Report on Test Measurements

Measurements Report

The measurement report shows compliance information against the pertinent technical standards. Each section of the report contains either verbiage or graphs which show compliance to applicable standards as required. Each section also explains testing method and indicates what the applicable specification is.

A list of test equipment for all sections, and certification signoff page are included at the end of the measurement report.

SUBMITTED MEASURED DATA -- INDEX

EXHIBIT	DESCRIPTION
E1-1	RF Output-Data
E1-2	Occupied Bandwidth: Setup, Specifications, and Index (Mixed QAM)
E1-2.1	800 MHz Occupied Bandwidth
E1-2.2	900 MHz Occupied Bandwidth
E1-2.3	900 MHz Occupied Bandwidth -Part 24 Operation
E1-3	Conducted Spurious Emissions: Setup, Specifications, and Index
E1-3.1	800 MHz Conducted Spurious Emissions, Harmonics, Power Output at 70 Watts
E1-3.2	800 MHz Conducted Spurious Emissions, Harmonics, Power Output at 5 Watts
E1-3.3	800 MHz Conducted Close-In, 20 MHz Span, Power Output at 70 Watts
E1-3.4	800 MHz Conducted Close-In, 200 MHz Span, Power Output at 70 Watts
E1-3.5	900 MHz Conducted Spurious Emissions, Harmonics, Power Output at 52 Watts
E1-3.6	900 MHz Conducted Spurious Emissions, Harmonics, Power Output at 5 Watts
E1-3.7	900 MHz Conducted Close-In, 20 MHz Span, Power Output at 52 Watts
E1-3.8	900 MHz Conducted Close-In, 200 MHz Span, Power Output at 52 Watts
E1-4	Radiated Spurious Emissions: Setup, Specifications, and Index
E1-4.1	800 MHz Radiated Spurious Emissions, Harmonics, Power Output at 70 Watts
E1-4.2	800 MHz Radiated Spurious Emissions, Harmonics, Power Output at 5 Watts
E1-4.3	900 MHz Radiated Spurious Emissions, Harmonics, Power Output at 52 Watts
E1-4.4	900 MHz Radiated Spurious Emissions, Harmonics, Power Output at 5 Watts
E1-5	Frequency Stability: Setup, Specifications, and Index
E1-5.1	Frequency Stability Vs Temperature
E1-5.2	Frequency Stability Vs Voltage
E1-11	Test Equipment Used
E1-12	Statement of Certification

Report on Test Measurements

RF Power Output Data

The RF power output was measured with the indicated voltage applied to and current into the final RF amplifying device. The DC current indicated is the total for the final RF amplifier stage, consisting of eight parallel power transistors.

800 MHz Operation: Measured RF output

Measured RF output Normal DC Voltage Normal DC Current Input power for final RF amplifying device(s) Primary Supply Voltage	70 28.3 16.0 453 48	Watts, Average Volts Amperes Watts Volts DC
Minimum Measured RF output Normal DC Voltage Normal DC Current Input power for final RF amplifying device(s) Primary Supply Voltage	<u>5</u> <u>28.3</u> <u>8.0</u> <u>226</u> <u>48</u>	Watts, Average Volts Amperes Watts Volts DC

900 MHz Operation:

Measured RF output Normal DC Voltage Normal DC Current Input power for final RF amplifying device(s) Primary Supply Voltage	52 28.3 13.9 393 48	Watts, Average Volts Amperes Watts Volts DC
Minimum Measured RF output Normal DC Voltage Normal DC Current Input power for final RF amplifying device(s) Primary Supply Voltage	5 28.3 8.2 232 48	Watts, Average Volts Amperes Watts Volts DC

Report on Test Measurements

Occupied Bandwidth – 25 kHz Channel Spacing – 800 MHz Operation

There is a single exhibit shown for 800 MHz operation. This mode can be used in a system configuration based upon channel usage as described in Exhibit B. The chart references the following setup and specification requirements.

Modulation Type: Quad-QAM, 64 kbps Random Data

Emission Designator: 17K7D7W Channelization: 25 kHz

Power Setting: 70 Watts (Average)

<u>Specification Requirement § 90.210(g) Emission Limits:</u> (Biennial Regulatory Review Report and Order, Adopted July 22, 2005, FCC 05-144, http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-05-144A1.doc):

Emission *Mask G.* For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but no more than 250 percent of the authorized bandwidth:

At least 116 log (fd/6.1) dB, or 50 + 10 log (P) dB, or 70 dB (whichever is the lesser attenuation);

(2) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth:

At least 43 + 10 log (P) dB.

Necessary Bandwidth Calculation:

The necessary bandwidth of the modulation signal is not calculable per the formulas defined in 47 CFR 2.202 (b). Specifically, although the modulation for this emission is a composite modulation, the equations given in the composite tables in 2.202 are not applicable since none of them adequately approximate the form of digital modulation used. The necessary bandwidth of 17.7 kHz is based upon a 99% power measurement of the transmitter spectrum, per 2.202 (a).

Measurement Procedure and Instrument Settings:

Emission Measurement Analyzer Settings:

Horizontal: 12.5 kHz per Division Resolution Bandwidth: 300 Hz Vertical: 10 dB per Division Video Bandwidth: 10 kHz Sweep Time: 72 Seconds (<2000 Hz / Second) Span: 125 kHz

Detector Mode: Peak

Test Procedure:

- 1) Adjust the spectrum analyzer per the values specified in the Emission Measurement Analyzer Settings.
- 2) Modulate the transmitter with the appropriate signaling pattern, (pseudorandom data) and key the transmitter at the full power rating. Use the analyzer controls to set this signal to the full-scale reference line. Allow the analyzer to sweep fully and store the sweep.
- 3) Use the band power marker function of the spectrum analyzer to measure the power of the carrier in a 25 kHz bandwidth.
- 4) Use the carrier power value from the previous step to generate the emission mask limit.
- 5) Plot the resulting analyzer trace and the emission mask limit, add text and labeling as appropriate.

<u>EXHIBIT</u>	DESCRIPTION	Power (Watts, Avg)	Emission Designator
E1-2.1	800 MHz Occupied Bandwidth	70 Watts	17K7D7W

Report on Test Measurements

Occupied Bandwidth – 25 kHz Channel Spacing – 900 MHz Operation

There is a single exhibit shown for 900 MHz operation. This mode can be used in a system configuration based upon channel usage as described in Exhibit B. The chart references the following setup and specification requirements.

Modulation Type: Quad-QAM, 64 kbps Random Data

Emission Designator: 17K7D7W Channelization: 25 kHz

Power Setting: 52 Watts (Average)

§ 90.669 Emission Limits:

(a) On any frequency in an MTA licensee's spectrum block that is adjacent to a non-MTA frequency, the power of any emission shall be attenuated below the transmitter power (P) by at lease 43 plus 10 log₁₀(P) dB or 80 dB, whichever is the lesser attenuation.

Note: The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

(b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

Necessary Bandwidth Calculation:

The necessary bandwidth of the modulation signal is not calculable per the formulas defined in 47 CFR 2.202 (b). Specifically, although the modulation for this emission is a composite modulation, the equations given in the composite tables in 2.202 are not applicable since none of them adequately approximate the form of digital modulation used. The necessary bandwidth of 17.7 kHz is based upon a 99% power measurement of the transmitter spectrum, per 2.202 (a).

Measurement Procedure and Instrument Settings:

Emission Measurement Analyzer Settings:

Horizontal: 12.5 kHz per Division Resolution Bandwidth: 300 Hz
Vertical: 10 dB per Division Video Bandwidth: 10 kHz
Sweep Time: 72 Seconds (<2000 Hz / Second) Span: 125 kHz

Detector Mode: Peak

Test Procedure:

- 1) Adjust the spectrum analyzer per the values specified in the Emission Measurement Analyzer Settings.
- 2) Modulate the transmitter with the appropriate signaling pattern, (pseudorandom data) and key the transmitter at the full power rating. Use the analyzer controls to set this signal to the full-scale reference line. Allow the analyzer to sweep fully and store the sweep.
- 3) Use the band power marker function of the spectrum analyzer to measure the power of the carrier in a 25 kHz bandwidth.
- 4) Use the carrier power value from the previous step to generate the emission mask limit.
- 6) Plot the resulting analyzer trace and the emission mask limit, add text and labeling as appropriate.

EXHIBIT	DESCRIPTION	Power (Watts, Avg)	Emission Designator
E1-2.2	900 MHz Occupied Bandwidth	52 Watts	17K7D7W

Report on Test Measurements

Occupied Bandwidth - 50 kHz Channel Spacing - 940 - 941 MHz Part 24 Operation

There is one exhibit shown for 900 MHz / Part 24 operation. This mode can be used in a system configuration based upon channel usage as described in Exhibit B. All of the following charts reference the following setup and specification requirements.

Modulation Type: Quad-QAM, 64 kbps Random Data

Emission Designator: 17K7D7W

Channelization: 50 kHz channel plan Power Setting: 52 Watts (Average)

§ 24.133 Emission Limits:

(1) For transmitters authorized for a bandwidth greater than 10 kHz

(a) The power of any emission shall be attenuated below the transmitter power (P), as measured in accordance with § 24.132(f), in accordance with the following schedule:

(i) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (fd in kHz) of up to and including 40 kHz:

at least 116 Log10 ((fd+10)/6.1) decibels; or 50 plus 10 Log10 (P) decibels; or 70 decibels; (whichever is the lesser attenuation)

(ii) On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 40 kHz:

at least 43 plus 10 Log10 (P) decibels; or 80 decibels; (whichever is the lesser attenuation)

- (b) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.
- (c) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.
- (d) The following minimum spectrum analyzer resolution bandwidth settings will be used: 300 Hz when showing compliance with paragraphs (a)(1)(i) and (a)(2)(i) of this section; and 30 kHz when showing compliance with paragraphs (a)(1)(ii) and (a)(2)(ii) of this section.
- § 24.132(f) All power levels specified in this section are expressed in terms of the maximum power, averaged over a 100 millisecond interval, when measured with instrumentation calibrated in terms of an rms-equivalent voltage with a resolution bandwidth equal to or greater than the authorized bandwidth.

Necessary Bandwidth Calculation:

The necessary bandwidth of the modulation signal is not calculable per the formulas defined in 47 CFR 2.202 (b). Specifically, although the modulation for this emission is a composite modulation, the equations given in the composite tables in 2.202 are not applicable since none of them adequately approximate the form of digital modulation used. The necessary bandwidth of 17.7 kHz is based upon a 99% power measurement of the transmitter spectrum, per 2.202 (a).

Report on Test Measurements

Occupied Bandwidth - 50 kHz Channel Spacing - 940 - 941 MHz Part 24 Operation (Continued)

Measurement Procedure and Instrument Settings

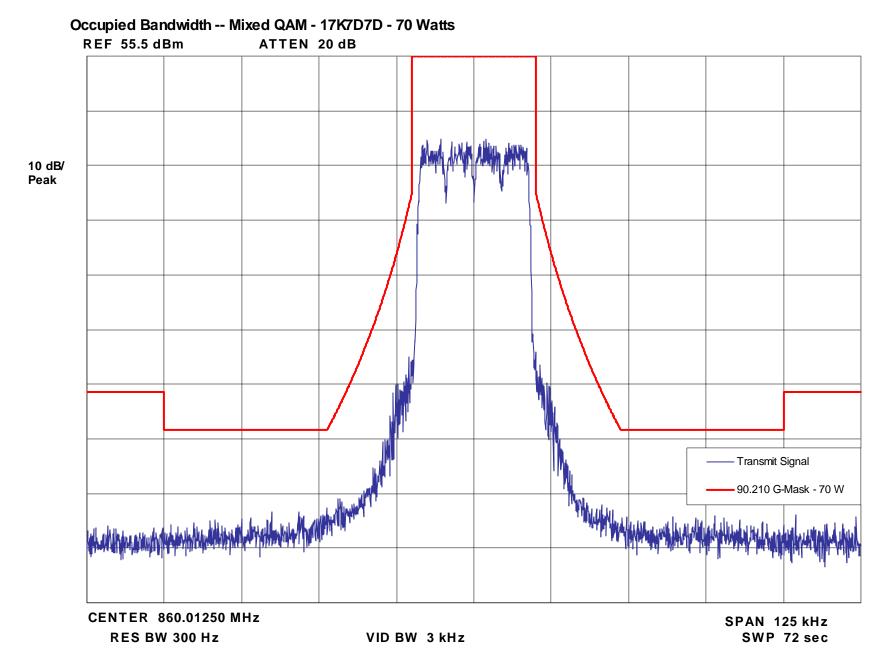
Reference Calibration Analyzer Settings:

Horizontal: 12.5 kHz per Division Resolution Bandwidth: 300 kHz Vertical: 10 dB per Division Video Bandwidth: 500 kHz Sweep Time: 72 Seconds (<2000 Hz / Second) Span: 150 kHz

Detector Mode: Peak

Emission Measurement Analyzer Settings:

Horizontal: 12.5 kHz per Division Resolution Bandwidth: 300 Hz Vertical: 10 dB per Division Video Bandwidth: 3 kHz Sweep Time: 90 Seconds (<2000 Hz / Second) Span: 150 kHz


Detector Mode: Peak

Test Procedure:

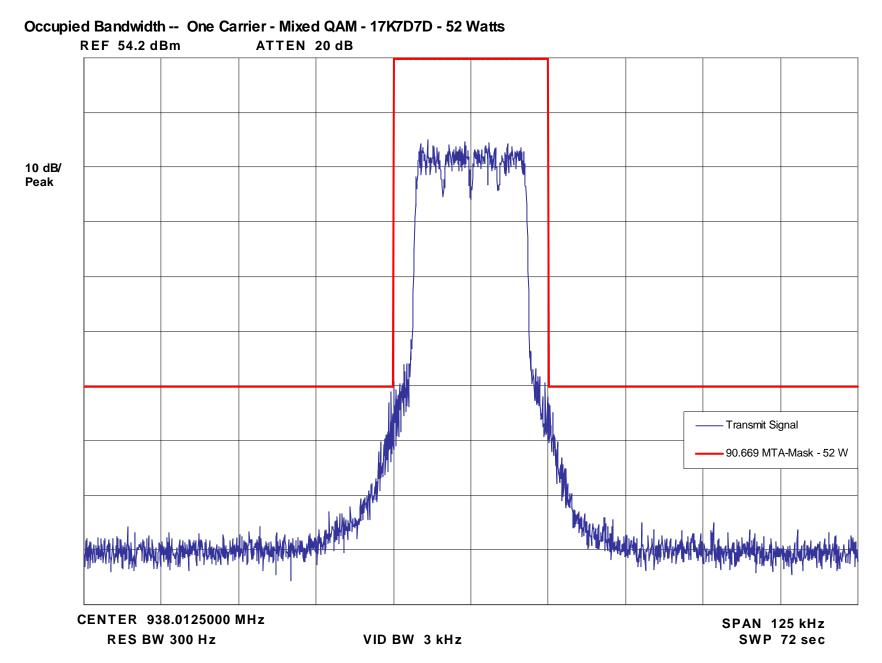
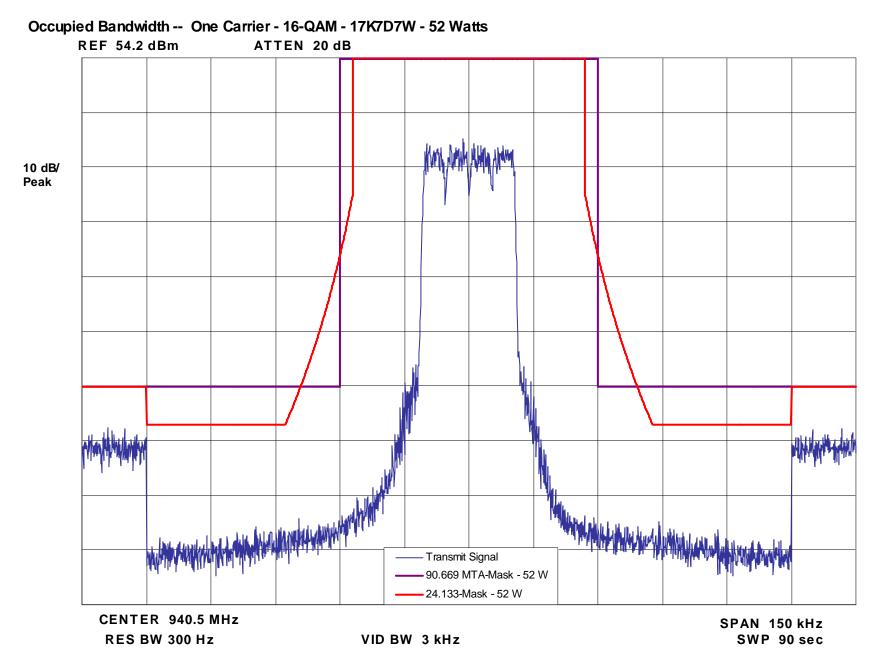

- 1) Adjust the spectrum analyzer per the values specified in the Reference Calibration Analyzer Settings section above.
- 2) Modulate the transmitter with the appropriate signaling pattern, (mixed QAM, pseudorandom data) and key the transmitter at the full power rating. Use the analyzer controls to set this signal to the full-scale reference line. Allow the analyzer to sweep fully, store the sweep, and record the peak value.
- 3) Adjust the analyzer per the values specified in the Emission Measurement Analyzer Settings section above.
- 4) Allow the analyzer to sweep, and record the resultant emission levels.
- 5) Plot the resulting analyzer trace and the emission mask limit, add annotation text and labeling as appropriate. For frequencies 40 kHz or more outside of the edge of authorized bandwidth, the data is adjusted using the factor 10*log(30kHz/300Hz) or 20 dB.

EXHIBIT	DESCRIPTION	Power (Watts, Avg)	Emission Designator
E1-2.3	940.5000 MHz - Part 24 Operation	52 Watts	17K7D7W


Occupied Bandwidth – 800 MHz

Occupied Bandwidth – 900 MHz

Occupied Bandwidth – 900 MHz Part 24 Operation

Report on Test Measurements

Conducted Spurious Emissions, Harmonics and Close-In, 800 MHz Operation

Specification Requirement § 90.210(g) Emission Limits:

Emission *Mask G*. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth:

At least 43 + 10 log (P) dB.

Modulation: Quad-QAM, 64 kbps Random Data

Carrier Frequency: A carrier frequency of 860.0125 MHz was measured. This frequency is near the center of

the operating band 851-870 MHz

EXHIBIT	DESCRIPTION
E1-3.1	800 MHz - Conducted Spurious Emissions, Harmonics, Power Output at 70 Watts
	The specification limit is -61.5 dBc
E1-3.2	800 MHz –Conducted Spurious Emissions, Harmonics, Power Output at 5 Watts
	The specification limit is -50.0 dBc
E1-3.3	800 MHz - Conducted Close-In, 20 MHz Span, Power Output at 70 Watts
	The specification limit is -61.5 dBc
E1-3.4	800 MHz - Conducted Close-In, 200 MHz Span, Power Output at 70 Watts
	The specification limit is -61.5 dBc

Report on Test Measurements

Conducted Spurious Emissions, Harmonics and Close-In, 900 MHz Operation

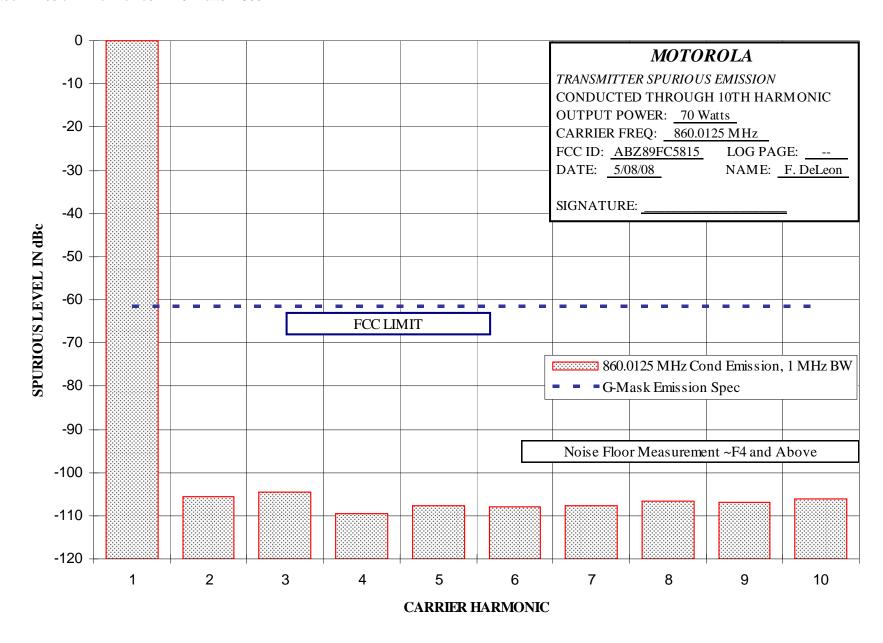
§ 90.669 Emission Limits:

(c) On any frequency in an MTA licensee's spectrum block that is adjacent to a non-MTA frequency, the power of any emission shall be attenuated below the transmitter power (P) by at lease 43 plus 10 log₁₀(P) dB or 80 dB, whichever is the lesser attenuation.

Note: The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

(d) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

Modulation: Quad-QAM, 64 kbps Random Data Per Channel


The specification limit is -60.2 dBc

Carrier Frequency: A carrier frequency of 937.5000 MHz was measured. This frequency is near the center of

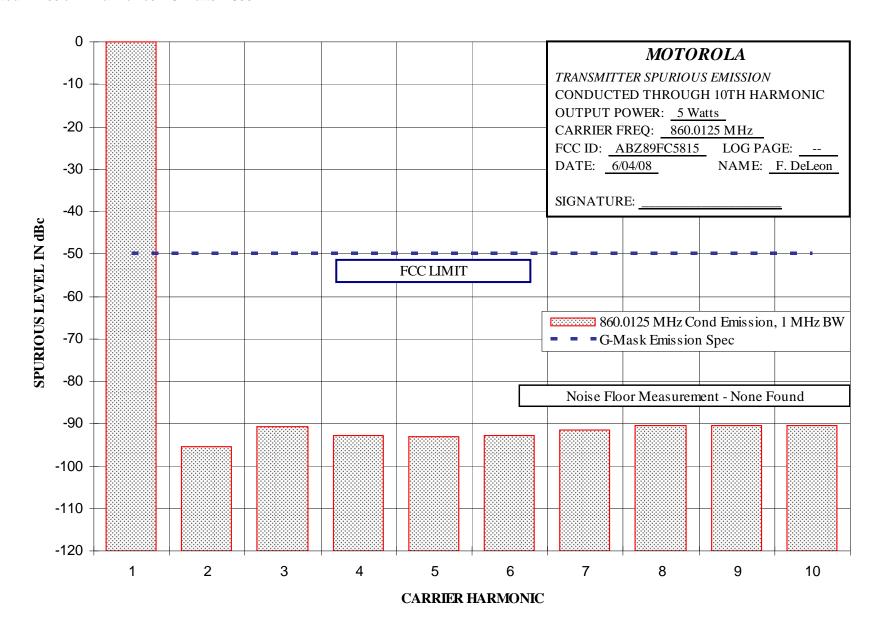
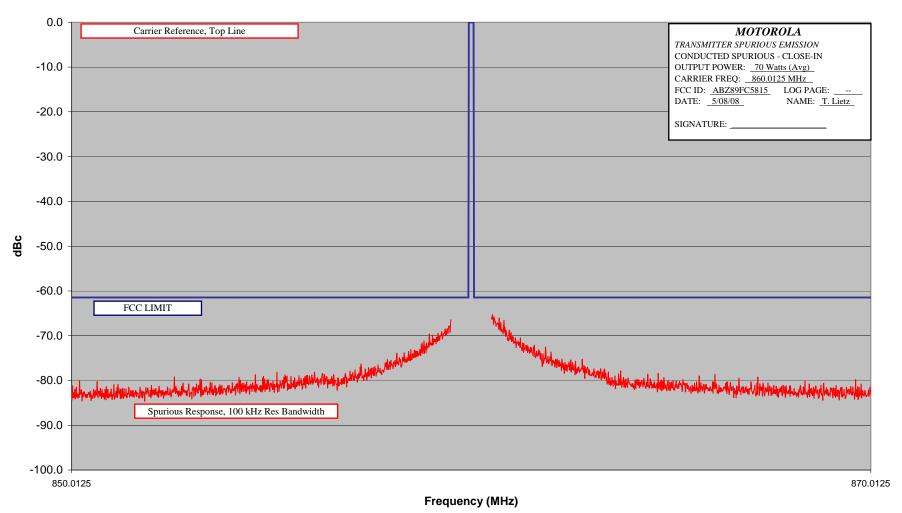
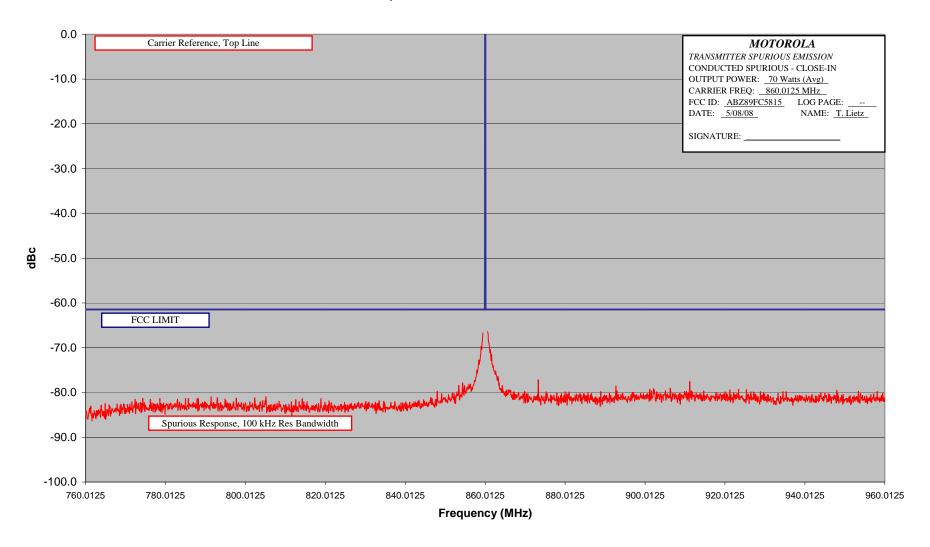
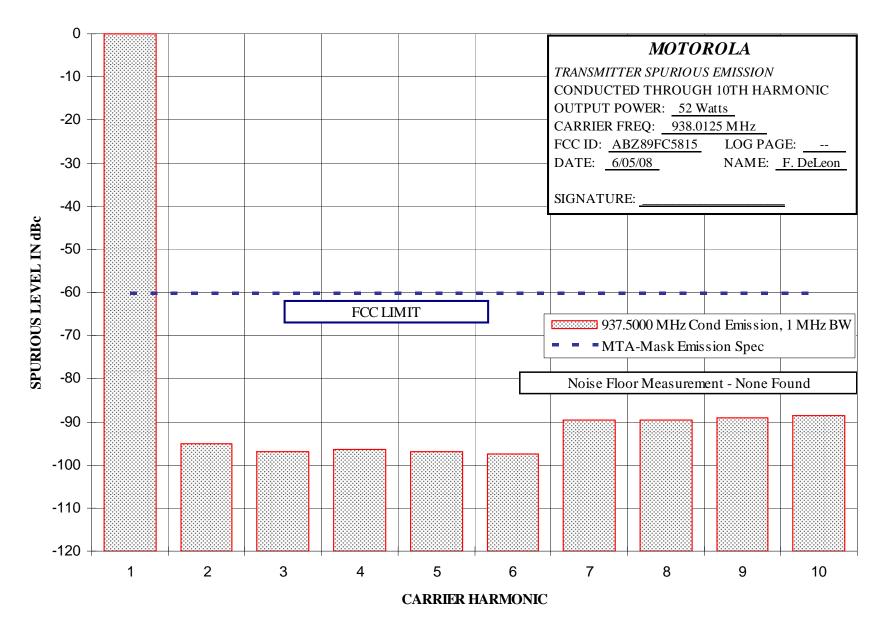

the operating band 935-941 MHz

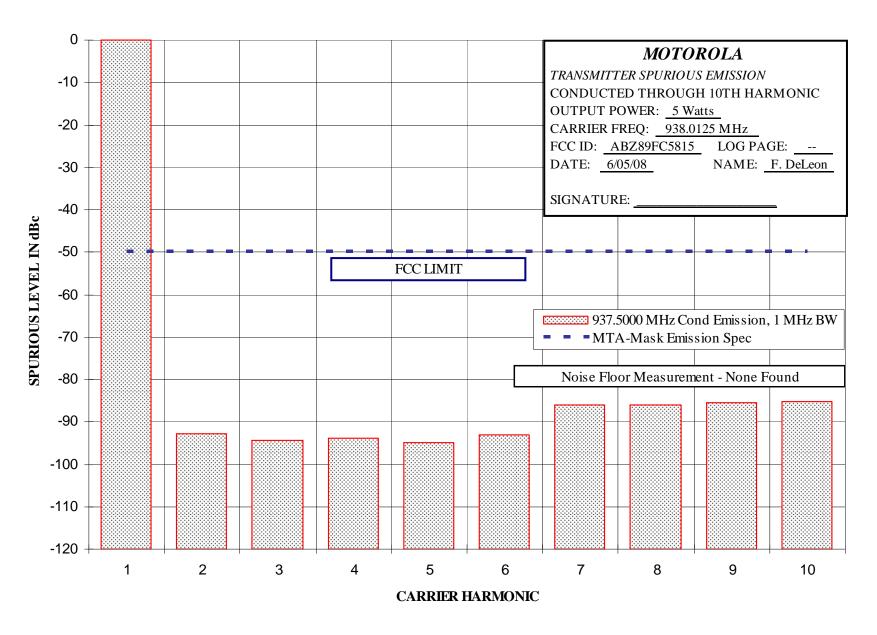
EXHIBIT	DESCRIPTION
E1-3.5	900 MHz - Conducted Spurious Emissions, Harmonics, Power Output at 52 Watts
	The specification limit is -60.2 dBc
E1-3.6	900 MHz -Conducted Spurious Emissions, Harmonics, Power Output at 5 Watts
	The specification limit is -50.0 dBc
E1-3.7	900 MHz -Conducted Close-In, 20 MHz Span, Power Output at 52 Watts
	The specification limit is -60.2 dBc
E1-3.8	900 MHz - Conducted Close-In, 200 MHz Span, Power Output at 52 Watts


Conducted Emission – Harmonics – 70 Watts – 800 MHz


Conducted Emission – Harmonics – 5 Watts – 800 MHz


Report on Test Measurements Conducted Emission – Close-In – 70 Watts – 800 MHz – 20 MHz Span

Conducted Emission - Close-In - 70 Watts - 800 MHz - 200 MHz Span



Conducted Emission - Harmonics - 52 Watts - 900 MHz

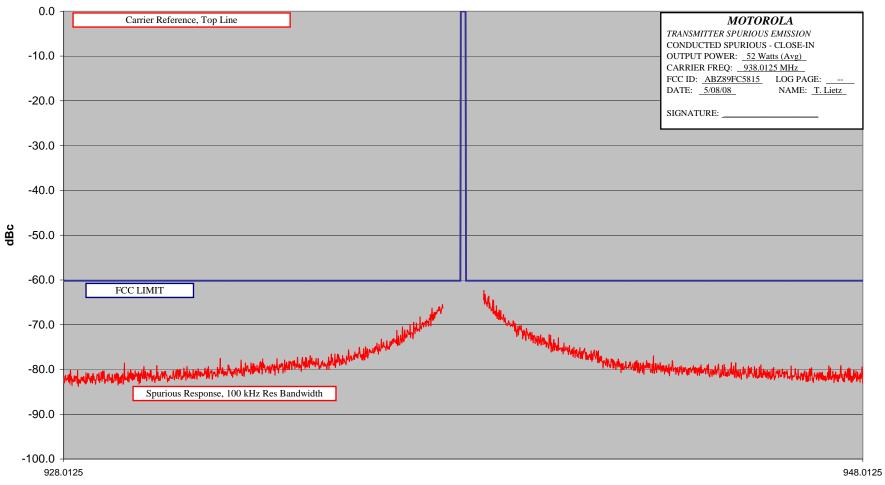
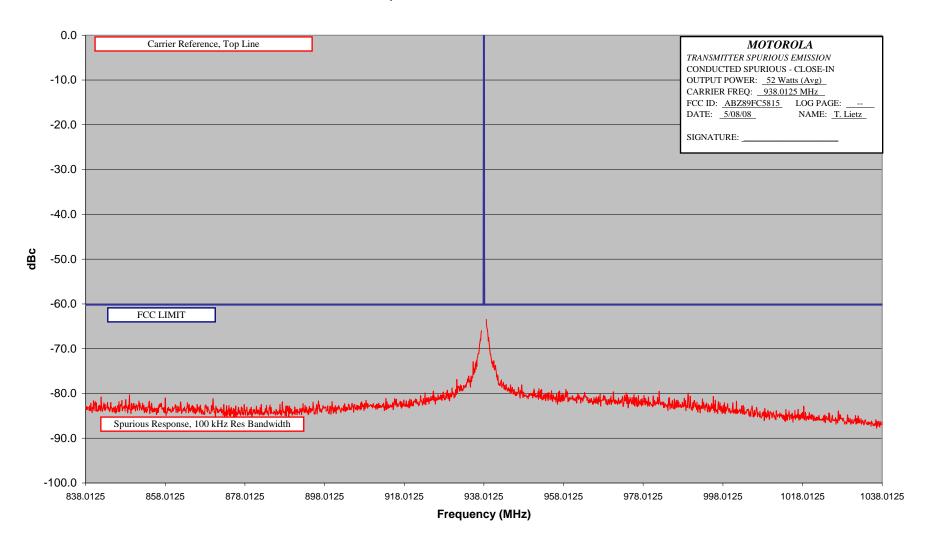


EXHIBIT E1-3.5


Conducted Emission – Harmonics – 5 Watts – 900 MHz

Conducted Emission – Close-In – 52 Watts – 900 MHz – 20 MHz Span

Conducted Emission - Close-In - 52 Watts - 900 MHz - 200 MHz Span

Report on Test Measurements

Radiated Spurious Emissions, Harmonics

Specification Requirement § 90.210(g) Emission Limits:

Emission Mask G. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

Modulation: Quad-QAM, 64 kbps Random Data

Carrier Frequency: A carrier frequency of 860.0125 MHz was measured. This frequency is near the center of

the operating band 851-870 MHz

EXHIBIT DESCRIPTION

E1-4.1 800 MHz - Radiated Spurious Emissions, Harmonics, Power Output at 70 Watts

The specification limit is -61.5 dBc

E1-4.2 800 MHz - Radiated Spurious Emissions, Harmonics, Power Output at 5 Watts

The specification limit is -50.0 dBc

§ 90.669 Emission Limits:

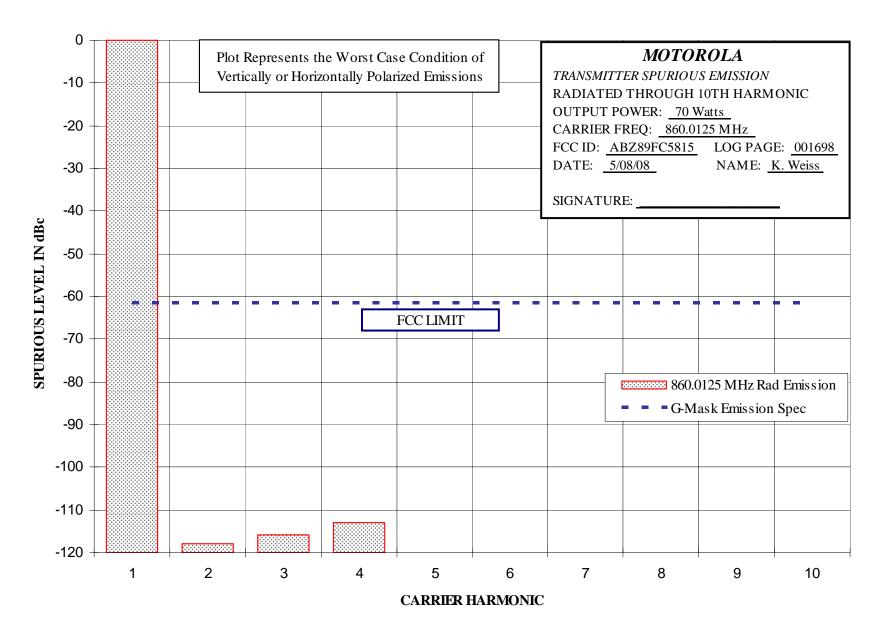
(e) On any frequency in an MTA licensee's spectrum block that is adjacent to a non-MTA frequency, the power of any emission shall be attenuated below the transmitter power (P) by at lease 43 plus 10 $log_{10}(P)$ dB or 80 dB, whichever is the lesser attenuation.

Modulation: Quad-QAM, 64 kbps Random Data Per Channel

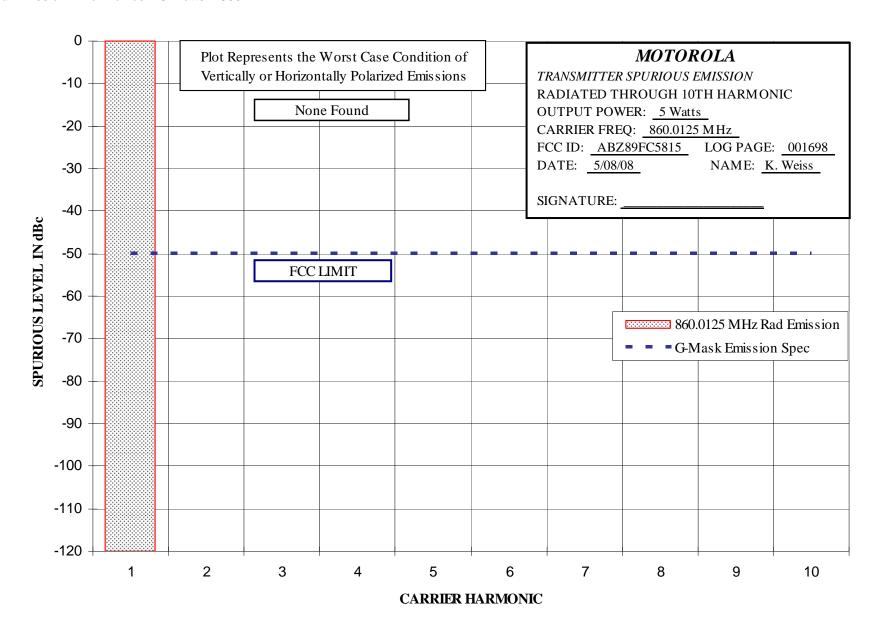
A carrier frequency of 937.5000 MHz was measured. This frequency is near the center of Carrier Frequency:

the operating band 935-941 MHz

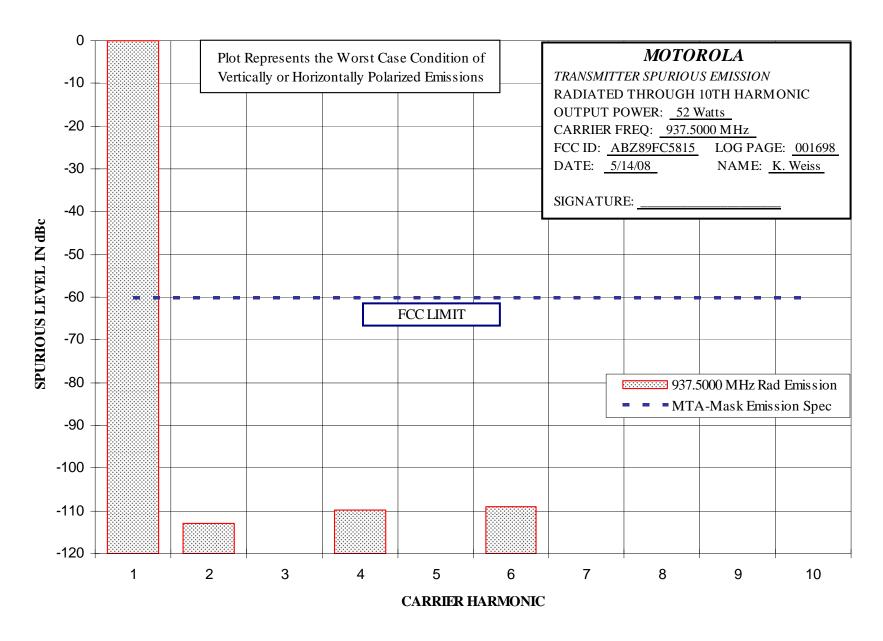
EXHIBIT DESCRIPTION

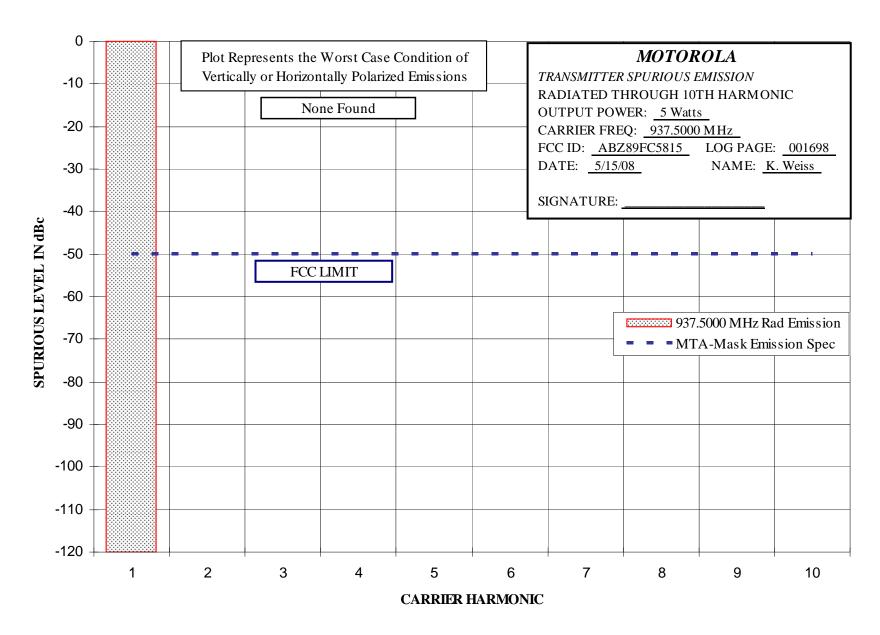

E1-4.3 900 MHz - Radiated Spurious Emissions, Harmonics, Power Output at 52 Watts

The specification limit is -60.2 dBc


E1-4.4 900 MHz - Radiated Spurious Emissions, Harmonics, Power Output at 5 Watts

The specification limit is -50.0 dBc


Radiated Emission – Harmonics – 70 Watts – 800 MHz


Radiated Emission – Harmonics – 5 Watts – 800 MHz

Radiated Emission – Harmonics – 52 Watts – 900 MHz

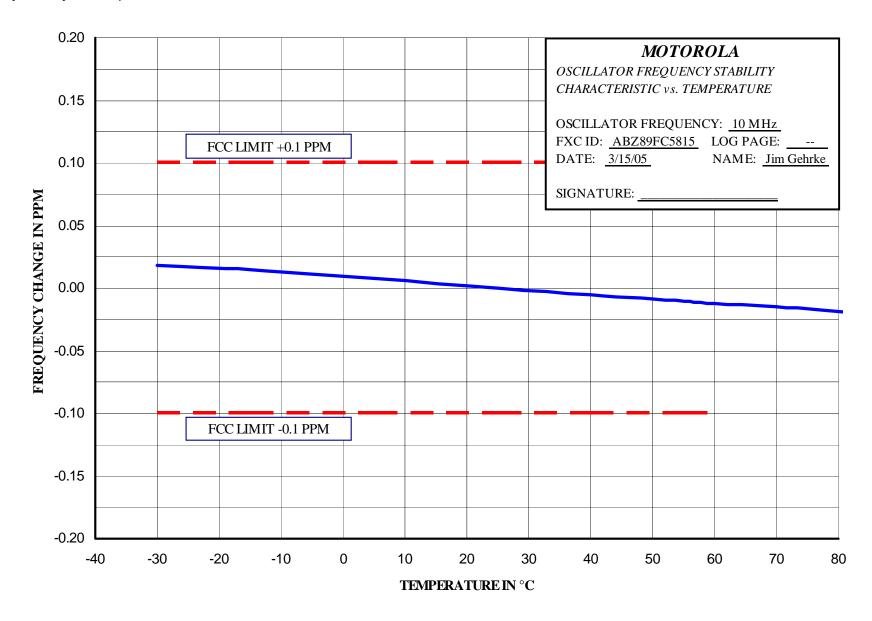
Radiated Emission – Harmonics – 5 Watts – 900 MHz

Report on Test Measurements

Oscillator Frequency Stability

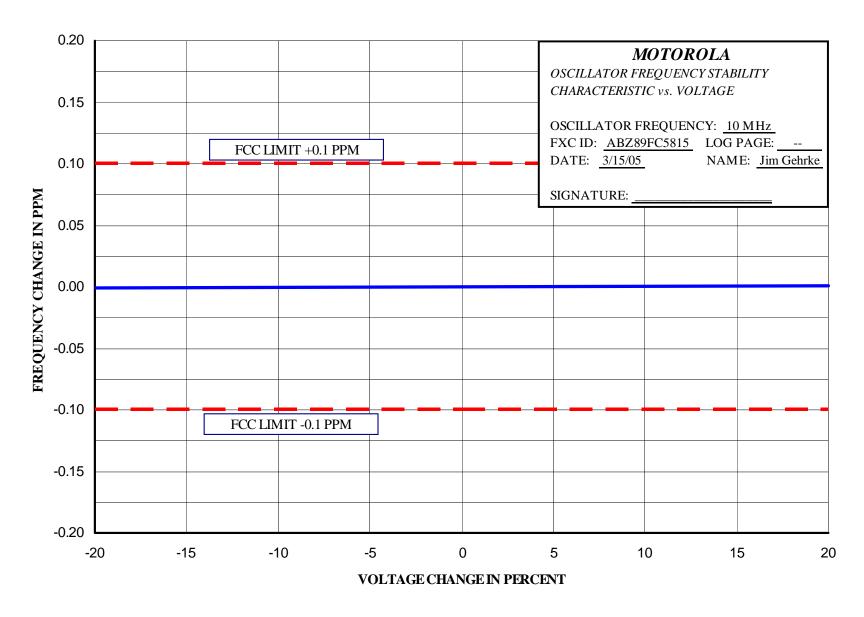
Manufacturer data for the system site frequency standard was used in generation of the following frequency stability exhibits.

Specification Requirement:


Reference: Part 90.213

Fixed and Base stations, operating at 851-866 MHz, must have a frequency stability of better than +/- 1.5 PPM. Fixed and Base stations, operating at 866-869 MHz, must have a frequency stability of better than +/- 1.0 PPM. Fixed and Base stations, operating at 935-940 MHz, must have a frequency stability of better than +/- 0.1 PPM.

<u>EXHIBIT</u>	DESCRIPTION
E1-5.1	Frequency Stability Vs Temperature
E1-5.2	Frequency Stability Vs Voltage


Report on Test Measurements

Frequency Stability Vs Temperature

Report on Test Measurements

Frequency Stability Vs Voltage

Test Equipment List

MODEL	MANUFACTURER	DESCRIPTION	Serial No.	Last Cal	Next Cal
438A	Hewlett Packard	RF Power Meter	3008A07428	10/25/07	10/25/10
8481A	Hewlett Packard	RF Power Sensor	2702A76706	05/09/07	05/09/10
E4443A	Agilent	Spectrum Analyzer	MY43360090	10/16/07	10/16/08
83712A	Hewlett Packard	Signal Generator	3429A00455	no calibration	on required
8671B	Hewlett Packard	Signal Generator	2611A00159	10/24/07	10/24/10
85460A	Hewlett Packard	EMI Analyzer, Filter	3704A00467	07/21/07	07/21/10
85462A	Hewlett Packard	EMI Analyzer, RF/Display	3906A00500	07/21/07	07/21/10
8593E	Hewlett Packard	EMI Analyzer	3513A01649	06/08/07	06/08/10
89441A	Hewlett Packard	Vector Signal Analyzer	3416A00835	08/10/06	08/10/09
(Various)	Weinschel, Kathrein, Bird	RF Loads	Various	no calibration	on required
TWPC-4510-1	Telewave	Cavity	5244	no calibrati	on required
3020A, etc.	Narda	Directional Coupler	Various	no calibration	on required

Statement of Certification

The technical data supplied with this application, having been taken under my supervision is hereby duly certified. The following is a statement of my qualifications:

College Degree:

BSEE, Valparaiso University, Valparaiso, Indiana, USA

MSEE, Illinois Institute of Technology, Chicago, Illinois, USA

<u>26</u> years of Design and Development experience in the field of two-way radio communication.

NAME:

Ken Weiss

SIGNATURE:

DATE:

June 6, 2008

POSITION:

Senior Staff Engineer

I hereby certify that the above application was prepared under my direction and that to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct:

NAME:

Ali Sajanlal

SIGNATURE:

DATE:

June 6, 2008

POSITION:

Engineering Section Manager