

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

FIXED OUTDOOR WIRELESS FRAME BASED UNII OFDM ACCESS POINT WITH RADAR DETECTION

MODEL NUMBER: 5480AP US

FCC ID: ABZ89FT7637 IC: 109W-5480G

REPORT NUMBER: 10U13444-1

ISSUE DATE: OCTOBER 25, 2010

Prepared for

MOTOROLA- SCHAUMBUR 1299 E. ALGONQUIN Rd SCHAUMBURG, ILLINOISE 60156, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Rev. Date Revisions		Revised By
	10/25/10	Initial Issue	F. Ibrahim

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	6
	4.1.	MEASURING INSTRUMENT CALIBRATION	6
	4.2.	SAMPLE CALCULATION	6
	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQI	JIPMENT UNDER TEST	7
	5.1.	DESCRIPTION OF EUT	7
	5.2.	MAXIMUM OUTPUT POWER	7
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
,	5.4.	SOFTWARE AND FIRMWARE	7
	5.5.	WORST-CASE CONFIGURATION AND MODE	7
	5.6.	DESCRIPTION OF TEST SETUP	8
,	5.7.	MODIFICATION	
6.	AN1	TENNA PORT TEST RESULTS	11
	6.1.	10MHz BANDWIDTH QPSK MODE IN THE 5.4 GHz BAND	11
	6.1. 6.1.		
	6.1.		
	6.1.	4. PEAK POWER SPECTRAL DENSITY	20
	6.1. 6.1.		
	6.1.		
	6.2.	20MHz BANDWIDTH QPSK MODE IN THE 5.4 GHz BAND	37
	6.2.	1. 26 dB and 99% BANDWIDTH	37
	6.2.3 6.2.3		
	6.2.		
	6.2.		50
	6.2. 6.2.		61
7.	RAI	DIATED TEST RESULTS	63
	7.1.	LIMITS AND PROCEDURE	63
	7.2.	10MHz BANDWIDTH QPSK MODE	
	7.2.		
	7.3.	20MHz BANDWIDTH QPSK MODE	69
		Page 3 of 156	

DATE: COTOBER 25, 2010

	7.3.1.	TX ABOVE 1 GHz IN THE 5.4 GHz BAND	69
	7.4. WC	DRST-CASE BELOW 1 GHz	76
8.	AC POV	VER LINE CONDUCTED EMISSIONS	79
9.	DYNAM	IC FREQUENCY SELECTION	83
9		'ERVIEW	
	9.1.1.	LIMITS	
	9.1.2.	TEST AND MEASUREMENT SYSTEM	
	9.1.3.	SETUP OF EUT	89
	9.1.4.	DESCRIPTION OF EUT	
(9.2. RE	SULTS FOR 10 MHz BANDWIDTH	
	9.2.1.	TEST CHANNEL	91
	9.2.2.	RADAR WAVEFORMS AND TRAFFIC	
	9.2.3.	CHANNEL AVAILABILITY CHECK TIME	
	9.2.4.	OVERLAPPING CHANNEL TESTS	
	9.2.5. 9.2.6.	MOVE AND CLOSING TIME DETECTION BANDWIDTH	
	9.2.0. 9.2.7.	IN-SERVICE MONITORING	
	•		
,		SULTS FOR 20 MHz BANDWIDTH	
	9.3.1. 9.3.2.	TEST CHANNELRADAR WAVEFORMS AND TRAFFIC	
	9.3.2. 9.3.3.	CHANNEL AVAILABILITY CHECK TIME	125
	9.3.4.	OVERLAPPING CHANNEL TESTS	
	9.3.5.	MOVE AND CLOSING TIME	
	9.3.6.	NON-OCCUPANCY PERIOD	
	9.3.7.	DETECTION BANDWIDTH	
	9.3.8.	IN-SERVICE MONITORING	
10	. MAXI	MUM PERMISSIBLE EXPOSURE	146
11	SETU	JP PHOTOS	150

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: MOTOROLA- SCHAUMBURG

1299 E.ALGONQUIN Rd

SCHAUMBURG, ILLINOISE 60156, USA

EUT DESCRIPTION: FIXED OUTDOOR WIRELESS FRAME BASED UNII OFDM

ACCESS POINT WITH RADAR DETECTION

MODEL: 5480AP US

SERIAL NUMBER: 0A-00-3E-30-2E-0D

0A-00-3E-30-2E-00

DATE TESTED: OCTOBER 04 to 15, 2010

APPLICABLE STANDARDS

ALL LIGABLE GLANDARDO						
STANDARD	TEST RESULTS					
CFR 47 Part 15 Subpart E	Pass					
INDUSTRY CANADA RSS-210 Issue 7 Annex 9	Pass					
INDUSTRY CANADA RSS-GEN Issue 2	Pass					

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR

UL CCS

MONICA HARRISON SENIOR RF ENGINEER

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, 443999 D01 Approval of DFS UNII Devices v01, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a professionally installed, fixed outdoor, wireless, frame based, UNII OFDM access point with radar detection. It utilizes QPSK, 16QAM and 64QAM modulation with 10MHz and 20MHz bandwidths.

The radio module is manufactured by Motorola

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5480 - 5710	10MHz	9.83	9.62
5490 - 5710	20MHz	12.93	19.63

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The only antenna assembly utilized with the AP has an effective gain of 17 dBi. The radio for the master device utilizes a sector antenna, with a maximum gain of 18 dBi; the antenna has a short cable with 1 dB loss, so the effective antenna gain is 17 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Canopy 10.5 (Build 2) AP-DES.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case mode is determined as the mode with the highest output power, QPSK was determined to be worst case and therefore radiated emissions below 1 GHz and power line conducted emissions were performed with the EUT set to transmit in the QPSK at the channel with highest output power.

For master device with sector antenna since the vertical polarization was found to be worst case and readings with vertical polarization are higher then those with horizontal polarization the measurement for horizontal polarization was stopped and the measurement have been continued with vertical polarization was worst case.

For antenna port testing the measurement for each test item was performed at low channel in the 5.6 GHz band for QPSK, 16QAM and 64QAM, and based on the base line scan it was found that QPSK is worst-case, therefore all final antenna port measurements were made using QPSK modulation.

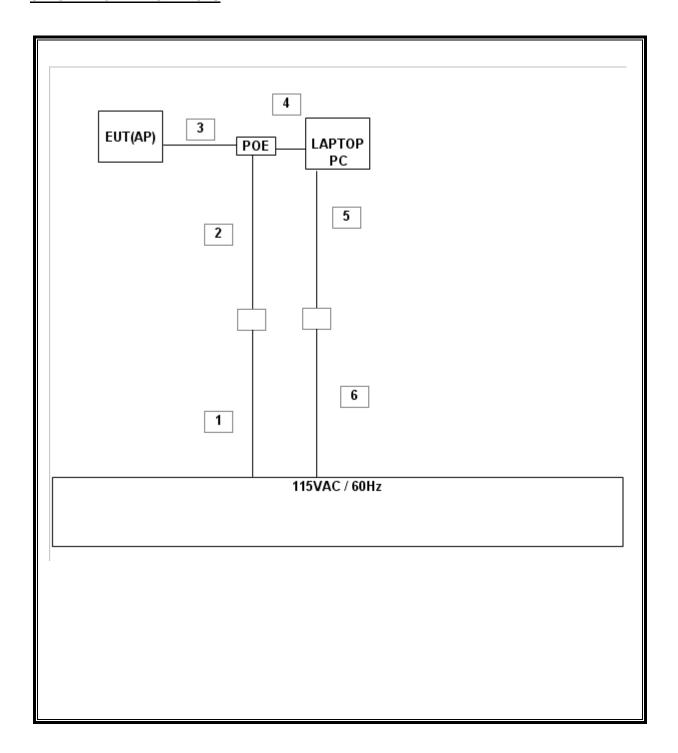
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
Laptop PC	Motorola	ML910	3433JC0021	DoC			
AC Adaptor	Motorola	PSI45W-560	M61000062A1	DoC			
AC Adaptor	HIPRO	HP-OW120F13	F3-070900274301	DoC			

I/O CABLES

	I/O CABLE LIST									
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks				
1	AC	1	AC	UNSHIELDED	2m					
2	DC	1	DC	UNSHIELDED	2m	ferrite on adaptor end				
3	RJ45	1	RJ45	UNSHIELDED	1m					
4	RJ45	1	RJ45	UNSHIELDED	0.1m					
5	DC	1	DC	UNSHIELDED	2m	ferrite on adaptor end				
6	AC	1	AC	UNSHIELDED	2m					


TEST SETUP

The EUT is standalone device. A telnet session is enabled to control the radio.

5.7. MODIFICATION

Internal contact, grounding ESD clip, part number 39009333001, was used in order to pass radiated emissions.

SETUP DIAGRAM FOR TESTS

TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Date	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	4/5/2010	4/5/2011		
Antenna, Horn, 18 GHz	EMCO	3115	C00783	4/22/2010	4/22/2011		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	1/14/2010	1/14/2011		
Antenna, Horn, 26.5 GHz	ARA	SWH-28	C01015	9/29/2010	11/29/2011		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	12/1/2009	12/1/2010		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	12/1/2010	12/1/2011		
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	C00981	4/29/2010	4/29/2011		
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/2009	7/15/2011		
Peak Power Meter	Boonton	4541	C01186	3/1/2010	3/1/2011		
Peak Power Sensor	Boonton	57006	C01203	2/24/2010	2/24/2011		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00996	4/29/2010	10/29/2011		

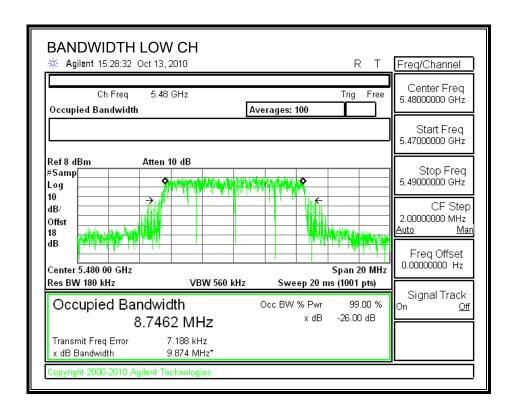
6. ANTENNA PORT TEST RESULTS

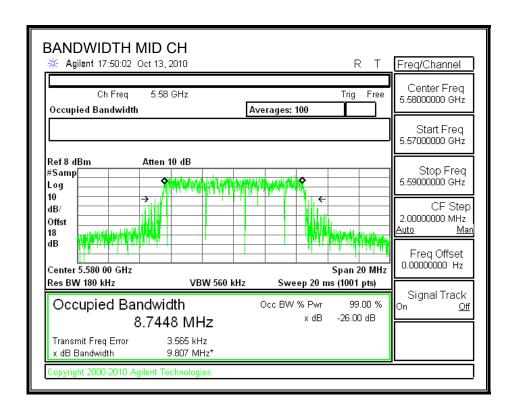
6.1. 10MHz BANDWIDTH QPSK MODE IN THE 5.4 GHz BAND

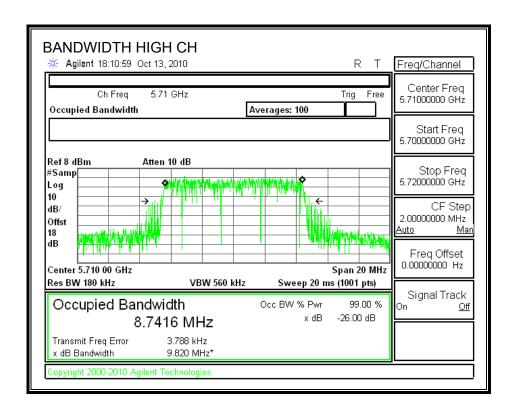
6.1.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5480	9.874	8.7462
Middle	5580	9.807	8.7448
High	5710	9.820	8.7416

26 dB and 99% BANDWIDTH

6.1.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

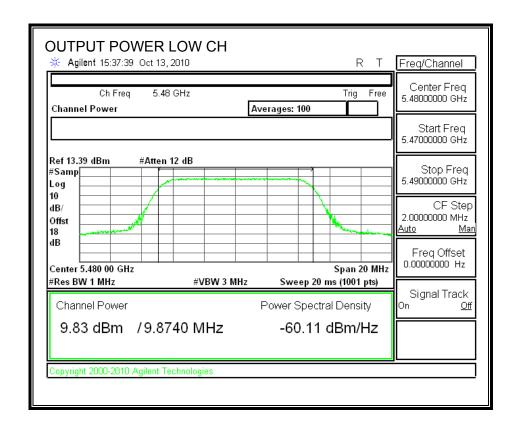
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

RESULTS


Limit

Lillit							
Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit	
		Limit		Limit	Gain		
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	
Low	5480	24	9.874	20.94	17.00	9.94	
Mid	5580	24	9.807	20.92	17.00	9.92	
High	5710	24	9.820	20.92	17.00	9.92	

Results

Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5480	9.83	9.94	-0.11
Mid	5580	9.49	9.92	-0.43
High	5710	8.41	9.92	-1.51

OUTPUT POWER

REPORT NO: 10U13444-1 FCC ID: ABZ89FT7637 DATE: COTOBER 25, 2010

REPORT NO: 10U13444-1 FCC ID: ABZ89FT7637

opyright 2000-2010 Agilent Technologies

DATE: COTOBER 25, 2010

6.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 18 dB (including 10 dB pad and 8 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5480	9.67
Middle	5580	9.25
High	5710	8.31

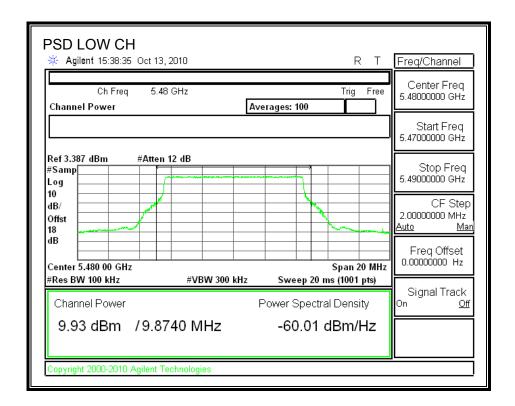
6.1.4. PEAK POWER SPECTRAL DENSITY

LIMITS

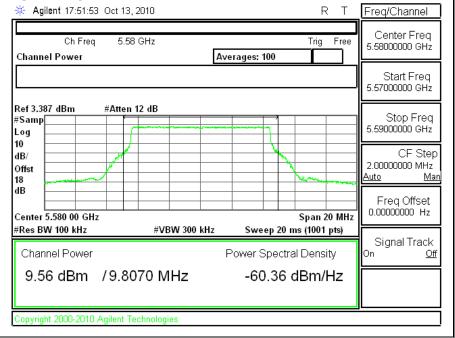
FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

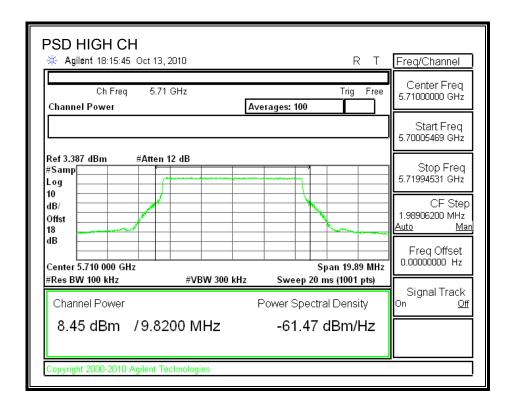
The antenna assembly gain is 17 dBi, the excess gain is 11 dB, therefore the limit is 0 dBm.


TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD	PPSD	Limit	Margin
	(MHz)	(dBm/Hz)	(dBm/MHz)	(dBm/MHz)	(dB)
Low	5480	-60.01	-0.01	0	-0.01
Middle	5580	-60.36	-0.36	0	-0.36
High	5710	-61.47	-1.47	0	-1.47


POWER SPECTRAL DENSITY

REPORT NO: 10U13444-1 FCC ID: ABZ89FT7637 DATE: COTOBER 25, 2010

REPORT NO: 10U13444-1 FCC ID: ABZ89FT7637

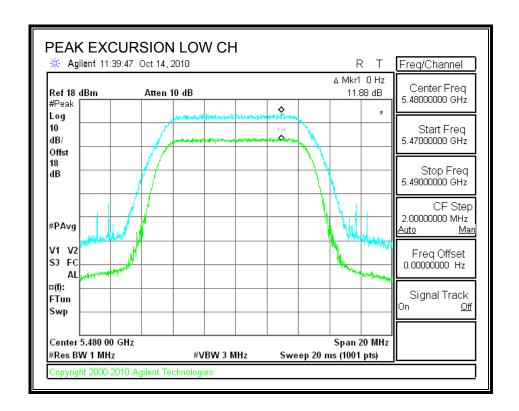
6.1.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5480	11.88	13	-1.12
Middle	5580	11.24	13	-1.76
High	5710	11.62	13	-1.38

PEAK EXCURSION

REPORT NO: 10U13444-1 FCC ID: ABZ89FT7637 DATE: COTOBER 25, 2010

REPORT NO: 10U13444-1 FCC ID: ABZ89FT7637

DATE: COTOBER 25, 2010

6.1.6. CONDUCTED SPURIOUS EMISSIONS

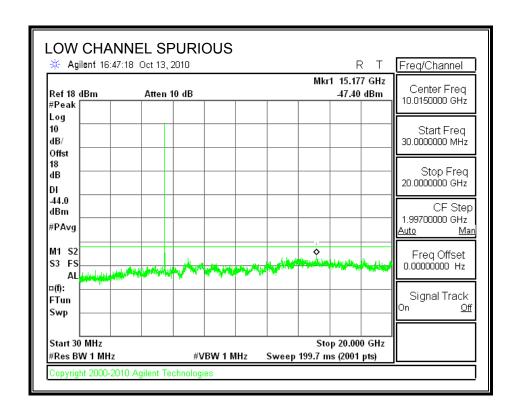
LIMITS

FCC §15.407 (b) (3)

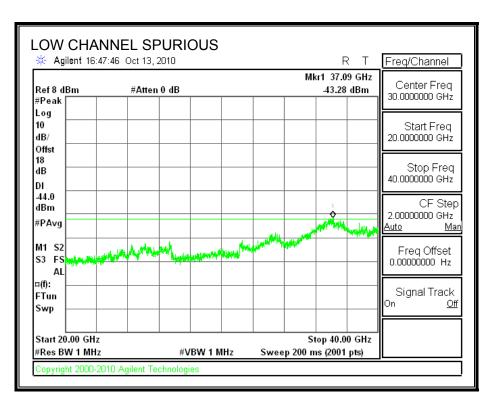
IC RSS-210 A9.3 (3)

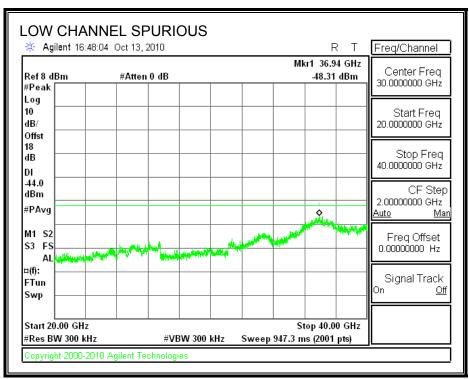
For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

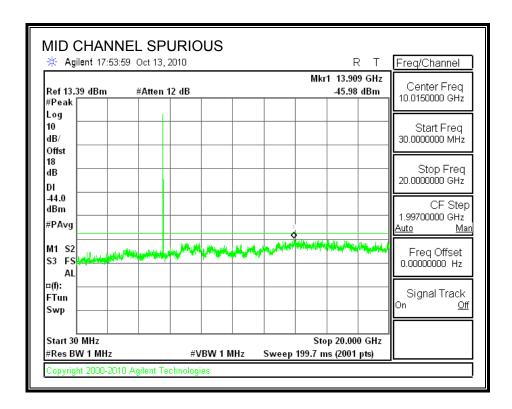

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

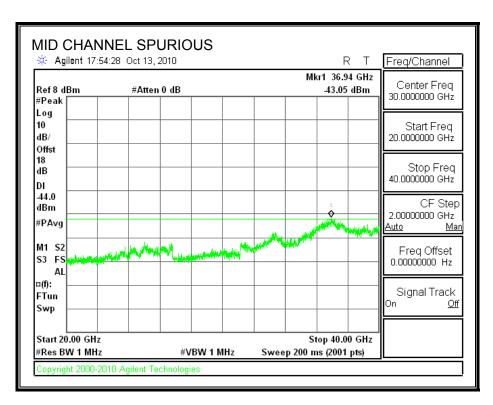

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

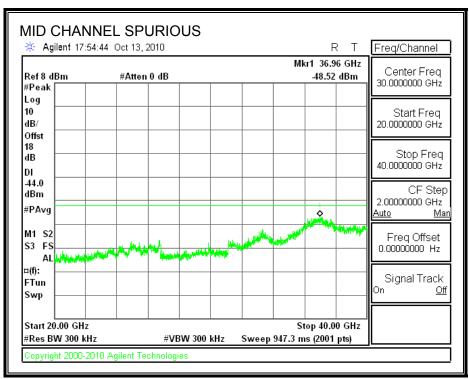

RESULTS

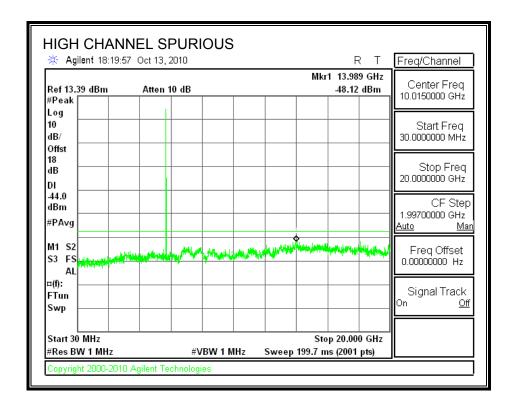
SPURIOUS EMISSIONS

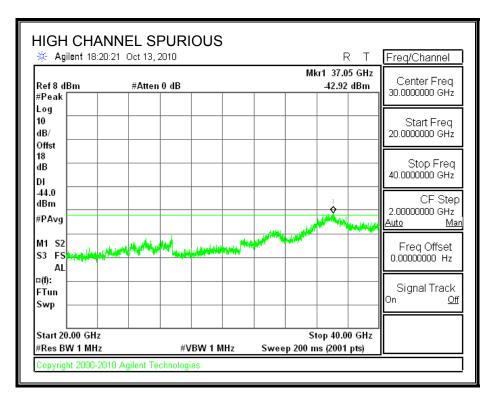


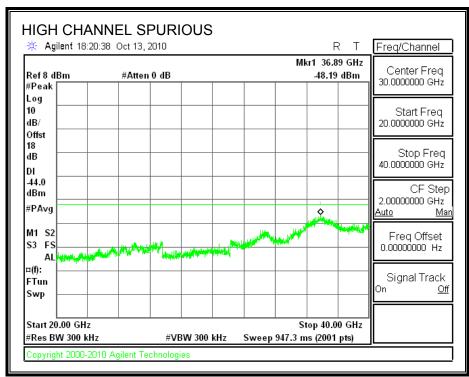
REPORT NO: 10U13444-1 DATE: COTOBER 25, 2010 FCC ID: ABZ89FT7637






FCC ID: ABZ89FT7637



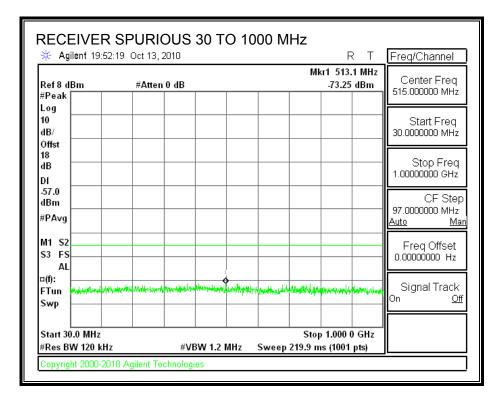

REPORT NO: 10U13444-1 DATE: COTOBER 25, 2010 FCC ID: ABZ89FT7637

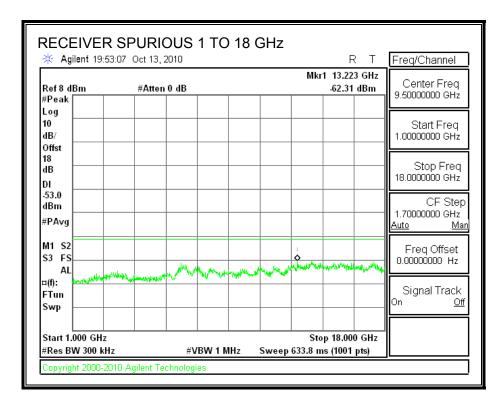
6.1.7. RECEIVER CONDUCTED SPURIOUS EMISSIONS

LIMITS

IC RSS-GEN 7.2.3.1

Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.


TEST PROCEDURE


IC RSS-GEN 4.10, Conducted Method

The receiver antenna port is connected to a spectrum analyzer.

The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.

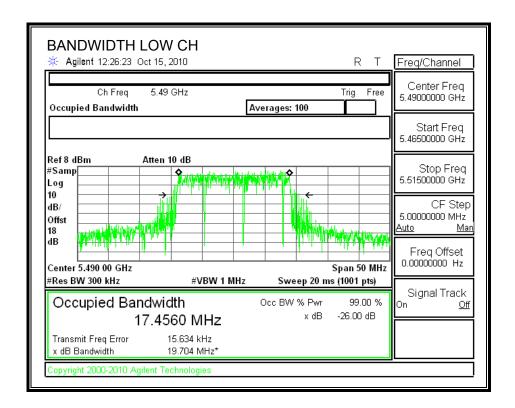
RECEIVER SPURIOUS EMISSIONS

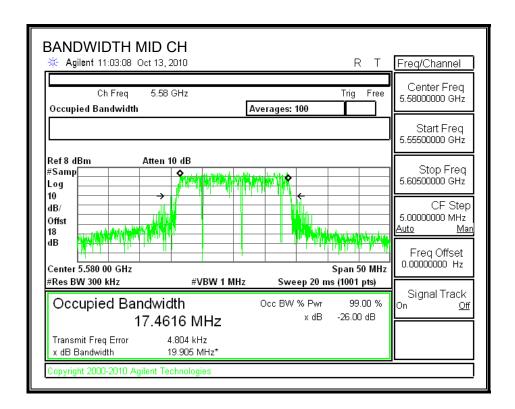
6.2. 20MHz BANDWIDTH QPSK MODE IN THE 5.4 GHz BAND

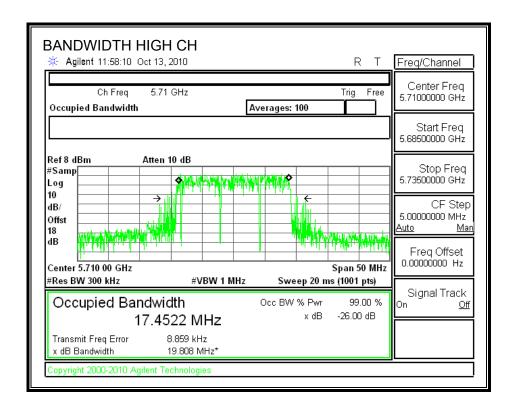
6.2.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth	
	(MHz)	(MHz)	(MHz)	
Low	5490	19.704	17.456	
Middle	5580	19.905	17.4616	
High	5710	19.808	17.4522	

26 dB and 99% BANDWIDTH

6.2.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

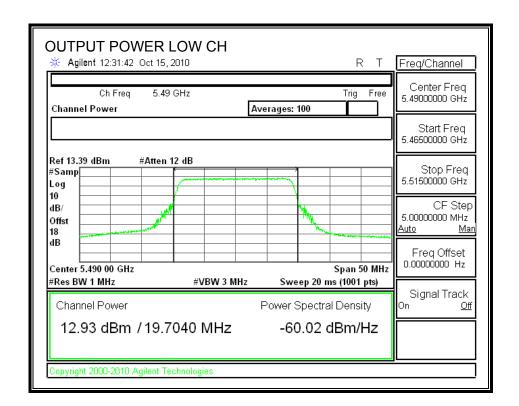
For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

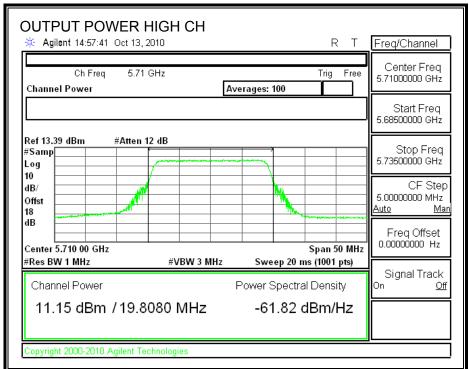
RESULTS


Limit

Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5490	24	19.704	23.95	17.00	12.95
Mid	5580	24	19.905	23.99	17.00	12.99
High	5710	24	19.808	23.97	17.00	12.97

Results

11004160				
Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5490	12.93	12.95	-0.02
Mid	5580	12.71	12.99	-0.28
High	5710	11.15	12.97	-1.82


OUTPUT POWER

opyright 2000-2010 Agilent Technologies

DATE: COTOBER 25, 2010

DATE: COTOBER 25, 2010

6.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 18 dB (including 10 dB pad and 8 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5490	12.32
Middle	5580	12.24
High	5710	10.55

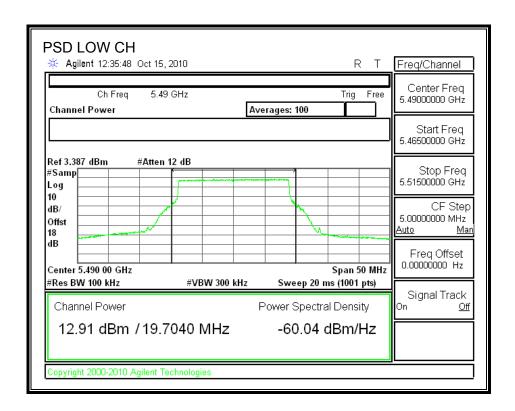
6.2.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna assembly gain is 17 dBi, the excess gain is 11 dB, therefore the limit is 0 dBm.

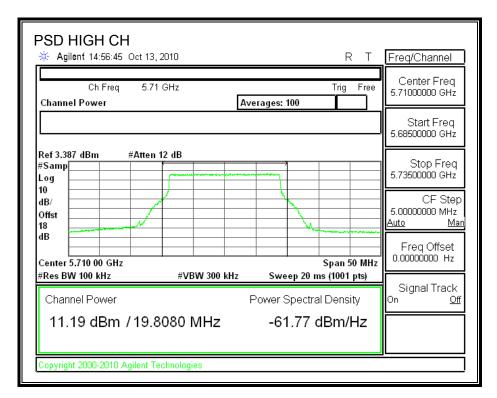

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

Channel	Frequency	PPSD	PPSD	Limit	Margin
	(MHz)	(dBm/Hz)	(dBm/MHz)	(dBm/MHz)	(dB)
Low	5490	-60.04	-0.04	0	-0.04
Middle	5580	-60.18	-0.18	0	-0.18
High	5710	-61.77	-1.77	0	-1.77

POWER SPECTRAL DENSITY


-60.18 dBm/Hz

12.81 dBm / 19.9050 MHz

opyright 2000-2010 Agilent Technologies

DATE: COTOBER 25, 2010

FCC ID: ABZ89FT7637

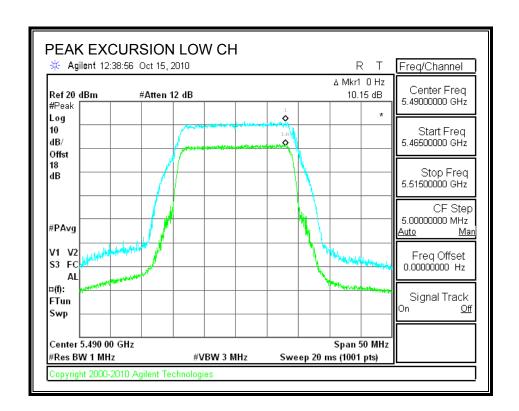
6.2.5. PEAK EXCURSION

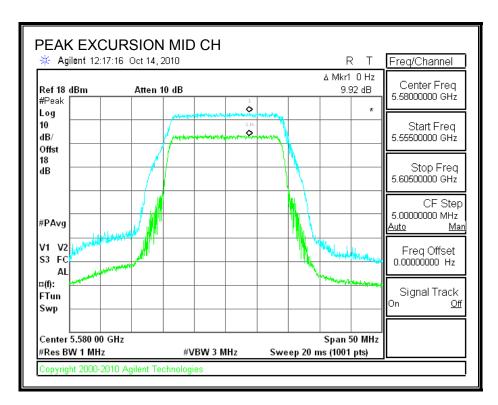
LIMITS

FCC §15.407 (a) (6)

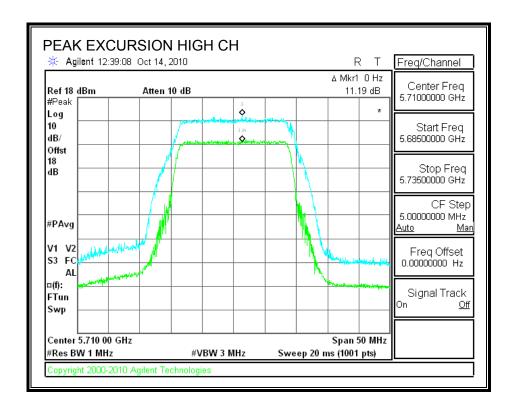
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

RESULTS


Channel Frequency		Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5490	10.150	13	-2.85
Middle	5580	9.920	13	-3.08
High	5710	11.190	13	-1.81

PEAK EXCURSION

FCC ID: ABZ89FT7637

6.2.6. CONDUCTED SPURIOUS EMISSIONS

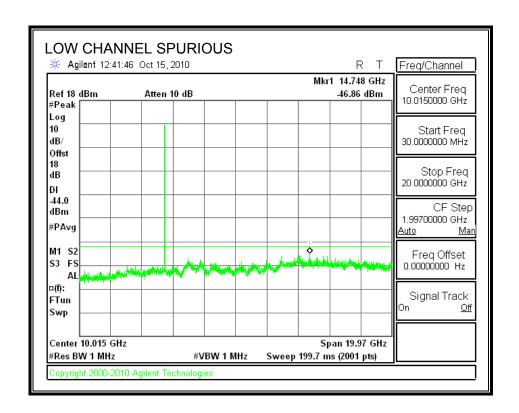
LIMITS

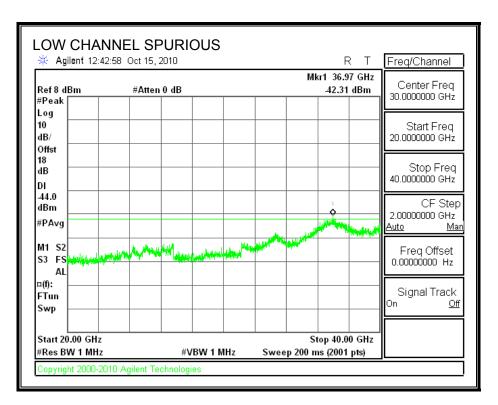
FCC §15.407 (b) (3)

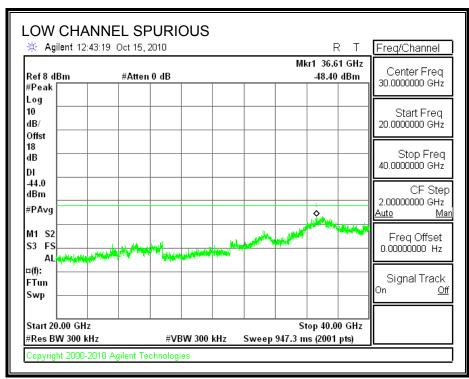
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

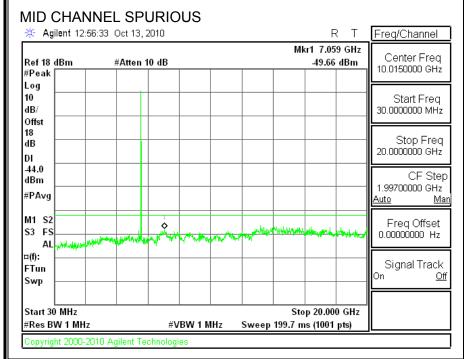
TEST PROCEDURE

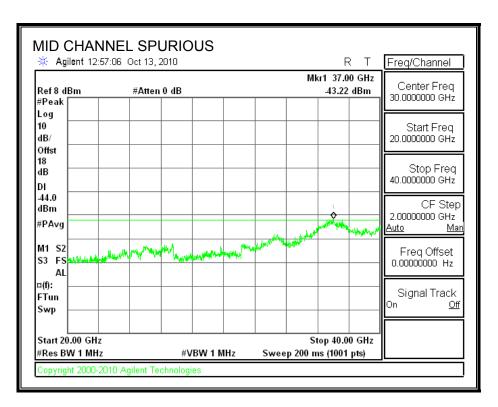

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

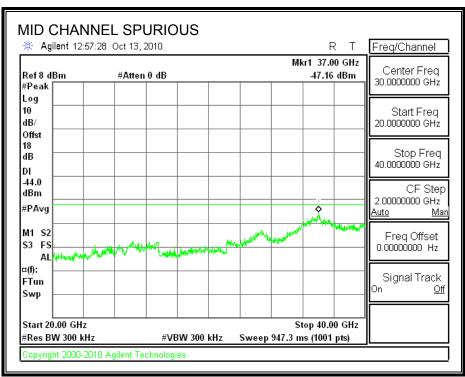

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

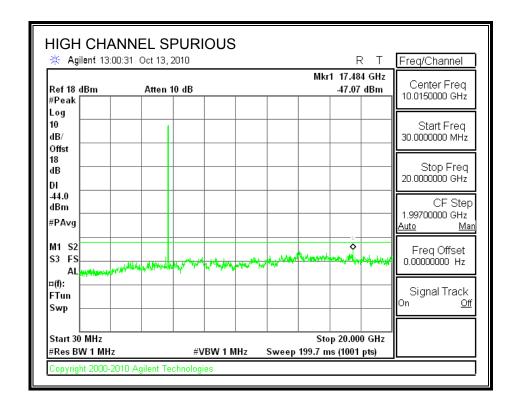
RESULTS


SPURIOUS EMISSIONS

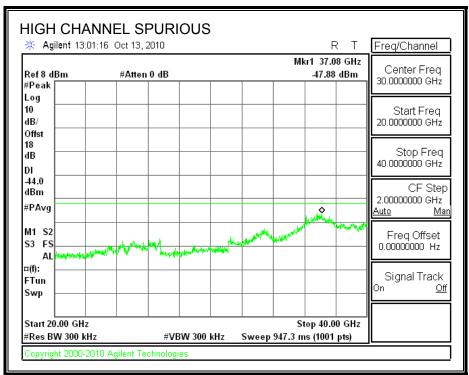




DATE: COTOBER 25, 2010



REPORT NO: 10U13444-1 DATE: COTOBER 25, 2010 FCC ID: ABZ89FT7637



FCC ID: ABZ89FT7637

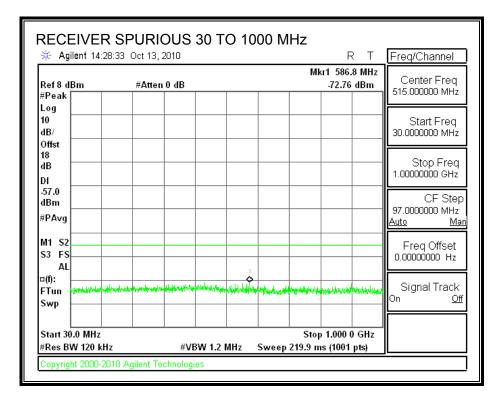
DATE: COTOBER 25, 2010

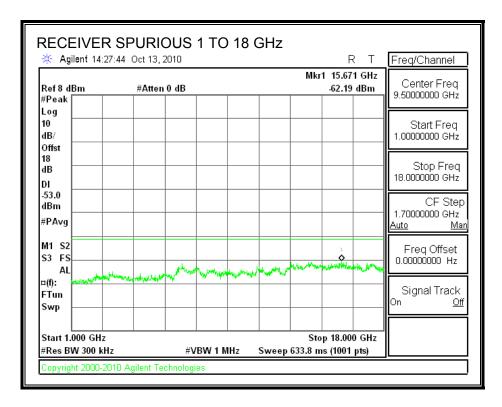
6.2.7. RECEIVER CONDUCTED SPURIOUS EMISSIONS

LIMITS

IC RSS-GEN 7.2.3.1

Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.


TEST PROCEDURE


IC RSS-GEN 4.10, Conducted Method

The receiver antenna port is connected to a spectrum analyzer.

The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.

RECEIVER SPURIOUS EMISSIONS

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

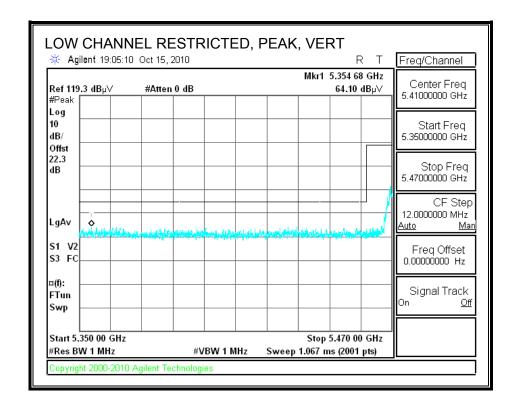
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

7.2. 10MHz BANDWIDTH QPSK MODE

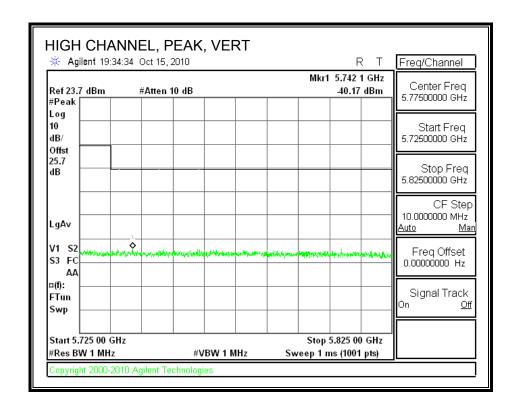
7.2.1. TX ABOVE 1 GHz IN THE 5.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Start 5.350 00 GHz

Copyright 2000-2010 Agilent Technologies

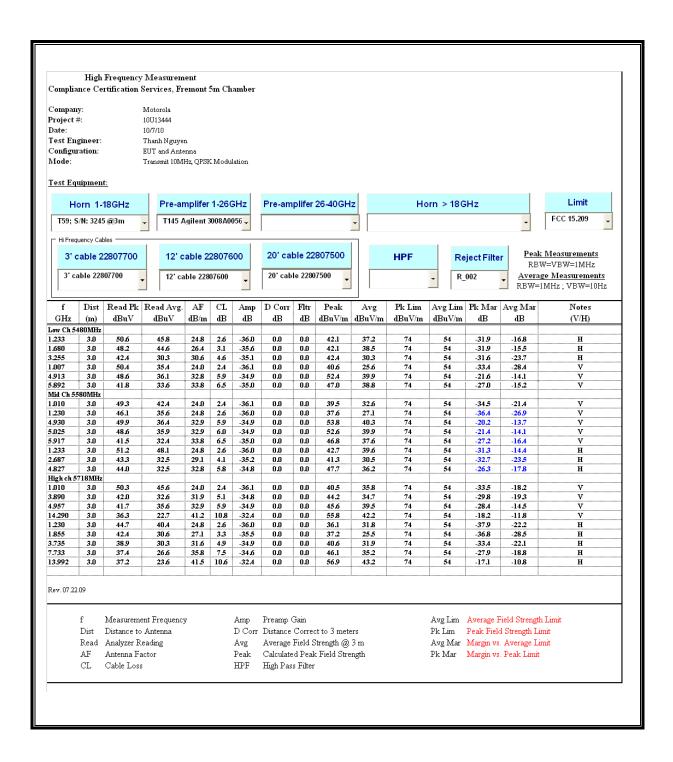
#Res BW 1 MHz


#VBW 10 Hz

Stop 5.470 00 GHz

Sweep 9.357 s (2001 pts)

DATE: COTOBER 25, 2010


AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)


HARMONICS AND SPURIOUS EMISSIONS

7.3. 20MHz BANDWIDTH QPSK MODE

7.3.1. TX ABOVE 1 GHz IN THE 5.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

□(f):

FTun

Swp

Start 5.350 00 GHz

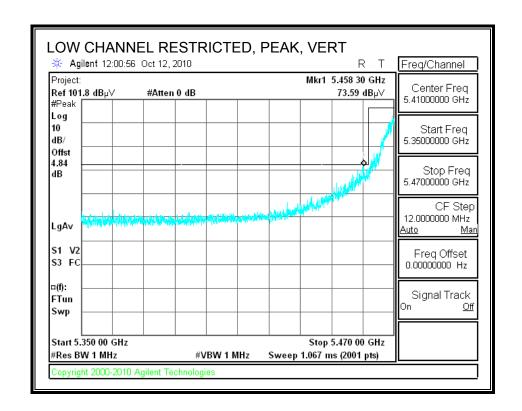
Copyright 2000-2010 Agilent Technologies

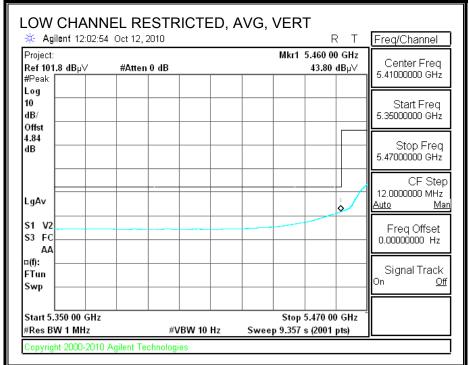
#Res BW 1 MHz

#VBW 10 Hz

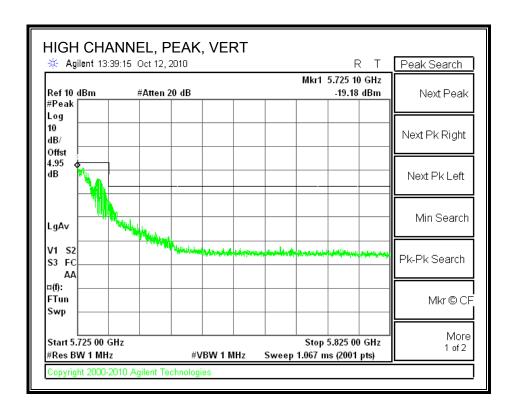
DATE: COTOBER 25, 2010

Signal Track

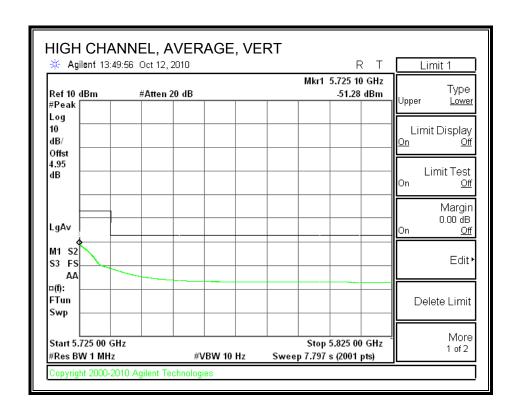

<u>Off</u>

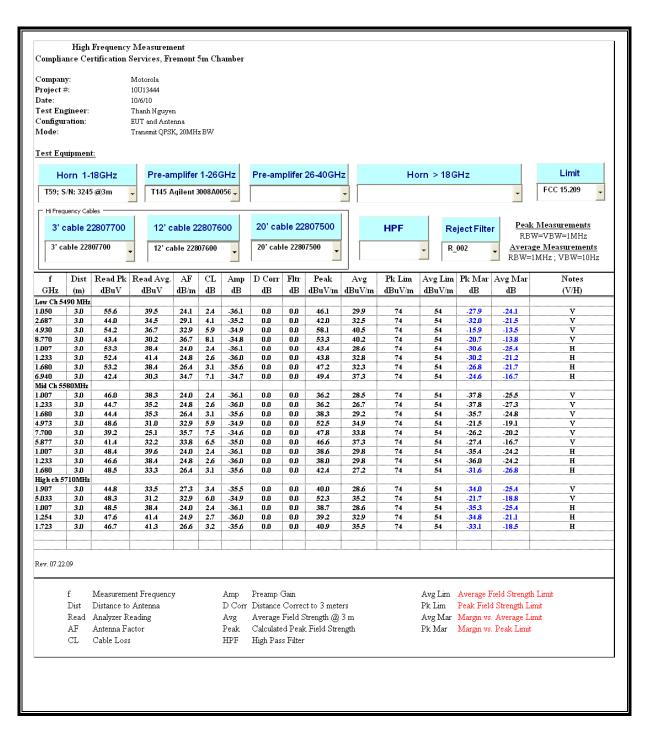

On.

Stop 5.470 00 GHz

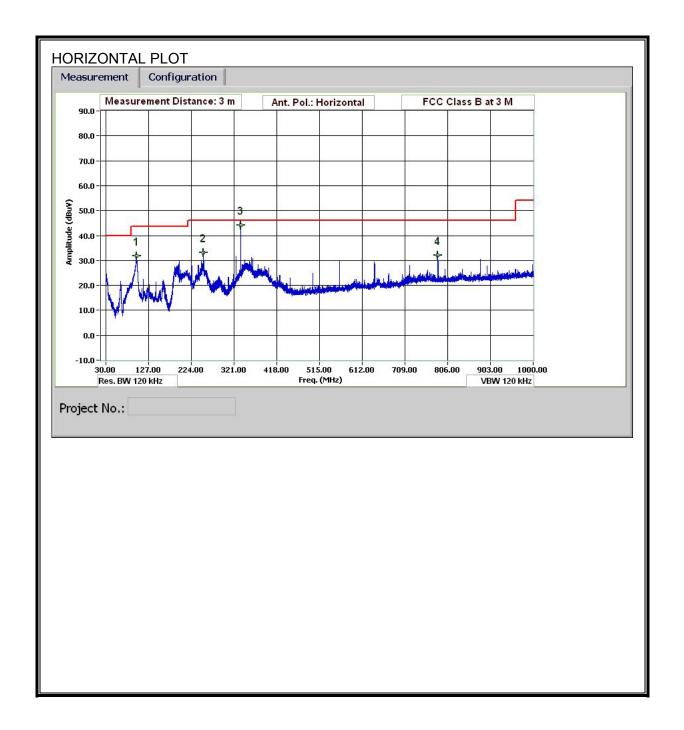

Sweep 9.357 s (2001 pts)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

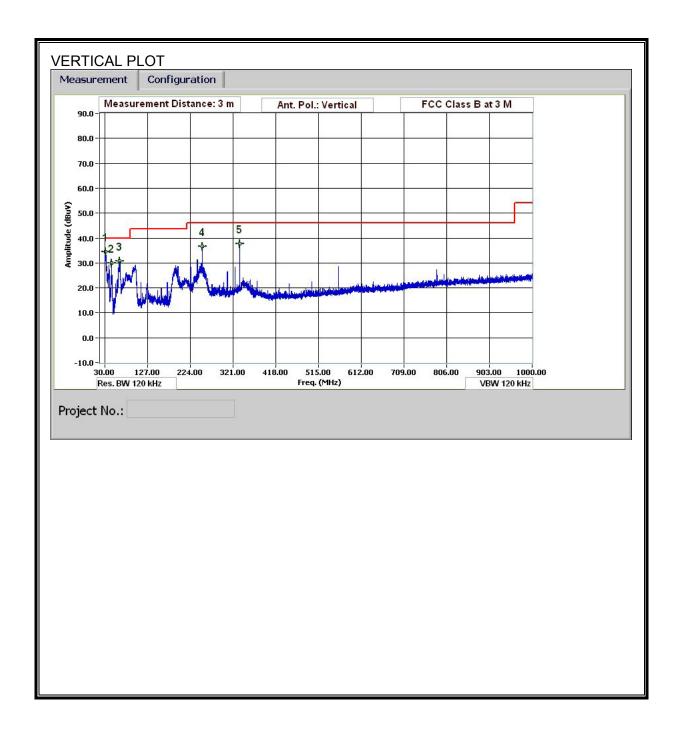



AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)



HARMONICS AND SPURIOUS EMISSIONS



7.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL DATA

30-1000MHz Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Test Engr: Thanh Nguyen Date: 10/07/10 Project #: 10U13444 Company: Motorola FCC 15.407 Class B Test Target:

Mode Oper: Transmit worst case 20MHz BW

> Measurement Frequency Amp Preamp Gain Distance to Antenna D Corr Distance Correct to 3 meters
> Analyzer Reading Filter Filter Insert Loss
> Antenna Factor Corr. Calculated Field Strength
> Cable Loss Limit Field Strength Limit Dist Read Analyzer Reading

f	Dist	Read	AF	CL	Amp	D Corr	Pad	Согт.	Limit	Margin	Ant Pol	Det	Ant. High	Table Angle	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dB	đВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
31.8	3.0	44.0	19.5	0.5	29.7	0.0	0.0	34.4	40.0	-5.6	V	P	100.0	0 - 360	
45.241	3.0	48.0	10.9	0.6	29.6	0.0	0.0	29.9	40.0	-10.1	V	P	100.0	0 - 360	
63.721	3.0	51.6	8.0	0.7	29.6	0.0	0.0	30.7	40.0	-9.3	V	P	100.0	0 - 360	
251.649	3.0	52.2	11.8	1.4	28.8	0.0	0.0	36.6	46.0	-9.4	V	P	100.0	0 - 360	
336.013	3.0	51.0	13.9	1.7	29.0	0.0	0.0	37.6	46.0	-8.4	V	P	100.0	0 - 360	
99.963	3.0	50.3	10.1	0.9	29.5	0.0	0.0	31.8	43.5	-11.7	Н	P	100.0	0 - 360	
252.009	3.0	48.6	11.9	1.4	28.8	0.0	0.0	33.1	46.0	-12.9	H	P	100.0	0 - 360	
336.013	3.0	56.9	13.9	1.7	29.0	0.0	0.0	43.5	46.0	-2.5	H	QP	100.0	0 - 360	
783.991	3.0	37.7	20.7	2.8	29.2	0.0	0.0	32.0	46.0	-14.0	H	P	100.0	0 - 360	

Margin Margin vs. Limit

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

8. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

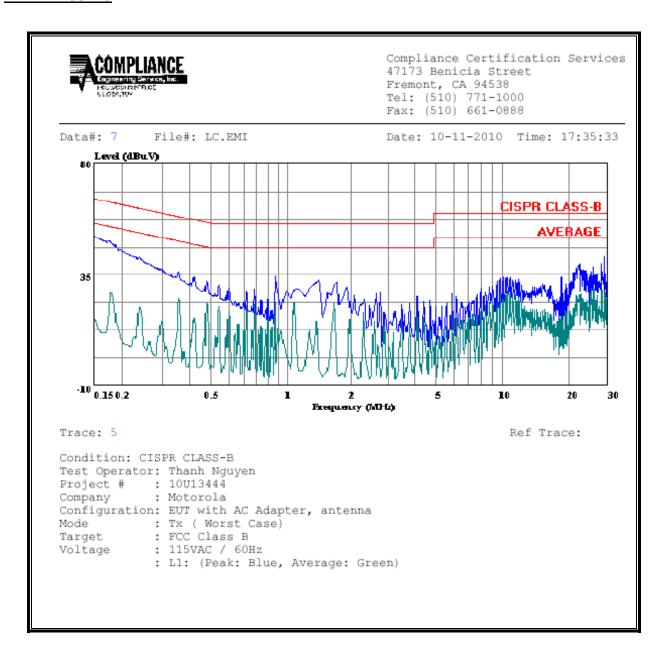
Decreases with the logarithm of the frequency.

TEST PROCEDURE

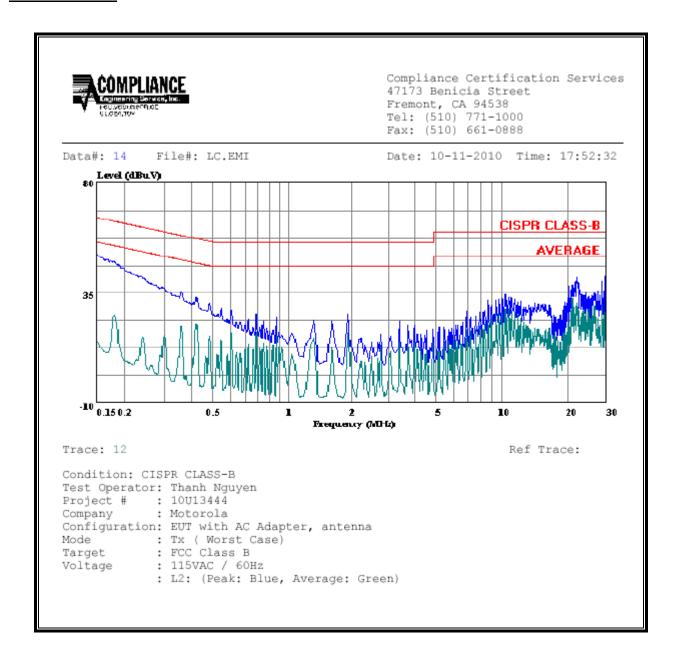
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

6 WORST EMISSIONS


	CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.		Reading		Closs	Limit	EN_B	Marg	in	Remark		
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2		
0.15	50.78		27.62	0.00	66.00	56.00	-15.22	-28.38	L1		
0.97	34.37		23.83	0.00	56.00	46.00	-21.63	-22.17	L1		
29.06	42.62		39.87	0.00	60.00	50.00	-17.38	-10.13	L1		
0.15	50.80		25.51	0.00	66.00	56.00	-15.20	-30.49	L2		
0.79	26.21		18.70	0.00	56.00	46.00	-29.79	-27.30	L2		
29.53	41.98		39.75	0.00	60.00	50.00	-18.02	-10.25	L2		
6 Worst l	 Data 										

REPORT NO: 10U13444-1 DATE: COTOBER 25, 2010 IC: 109W-5480G FCC ID: ABZ89FT7637

LINE 1 RESULTS

LINE 2 RESULTS

9. DYNAMIC FREQUENCY SELECTION

9.1. OVERVIEW

9.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode					
	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode						
	Master	Client	Client				
		(without DFS)	(with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Monitoring	
Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

	IUIT Fuise Nauai	Test waveloillis							
Radar	Pulse Width	PRI	Pulses	Minimum	Minimum				
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials				
				Successful					
				Detection					
1	1	1428	18	60%	30				
2	1-5	150-230	23-29	60%	30				
3	6-10	200-500	16-18	60%	30				
4	11-20	200-500	12-16	60%	30				
Aggregate (F	Aggregate (Radar Types 1-4) 80% 120								

Table 6 - Long Pulse Radar Test Signal

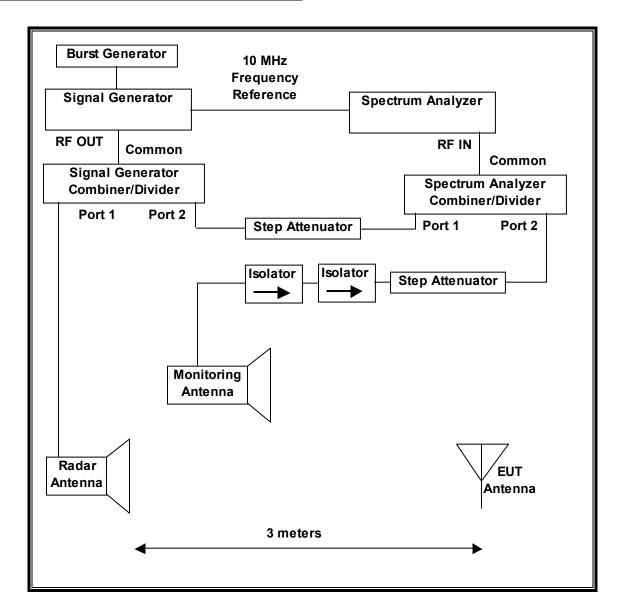

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

	. 0 4 4 0	,pp.			9.14.		
Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

9.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

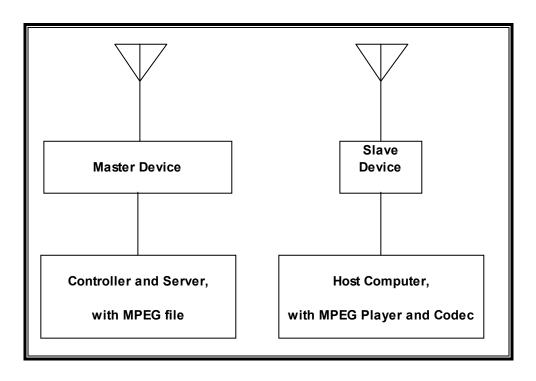
A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	Serial Number	Cal Due					
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	09/03/11					
Vector signal generator, 20GHz	Agilent / HP	E8267C	C01066	11/16/10					
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	05/13/12					

9.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

	PERIPHERA	L SUPPORT EQUI	PMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter (AP)	Phihong	PSI45W-560 (MOT)	M61000062A1	DoC
5.4GHz OFDM Subscriber Module	Motorola	5490SM	0A-00-3E-B0-02-81	ABZ89FT7638
AC Adapter (Subscriber Module)	Phihong	PSA15R-295 (MOT)	P82702605A2	DoC
Notebook PC (Host)	Dell	PP18L	10657517255	DoC
AC Adapter (Host PC)	Dell	LA65SN0-00	CN-ODF263-71615- 6AU-1019	DoC
Notebook PC (Client)	Motorola	HK1322	3433JC0021	DoC
AC Adapter (Client PC)	Hipro	HP-OW120F13	F3-070900272401	DoC

9.1.4. DESCRIPTION OF EUT

The EUT operates over the 5470-5725 MHz range, excluding any channels that would overlap the 5600-5650 MHz range.

The EUT is a Master Device.

The highest power level within the 5470-5725 MHz band is 30 dBm EIRP.

The only antenna assembly utilized with the EUT has a gain of 17 dBi in the 5470-5725 MHz band.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses one transmitter/receiver chain connected to a 50-ohm coaxial antenna port.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

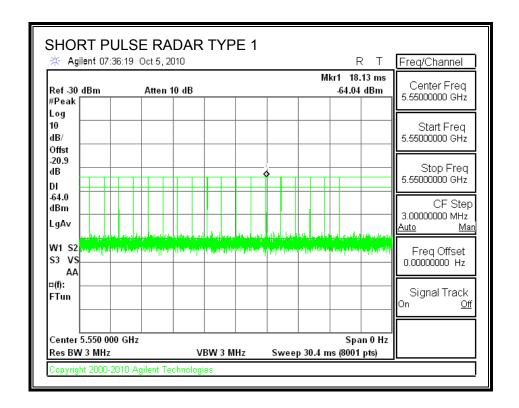
Two nominal channel bandwidths are implemented: 10 MHz, and 20 MHz, using a frame-based OFDM modulation.

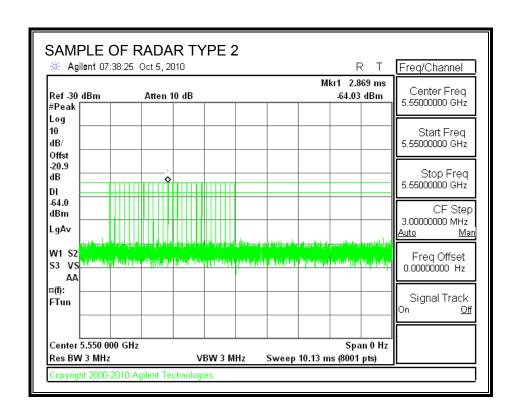
All DFS tests were performed at the worst-case talk/listen ratio of 85% / 15%.

The software installed in the access point is Canopy 10.5 (build 2) AP-DES.

MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

This statement is in a separate document.


9.2. RESULTS FOR 10 MHz BANDWIDTH


9.2.1. TEST CHANNEL

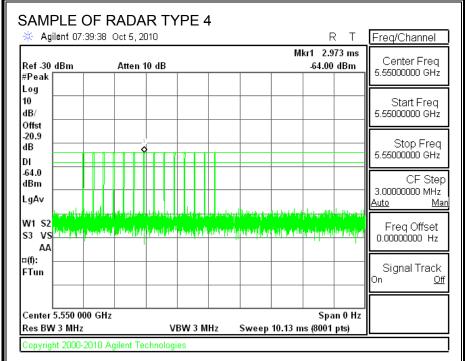
All tests were performed at a channel center frequency of 5550 MHz.

9.2.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

Res BW 3 MHz

opyright 2000-2010 Agilent Technologi


VBW 3 MHz

Sweep 15.47 ms (8001 pts)

DATE: COTOBER 25, 2010

IC: 109W-5480G

DATE: COTOBER 25, 2010

opyright 2000-2010 Agilent Technologi

DATE: COTOBER 25, 2010

IC: 109W-5480G

20.9

dBm

LgAv W1 S2

S3 VS

FTun

AA ¤(f):

Center 5.550 000 GHz Res BW 3 MHz

opyright 2000-2010 Agilent Technologi

dΒ

DI -64.0

VBW 3 MHz

DATE: COTOBER 25, 2010

Stop Freq

CF Step

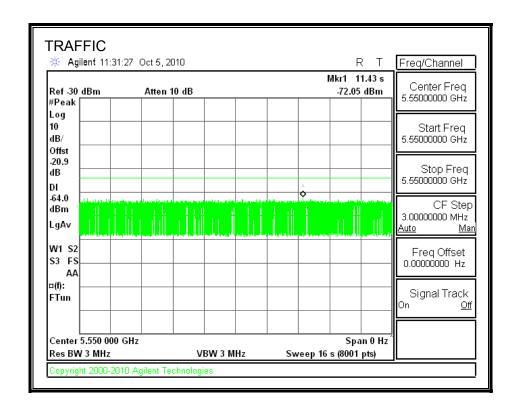
5.55000000 GHz

3.00000000 MHz

Freq Offset

Signal Track

Span 0 Hz


Sweep 5 ms (8001 pts)

<u>Off</u>

0.000000000 Hz

IC: 109W-5480G

TRAFFIC

9.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

REPORT NO: 10U13444-1 DATE: COTOBER 25, 2010 IC: 109W-5480G FCC ID: ABZ89FT7637

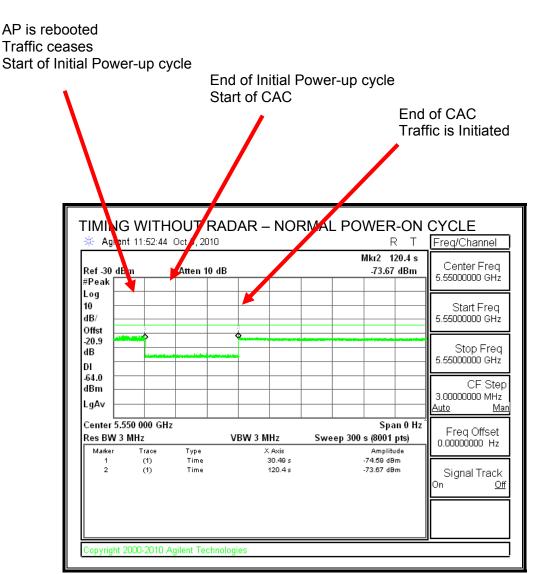
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time Cycle Tir	
(sec)	(sec)	(sec)	(sec)
30.49	120.4	89.9	29.9

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
31.54	64.5	33.0	3.0


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.41	117.0	86.6	56.7

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-08 This report shall not be reproduced except in full, without the written approval of UL CCS.

TIMING WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING WITH RAPAR NEAR BEGINNING OF CAC A ilent 11:59:02 Oct 4, 2010. Freq/Channel Mkr2 64.5 s Center Freq Atten 10 dB Ref -30 Bm -64.54 dBm 5.55000000 GHz #Peak Log 10 Start Freq dB/5.55000000 GHz Offst 20.9 Stop Freq dΒ 5.55000000 GHz DI 64.0 CF Step dBm 3.00000000 MHz LgAv <u>Auto</u> Center 5.550 000 GHz Span 0 Hz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 300 s (8001 pts) 0.000000000 Hz Marker X Axis Amplitude Trace Type 31.54 s -75.07 dBm (1) Time 64.5 s -64.54 dBm Signal Track <u>Off</u> opyright 2000-2010 Agilent Technologies

No EUT transmissions were observed after the radar signal.

TIMING WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING WITH RADAR NEAR END OF CAC * A ilent 12:10:27 Oct 5 2010 R T Freq/Channel Mkr2 117 s Center Freq Acten 10 dB Ref -30 Bm -64.50 dBm 5.55000000 GHz #Peak Log 10 Start Freq dB/5.55000000 GHz Offst 20.9 Stop Freq dΒ 5.55000000 GHz DI 64.0 CF Step dBm 3.00000000 MHz LgA∨ <u>Auto</u> Center 5.550 000 GHz Span 0 Hz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 300 s (8001 pts) 0.000000000 Hz Marker X Axis Amplitude Trace Type 30.41 s -75.36 dBm (1) Time 117 s -64.50 dBm Signal Track <u>Off</u>

No EUT transmissions were observed after the radar signal.

opyright 2000-2010 Agilent Technologies

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-08 This report shall not be reproduced except in full, without the written approval of UL CCS.

9.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

9.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

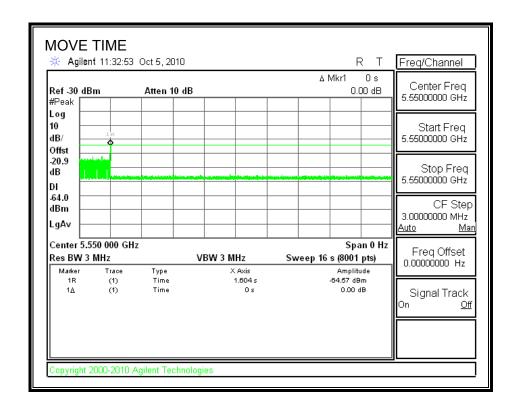
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

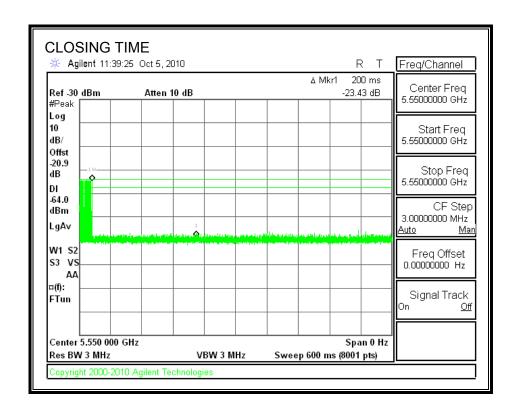
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

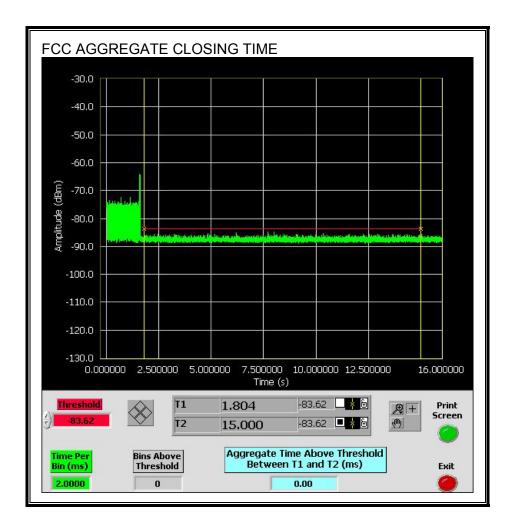

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

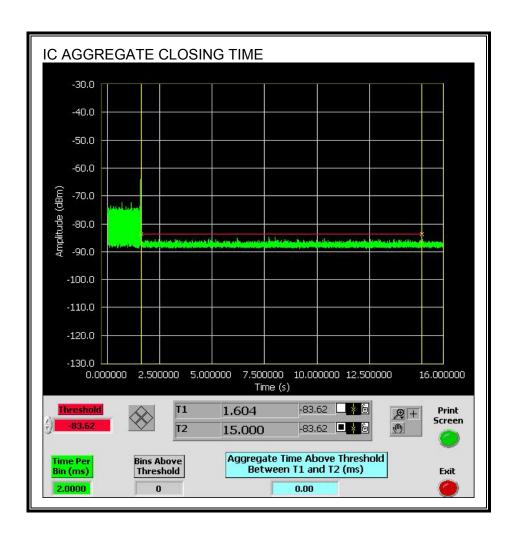

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.000	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	0.0	260

MOVE TIME

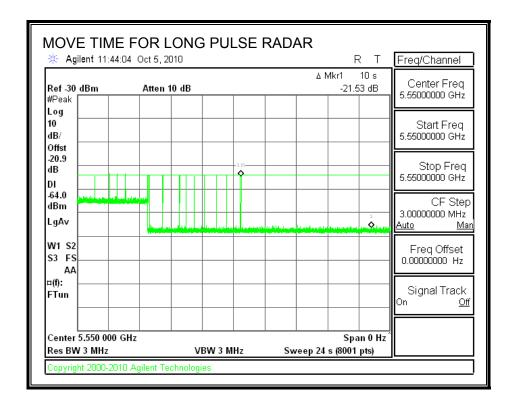


CHANNEL CLOSING TIME

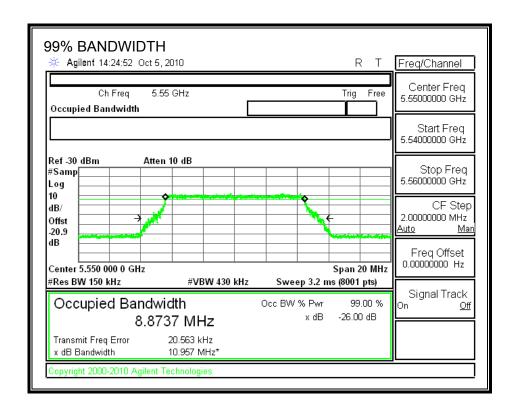


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.



No transmissions are observed during the IC aggregate monitoring period.


LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

9.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5546	5554	8	8.874	90.2	80

DETECTION BANDWIDTH PROBABILITY

Detection Band	width Test Results			
FCC Type 1 War	veform: 1 us Pulse V	Vidth, 1428 us PRI, 18	8 Pulses per f	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5546	10	10	100	FL
5547	10	10	100	
5548	10	10	100	
5549	10	10	100	
5550	10	10	100	
5551	10	10	100	
5552	10	10	100	
5553	10	10	100	
5554	10	10	100	FH

9.2.7. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ	Number of Trials	Detection	Limit	Pass/Fail
Signal Type	Number of Itials			Pass/Faii
		(%)	(%)	
FCC Short Pulse Type 1	30	96.67	60	Pass
FCC Short Pulse Type 2	30	96.67	60	Pass
FCC Short Pulse Type 3	30	80.00	60	Pass
FCC Short Pulse Type 4	30	96.67	60	Pass
Aggregate		92.50	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	36	86.11	70	Pass

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Short Pulse Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst		
Trial	Successful Detection	
	(Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	No	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

TYPE 2 DETECTION PROBABILITY

Waveform	or FCC Short Pu Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	1	156.00	27	Yes
2002	2.8	222.00	28	Yes
2003	2.3	172.00	24	Yes
2004	2.8	153.00	25	Yes
2005	4.2	165.00	27	Yes
2006	3.3	219.00	26	Yes
2007	1.2	194.00	24	Yes
2008	2	187.00	23	Yes
2009	2.5	169.00	25	Yes
2010	3.3	214.00	29	Yes
2011	3.4	213.00	25	Yes
2012	4.5	224.00	28	Yes
2013	1.1	161.00	27	No
2014	1.2	197.00	28	Yes
2015	3.3	150.00	29	Yes
2016	4.9	183.00	29	Yes
2017	3.2	208.00	28	Yes
2018	4.6	175.00	28	Yes
2019	1.1	170.00	24	Yes
2020	2.4	217.00	25	Yes
2021	3.2	195.00	27	Yes
2022	3.8	160.00	26	Yes
2023	3.5	206.00	26	Yes
2024	4.3	214.00	26	Yes
2025	4.6	175.00	23	Yes
2026	3.1	185.00	23	Yes
2027	1.6	176.00	29	Yes
2028	2.9	182.00	26	Yes
2029	3.4	202.00	28	Yes
2030	1.9	228.00	24	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	7.9	303.00	16	Yes
3002	9	378.00	18	No
3003	5.5	284.00	16	No
3004	6.6	373.00	16	Yes
3005	7.9	497.00	16	Yes
3006	7.2	271.00	16	Yes
3007	10	497.00	17	Yes
3008	8.2	467.00	18	Yes
3009	7	434.00	18	Yes
3010	7.9	394.00	18	Yes
3011	5.3	328.00	18	No
3012	8.5	340.00	18	Yes
3013	8.9	380.00	17	Yes
3014	6	310.00	17	Yes
3015	7.5	374.00	17	Yes
3016	5.3	358.00	18	Yes
3017	5.9	264.00	16	Yes
3018	8.5	300.00	18	Yes
3019	5.5	334.00	16	Yes
3020	5.1	260.00	18	No
3021	8.6	467.00	18	Yes
3022	8.6	468.00	17	Yes
3023	9.6	298.00	16	Yes
3024	5.9	461.00	17	Yes
3025	7.5	296.00	18	Yes
3026	7.8	496.00	16	Yes
3027	6	263.00	16	Yes
3028	5.6	373.00	18	No
3029	7.5	293	16	Yes

TYPE 4 DETECTION PROBABILITY

Waveform	or FCC Short Pu Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	14.1	328.00	14	Yes
4002	11.6	268.00	14	Yes
4003	11.3	341.00	13	Yes
4004	15.4	444.00	15	Yes
4005	17.2	481.00	16	Yes
4006	10.3	261.00	13	Yes
4007	11.2	275.00	16	Yes
4008	13.5	402.00	15	Yes
4009	17	275.00	12	Yes
4010	16.5	399.00	13	Yes
4011	16.4	431.00	12	Yes
4012	11.2	287.00	14	Yes
4013	18.9	369.00	13	Yes
4014	10	444.00	14	Yes
4015	17	488.00	16	No
4016	10.1	279.00	15	Yes
4017	18	447.00	14	Yes
4018	14.1	365.00	14	Yes
4019	11.5	344.00	15	Yes
4020	11.1	276.00	16	Yes
4021	17.1	402.00	12	Yes
4022	14.7	256.00	13	Yes
4023	11.3	468.00	12	Yes
4024	11.6	306.00	14	Yes
4025	16.4	498.00	13	Yes
4026	18.9	303.00	14	Yes
4027	15.8	329.00	14	Yes
4028	11	498.00	12	Yes
4029	12.8	471.00	14	Yes

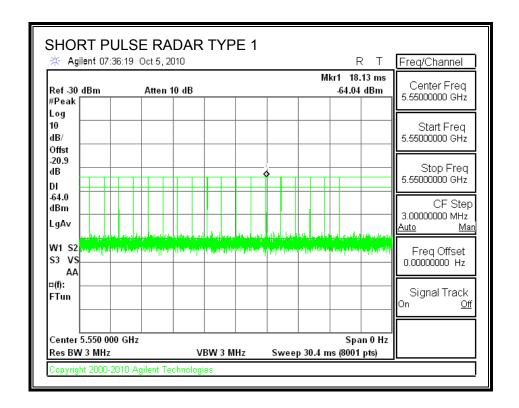
TYPE 5 DETECTION PROBABILITY

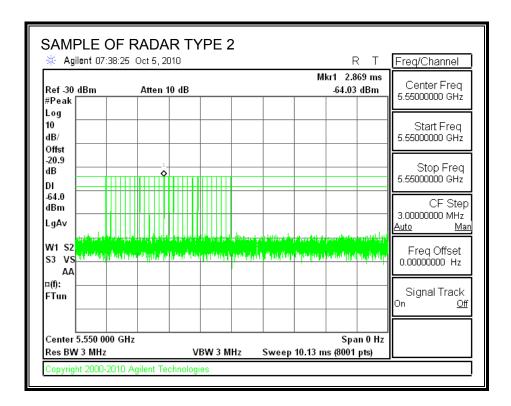
Sheet for FCC	Long Pulse Radar Type 5
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

	t for FCC Hopping Rada e Width, 333 us PRI, 1		1 Burst per Hop	
ITIA Aug	just 2005 Hopping Se			
Trial	Starting Index	Signal Generator	Hops within	Successfu
	Within Sequence	Frequency	Detection BW	Detection
		(MHz)		(Yes/No)
1	211	5546	1	No
2	686	5547	2	Yes
3	1161	5548	2	Yes
4	1636	5549	1	Yes
5	2111	5550	3	Yes
6	2586	5551	1	Yes
7	3536	5552	3	Yes
8	4011	5553	2	Yes
9	4961	5554	3	Yes
10	5436	5546	3	Yes
11	5911	5547	3	Yes
12	6386	5548	1	Yes
13	6861	5549	3	Yes
14	7336	5550	1	Yes
15	7811	5551	2	Yes
16	8286	5552	1	Yes
17	8761	5553	2	Yes
18	9236	5554	3	Yes
19	9711	5546	3	Yes
20	10186	5547	2	Yes
21	10661	5548	3	Yes
22	11136	5549	1	Yes
23	11611	5550	1	No
24	12086	5551	2	Yes
25	12561	5552	2	No
26	13036	5553	4	Yes
27	13511	5554	2	Yes
28	13986	5546	2	No
29	14461	5547	1	Yes
30	14936	5548	4	Yes
31	15411	5549	1	No
32	15886	5550	2	Yes
33	16361	5551	1	Yes
34	16836	5552	3	Yes
35	17311	5553	1	Yes


9.3. RESULTS FOR 20 MHz BANDWIDTH


9.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5550 MHz.

9.3.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

Center 5.550 000 GHz

opyright 2000-2010 Agilent Technologi

Res BW 3 MHz

VBW 3 MHz

DATE: COTOBER 25, 2010

IC: 109W-5480G

Span 0 Hz

Sweep 15.47 ms (8001 pts)

opyright 2000-2010 Agilent Technologi

DATE: COTOBER 25, 2010

IC: 109W-5480G

□(f):

FTun

Center 5.550 000 GHz

opyright 2000-2010 Agilent Technologi

Res BW 3 MHz

VBW 3 MHz

DATE: COTOBER 25, 2010

Signal Track

Span 0 Hz

Sweep 8 ms (8001 pts)

<u>Off</u>

IC: 109W-5480G

-64.0

dBm

LgA∨ W1 S2

S3 VS

FTun

АΑ □(f):

Center 5.550 000 GHz Res BW 3 MHz

opyright 2000-2010 Agilent Technologi

<u>, 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884 - 1884</u>

VBW 3 MHz

DATE: COTOBER 25, 2010

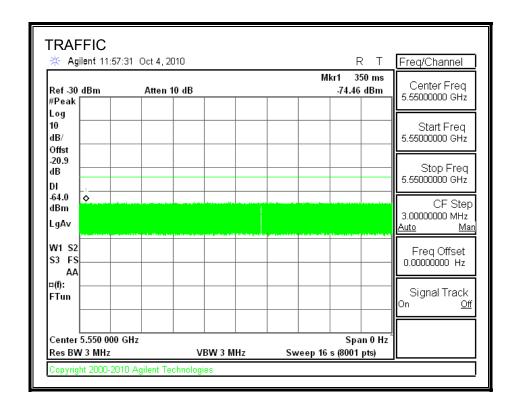
CF Step

3.00000000 MHz

Freq Offset

Signal Track

Span 0 Hz


Sweep 5 ms (8001 pts)

<u>Off</u>

0.000000000 Hz

IC: 109W-5480G

TRAFFIC

9.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

REPORT NO: 10U13444-1 DATE: COTOBER 25, 2010 IC: 109W-5480G FCC ID: ABZ89FT7637

QUANTITATIVE RESULTS

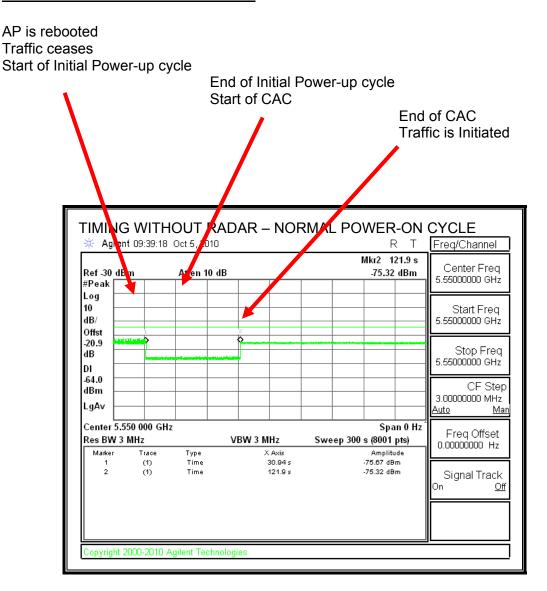
No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.94	121.9	91.0	31.0

Radar Near Beginning of CAC

Tada Noa Bogining of Orto						
Timing of	Timing of	Radar Relative	Radar Relative			
Reboot	Radar Burst	to Reboot	to Start of CAC			
(sec)	(sec)	(sec)	(sec)			
30.56	65.1	34.6	3.6			

Radar Near End of CAC


Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.79	117.5	86.7	55.8

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

REPORT NO: 10U13444-1 DATE: COTOBER 25, 2010 IC: 109W-5480G FCC ID: ABZ89FT7637

TIMING WITH RADAR NEAR BEGINNING OF CAC


AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING WITH RAPAR NEAR BEGINNING OF CAC * A ilent 09:54:50 Oct 4, 2010 Freq/Channel Mkr2 65.14 s Center Freq Atten 10 dB Ref -30 d Bm -64.38 dBm 5.55000000 GHz #Peak Log 10 Start Freq dB/5.55000000 GHz Offst 20.9 Stop Freq dΒ 5.55000000 GHz DI 64.0 CF Step dBm 3.00000000 MHz LgAv <u>Auto</u> Center 5.550 000 GHz Span 0 Hz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 300 s (8001 pts) 0.000000000 Hz Marker X Axis Amplitude Trace Type 30.56 s -75.65 dBm (1) Time 65.14 s -64.38 dBm Signal Track <u>Off</u> opyright 2000-2010 Agilent Technologies

No EUT transmissions were observed after the radar signal.

TEL: (510) 771-1000

TIMING WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

No EUT transmissions were observed after the radar signal.

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-08 This report shall not be reproduced except in full, without the written approval of UL CCS.

9.3.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

9.3.5. MOVE AND CLOSING TIME

REPORTING NOTES

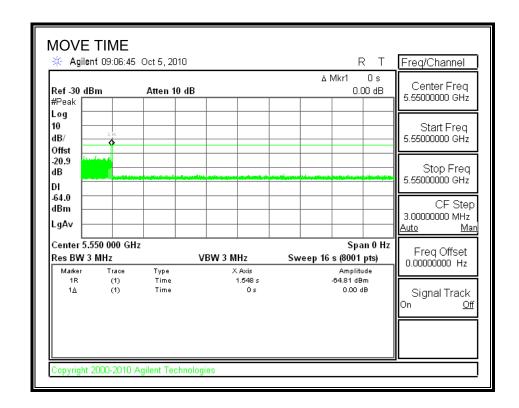
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

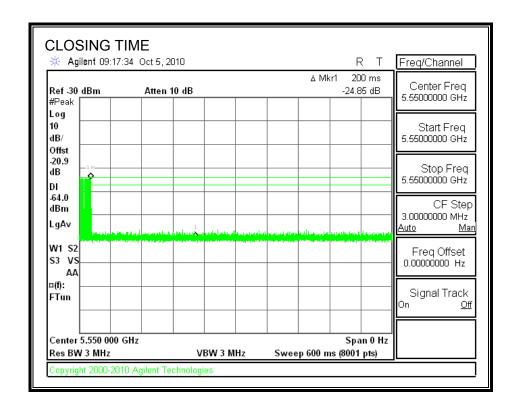
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

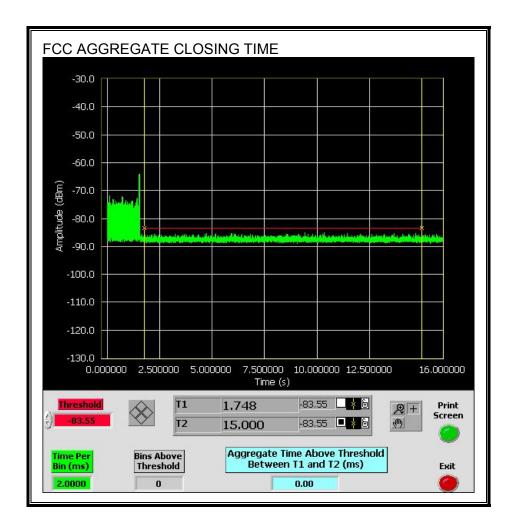

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

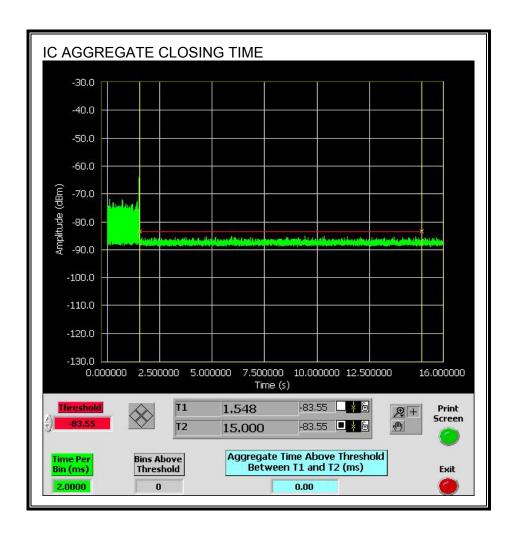
Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.000	10


Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	0.0	260

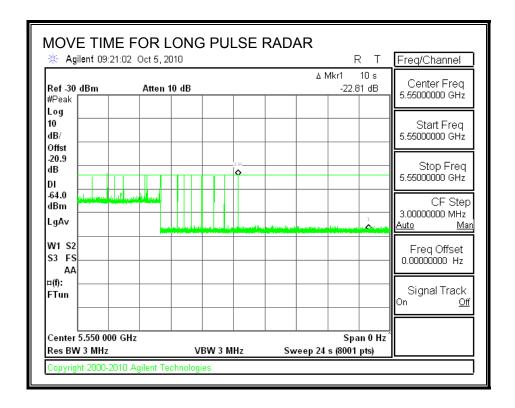
MOVE TIME


73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0
This report shall not be reproduced except in full, without the written approval of UL CCS.

CHANNEL CLOSING TIME

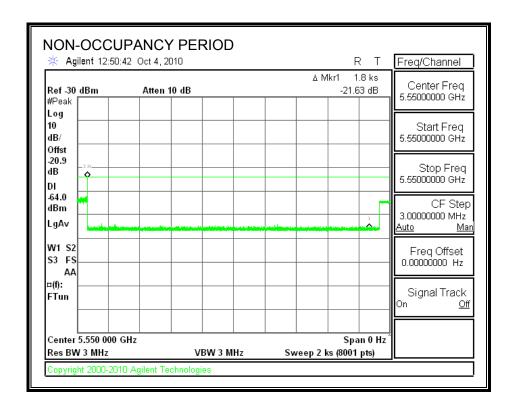

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.


FAX: (510) 661-0888

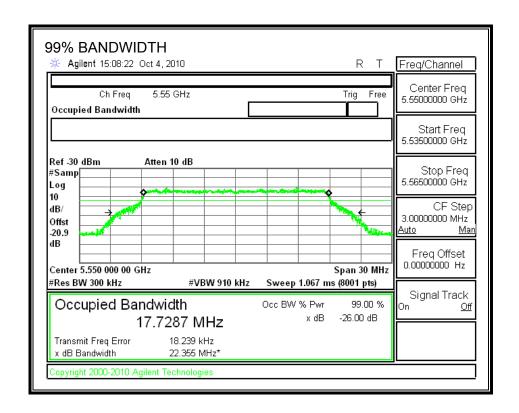
No transmissions are observed during the IC aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

9.3.6. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time. After the 30 minute non-occupancy period the EUT performed a new CAC, then resumed transmissions upon detecting no radar during this CAC period.

REPORT NO: 10U13444-1 DATE: COTOBER 25, 2010 IC: 109W-5480G FCC ID: ABZ89FT7637

9.3.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5542	5558	16	17.729	90.2	80

DETECTION BANDWIDTH PROBABILITY

Detection Dana	width Test Results			
FCC Type 1 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5542	10	10	100	FL
5543	10	10	100	
5544	10	10	100	
5545	10	10	100	
5546	10	10	100	
5547	10	10	100	
5548	10	10	100	
5549	10	10	100	
5550	10	10	100	
5551	10	10	100	
5552	10	10	100	
5553	10	10	100	
5554	10	9	90	
5555	10	10	100	
5556	10	10	100	
5557	10	10	100	
5558	10	10	100	
5559	10	10	100	FH

9.3.8. IN-SERVICE MONITORING

RESULTS

Signal Type	Number of Trials	Detection	Limit	Pass/Fail
3 ,,		(%)	(%)	
FCC Short Pulse Type 1	30	96.67	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	60.00	60	Pass
FCC Short Pulse Type 4	30	73.33	60	Pass
Aggregate		82.50	80	Pass
FCC Long Pulse Type 5	30	96.67	80	Pass
FCC Hopping Type 6	34	97.06	70	Pass

TYPE 1 DETECTION PROBABILITY

us Pulse Width, 1428 us PRI, 18 Pulses per Burst	
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	No
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	1	156.00	27	Yes
2002	2.8	222.00	28	Yes
2003	2.3	172.00	24	Yes
2004	2.8	153.00	25	Yes
2005	4.2	165.00	27	Yes
2006	3.3	219.00	26	Yes
2007	1.2	194.00	24	Yes
2008	2	187.00	23	Yes
2009	2.5	169.00	25	Yes
2010	3.3	214.00	29	Yes
2011	3.4	213.00	25	Yes
2012	4.5	224.00	28	Yes
2013	1.1	161.00	27	Yes
2014	1.2	197.00	28	Yes
2015	3.3	150.00	29	Yes
2016	4.9	183.00	29	Yes
2017	3.2	208.00	28	Yes
2018	4.6	175.00	28	Yes
2019	1.1	170.00	24	Yes
2020	2.4	217.00	25	Yes
2021	3.2	195.00	27	Yes
2022	3.8	160.00	26	Yes
2023	3.5	206.00	26	Yes
2024	4.3	214.00	26	Yes
2025	4.6	175.00	23	Yes
2026	3.1	185.00	23	Yes
2027	1.6	176.00	29	Yes
2028	2.9	182.00	26	Yes
2029	3.4	202.00	28	Yes
2030	1.9	228.00	24	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection (Yes/No)
2004	(us)	(us)	40	
3001	7.9	303.00	16	Yes
3002	9	378.00	18	Yes
3003	5.5	284.00	16	No
3004	6.6	373.00	16	No
3005	7.9	497.00	16	Yes
3006	7.2	271.00	16	Yes
3007	10	497.00	17	Yes
3008	8.2	467.00	18	No
3009	7	434.00	18	Yes
3010	7.9	394.00	18	No
3011	5.3	328.00	18	No
3012	8.5	340.00	18	Yes
3013	8.9	380.00	17	Yes
3014	6	310.00	17	Yes
3015	7.5	374.00	17	Yes
3016	5.3	358.00	18	Yes
3017	5.9	264.00	16	Yes
3018	8.5	300.00	18	Yes
3019	5.5	334.00	16	No
3020	5.1	260.00	18	No
3021	8.6	467.00	18	No
3022	8.6	468.00	17	Yes
3023	9.6	298.00	16	No
3024	5.9	461.00	17	No
3025	7.5	296.00	18	Yes
3026	7.8	496.00	16	Yes
3027	6	263.00	16	Yes
3028	5.6	373.00	18	No
3029	7.5	293	16	Yes
3030	5.3	421	18	No

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	14.1	328.00	14	Yes
4002	11.6	268.00	14	Yes
4003	11.3	341.00	13	Yes
4004	15.4	444.00	15	Yes
4005	17.2	481.00	16	Yes
4006	10.3	261.00	13	Yes
4007	11.2	275.00	16	Yes
4008	13.5	402.00	15	Yes
4009	17	275.00	12	Yes
4010	16.5	399.00	13	No
4011	16.4	431.00	12	Yes
4012	11.2	287.00	14	No
4013	18.9	369.00	13	Yes
4014	10	444.00	14	Yes
4015	17	488.00	16	Yes
4016	10.1	279.00	15	Yes
4017	18	447.00	14	Yes
4018	14.1	365.00	14	Yes
4019	11.5	344.00	15	Yes
4020	11.1	276.00	16	Yes
4021	17.1	402.00	12	No
4022	14.7	256.00	13	No
4023	11.3	468.00	12	No
4024	11.6	306.00	14	Yes
4025	16.4	498.00	13	Yes
4026	18.9	303.00	14	Yes
4027	15.8	329.00	14	No
4028	11	498.00	12	No
4029	12.8	471.00	14	No

TYPE 5 DETECTION PROBABILITY

Sheet for FCC	Long Pulse Radar Type 5
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	No
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

1 us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop NTIA August 2005 Hopping Sequence						
Trial	Starting Index Within Sequence	Signal Generator Frequency	Hops within Detection BW	Successful Detection (Yes/No)		
		(MHz)				
1	314	5542	2	Yes		
2	789	5543	3	Yes		
3	1264	5544	4	Yes		
4	1739	5545	5	Yes		
5	2214	5546	1	Yes		
6	2689	5547	4	Yes		
7	3164	5548	1	Yes		
8	3639	5549	2	Yes		
9	4114	5550	4	Yes		
10	4589	5551	3	Yes		
11	5064	5552	1	Yes		
12	5539	5553	4	Yes		
13	6014	5554	2	Yes		
14	6489	5555	2	Yes		
15	6964	5556	1	Yes		
16	7439	5557	4	Yes		
17	7914	5558	6	Yes		
18	8389	5542	4	Yes		
19	8864	5543	3	Yes		
20	9339	5544	3	Yes		
21	9814	5545	3	Yes		
22	10289	5546	4	Yes		
23	10764	5547	2	Yes		
24	11239	5548	4	Yes		
25	11714	5549	1	Yes		
26	12189	5550	4	Yes		
27	12664	5551	7	Yes		
28	13139	5552	4	Yes		
29	13614	5553	2	Yes		
30	14089	5554	4	Yes		
31	14564	5555	4	Yes		
32	15039	5556	1	No		
33	15514	5557	1	Yes		

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f2) 1.0 f/300	6 6 6 6
,	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

			•	
1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

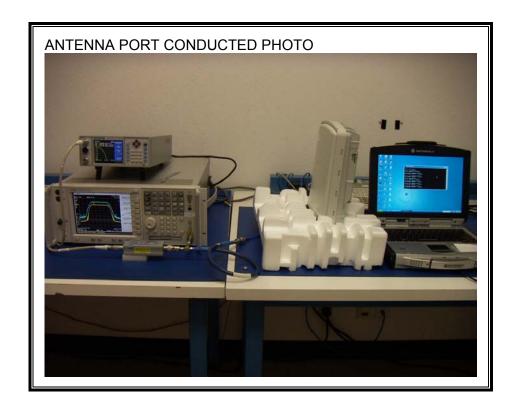
Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

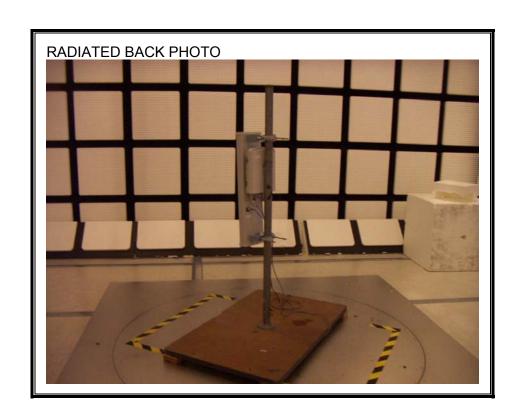
LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

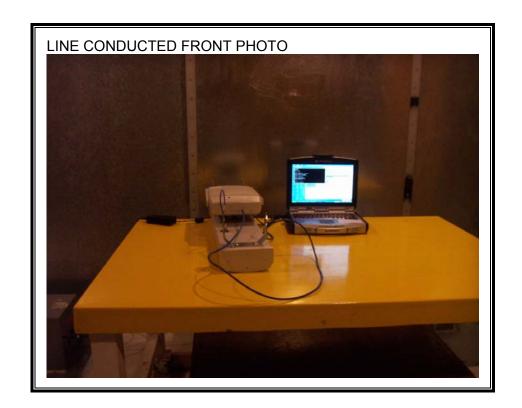

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
5.4 GHz	10MHz	0.20	9.83	17.00	0.96	0.096
5.4 GHz	20MHz	0.20	12.93	17.00	1.98	0.198


11. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP



RADIATED RF MEASUREMENT SETUP


POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP

END OF REPORT