TDK Corporation EMC Center

2-15-7 Higashi-Owada, Ichikawa-shi, Chiba-ken, 272-8558 Japan

Phone: 81-47-378-9483 Fax: 81-47-378-9178

Test Report

Date of issued: May 21, 2012

Issued in

: TDK Corporation EMC Center

TDK Test Report No.

: TDJ - 12 - 0502 - 01

1. Applicant

: Creative Network Business Group, AVC Networks Company, Panasonic Corpora

1-15, Matsuo-cho, Kadoma City, Osaka, 571-8504, Japan

2. Description of Equipment Under Test (EUT)

1) Kind of EUT

: Multimedia System

2) Condition

: Pre-production sample

3) Category

: 47 C.F.R. Part 15 Class B, Subpart B Digital Device

4) Trade Name

: Panasonic

5) Model No.

: UN-W700

6) Serial No.

: DVT3

7) Date of Manufacture

: April 2012

8) Rated Power Supply

: 1ϕ AC 100 - 240 V , 50 / 60 Hz

: DC 3.7V (lithium-ion rechargeable battery)

9) Tested Power Supply

: 1ϕ AC 120 V , 60 Hz

3. Baseline Test Methods

: 47 C.F.R. Part 15 Class B, Subpart B

4. Measurement Procedure Used

: ANSI C63.4-2003 : May 11, 2012

5. Date of Measurement 6. Test Site

TDK Corporation EMC Center

2-15-7 Higashi-Owada, Ichikawa-shi, Chiba-ken, 272-8558 Japan

7. Test Results

: The EUT complied with the requirement of the

47 C.F.R. Part 15 Class B

under the test configuration as shown in the attached sheets.

8. Deviation from the Test Methods: The test is not deviated from the baseline test methods.

The test results relate only to items tested. This report shall not be reproduced except in full without the written approval of the TDK Corporation. This test results are traceable to the national or international standard.

We hereby certify that no party to the applications authorized hereunder is subject to a denial of benefits, including FCC benefits, pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U. S. C 853(a).

Kunio Yata

Manager

: Multimedia System

Model No.

: UN-W700

Highest Frequency Used in the EUT : 1000.0000 MHz

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)

Upper frequency of measurement

range (MHz)

Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5000

Note: Above 1000: 5th harmonic of the highest frequency or 40 GHz, whichever is lower

Model No.

: Multimedia System

: UN-W700

Summary of Test Results

The tests were performed in accordance with the procedures described in ANSI C63.4-2003. The test results show that EUT conforms to the requirement of 47 C.F.R. Rule Part 15 Class B Subpart B Section 107 and 109 as shown in the test data on page 4, 6 and 8.

1. Summary of Radiated Emission Test Result

Test Result Passed

Measurement Frequency Range 30 MHz - 1000 MHz Minimum Margin to the Limit 9.0 dB at 120.381 MHz

Antenna Polarization Horizontal Turntable Angle 74° Antenna Height 2.62 m

Measurement Uncertainty (k=2) 2.58 * Based on the Requirement of CISPR 16-4-2:2003

Note: 1) The measurement was performed based on the test procedure of Radiated Emission described on page 4.

> Tested by Kyosuke Takahashi Engineer

1. Summary of Radiated Emission Test Result

Test Result Passed

Measurement Frequency Range 1000 MHz - 5000 MHz Minimum Margin to the Limit (Peak) 26.5 dB at 1127.690 MHz

Antenna Polarization Horizontal Turntable Angle 70 Antenna Height 109.00 m

Minimum Margin to the Limit (Ave.) 29.8 dB at 1625.420 MHz

Antenna Polarization Horizontal Turntable Angle 251° 102.00 m Antenna Height 4.71 Measurement Uncertainty (k=2)

* Based on the Requirement of CISPR 16-4-2:2003

Minimum Margin to the Limit (Peak): Note: 1)

> The measurement was performed based on the test procedure of Radiated Emission described on page 6.

Minimum Margin to the Limit (Ave.):

The measurement was performed based on the test procedure of Radiated Emission described on page 6.

> Tested by Kyosuke Takahashi Engineer

2. Summary of Powerline Conducted Emission Test Result

Test Result Passed

150 kHz 30 MHz Measurement Frequency Range Minimum Margin to the Limit (Q.P.) 22.4 dB at 3.4351 MHz Minimum Margin to the Limit (Ave.) 22.7 dB 0.4357 MHz at Measurement Uncertainty (k=2) 2.63

Based on the Requirement of CISPR 16-4-2:2003

Minimum Margin to the Limit (Q.P.): Note: 1)

The measurement was performed based on the test procedure of Powerline Conducted Emission described on page 8.

Minimum Margin to the Limit (Ave.):

The measurement was performed based on the test procedure of Powerline Conducted Emission described on page 8.

> Kyosuke Takahashi Tested by Engineer

TDK Test Report No. : TDJ - 12 - 0502 - 01 Kind of EUT : Multimedia System

Model No. : UN-W700

Measurement Results of Radiated Emission at 3 m

Date of measurement : May 11 , 2012 Temperature : 22 $^{\circ}\mathrm{C}$; Humidity : 53 %

Test Receiver Operating Condition : Detector function : CISPR. Q.P. (30 MHz - 1 GHz)

6 dB bandwidth : 120 kHz (30 MHz - 1 GHz)

Kind of EUT : Multimedia System

Model No. : UN-W700 Serial No. : DVT3

Configuration of EUT : Refer to page 10, 11 and 14.

EUT Grounding : None

Tested Power Supply : 1ϕ AC 120 V , 60 Hz Operating Condition : USB-Mass strage / Charge

Baseline Test Methods : 47 C.F.R. Part 15 Class B, Subpart B

Frequency	Correction Factor	Meter R [dB(Limit		Emission Level [dB(μ V/m)]	
(MHz)	(dB/m)	Horizontal	Vertical	[dB(μ V/m)]	Horizontal	Vertical	(dB)
36.030	-9.0		35.8	40.0		26.8	13.2
48.530	-13.3		39.9	40.0		26.6	13.4
72.060	-18.1	44.7		40.0	26.6		13.4
117.730	-11.2		32.5	43.5		21.3	22.2
120.380	-10.9	45.4		43.5	34.5		9.0
180.720	-7.3		24.6	43.5		17.3	26.2
195.620	-6.6	35.3		43.5	28.7		14.8
210.670	-6.2	39.8		43.5	33.6		9.9
225.720	-6.0	36.7		46.0	30.7		15.3
240.000	-5.8	42.7		46.0	36.9		9.1
311.530	-11.9		42.5	46.0		30.6	15.4
511.620	-7.1		37.9	46.0		30.8	15.2
		-					

Note:

- 1) Correction Factor = Antenna factor + Cable loss Pre-amplifier gain
- 2) Emission Level = Meter Reading + Correction Factor
- 3) Level μ V/m = Common Antilogarithm [(Emission Level dB μ V/m) / 20]

Remark: 1) Emission level was measured at the worst case condition.

Tested by : Kyosuke Takahashi

Engineer

TDK Test Report No. : TDJ - 12 - 0502 - 01 Kind of EUT : Multimedia System

Model No.

: UN-W700

Measurement Results of Radiated Emission at 3 m

Date of measurement : May 11 , 2012 Temperature : 22 $^{\circ}\text{C}$; Humidity : 53 $^{\circ}\text{M}$

Test Receiver Operating Condition : Detector function : CISPR. Q.P. (30 MHz - 1 GHz)

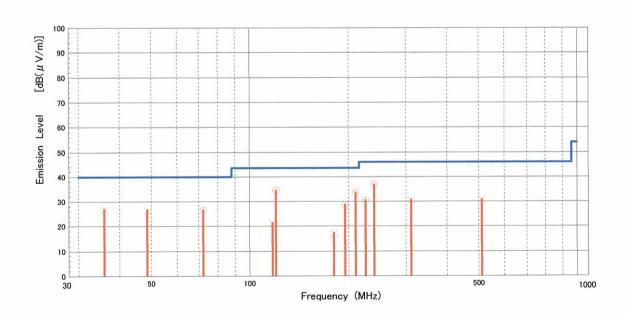
6 dB bandwidth : 120 kHz (30 MHz - 1 GHz)

Kind of EUT : Multimedia System

Model No. : UN-W700

Serial No. : DVT3

Configuration of EUT : Refer to page 10, 11 and 14.


EUT Grounding : None

Tested Power Supply : 1ϕ AC 120 V , 60 Hz

Operating Condition : USB-Mass strage / Charge

Baseline Test Methods : 47 C.F.R. Part 15 Class B, Subpart B

O Horizontal (Q.P.) × Vertical (Q.P.) — Limits Line (Q.P.)

Note:

Remark: 1) Emission level was measured at the worst case condition.

Kind of EUT

: Multimedia System

Model No.

: UN-W700

Measurement Results of Radiated Emission at 3 m

Date of measurement: May 11, 2012 Temperature: 22 °C; Humidity: 53 %

Test Receiver Operating Condition: Detector function: Peak, Ave. (Above 1 GHz)

6 dB bandwidth : 1 MHz (Above 1 GHz)

Kind of EUT

: Multimedia System

Model No.

: UN-W700

Serial No.

: DVT3

Configuration of EUT : Refer to page 10, 11 and 15.

EUT Grounding

: None

Tested Power Supply

: 1ϕ AC 120 V , 60 Hz

Operating Condition

: USB-Mass strage / Charge

Baseline Test Methods : 47 C.F.R. Part 15 Class B, Subpart B

Frequency	Correction Factor	Meter Reading [dB(μV)]				Liı	mit			n Level V/m)]		Margin	
	1 actor	Horizontal		Vertical		[dB(μ V/m)]		Horizontal		Vertical		(dB)	
(MHz)	(dB/m)	Peak	Ave.	Peak	Ave.	Peak	Ave.	Peak	Ave.	Peak	Ave.	Peak	Ave
1127.690	-15.5	63.0	37.3			74.0	54.0	47.5	21.8			26.5	32.2
1128.650	-15.5			58.9	35.0	74.0	54.0			43.4	19.5	30.6	34.5
1152.950	-15.3	52.3	34.4			74.0	54.0	37.0	19.1			37.0	34.9
1362.820	-14.1	57.9	37.9			74.0	54.0	43.8	23.8			30.2	30.2
1362.850	-14.1			53.0	34.6	74.0	54.0			38.9	20.5	35.1	33.5
1516.860	-14.0	59.2	37.3			74.0	54.0	45.2	23.3			28.8	30.7
1537.020	-14.0			56.2	34.9	74.0	54.0			42.2	20.9	31.8	33.1
1625.420	-13.8	59.4	38.0			74.0	54.0	45.6	24.2			28.4	29.8
1679.390	-13.5			58.0	34.1	74.0	54.0			44.5	20.6	29.5	33.4
2126.250	-9.9			51.6	31.5	74.0	54.0			41.7	21.6	32.3	32.4
2641.030	-8.4	50.1	30.0			74.0	54.0	41.7	21.6			32.3	32.4
2881.410	-7.1			44.5	28.5	74.0	54.0			37.4	21.4	36.6	32.0
			2										

Note:

- 1) Correction Factor = Antenna factor + Cable loss Pre-amplifier gain
- 2) Emission Level = Meter Reading + Correction Factor
- 3) Level μ V/m = Common Antilogarithm [(Emission Level dB μ V/m) / 20]

Remark: 1) Emission level was measured at the worst case condition.

Kyosuke Takahashi Tested by

Engineer

Kind of EUT

: Multimedia System

Model No.

: UN-W700

Measurement Results of Radiated Emission at 3 m

Date of measurement: May 11, 2012 Temperature: 22 °C; Humidity: 53 %

Test Receiver Operating Condition : Detector function : Peak , Ave. (Above 1 GHz)

6 dB bandwidth

: 1 MHz (Above 1 GHz)

Kind of EUT

: Multimedia System

Model No.

: UN-W700

Serial No.

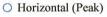
: DVT3

Configuration of EUT

: Refer to page 10, 11 and 15.

EUT Grounding

: None

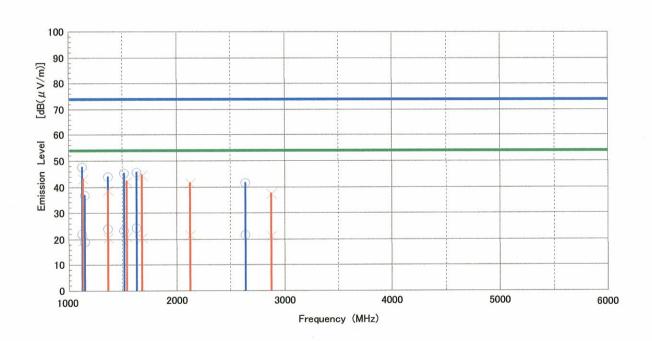

Tested Power Supply

: 1ϕ AC 120 V , 60 Hz

Operating Condition

: USB-Mass strage / Charge

Baseline Test Methods : 47 C.F.R. Part 15 Class B, Subpart B


× Vertical (Peak)

Limits Line (Peak)

O Horizontal (Ave.)

× Vertical (Ave.)

Limits Line (Ave.)

Note:

Remark:

1) Emission level was measured at the worst case condition.

Kind of EUT

: Multimedia System

Model No.

: UN-W700

Measurement Results of Powerline Conducted Emission

Date of measurement: May 11, 2012 Temperature: 22 °C; Humidity: 53 %

Test Receiver Operating Condition: Detector function: CISPR. Q.P., Ave.

6 dB bandwidth : 9 kHz (150 kHz - 30 MHz)

Kind of EUT

: Multimedia System

Model No.

: UN-W700

Serial No.

: DVT3

EUT Grounding

Configuration of EUT : Refer to page 12, 13 and 16.

: None

Baseline Test Methods : 47 C.F.R. Part 15 Class B

Tested Power Supply

: 1ϕ AC 120 V , 60 Hz

Operating Condition

: Video playback

Frequency	Correction	Meter Reading				10.000				mission Level			Margin	
	Factor	[dB(μV				5 tp (**)?				(μV)]		(17)		
			1	L2		[dB(µV)]		L1		L2		(dB)		
(MHz)	(dB)	Q.P.	Ave.	Q.P.	Ave.	Q.P.	Ave.	Q.P.	Ave.	Q.P.	Ave.	Q.P.	Ave.	
0.2400	10.2			19.2	9.2	62.1	52.1			29.4	19.4	32.7	32.7	
0.4400	10.2			24.0	14.2	57.1	47.1			34.2	24.4	22.9	22.7	
0.4500	10.2	17.1	5.2			56.9	46.9	27.3	15.4			29.6	31.5	
0.5800	10.3			20.4	9.1	56.0	46.0			30.7	19.4	25.3	26.6	
2.1400	10.5			21.8	10.9	56.0	46.0			32.3	21.4	23.7	24.6	
2.7300	10.6	16.9	8.8			56.0	46.0	27.5	19.4			28.5	26.6	
3.4200	10.6	15.9	7.3			56.0	46.0	26.5	17.9			29.5	28.1	
3.4400	10.6			23.0	10.7	56.0	46.0			33.6	21.3	22.4	24.7	
3.4500	10.6	16.9	8.4			56.0	46.0	27.5	19.0			28.5	27.0	
3.6800	10.7	18.4	10.3			56.0	46.0	29.1	21.0			26.9	25.0	
4.1800	10.7	16.3	7.7			56.0	46.0	27.0	18.4			29.0	27.6	
4.8900	10.8			19.3	7.6	56.0	46.0			30.1	18.4	25.9	27.6	
													-	

Note:

- 1) Correction Factor = LISN Factor + Cable loss
- 2) Emission Level = Meter Reading + Correction Factor
- 3) L1: Between 1st power line cable and the grounded.
 - L2: Between 2nd power line cable and the grounded.

Remark: 1) Emission level was measured at the worst case condition.

Kyosuke Takahashi Tested by Engineer

TDK Test Report No. : TDJ - 12 - 0502 - 01 Kind of EUT : Multimedia System

: UN-W700

Model No.

Measurement Results of Powerline Conducted Emission

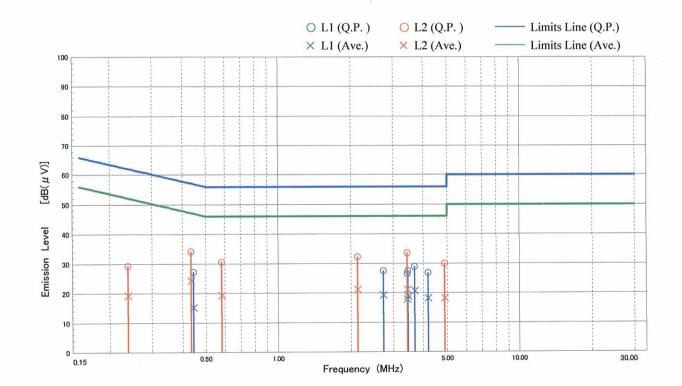
Date of measurement : May 11 , 2012 Temperature : 22 $^{\circ}$ C ; Humidity : 53 %

Test Receiver Operating Condition: Detector function: CISPR. Q.P., Ave.

6 dB bandwidth : 9 kHz (150 kHz - 30 MHz)

Kind of EUT : Multimedia System

Model No. : UN-W700

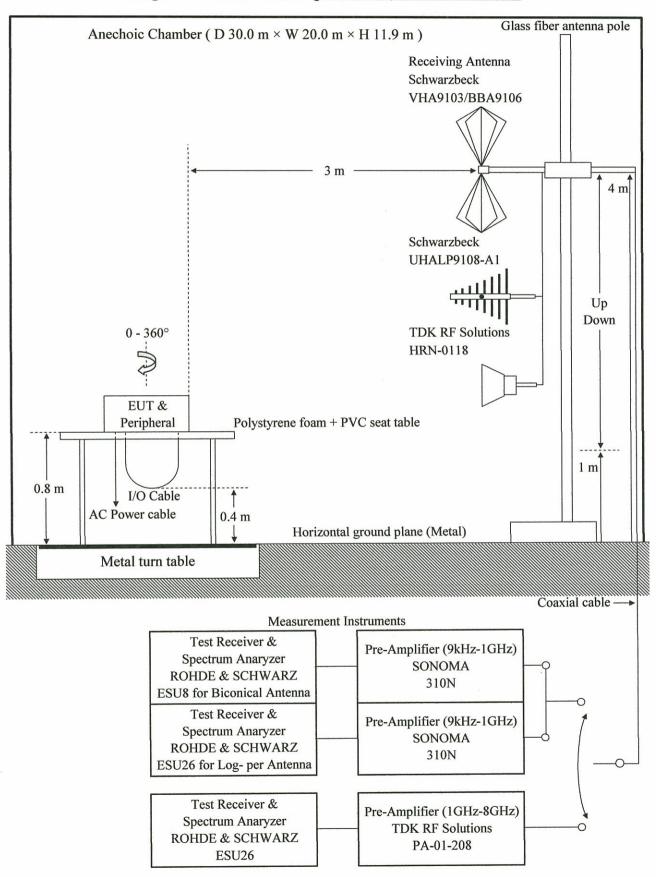

Serial No. : <u>DVT3</u>
Configuration of EUT : Refer to page 12, 13 and 16.

EUT Grounding : None

Tested Power Supply : 1ϕ AC 120 V , 60 Hz

Operating Condition : Video playback

Baseline Test Methods : 47 C.F.R. Part 15 Class B


Note:

Remark: 1) Emission level was measured at the worst case condition.

Model No.

: Multimedia System : UN-W700

Figure of Test Set - up for Radiated Emission

: Multimedia System

Model No.

: UN-W700

Test Procedure of Radiated Emission:

Preliminary radiated measurements were performed at the measurement distance specified for compliance to determine the emission characteristics of the EUT based on ANSI C63.4-2003.

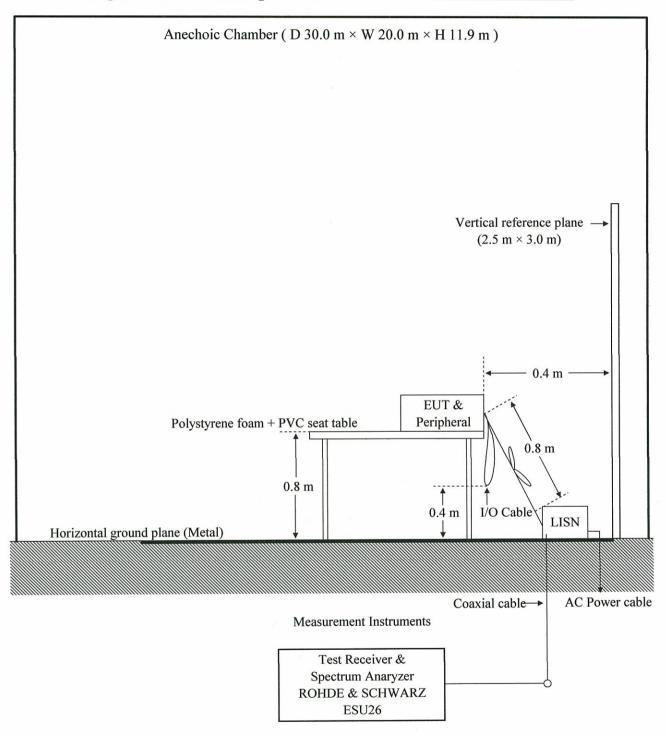
The EUT was set up in its typical configuration and operated in its various modes in order. For tabletop systems, cables or wires were manipulated within the range of likely configurations.

For each mode of operation required to be tested, the frequency spectrum was monitored. Antenna height, EUT azimuth, antenna polarization, and cable or wire placement were varied for exploration to produce the maximized emission relative to the limit. Antenna height was varied from 1m to 4m step by step with 1m step, and the EUT on the turntable was rotated in 360° at each antenna height to detect maximized radiated emission while monitoring spectrum analyzer. The frequency and amplitude of the suspect signals (or the highest 10 to 20 amplitudes and frequencies) were recorded. At the frequency of suspect signal, interface cables positions were varied in order to determine the maximum emission level.

Furthermore, the EUT was rotated 360° and antenna height was varied to maximize the suspected highest amplitude signal.

In case that the EUT has multiple ports all of the same type, additional connecting cables were added to the EUT to determine the effect these cables have on emission from the EUT. The additional cables were added to the condition where the addition of another cables did not significantly affect the emission level, i. e., varied less than 2dB provided that the emission level remained compliant.

Based on the preliminary radiated measurements, the one EUT configuration, cable or wire configuration, and mode of operation that produced the highest emission level relative to limit was selected for the final test.


The final test was performed and the frequency and amplitude of the suspect signals (or the highest 10 to 20 amplitudes and frequencies) were measured with CISPR QP mode and recorded.

: Multimedia System

Model No.

: UN-W700

Figure of Test Set-up for Powerline Conducted Emission

Note:

: Multimedia System

Model No.

: UN-W700

Test Procedure of Powerline Conducted Emission:

According to ANSI C63.4-2003 the preliminary power line conduction emission measurement was performed.

Tabletop devices were placed on a platform of nominal size, 1m by 2.0m, raised 0.8m above the conducting ground plane. The vertical conducting plane was located 0.4m to the rear of the EUT.

All other surfaces of EUT were placed at least 0.8m from any other grounded conducting surfaces including the cases of LISNs.

Each EUT current - carrying power lead, except the safety lead, was individually connected through the LISN to the input power source. The unused 50 Ω connector of the LISN was terminated with 50Ω terminator. When the EUT comprised multiple units that had their own individual power cords, power line conducted emissions measurements were performed with the line cord of the particular unit under test connected to one LISN that was connected to the measuring instrument. Those power cords for the units in the remainder of the configuration not under measurement were connected to a multiple outlet which was connected to an LISN different from the LISN used for the power cord of the EUT.

The preliminary testing was performed to identify the frequency of the emissions that had the highest amplitude relative to the limit by operating the EUT in selected typical modes of operation, typical cable positions, and with a typical or representative system configuration.

For each mode of operation and for each current - carrying conductor, cable or wire manipulation were performed within the range of likely configurations. For this series of tests, the frequency spectrum of interest were monitored looking for the emission that had the highest amplitude relative to the limit. Once that emission was found for each current currying conductor of each power cord associated with the EUT, the one configuration and mode of operation that produced the emission closest to the limit was recorded.

Based on the preliminary tests of EUT, the one EUT and cable or wire configuration and mode of operation that produced the emission with the highest amplitude relative to the limit was selected for the final test.

The final test was performed and the frequency and amplitude of the suspect signals (or the highest 10 to 20 amplitudes and frequencies) were measured with CISPR QP mode and recorded.

Kind of EUT

: Multimedia System

Model No.

: UN-W700

Measuring Instrument Used

(1) Radiated Emission Test Below 1GHz

Instrument	Trade Name	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	Note
Spectrum Analyzer	ROHDE&	ESU26	100214	November 29, 2011	November 29, 2012	For the final
/ EMI Test Receiver	SCHWARZ	E3U20	100214	November 29, 2011	November 29, 2012	measurement
Spectrum Analyzer	ROHDE&	ESU8	100243	Navambar 1 2011	Navamban 1 2012	For the final
/ EMI Test Receiver	SCHWARZ	ESUO	100243	November 1, 2011	November 1, 2012	measurement
Pre-Amplifire	SONOMA	210N	301407	May 31, 2011	May 31, 2012	
1 ie-Ampinine	INSTRUMEN	310N	301407	Way 31, 2011	May 31, 2012	
Pre-Amplifire	SONOMA	310N	301408	May 31, 2011	May 31, 2012	
rie-Ampinine	INSTRUMEN			Iviay 51, 2011	May 31, 2012	
Biconical Antenna	Schwarzbeck	VHA9103 /BBA9106	VHA91032722	November 25, 2011	November 25, 2012	
Log- per Antenna	Schwarzbeck	UHALP9108- A1	UHALP9108-A 0917	November 26, 2011	November 26, 2012	
C - C	TOVO	EDZDE	77			For the Pre-
Software	TOYO	EP7RE	Ver.4.1.0			measurement
10m Anechoic Chamber (10m_SAC_2)	TDK			May 7, 2010	May 6, 2013	

(2) Radiated Emission Test Above 1GHz

Instrument	Trade Name	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	Note
Spectrum Analyzer	ROHDE&	ESU26	100214	November 29, 2011	November 29, 2012	For the final
/ EMI Test Receiver	SCHWARZ	L3020	100214	November 29, 2011	140VCIIIOCI 27, 2012	measurement
Pre-Amplifire	TDK RF	PA-01-208	12200909	May 31, 2011	May 31, 2012	
rie-Ampinine	Solutions	FA-01-208	12200909	Way 31 , 2011	Widy 51 , 2012	
Horn Antenna	TDK RF	HRN-0118	130542	February 29, 2012	February 28, 2013	
Hom Amemia	Solutions	11111-0116	130342	1 Cordary 27, 2012	1 Cordary 20 , 2013	
Software	TOYO	EP7RE	Ver.4.1.0			For the Pre-
Software	1010	EI / KE	VCI.4.1.0	A		measurement
10m Anechoic Chamber (10m_SAC_2)	TDK	,		May 7, 2010	May 6, 2013	

(3) Powerline Conducted Emission Test

Instrument	Trade Name	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	Note
Spectrum Analyzer / EMI Test Receiver	ROHDE& SCHWARZ	ESU26	100214	November 29, 2011	November 29, 2012	For the final measurement
LISN (50 Ω / 50 μH)	Kyoritsu	KNW-407FR	8-2015-2	December 1, 2011	December 1, 2013	
Software	точо	EP7CE	Ver.4.1.0			For the Pre- measurement
10m Anechoic Chamber (10m SAC 2)	TDK			May 7,2010	May 6, 2013	