Report on Test Measurements

Measurements Report

The measurement report shows compliance information against the pertinent technical standards. Each section of the report contains either verbiage or graphs which show compliance to applicable standards as required. Each section also explains testing method and indicates what the applicable specification is.

A list of test equipment for all sections, and certification signoff page are included at the end of the measurement report.

SUBMITTED MEASURED DATA -- INDEX

EXHIBIT	DESCRIPTION
E1-1	RF Output-Data
E1-2	Occupied Bandwidth: Setup, Specifications, and Index
E1-2.1	Linear Simulcast Modulation (LSM)
E1-2.2	Compatible 4-Level Frequency Modulation (C4FM)
E1-3	Conducted Spurious Emissions: Setup, Specifications, and Index
E1-3.1	LSM Conducted Spurious Emissions, Harmonics, Power 60 Watts, Multiple Frequencies
E1-3.2	LSM Conducted Spurious Emissions, Harmonics, Power 2 Watts, Multiple Frequencies
E1-3.3	C4FM Conducted Spurious Emissions, Harmonics, Power 100 Watts, Multiple Frequencies
E1-3.4	C4FM Conducted Spurious Emissions, Harmonics, Power 2 Watts, Multiple Frequencies
E1-3.5	Conducted Spurious Emissions, Close-In, 100 MHz Span, Power Output at 60 Watts, LSM
E1-3.6	Conducted Spurious Emissions, Close-In, 100 MHz Span, Power Output at 100 Watts, C4FM
E1-4	Radiated Spurious Emissions: Setup, Specifications, and Index
E1-4.1	LSM Radiated Spurious Emissions, Harmonics, Power 60 Watts, Representative Frequency
E1-4.2	LSM Radiated Spurious Emissions, Harmonics, Power 2 Watts, Representative Frequency
E1-4.3	C4FM Radiated Spurious Emissions, Harmonics, Power 100 Watts, Representative Frequency
E1-4.4	C4FM Radiated Spurious Emissions, Harmonics, Power 2 Watts, Representative Frequency

Report on Test Measurements

Measurements Report

SUBMITTED MEASURED DATA - INDEX (Continued)

<u>EXHIBIT</u>	DESCRIPTION
E1-5	Frequency Stability: Setup, Specifications, and Index
E1-5.1	Frequency Stability Vs Temperature
E1-5.2	Frequency Stability Vs Voltage
E1-6	Frequency Transient Behavior: Setup, Specifications, Index
E1-6.1	Frequency Transient Behavior, 12.5 kHz Channel Key-Up, Low End of Band
E1-6.2	Frequency Transient Behavior, 12.5 kHz Channel Key-Up, Middle of Band
E1-6.3	Frequency Transient Behavior, 12.5 kHz Channel Key-Up, High End of Band
E1-6.4	Frequency Transient Behavior, 12.5 kHz Channel De-key, Low End of Band
E1-6.5	Frequency Transient Behavior, 12.5 kHz Channel De-key, Middle of Band
E1-6.6	Frequency Transient Behavior, 12.5 kHz Channel De-key, High End of Band
E1-11	Test Equipment Used
F1-12	Statement of Certification

Report on Test Measurements

RF Power Output Data

The RF power output was measured with the indicated voltage applied to and current into the final RF amplifying device. The DC current indicated is the total for the final RF amplifier stage, consisting of four parallel power transistors.

Linear Simulcast Modulation Mode:

Measured RF output DC Voltage DC Current Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	60 23.9 9.7 230 120	Watts, Average Volts Amperes Watts Volts AC
Minimum Measured RF output Normal DC Voltage Normal DC Current Input power for final RF amplifying device(s)	2 21.0 3.4 70	Watts, Average Volts Amperes Watts

Volts AC

Compatible 4-Level Frequency Modulation Mode:

Primary Radio Input Supply Voltage

Measured RF output DC Voltage DC Current Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	100 21.5 13.4 290 120	Watts Volts Amperes Watts Volts AC
Minimum Measured RF output Normal DC Voltage Normal DC Current Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	2 21.0 3.4 70 120	Watts, Average Volts Amperes Watts Volts AC

Report on Test Measurements

Occupied Bandwidth - Linear Simulcast Modulation (LSM), 12.5 kHz Channel Spacing

There is one exhibit shown for Linear Simulcast Modulation. It can be used in a system configuration based upon channel usage as described in Exhibit B. The occupied bandwidth chart references the following setup and specification requirements.

Modulation Type: Linear Simulcast Modulation, LSM

Emission Designator: 8K70D1W Channelization: 12.5 kHz

Power Setting: 60 Watts, Average

Specification Requirement § 90.210(d) Emission Limits:

Emission *Mask D.* For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(1) On any frequency from the center of the authorized bandwidth (f₀) to 5.625 kHz removed from f₀: Zero dB

- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27 *(f_d –2.88 kHz) dB
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz:

 At least 50 plus 10 log₁₀(P) dB or 70 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide to capture the true peak emission of the equipment under test. In order to show compliance with the emissions mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to ensure that the emission profile is developed.

<u>Necessary Bandwidth Calculation</u>: The necessary bandwidth of the modulation signal is not calculable per the formulas defined in 47 CFR 2.202 (b). Specifically, although the modulation for this emission is a composite modulation, the equations given in the composite tables in 2.202 are not applicable since none of them adequately approximate the form of digital modulation used. The necessary bandwidth of 8.70 kHz is based upon a 99% power measurement of the transmitter spectrum, per 2.202 (a).

Measurement Procedure and Instrument Settings:

Emission Measurement Analyzer Settings:

Horizontal: 12.5 kHz per Division Resolution Bandwidth: 100 Hz
Vertical: 10 dB per Division Video Bandwidth: 10 kHz
Sweep Time: 72 Seconds (<2000 Hz / Second) Span: 125 kHz

Detector Mode: Peak

Test Procedure:

- 1) Adjust the spectrum analyzer per the values specified in the Emission Measurement Analyzer Settings.
- 2) Modulate the transmitter with the appropriate signaling pattern, (pseudorandom data) and key the transmitter at the full power rating. Use the analyzer controls to set this signal to the full-scale reference line. Allow the analyzer to sweep fully and store the sweep.
- 3) Use the band power marker function of the spectrum analyzer to measure the power of the carrier in a 12.5 kHz bandwidth.
- 4) Use the carrier power value from the previous step to generate the emission mask limit.
- 5) Plot the resulting analyzer trace and the emission mask limit, add text and labeling as appropriate.

EXHIBIT DESCRIPTION E1 2.1 Linear Simulated Mediulation (LSM)

E1-2.1 Linear Simulcast Modulation (LSM)

Report on Test Measurements

Occupied Bandwidth – Compatible 4-Level Frequency Modulation (C4FM), 12.5 kHz Channel Spacing There is one exhibit shown for C4FM. It can be used in a system configuration based upon channel usage as described in Exhibit B. The occupied bandwidth chart references the following setup and specification requirements.

Modulation Type: Compatible 4-Level Frequency Modulation, C4FM

Emission Designator: 8K10F1E Channelization: 12.5 kHz Power Setting: 100 Watts

Specification Requirement § 90.210(d) Emission Limits:

Emission *Mask D.* For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(1) On any frequency from the center of the authorized bandwidth (f₀) to 5.625 kHz removed from f₀: Zero dB

- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz:

 At least 7.27 *(f_d –2.88 kHz) dB
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz:

 At least 50 plus 10 log₁₀(P) dB or 70 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide to capture the true peak emission of the equipment under test. In order to show compliance with the emissions mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to ensure that the emission profile is developed.

Necessary Bandwidth Calculation: An occupied bandwidth of 8.10 kHz was measured for this emission, per 2.202 paragraph (a) of the Rules and Regulations, as that bandwidth which contains 99% of the power in the transmitted signal. For this system, the necessary bandwidth has been chosen to be the same as the occupied bandwidth, thereby per paragraph (b) (2), the necessary bandwidth is 8K10.

Measurement Procedure and Instrument Settings:

Emission Measurement Analyzer Settings:

Horizontal: 12.5 kHz per Division Resolution Bandwidth: 100 Hz
Vertical: 10 dB per Division Video Bandwidth: 10 kHz
Sweep Time: 72 Seconds (<2000 Hz / Second) Span: 125 kHz

Detector Mode: Peak

Test Procedure:

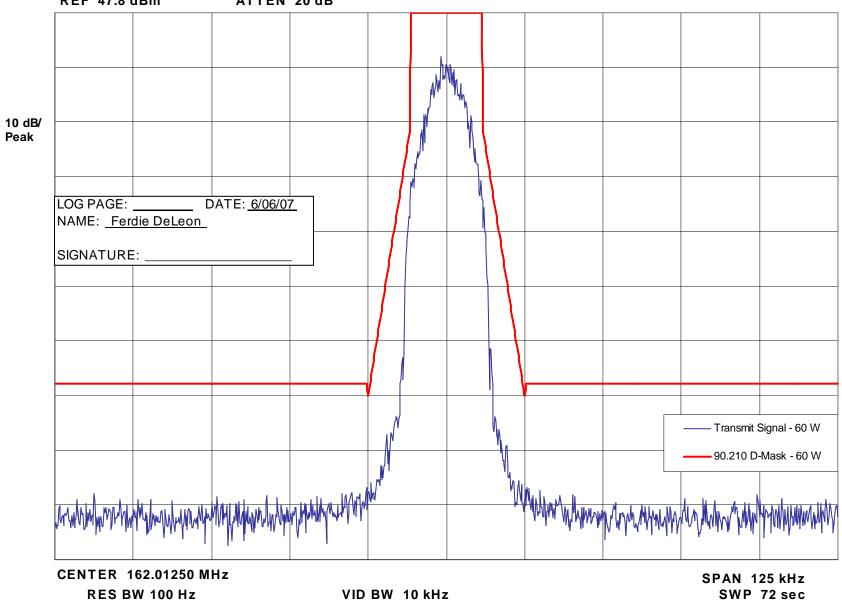
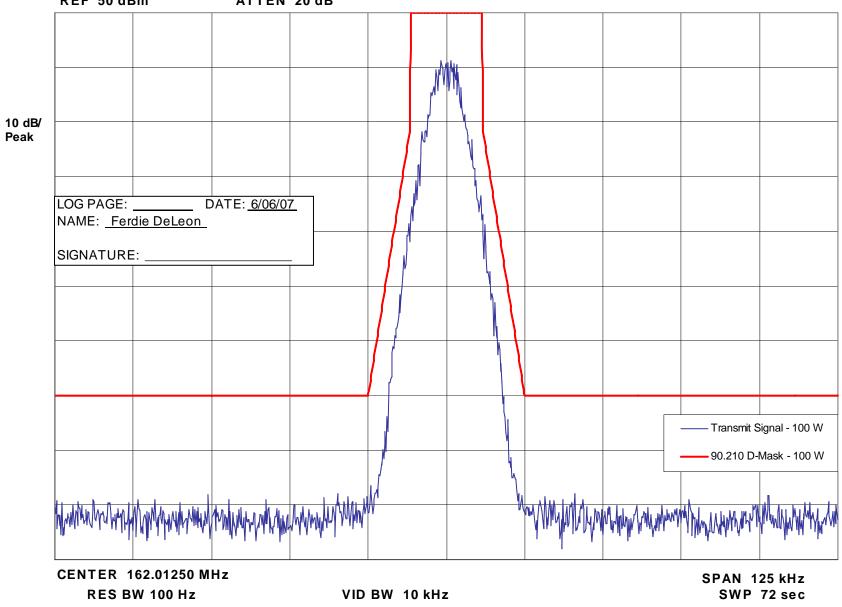

- 1) Adjust the spectrum analyzer per the values specified in the Emission Measurement Analyzer Settings.
- 2) Modulate the transmitter with the appropriate signaling pattern, (pseudorandom data) and key the transmitter at the full power rating. Use the analyzer controls to set this signal to the full-scale reference line. Allow the analyzer to sweep fully and store the sweep.
- 3) Use the band power marker function of the spectrum analyzer to measure the power of the carrier in a 12.5 kHz bandwidth.
- 4) Use the carrier power value from the previous step to generate the emission mask limit.
- 5) Plot the resulting analyzer trace and the emission mask limit, add text and labeling as appropriate.

EXHIBIT DESCRIPTION

E1-2.2 Compatible 4-Level Frequency Modulation (C4FM)

Occupied Bandwidth - Linear Simulcast Modulation (LSM)



Report on Test Measurements

Occupied Bandwidth - Compatible 4-Level Frequency Modulation (C4FM)

Report on Test Measurements

Conducted Spurious Emissions, Harmonics and Close-In

Specification Requirement § 90.210(d) Emission Limits:

Emission *Mask D:* For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz:

At least 50 plus 10 log₁₀(P) dB or 70 dB, whichever is the lesser attenuation.

Modulation: Linear Simulcast Modulation (LSM) or Compatible 4-Level Frequency Modulation (C4FM)

as indicated - Pseudorandom data


Carrier Frequencies: Carrier frequencies of 138.0125, 150.0125, 162.0125, and 173.9875 MHz were measured

for conducted carrier harmonics. These frequencies represent the low end, center, and high end of the 136-174 MHz band, and are representative of the full 136-174 MHz operating band. A representative frequency of 162.0125 was used for the close-in

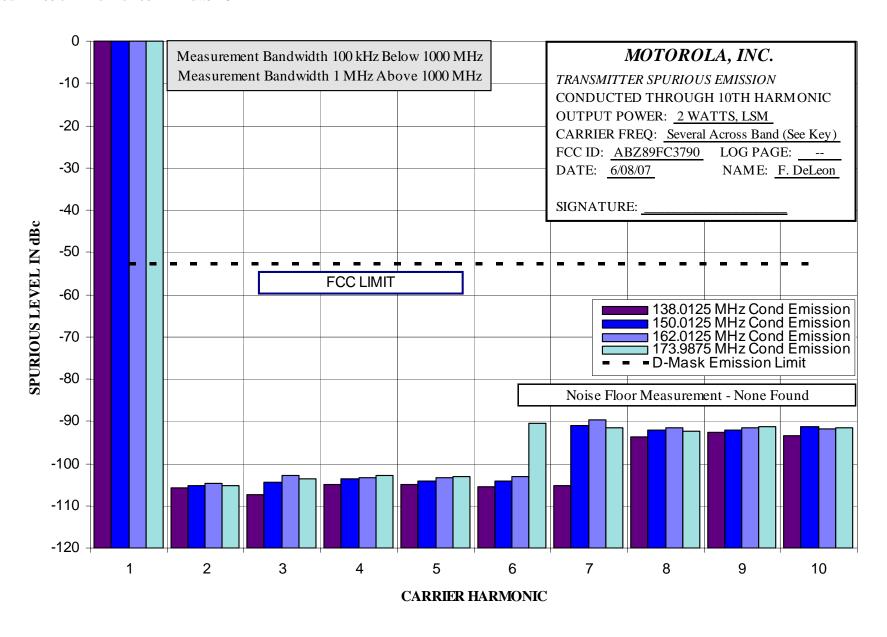
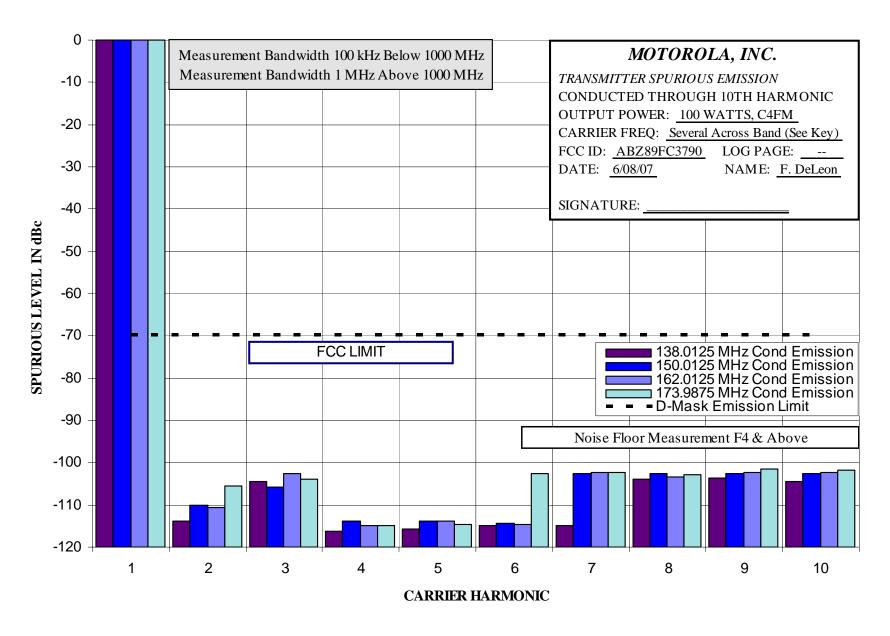
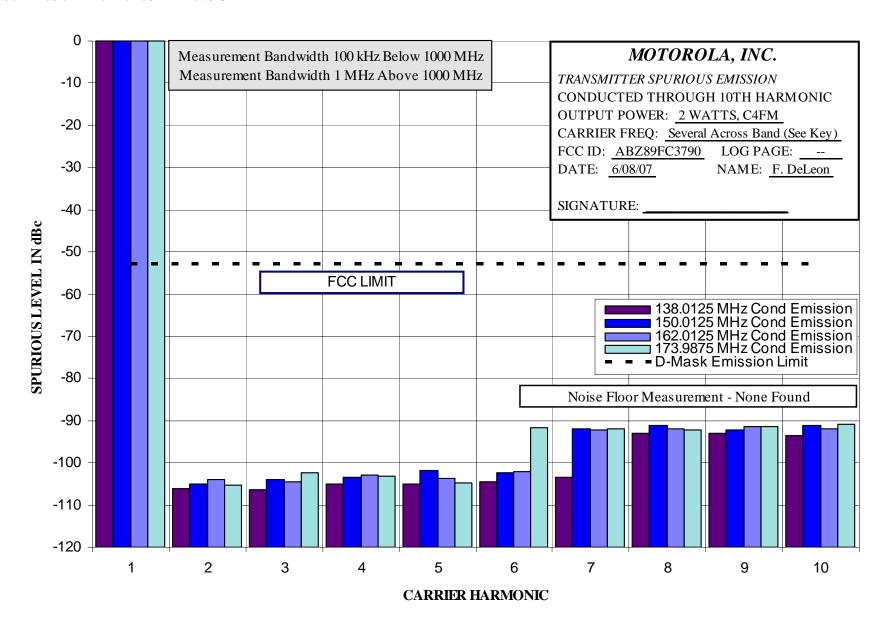
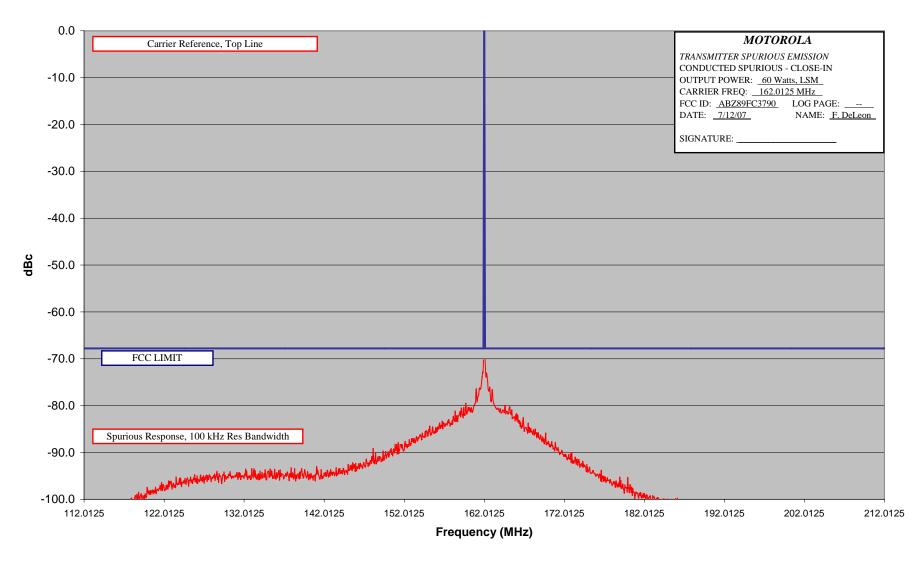
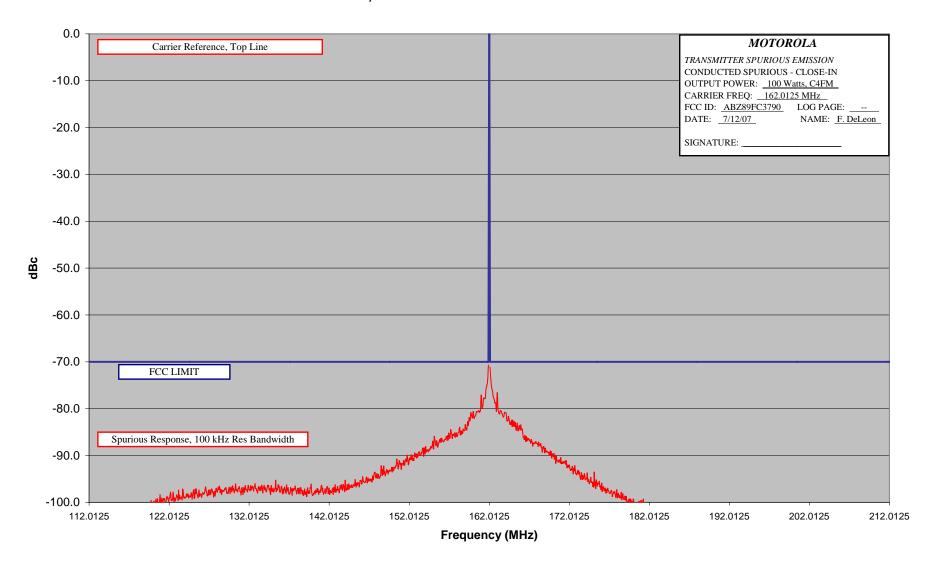

conducted measurements.

EXHIBIT	DESCRIPTION
E1-3.1	Conducted Spurious Emissions, Harmonics, Power Output 60 Watts, LSM The specification limit is -67.8 dBc
E1-3.2	Conducted Spurious Emissions, Harmonics, Power Output 2 Watts, LSM The specification limit is -53.0 dBc
E1-3.3	Conducted Spurious Emissions, Harmonics, Power Output 100 Watts, C4FM The specification limit is -70.0 dBc
E1-3.4	Conducted Spurious Emissions, Harmonics, Power Output 2 Watts, C4FM The specification limit is -53.0 dBc
E1-3.5	Conducted Spurious Emissions, Close-In, 100 MHz Span, Power Output at 60 Watts, LSM The specification limit is -67.8 dBc
E1-3.6	Conducted Spurious Emissions, Close-In, 100 MHz Span, Power Output at 100 Watts, C4FM The specification limit is -70.0 dBc


Conducted Emission – Harmonics – 60 Watts LSM


Conducted Emission – Harmonics – 2 Watts LSM


Conducted Emission - Harmonics - 100 Watts C4FM


Conducted Emission – Harmonics – 2 Watts C4FM

Conducted Emission – Close-In – 60 Watts LSM – 100 MHz Span

Conducted Emission - Close-In - 100 Watts C4FM - 100 MHz Span

Report on Test Measurements

Radiated Spurious Emissions, Harmonics

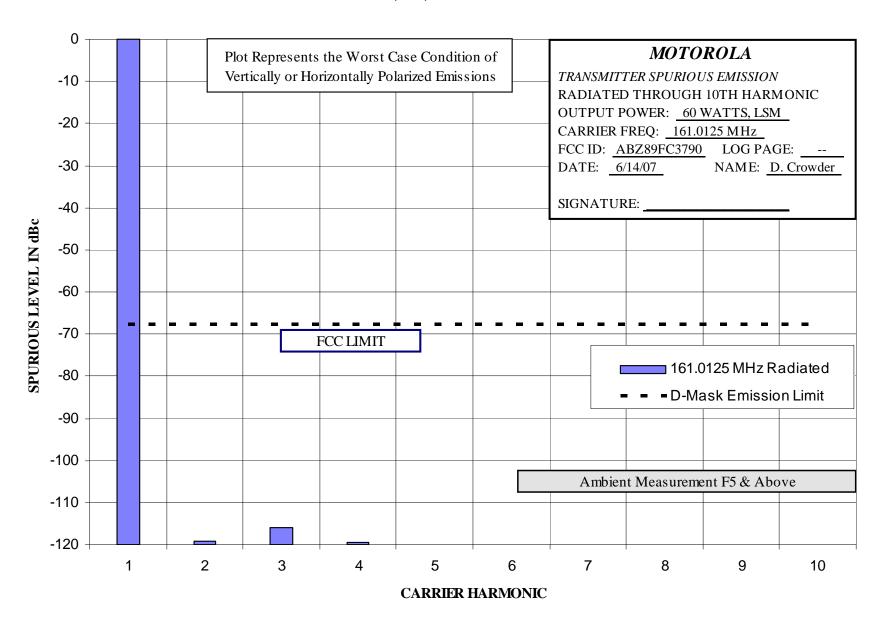
Specification Requirement § 90.210(d) Emission Limits:

Emission *Mask D:* For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz:

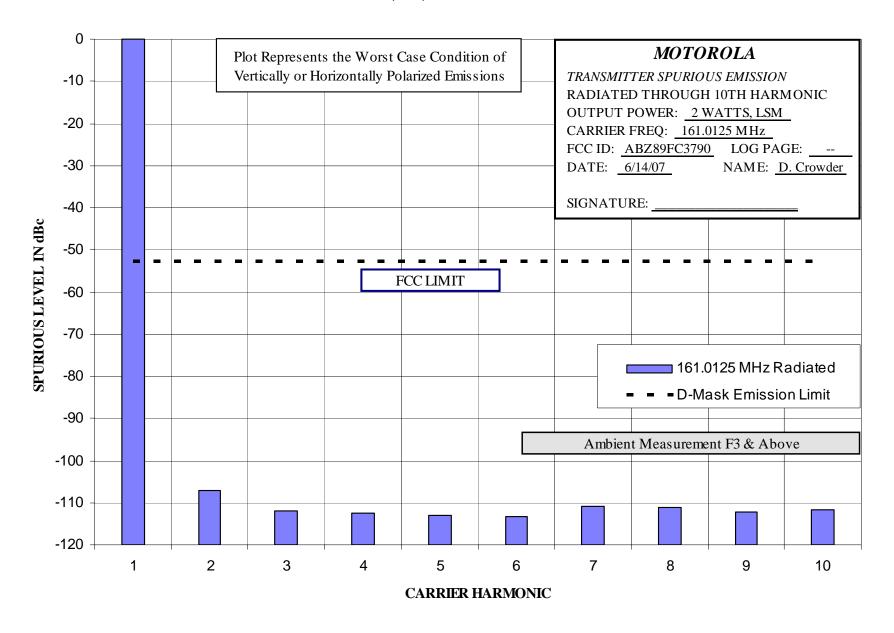
At least 50 plus 10 log₁₀(P) dB or 70 dB, whichever is the lesser attenuation.

Modulation: Linear Simulcast Modulation (LSM) or Compatible 4-Level Frequency Modulation (C4FM)

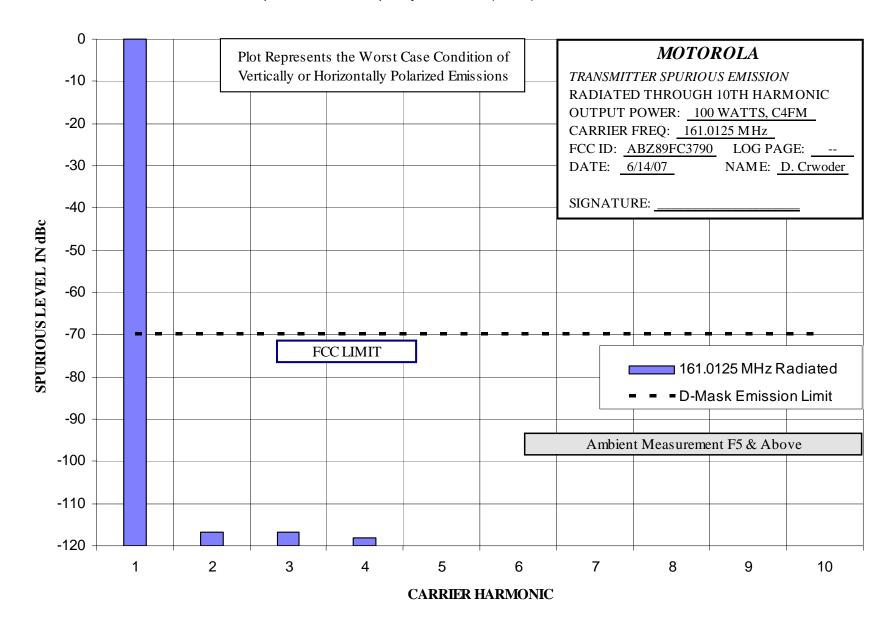

as indicated - Pseudorandom data

Carrier Frequencies: A carrier frequency of 161.0125 MHz was measured. The radiated result at this frequency

is representative of performance across the 136-174 MHz operating band

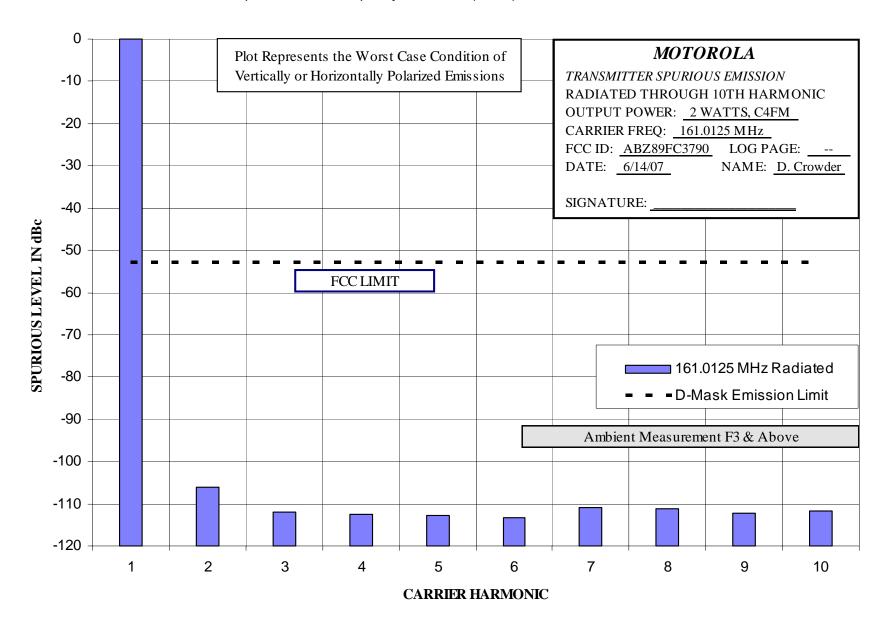

EXHIBIT	DESCRIPTION
E1-4.1	Radiated Spurious Emissions, Harmonics, Power Output 60 Watts, LSM
	The specification limit is -67.8 dBc
E1-4.2	Radiated Spurious Emissions, Harmonics, Power Output 2 Watts, LSM
	The specification limit is -53.0 dBc
E1-4.3	Radiated Spurious Emissions, Harmonics, Power Output 100 Watts, C4FM
	The specification limit is -70.0 dBc
E1-4.4	Radiated Spurious Emissions, Harmonics, Power Output 2 Watts, C4FM
	The specification limit is -53.0 dBc

Radiated Emission - Harmonics - 60 Watts - Linear Simulcast Modulation (LSM)



Report on Test Measurements

Radiated Emission – Harmonics – 2 Watts – Linear Simulcast Modulation (LSM)



Radiated Emission – Harmonics – 100 Watts – Compatible 4-Level Frequency Modulation (C4FM)

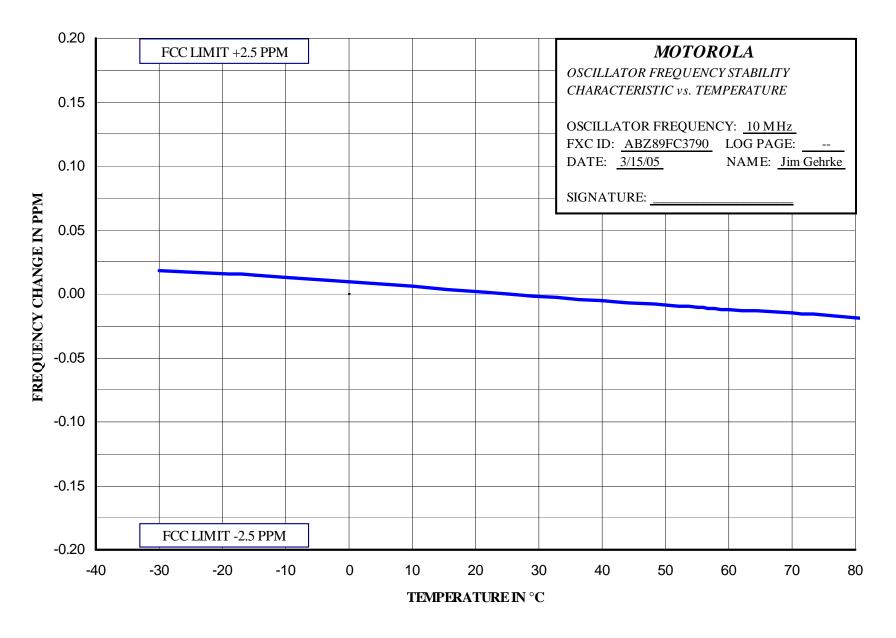
Report on Test Measurements

Radiated Emission – Harmonics – 2 Watts – Compatible 4-Level Frequency Modulation (C4FM)

Report on Test Measurements

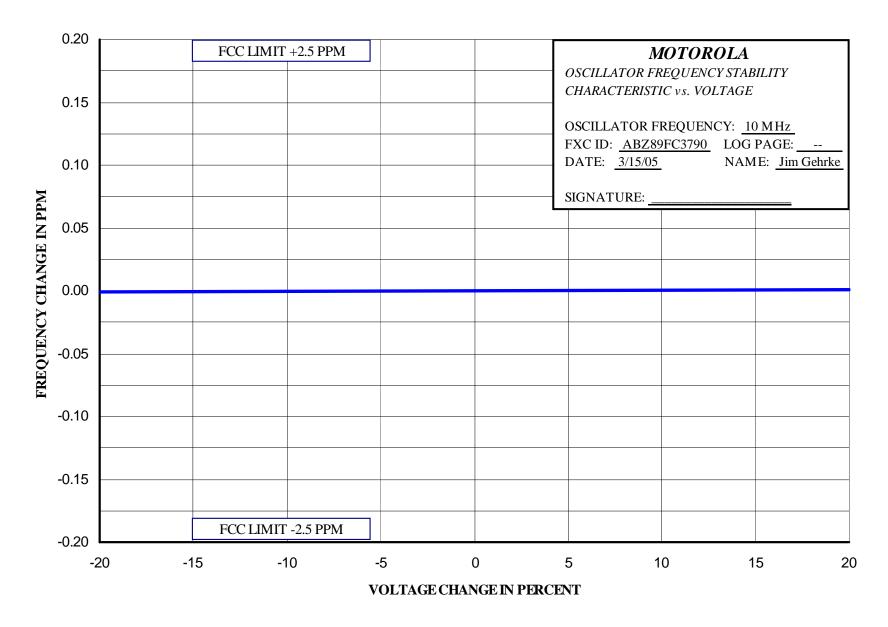
Oscillator Frequency Stability

Manufacturer data for the system site frequency standard was used in generation of the following frequency stability exhibits.


Specification Requirement: Reference Part 90.213

Fixed and Base stations operating at 150-174 MHz and 12.5 kHz channel bandwidth must have a frequency stability of better than +/- 2.5 PPM.

<u>EXHIBIT</u>	DESCRIPTION
E1-5.1	Frequency Stability Vs Temperature
E1-5.2	Frequency Stability Vs Voltage


Report on Test Measurements

Frequency Stability Vs Temperature

Report on Test Measurements

Frequency Stability Vs Voltage

Report on Test Measurements

Frequency Transient Behavior

Specification Requirement: Reference Part 90.214

Transmitters designed to operate in the 150-174 MHz frequency band with 12.5 kHz channel operation must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated below:

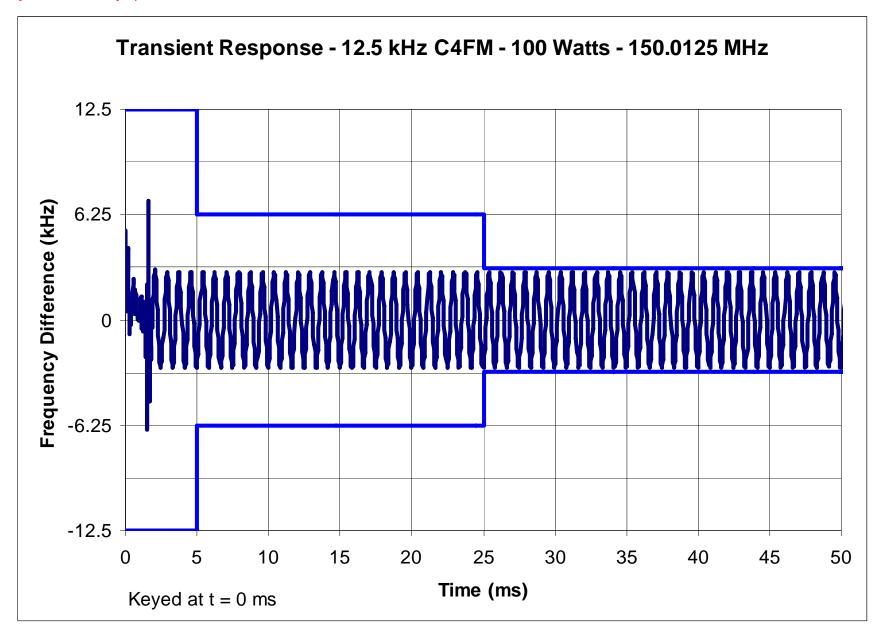
Transient Frequency Behavior 12.5 kHz Channels

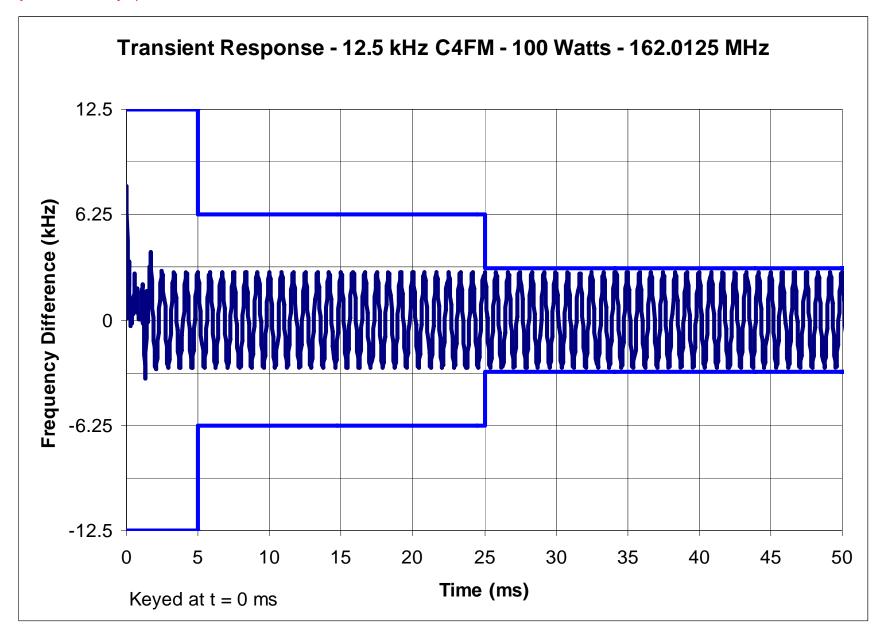
For time intervals:

a. t_1 =5 ms Maximum Frequency Difference ±12.5 kHz b. t_2 = 20 ms Maximum Frequency Difference ±6.25 kHz c. t_3 = 5 ms Maximum Frequency Difference ±12.5 kHz

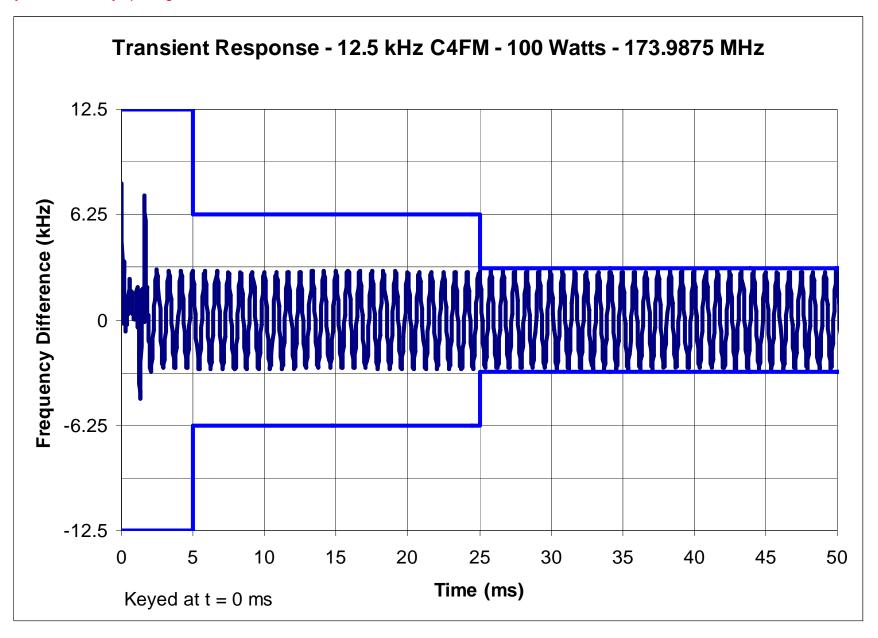
Where t_1 is the time period immediately following when the transmitter is turned on at ton, t_2 is the time period immediately following t_1 , and t_3 is the time from when the transmitter is turned off at t_{off} .

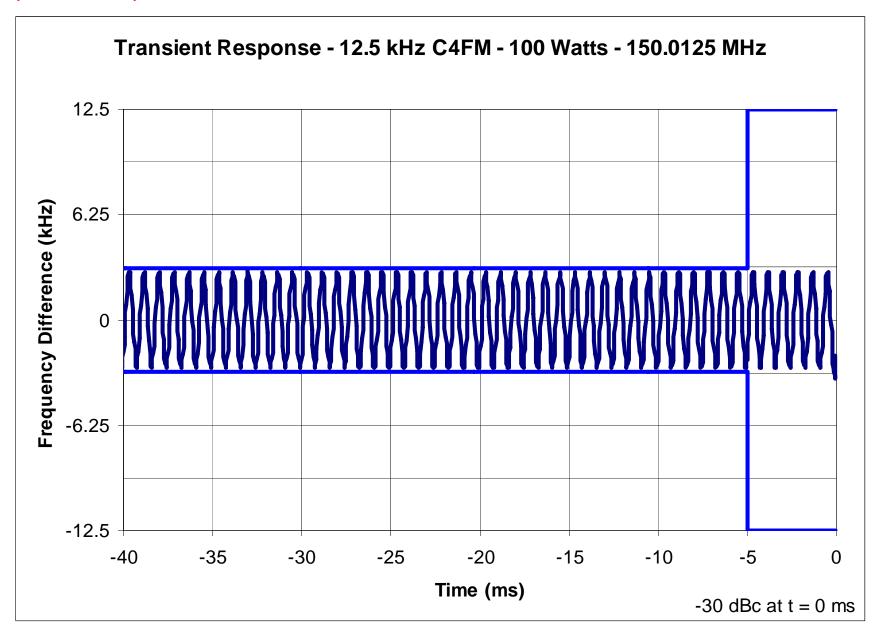
Modulation: Compatible 4-Level Frequency Modulation (C4FM) – Pseudorandom data

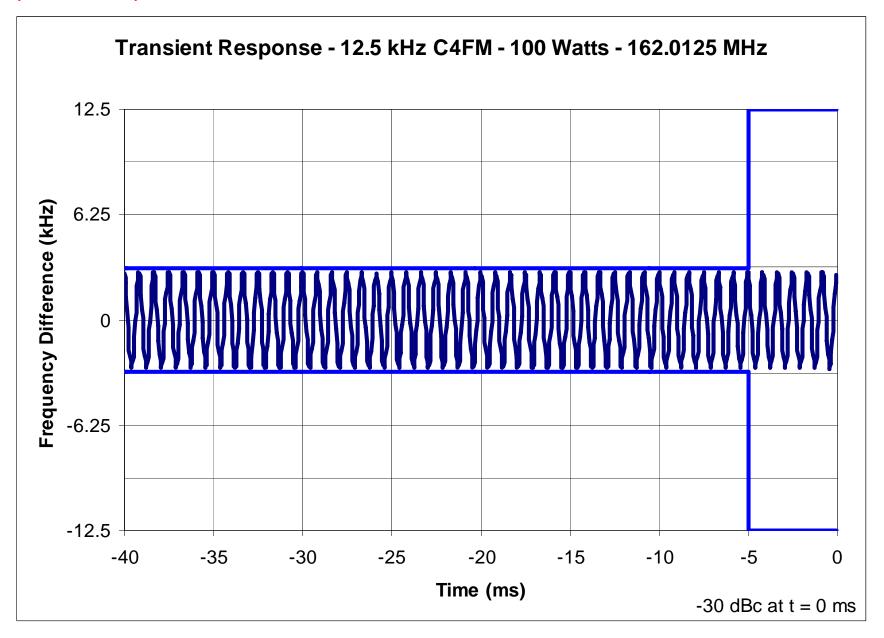

Carrier Frequencies: Carrier frequencies of 150.0125, 162.0125, and 173.9875 MHz were measured. These

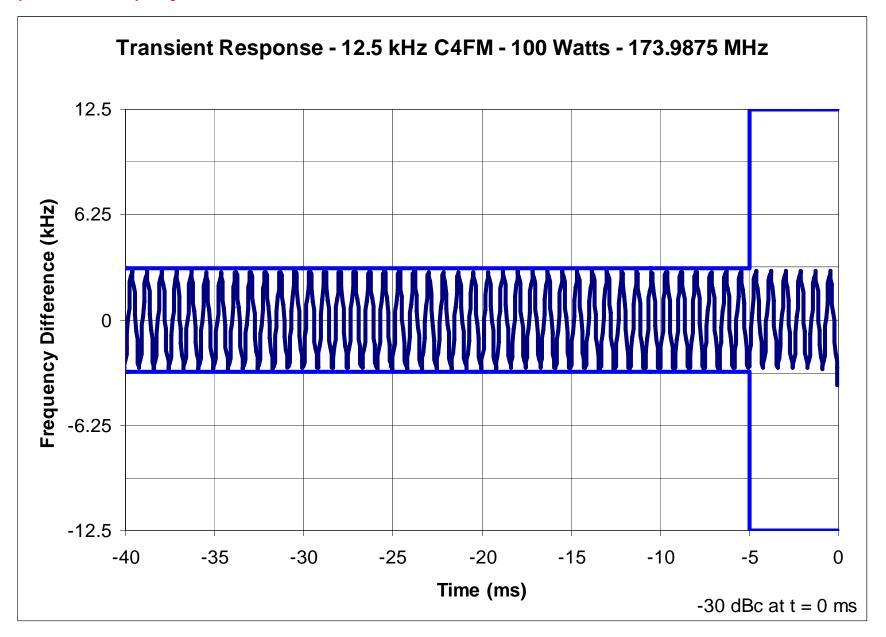

frequencies represent the low end, center, and high end of the 150-174 MHz (Part 90)

operating band


EXHIBIT	DESCRIPTION
E1-6.1	Frequency Transient Behavior, 12.5 kHz Channel Key-Up, Low End of Band
E1-6.2	Frequency Transient Behavior, 12.5 kHz Channel Key-Up, Middle of Band
E1-6.3	Frequency Transient Behavior, 12.5 kHz Channel Key-Up, High End of Band
E1-6.4	Frequency Transient Behavior, 12.5 kHz Channel De-key, Low End of Band
E1-6.5	Frequency Transient Behavior, 12.5 kHz Channel De-key, Middle of Band
E1-6.6	Frequency Transient Behavior, 12.5 kHz Channel De-key, High End of Band


The unit was tested at various power levels across the operating range. Power level was found to be irrelevant to performance according to this standard.




Frequency Transient - Key-up - High End of Band

Frequency Transient - De-key - Middle of Band

Test Equipment List

MODEL	MANUFACTURER	DESCRIPTION	Serial No.	Last Cal	Next Cal
438A	Hewlett Packard	RF Power Meter	3513U06093	10/24/05	10/24/08
8481A	Hewlett Packard	RF Power Sensor	3318A90348	11/19/04	11/19/07
E4443A	Agilent	Spectrum Analyzer	MY43360090	12/05/06	12/05/07
83712A	Hewlett Packard	Signal Generator	3429A00455	no calibration required	
8671B	Hewlett Packard	Signal Generator	2611A00159	11/08/04	11/08/07
85460A	Hewlett Packard	EMI Analyzer, Filter	3704A00467	11/03/06	11/03/09
85462A	Hewlett Packard	EMI Analyzer, RF/Display	3906A00500	11/03/06 11/03/09	
89441A	Hewlett Packard	Vector Signal Analyzer	US39312617	10/24/06	10/24/09
(Various)	Weinschel, Kathrein, Bird	RF Loads	Various	no calibration required	
89-37-06-CM	Tx/Rx System inc	Cavity	9666A	no calibrati	ion required
3020A, etc.	Narda	Directional Coupler	Various	no calibrati	ion required

ELITE ELECTRONIC ENG. INC. Page: 1							Page: 1
Eq ID Equipment Descri	ption Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Cal Inv	Due Date
XPQ3 HIGH PASS FILTER XZG4 ATTENUATOR/SWITC		4IH30-1804/T RD 11713A	2 4 2223A01683	1.8GHZ-10GHZ		12 N/A	
APK4 PREAMPLIFIER OPT	HO2 HEWLETT PACKA	RD 8449B	3008A00329	1-26.5GHZ	03/12/07	12	03/12/08
NDQ1 TUNED DIPOLE ANT NTAO BILOG ANTENNA NWFO RIDGED WAVE GUID	CHASE EMC LTD	3121C-DB4 . BILOG CBL611 3105	313 2057 2035	400-1000MHZ 0.03-2GHZ 1-12.4GHZ	03/28/07 08/21/06 10/09/06	12	03/28/08 08/21/07 10/09/07
T1EA 10DB, 25W ATTENU	MATOR WEINSCHEL	46-10-34	BN2316	DC-18GHZ	03/22/07	12	03/22/08
CDS2 COMPUTER	GATEWAY	MFATXPNT NMZ	0028483108	1.8GHZ		N/A	
PLL9 50UH LISN 462D PLLA 50UH LISN 462D	ELITE ELITE	462D/70A 462D/70A	010 011	0.01-400MHZ 0.01-400MHZ	03/08/07 03/08/07		03/08/08 03/08/08
HRE1 LASER JET 5P	HEWLETT PACKA	RD C3150A	USHB061052			N/A	
RACA RF PRESELECTOR RAEC SPECTRUM ANALYZE RAF5 QUASIPEAK ADAPTO		RD 8566B	2926A00980 3014A06690 2043A00151	20HZ-2GHZ 100HZ-22GHZ 0.01-1000MHZ	02/16/07 02/16/07 02/16/07	12	02/16/08 02/16/08 02/16/08

Cal. Interval: Listed in Months I/O: Initial Only N/A: Not Applicable

Note 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

EQUIPMENT TYPE: ABZ89FC3790

Report on Test Measurements

Statement of Certification

The technical data supplied with this application, having been taken under my supervision is hereby duly certified. The following is a statement of my qualifications:

College Degree:

BSEE, Valparaiso University, Valparaiso, Indiana, USA

MSEE, Illinois Institute of Technology, Chicago, Illinois, USA

__25___ years of Design and Development experience in the field of two-way radio communication.

NAME:

Ken Weiss

SIGNATURE:

DATE:

August 2, 2007

POSITION:

Senior Staff Engineer

I hereby certify that the above application was prepared under my direction and that to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct:

NAME:

Ali Sajanlal

SIGNATURE:

DATE:

August 2, 2007

POSITION:

Engineering Section Manager