.4

Date

September 2, 2024 September 11, 2024 September 15, 2024 23 deg. C / 70 % RH 21 deg. C / 54 % RH 22 deg. C / 62 % RH Temperature / Humidity

Engineer Tomoya Sone

Yuichiro Yamazaki Junki Nagatomi (1 GHz to 6 GHz) (6 GHz to 10 GHz) (10 GHz to 18 GHz)

Semi Anechoic Chamber No.1

September 24, 2024 Temperature / Humidity 22 deg. C / 60 % RH Engineer Shousei Hamaguchi (Above 18 GHz)

Tx, Hopping Off, DH5 2402 MHz Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2354.0	44.2	34.4	27.8	5.3	31.8	1.1	45.6	36.8	73.9	53.9	28.3	17.1	*2)
Hori.	2390.0	42.2	32.0	27.8	5.4	31.8	1.1	43.5	34.5	73.9	53.9	30.4	19.4	*1)
Hori.	4804.0	40.6	30.3	31.5	7.6	30.9	-	48.8	38.6	73.9	53.9	25.1	15.4	Floor noise
Hori.	7206.0	43.1	32.8	35.5	11.0	32.0	-	57.5	47.2	73.9	53.9	16.4	6.7	Floor noise
Hori.	9608.0	41.7	31.4	35.7	12.0	32.3	-	57.2	46.9	73.9	53.9	16.8	7.1	Floor noise
Vert.	2354.0	44.6	35.4	27.8	5.3	31.8	1.1	45.9	37.8	73.9	53.9	28.0	16.1	*2)
Vert.	2390.0	42.7	31.9	27.8	5.4	31.8	1.1	44.0	34.3	73.9	53.9	29.9	19.6	*1)
Vert.	4804.0	40.6	30.3	31.5	7.6	30.9	-	48.8	38.6	73.9	53.9	25.1	15.4	Floor noise
Vert.	7206.0	43.4	32.4	35.5	11.0	32.0	-	57.8	46.8	73.9	53.9	16.1	7.1	Floor noise
Vert.	9608.0	41.7	31.6	35.7	12.0	32.3	-	57.1	47.0	73.9	53.9	16.8	6.9	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

200BC Data Greet									
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	96.0	27.7	5.4	31.8	97.3	-	-	Carrier
Hori.	2400.0	37.3	27.8	5.4	31.8	38.6	77.3	38.7	
Vert.	2402.0	98.4	27.7	5.4	31.8	99.7	-	-	Carrier
Vert	2400.0	30.0	27.8	5.4	31.8	/11 2	70.7	38.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

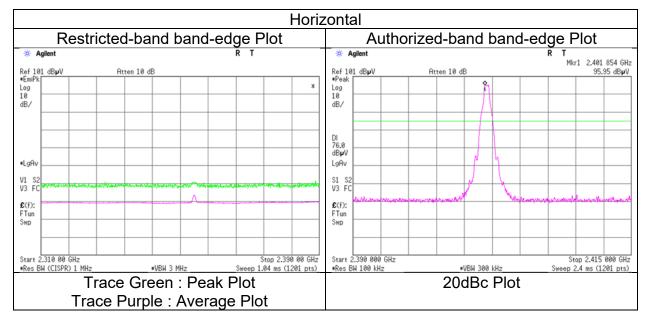
1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB Distance factor:

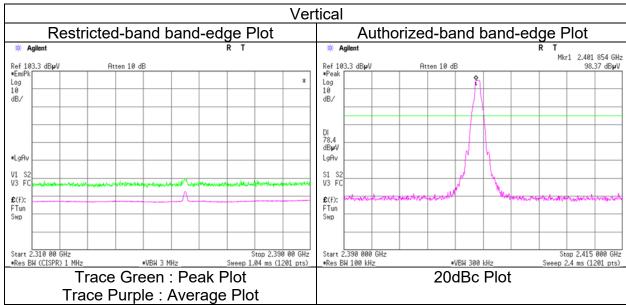
20log (4.8 m / 3.0 m) = 4.09 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

^{*2)} Noise synchronized with duty of carrier frequency


Test Report No. 14913527H-C-R1 Page 17 of 30


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.4

Date September 2, 2024
Temperature / Humidity 23 deg. C / 70 % RH
Engineer Tomoya Sone

Mode Tx, Hopping Off, DH5 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14913527H-C-R1 Page 18 of 30

Radiated Spurious Emission

Ise EMC Lab. Test place

Semi Anechoic Chamber No.4 No.4 No.4 September 2, 2024 September 11, 2024 September 15, 2024

Date

23 deg. C / 70 % RH 21 deg. C / 54 % RH 22 deg. C / 62 % RH Temperature / Humidity Engineer Tomoya Sone Yuichiro Yamazaki Junki Nagatomi

(1 GHz to 6 GHz) (6 GHz to 10 GHz) (10 GHz to 18 GHz)

Semi Anechoic Chamber No.1

September 24, 2024 22 deg. C / 60 % RH Temperature / Humidity Engineer Shousei Hamaguchi (Above 18 GHz)

Mode Tx, Hopping Off, DH5 2441 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4882.0	40.0	32.4	31.6	7.7	30.8	-	48.3	40.8	73.9	53.9	25.6	13.1	Floor noise
Hori.	7323.0	41.7	32.0	35.5	11.0	32.1	-	56.2	46.5	73.9	53.9	17.7	7.4	Floor noise
Hori.	9764.0	41.2	31.4	36.0	12.1	32.4	-	56.9	47.2	73.9	53.9	17.0	6.8	Floor noise
Vert.	4882.0	40.0	32.4	31.6	7.7	30.8	-	48.3	40.8	73.9	53.9	25.6	13.1	Floor noise
Vert.	7323.0	41.8	32.2	35.5	11.0	32.1	-	56.3	46.7	73.9	53.9	17.6	7.2	Floor noise
Vert.	9764.0	41.3	31.6	36.0	12.1	32.4	-	57.0	47.3	73.9	53.9	16.9	6.6	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB

6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. 14913527H-C-R1 Page 19 of 30

September 15, 2024

Radiated Spurious Emission

Ise EMC Lab. Test place

Semi Anechoic Chamber No.4 No.4 No.4 September 2, 2024

Date

23 deg. C / 70 % RH 21 deg. C / 54 % RH 22 deg. C / 62 % RH Temperature / Humidity Engineer Tomoya Sone Yuichiro Yamazaki Junki Nagatomi

(1 GHz to 6 GHz) (6 GHz to 10 GHz) (10 GHz to 18 GHz)

September 11, 2024

Semi Anechoic Chamber No.1

September 24, 2024 22 deg. C / 60 % RH Temperature / Humidity Engineer Shousei Hamaguchi (Above 18 GHz)

Tx, Hopping Off, DH5 2480 MHz Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	44.0	33.9	27.7	5.4	31.7	1.1	45.4	36.4	73.9	53.9	28.5	17.5	*1)
Hori.	4960.0	40.4	30.2	31.7	7.7	30.8	-	49.0	38.8	73.9	53.9	24.9	15.2	Floor noise
Hori.	7440.0	41.6	32.3	35.4	11.1	32.2	-	56.0	46.7	73.9	53.9	17.9	7.2	Floor noise
Hori.	9920.0	41.3	31.4	36.1	12.2	32.5	-	57.2	47.4	73.9	53.9	16.7	6.5	Floor noise
Vert.	2483.5	47.4	32.2	27.7	5.4	31.7	1.1	48.8	34.7	73.9	53.9	25.1	19.2	*1)
Vert.	4960.0	40.4	30.2	31.7	7.7	30.8	-	49.0	38.8	73.9	53.9	24.9	15.2	Floor noise
Vert.	7440.0	41.3	32.3	35.4	11.1	32.2	-	55.6	46.6	73.9	53.9	18.3	7.3	Floor noise
Vert.	9920.0	41.3	31.3	36.1	12.2	32.5	-	57.3	47.3	73.9	53.9	16.7	6.7	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

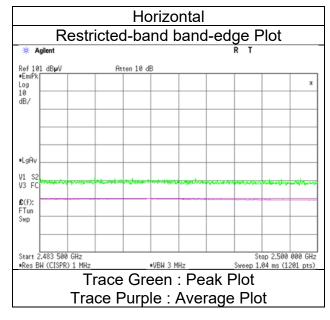
Distance factor: 1 GHz-6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB

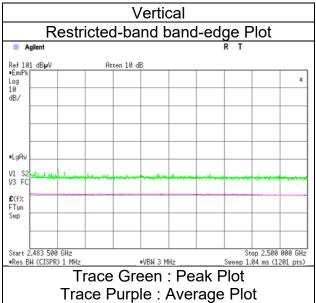
6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. 14913527H-C-R1 Page 20 of 30


Radiated Spurious Emission (Reference Plot for band-edge)


Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.4 September 2, 2024 23 deg. C / 70 % RH Tomoya Sone

Tx, Hopping Off, DH5 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14913527H-C-R1 Page 21 of 30

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4 No.4

September 2, 2024 September 11, 2024 September 15, 2024 Date

23 deg. C / 70 % RH 21 deg. C / 54 % RH 22 deg. C / 62 % RH Temperature / Humidity Engineer Tomoya Sone Yuichiro Yamazaki Junki Nagatomi (1 GHz to 6 GHz) (6 GHz to 10 GHz) (10 GHz to 18 GHz)

Semi Anechoic Chamber No.1

September 24, 2024 Temperature / Humidity 22 deg. C / 60 % RH Engineer Shousei Hamaguchi (Above 18 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2354.0	43.3	33.1	27.8	5.3	31.8	1.1	44.7	35.5	73.9	53.9	29.2	18.4	*2)
Hori.	2390.0	41.9	31.6	27.8	5.4	31.8	1.1	43.3	34.0	73.9	53.9	30.7	19.9	*1)
Hori.	4804.0	40.7	30.4	31.5	7.6	30.9	-	49.0	38.7	73.9	53.9	24.9	15.2	Floor noise
Hori.	7206.0	42.6	32.5	35.5	11.0	32.0	-	57.0	46.9	73.9	53.9	16.9	7.0	Floor noise
Hori.	9608.0	41.7	31.4	35.7	12.0	32.3	-	57.2	46.9	73.9	53.9	16.8	7.1	Floor noise
Vert.	2354.0	45.0	34.3	27.8	5.3	31.8	1.1	46.3	36.8	73.9	53.9	27.6	17.1	*2)
Vert.	2390.0	42.7	31.7	27.8	5.4	31.8	1.1	44.1	34.2	73.9	53.9	29.8	19.7	*1)
Vert.	4804.0	40.7	30.4	31.5	7.6	30.9	-	49.0	38.7	73.9	53.9	24.9	15.2	Floor noise
Vert.	7206.0	42.7	32.2	35.5	11.0	32.0	-	57.1	46.6	73.9	53.9	16.8	7.3	Floor noise
Vert.	9608.0	41.4	31.1	35.7	12.0	32.3	-	56.8	46.5	73.9	53.9	17.1	7.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	95.2	27.7	5.4	31.8	96.5	-	-	Carrier
Hori.	2400.0	37.9	27.8	5.4	31.8	39.2	76.5	37.3	
Vert.	2402.0	98.4	27.7	5.4	31.8	99.8	-	-	Carrier
Vert.	2400.0	40.3	27.8	5.4	31.8	41.6	79.8	38.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

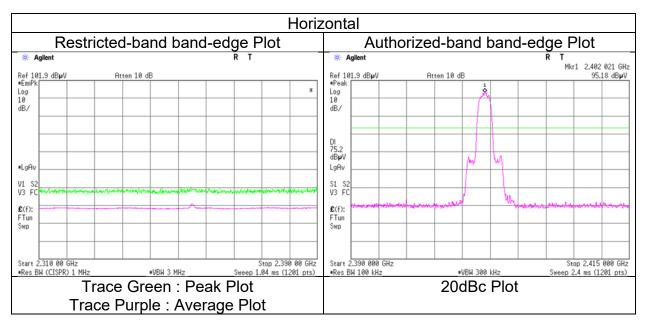
1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB Distance factor:

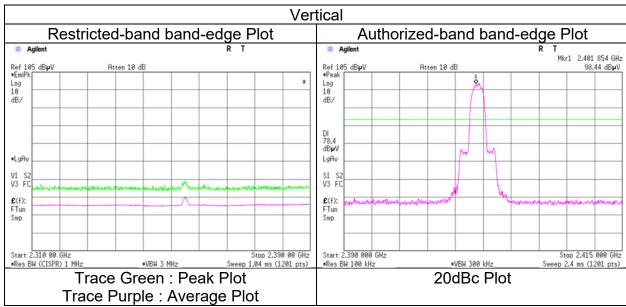
20log (4.8 m / 3.0 m) = 4.09 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

^{*2)} Noise synchronized with duty of carrier frequency


Test Report No. 14913527H-C-R1 Page 22 of 30


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.4

Date September 2, 2024
Temperature / Humidity 23 deg. C / 70 % RH
Engineer Tomoya Sone

Mode Tx, Hopping Off, 3DH5 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 14913527H-C-R1 Page 23 of 30

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4 No.4 No.4

Date September 2, 2024 September 11, 2024 September 15, 2024 Temperature / Humidity 23 deg. C / 70 % RH 21 deg. C / 54 % RH 22 deg. C / 62 % RH Engineer Tomoya Sone Yuichiro Yamazaki Junki Nagatomi

(1 GHz to 6 GHz) (6 GHz to 10 GHz) (10 GHz to 18 GHz)

Semi Anechoic Chamber No.1

Date September 24, 2024
Temperature / Humidity 22 deg. C / 60 % RH
Engineer Shousei Hamaguchi
(Above 18 GHz)

Mode Tx, Hopping Off, 3DH5 2441 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4882.0	40.1	32.5	31.6	7.7	30.8	-	48.4	40.8	73.9	53.9	25.5	13.1	Floor noise
Hori.	7323.0	41.8	32.3	35.5	11.0	32.1	-	56.3	46.8	73.9	53.9	17.6	7.1	Floor noise
Hori.	9764.0	42.4	31.7	36.0	12.1	32.4	-	58.2	47.4	73.9	53.9	15.7	6.5	Floor noise
Vert.	4882.0	40.1	32.5	31.6	7.7	30.8	-	48.4	40.8	73.9	53.9	25.5	13.1	Floor noise
Vert.	7323.0	41.6	32.5	35.5	11.0	32.1	-	56.1	46.9	73.9	53.9	17.8	7.0	Floor noise
Vert.	9764.0	41.2	31.5	36.0	12.1	32.4	-	57.0	47.2	73.9	53.9	17.0	6.7	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB

6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. 14913527H-C-R1 Page 24 of 30

Radiated Spurious Emission

Test place

Semi Anechoic Chamber

Date

Temperature / Humidity

Engineer

Ise EMC Lab.

No.4 September 2, 2024

23 deg. C / 70 % RH Tomova Sone (1 GHz to 6 GHz)

No.4 September 11, 2024 21 deg. C / 54 % RH

Yuichiro Yamazaki (6 GHz to 10 GHz) No.4 September 15, 2024

22 deg. C / 62 % RH Junki Nagatomi (10 GHz to 18 GHz)

Semi Anechoic Chamber

Temperature / Humidity

Engineer

No.1 No.4

September 24, 2024 22 deg. C / 60 % RH Shousei Hamaguchi (Above 18 GHz)

October 16, 2024 25 deg. C / 56 % RH Nachi Konegawa (Below 1 GHz)

Tx, Hopping Off, 3DH5 2480 MHz Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	36.4	30.6	-	16.2	7.1	28.5	-	25.4	-	40.0	-	14.6	-	
Hori.	193.3	34.1	-	16.5	8.7	28.0	-	31.2	-	43.5	-	12.3	-	
Hori.	253.3	35.7	-	12.1	9.2	27.7	-	29.3	-	46.0	-	16.7	-	
Hori.	275.5	35.9	-	13.3	9.4	27.7	-	30.8	-	46.0	-	15.2	-	
Hori.	291.1	33.4	-	13.7	9.5	27.7	-	28.9	-	46.0	-	17.1	-	
Hori.	344.0	36.3	-	15.1	9.8	28.0	-	33.2	-	46.0	-	12.8	-	
Hori.	2483.5	45.2	31.3	27.7	5.4	31.7	1.1	46.6	33.8	73.9	53.9	27.3	20.1	*1)
Hori.	4960.0	41.1	30.7	31.7	7.7	30.8	-	49.6	39.2	73.9	53.9	24.3	14.7	Floor noise
Hori.	7440.0	41.4	32.2	35.4	11.1	32.2	-	55.7	46.5	73.9	53.9	18.2	7.4	Floor noise
Hori.	9920.0	41.2	31.6	36.1	12.2	32.5	-	57.1	47.6	73.9	53.9	16.8	6.4	Floor noise
Vert.	48.6	41.8	-	11.7	7.3	28.5	-	32.3	-	40.0	-	7.8	-	
Vert.	180.0	37.0	-	16.1	8.6	28.1	-	33.6	-	43.5	-	9.9	-	
Vert.	253.3	36.6	-	12.1	9.2	27.7	-	30.2	-	46.0	-	15.8	-	
Vert.	273.3	29.7	-	13.1	9.4	27.7	-	24.5	-	46.0	-	21.5	-	
Vert.	291.1	30.6	-	13.7	9.5	27.7	-	26.1	-	46.0	-	19.9	-	
Vert.	344.1	34.5	-	15.1	9.8	28.0	-	31.4	-	46.0	-	14.6	-	
Vert.	2483.5	47.9	32.3	27.7	5.4	31.7	1.1	49.3	34.8	73.9	53.9	24.6	19.1	*1)
Vert.	4960.0	41.1	30.7	31.7	7.7	30.8	-	49.6	39.2	73.9	53.9	24.3	14.7	Floor noise
Vert.	7440.0	41.5	32.3	35.4	11.1	32.2	-	55.8	46.7	73.9	53.9	18.1	7.2	Floor noise
Vert.	9920.0	41.2	31.6	36.1	12.2	32.5	-	57.1	47.5	73.9	53.9	16.8	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 6 GHz $20\log (3.8 \text{ m} / 3.0 \text{ m}) = 2.06 \text{ dB}$

6 GHz - 10 GHz 20log (4.8 m / 3.0 m) = 4.09 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)

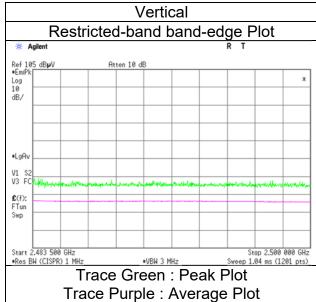
Test Report No. 14913527H-C-R1 Page 25 of 30

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date

Temperature / Humidity

Engineer


Mode

Ise EMC Lab. No.4

September 2, 2024 23 deg. C / 70 % RH Tomoya Sone (1 GHz to 6 GHz)

Tx, Hopping Off, 3DH5 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14913527H-C-R1 Page 26 of 30

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

Date October 16, 2024 October 16, 2024 23 deg. C / 70 % RH 25 deg. C / 56 % RH Temperature / Humidity Hiroyuki Furutaka Engineer Nachi Konegawa (1 GHz to 26.5 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz + 11ax-20 [52-tone RU/Index 40] 5825 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
,	. ,	(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	36.4	30.5	-	16.2	7.1	28.5	_	25.3	-	40.0	-	14.7	-	
Hori.	193.3	33.9	-	16.5	8.7	28.0	-	31.0	-	43.5	-	12.5	-	1
Hori.	253.3	35.9	-	12.1	9.2	27.7	-	29.5	-	46.0	-	16.5	-	1
Hori.	275.5	35.8	-	13.3	9.4	27.7	-	30.7	-	46.0	-	15.3	-	1
Hori.	291.1	33.2	-	13.7	9.5	27.7	-	28.7	-	46.0	-	17.3	-	1
Hori.	344.0	36.2	-	15.1	9.8	28.0	-	33.1	-	46.0	-	12.9	-	1
Hori.	2354.0	44.4	36.1	27.8	5.3	31.8	1.1	45.7	38.5	73.9	53.9	28.2	15.4	*2)
Hori.	2390.0	42.3	33.3	27.8	5.3	31.8	1.1	43.6	35.7	73.9	53.9	30.3	18.2	*1)
Hori.	4804.0	40.5	31.8	31.5	7.7	30.9	-	48.8	40.1	73.9	53.9	25.1	13.8	Floor noise
Hori.	7206.0	43.0	33.8	35.6	11.1	32.0	-	57.6	48.4	73.9	53.9	16.3	5.5	Floor noise
Hori.	9608.0	40.7	32.4	35.6	12.0	32.3	-	56.0	47.7	73.9	53.9	17.9	6.2	Floor noise
Vert.	48.6	41.7	-	11.7	7.3	28.5	-	32.2	-	40.0	-	7.8	-	
Vert.	180.0	36.6	-	16.1	8.6	28.1	-	33.2	-	43.5	-	10.3	-	
Vert.	253.3	36.9	-	12.1	9.2	27.7	-	30.5	-	46.0	-	15.5	-	1
Vert.	273.3	30.0	-	13.1	9.4	27.7	-	24.8	-	46.0	-	21.2	-	1
Vert.	291.1	30.3	-	13.7	9.5	27.7	-	25.8	-	46.0	-	20.2	-	1
Vert.	344.1	34.6	-	15.1	9.8	28.0	-	31.5		46.0	-	14.5	-	1
Vert.	2354.0	44.2	37.1	27.8	5.3	31.8	1.1	45.5	39.5	73.9	53.9	28.4	14.4	
Vert.	2390.0	43.5	34.0	27.8	5.3	31.8	1.1	44.8	36.4	73.9	53.9	29.1	17.5	
Vert.	4804.0	40.5	31.8	31.5	7.7	30.9	-	48.8	40.1	73.9	53.9	25.1		Floor noise
Vert.	7206.0	42.9	33.8	35.6	11.1	32.0	-	57.5	48.4	73.9	53.9	16.4		Floor noise
Vert.	9608.0	40.6	32.4	35.6	12.0	32.3	-	55.9	47.7	73.9	53.9	18.0	6.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	95.5	27.7	5.3	31.8	96.8	-	-	Carrier
Hori.	2400.0	37.4	27.8	5.3	31.8	38.7	76.8	38.1	
Vert.	2402.0	97.7	27.7	5.3	31.8	99.0	-	-	Carrier
Vert.	2400.0	38.8	27.8	5.3	31.8	40.1	79.0	38.9	

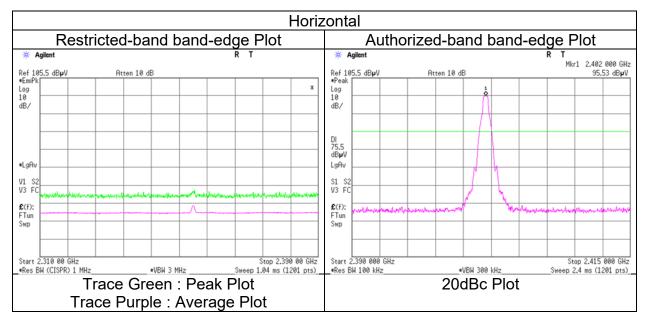
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

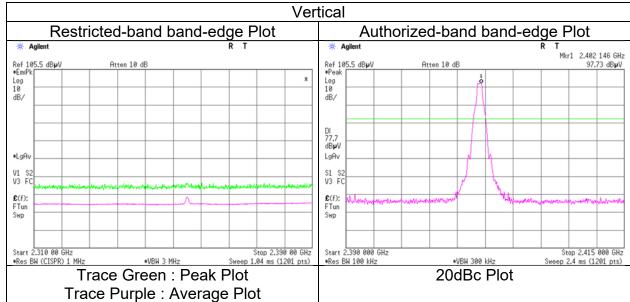
Distance factor: 1 GHz-6 GHz 20log (3.8 m / 3.0 m) = 2.06 dB 20log (4.8 m / 3.0 m) = 4.09 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

^{*1)} Not Out of Band emission(Leakage Power)
*2) Noise synchronized with duty of carrier frequency

Test Report No. 14913527H-C-R1 Page 27 of 30

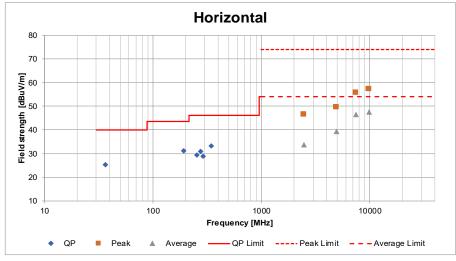

Radiated Spurious Emission (Reference Plot for band-edge)

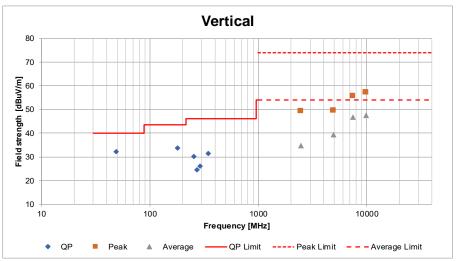

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date October 16, 2024
Temperature / Humidity 23 deg. C / 70 % RH
Engineer Hiroyuki Furutaka
(1 GHz to 26.5 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz + 11ax-20 [52-tone RU/Index 40] 5825 MHz


^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.


Final result of restricted band edge was shown in tabular data.

Test Report No. 14913527H-C-R1 Page 28 of 30

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Ise EMC Lab. Test place Semi Anechoic Chamber No.4 No.4 No.4 Date September 2, 2024 September 11, 2024 September 15, 2024 22 deg. C / 62 % RH 21 deg. C / 54 % RH Temperature / Humidity 23 deg. C / 70 % RH Engineer Tomoya Sone Yuichiro Yamazaki Junki Nagatomi (1 GHz to 6 GHz) (6 GHz to 10 GHz) (10 GHz to 18 GHz) Semi Anechoic Chamber No.1 No.4 Date September 24, 2024 October 16, 2024 Temperature / Humidity 22 deg. C / 60 % RH 25 deg. C / 56 % RH Engineer Shousei Hamaguchi Nachi Konegawa (Above 18 GHz) (Below 1 GHz) Tx, Hopping Off, 3DH5 2480 MHz Mode

^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 14913527H-C-R1 Page 29 of 30

APPENDIX 2: Test Instruments

Test Equipment

Test Item	Equipme LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-192	09/18/2024	12
RE	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/11/2024	12
RE	141331	Attenuator(6dB)	TME	UFA-01	-	02/17/2024	12
RE	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	07/06/2024	12
RE	141397	Coaxial Cable	UL Japan	-	-	11/22/2023	12
RE	141425	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	VHA 91031302	08/23/2024	12
RE	141506	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170307	08/07/2024	12
RE	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	557	05/17/2024	12
RE	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	02/01/2024	12
RE	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	02/01/2024	12
RE	141568	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	2901	01/10/2024	12
RE	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/05/2023	12
RE	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/17/2024	12
RE	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	05/09/2024	12
RE	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/26/2024	12
RE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	11/20/2023	12
RE	141978	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180899	05/09/2024	12
RE	141994	AC1_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 10m	DA-06881	04/20/2023	24
RE	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/13/2023	24
RE	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/14/2023	24
RE	142226	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35/11 PC35/1000M,5000M	537063/126E / 537074/126E	03/08/2024	12
RE	244710	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202104	01/25/2024	12
RE	245787	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	689	03/06/2024	12
RE	245788	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	690	03/06/2024	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission