

EXHIBIT 2A

S8000 Radio Report

Applicant: Northern Telecom Ltd.

For Certification on:

AB60UD850S8000

Document number:

PE/BTS/DJD/2630

Document issue:

01.01 / EN

Document status:

Approved

Date:

24/APR/2002

RF Tests concerning FCC Part 22 are performed by RF GSM Department In laboratory 007 - Nortel Networks, 38 Bd Paul Cezanne, 78280 Guyancourt, France.

Author:

A. CAILLE

Approved by:

R. JACOUES

Copyright[©] 2000 Nortel Matra Cellular and Nortel Networks, All Rights Reserved Printed in France

NORTEL NETWORKS AND NORTEL MATRA CELLULAR CONFIDENTIAL:

The information contained in this document is the property of Nortel Networks. Except as specifically authorized in writing by Nortel Networks, the holder of this document shall keep the information contained herein confidential and shall protect same in whole or in part from disclosure and dissemination to third parties and use same for evaluation, operation and maintenance purposes only.

The content of this document is provided for information purposes only and is subject to modification. It does not constitute any representation or warranty from Nortel Networks as to the content or accuracy of the information contained herein, including but not limited to the suitability and performances of the product or its intended application.

The following are trademarks of Nortel Networks: *NORTEL NETWORKS, the NORTEL NETWORKS corporate logo, the NORTEL Globemark, HOW THE WORLD SHARES IDEAS, UNIFIED NETWORKS. The information in this document is subject to change without notice. Nortel Networks assumes no responsibility for errors that might appear in this document.

All other brand and product names are trademarks or registered trademarks of their respective holders.

PUBLICATION HISTORY

24/APR/2002

Issue 01.01 / EN, Status Approved Creation

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 2/30

CONTENTS

1.	INT	TRODUCTION	5
	1.1.	OBJECT	5
	1.2.	SCOPE OF THIS DOCUMENT	6
2.	RE	ELATED DOCUMENTS	6
	2.1.	APPLICABLE DOCUMENTS	6
	2.2.	REFERENCE DOCUMENTS	6
3.	EX	(HIBIT 1: TEST REPORT	7
	3.1.	INTRODUCTION	7
	3.2.	MEASUREMENTS RESULTS	7
	3.3.	NAME OF TEST: 2.1046 RF POWER OUTPUT	8
	3.3	3.1 fcc requirements	8
	3.3		
	3.3. 3.4.	3.3 test procedure NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH	
	3.4	4.1 fcc requirements	10
	3.4		
	3.4. 3.5.	4.3 test procedure	
	3.5.		
	3.5		
	3.5		
	3.6.	NAME OF TEST: 2.1055 FREQUENCY STABILITY	
	3.6		
	3.6		
	3.6. 3.7.	· · · · · · · · · · · · · · · · · · ·	
	S.1.	MEASUREMENT EQUIPMENT LIST	25
1	FY	CHIRIT 2 · LIPDATED FOLLIPMENT LIST	26

5.	EXI	HIBIT 3 : SCHEMATICS	28
	5.1.	E-DRX ASSEMBLY	28
	5.2.	E-RDRX (RADIO BOARD)	28
	5.3.	E-LDRX (LOGIC BOARD)	
	5.4.	E-SCPA ASSEMBLY	28
	5.5.	RX SPLITTER	28
	5.6.	DUPLEXER	28
	5.7.	н2р	28
6.	ABI	BREVIATIONS AND DEFINITIONS	29
	6.1.	ABBREVIATIONS	29
	6.2.	DEFINITIONS	29

1. INTRODUCTION

1.1. OBJECT

In complement with PCS/BTS/DJD/0743, this report presents the FCC regulatory assessment realized in order to introduce the following items into the S8000 Outdoor BTS system:

- EDGE DRX (e-DRX) module
- EDGE Single Carrier Power Amplifier (e-SCPA) module

These new modules are part of BTS evolution towards GPRS and EDGE: they are compatible with 8-PSK modulated signals and therefore ready to support EDGE functionalities in the future. For GMSK-modulated signals, they are fully compatible with previous New Design DRX and PA in the BTS.

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 5/30

1.2. SCOPE OF THIS DOCUMENT

This document applies to the S8000 BTS eGSM 850, Outdoor and Indoor versions. It is the Exhibit part of the FCC Part 22 Application.

2. RELATED DOCUMENTS

2.1. APPLICABLE DOCUMENTS

- [A1] CFR 47 Part 2 FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS
- [A2] CFR 47 Part 22 PUBLIC MOBILE SERVICES

2.2. REFERENCE DOCUMENTS

- [R1] PE/BTS/DJD/0222 FCC Part 24 Type Acceptance Filing for Nortel's S8000 Outdoor BTS AB6OUDS8000
- [R2] PCS/BTS/DJD/0730 AB6OUDS8000 : FCC Part 24 Class II Permissive Change Application : S8000 Indoor BTS
- [R3] Nortel/STR/00138 DRX EDGE: Thermal test Report
- [R4] 149014 DK : BTS S8000 Indoor EMC Test Report GYL TECHNOLOGY 149015 DK : BTS S8000 Oudoor EMC Test Report GYL TECHNOLOGY
- [R5] PCS/BTS/DJD/0743 S8000 Outdoor and Indoor BTS GSM 1900 : FCC Part 24 Class II Permissive Change Application AB6OUDS8000
- [R6] PE/BTS/DD/4322 Edge Single Channel Power Amplifier 850 (eSCPA)

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 6/30

3. EXHIBIT 1: TEST REPORT

3.1. INTRODUCTION

The following information is submitted for update of the type acceptance of a Broadband GSM Base Station for Nortel Networks, in accordance with FCC Part 22, Subpart H and Part 2, Subpart J of the FCC Rules and Regulations. The measurement procedures were in accordance with the requirements of Part 2.999.

3.2. MEASUREMENTS RESULTS

Table 1 is a summary of the measurement results for this update.

Table 1: Measurement Results Summary

FCC Measurement Specification	IC Limit Specification RSS 128 Section	Description	Result
2.1046	7.1	RF Power Output	Complies
2.1047	7.2	Modulation characteristics	Complies
2.1049		Occupied Bandwidth	Complies
2.1051	7.4 , 7.5	Spurious Emissions at Antenna Terminals	Complies
2.1055	8.1,8.2	Frequency Stability	Complies
1.1307	11	RF Exposure	Not done

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 7/30

3.3. NAME OF TEST: 2.1046 RF POWER OUTPUT

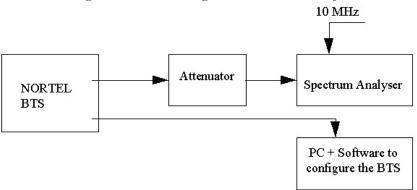
3.3.1 FCC REQUIREMENTS

4.3.1.1. FCC PART 22.913

- (a) Base stations are limited to 1640 watts peak equivalent isotropically radiated power (e.i.r.p.) with an antenna height up to 300 meters HAAT. See 24.53 for HAAT calculation method. Base station antenna heights may exceed 300 meters with a corresponding reduction in power. In no case may the peak output power of a base station transmitter exceed 500 watts.
- (b) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

3.3.2 TEST RESULTS

Table 2 shows the test results for RF Output Power.


Radio	Frequency	Measured RF Output	Maximum Rated	Limit (dBm)
Channel	(MHz)	Power (dBm)	Power (dBm)	
128	869.2	44.09	44,8 (30 W)	50
148	873.2	44.25	44,8 (30 W)	50
168	877.2	44.31	44,8 (30 W)	50
188	881.2	44.32	44,8 (30 W)	50
208	885.2	44.15	44,8 (30 W)	50
228	889.2	44.23	44,8 (30 W)	50
248	893.2	43.96	44,8 (30 W)	50
251	893.8	43.81	44,8 (30 W)	50

3.3.3 TEST PROCEDURE

The equipment was configured as shown in figure 1.

Figure 1: Test configuration for RF Output Power

The BTS was configured to transmit at maximum power (static level 0). Measurements were made at frequencies which are the bottom, middle and top of each of the licensed blocks.

Spectrum analyzer is calibrated with Gigatronix Powermeter using HP8657B generator.

The average output power was measured using the spectrum analyzer which had the following settings:

Resolution bandwidth: 300 kHz
Video bandwidth: 1 MHz
Span: 0 Hz
Reference level: 45 dBm

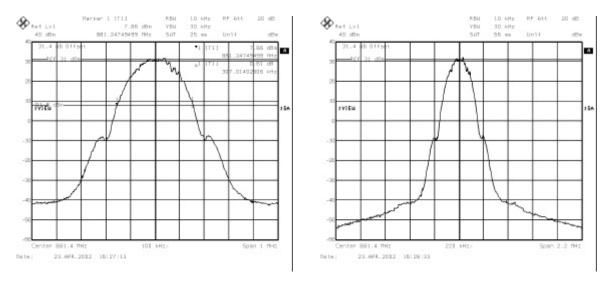
Reference Level Offset: Corrected to account for cable(s) and attenuator

losses

Level range: 10 dB Sweep time: 5 ms

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 9/30

3.4. NAME OF TEST: 2.1049 OCCUPIED BANDWIDTH


3.4.1 FCC REQUIREMENTS

4.4.1.1. FCC PART 2.1049

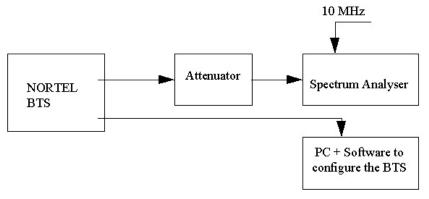
The occupied bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 23 dB below the transmitter power.

3.4.2 TEST RESULTS

Figure 2: sample plot for occupied bandwith

Span = 1MHz Span = 2.2 MHz

The maximum occupied bandwidth was found to be 330 kHz (measured on channel 189, f = 881.4 MHz).


PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 10/30

3.4.3 TEST PROCEDURE

The equipment was configured as shown in figure 3.

Figure 3: Test configuration for Occupied bandwidth

The BTS was configured to transmit at maximum power (Static Level 0). Measurements were made at frequencies which were at the bottom and top of the transmit band.

The occupied bandwidth was measured by determining the bandwidth out of which all emissions are attenuated at least 23 dB below the transmitter power.

The spectrum analyzer had the following settings:

Resolution bandwidth: 10 kHz Video bandwidth: 30 kHz

Span: 1 MHz and 2.2 MHz

Reference level: 40 dBm

Reference Level Offset: Corrected to account for cable(s) and attenuator

losses

Level range: 90 dB Sweep time: 25 ms

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 11/30

3.5. NAME OF TEST: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

3.5.1 FCC REQUIREMENTS

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB.
- (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 23 dB below the transmitter power.
- (c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (d) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 12/30

3.5.2 TEST RESULTS

The reference level for spurious emissions at the antenna terminals is taken from the measured output power (43.9 dBm = 24.5 Watts).

Therefore the spurious emissions must be attenuated by at least 43 + 10*Log(24.5) = 56.9 dB. The measured output power was 43.9 dBm; therefore the limit is 43.9 - 56.9 = -13 dBm.

Spurious measurement is performed in two following coupling configuration with 30W Power amplifier:

- with Duplexer, Nominal power at antenna connector: PD max =44dBm
- with H2D: two input coupler (3dB coupling) associated with duplexer Nominal power at antenna connector: PH2D max =41 dBm

Tables 3 and 4 show the results for Spurious Emissions at Antenna Terminals.

Table 3: Test results for Spurious Emissions at Antenna Terminals

Channel	Pwr emission level	Spurious Emissions Level Duplexer (dBm)	Margin (dB) Duplexer	Spurious Emissions Level H2D (dBm)	0 \	Limit (dBm)
128	Pmax - 2 dB	-15.09	2.09	No need		-13
128	Pmax	-13.39	0.39	-16.57	3.57	-13
189	Pmax - 2 dB	-14.29	1.29	No need		
189	Pmax	-12.21	- 0.79	-15.23	2.23	-13
189	Pmax - 2 dB	-15.37	2.37	No need		-13
189	Pmax	-13.18	0.18	-16.14	3.14	-13
251	Pmax - 2 dB	-14.32	1.32	No need		-13
251	Pmax	-13.54	0.54	-15.26	2.26	-13

Table 4: Test results for Spurious Emissions at Antenna Terminals

Frequency MHz	Spurious Emissions Level Duplexer (dBm)	· · ·	Spurious Emissions Level H2D (dBm)	Margin (dB) H2D	Limit (dBm)
100 kHz - 50 MHz	-33.7	20.7	-33.9	20.9	-13
50 MHz – 500 MHz	-32.5	19.5	-33	20	-13
500 MHz – 880.2 MHz	-25.5	12.5	-29.5	16.5	-13
8826 MHz –1994.8 MHz	-33	20	-34	21	-13
1994.8 MHz – 4 GHz	-27.3	14.3	-28.3	15.3	-13
4 GHz - 12 GHz	-22.5	9.5	-23.1	10.1	-13
12 GHz -20 GHz	-23	10	-22.8	9.8	-13

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 13/30

Notes:

Figure 4 and 6 and 8 and 10 show sample plots for the case when the transmitter was respectively tuned to Channel 128 and 189 and 251 (bottom and middle and top channels in Tx band) with ($PD \max = 44 \text{ dBm}$) and $PD \max -2 \text{dB} = 42 \text{ dBm}$ using Duplexer.

Figure 5 and 7 and 9 and 11 show sample plots for the case when the transmitter was respectively tuned to Channel 128 and 189 and 251 (bottom and middle and top channels in Tx band) with PH2Dmax = 41 dBm using H2D.

Figure 12 shows sample plots for frequency spans from 0 to 20 GHz with emission on channel 189 (middle channel) at PDmax = 44 dBm with Duplexer module.

Conclusion:

Two series of test have been performed regarding the possibility of using a Duplexer or a H2D. This is to reflect different configurations the BTS can take.

The worst case is the Duplexer configuration and it has been done at PD max - 2dB = 42 dBm The H2D configuration has been done at PH2Dmax.

In order to comply with the emission limits in the 1 MHz bands immediately outside and adjacent to the frequency block, the absolute transmit power level of the block edge channels is set to 42 dBm

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 14/30

Figure 4: -1 MHz adjacent band (Channel 128, Pmax dB and Pmax - 2 dB) with Duplexer

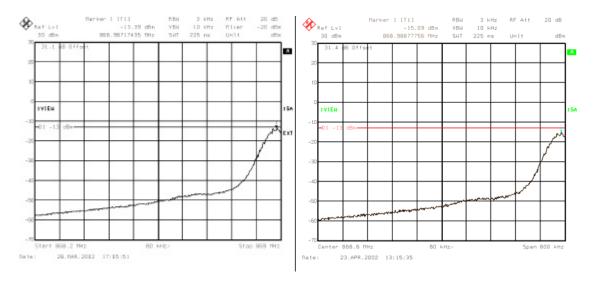
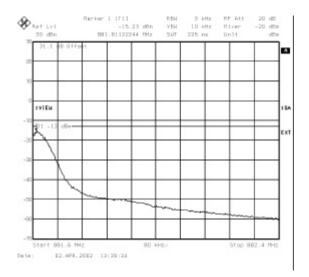



Figure 5: - 1MHz adjacent band (Channel 128, Pmax) with H2D



PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 15/30

Figure 6: +1 MHz adjacent band (Channel 189, Pmax and Pmax -2dB) with Duplexer

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 16/30

Figure 8: -1 MHz adjacent band (Channel 189, Pmax and Pmax – 2 dB) with Duplexer

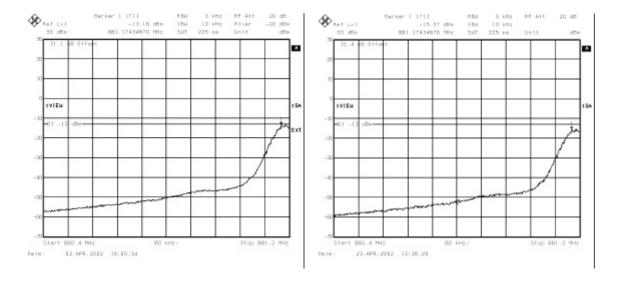
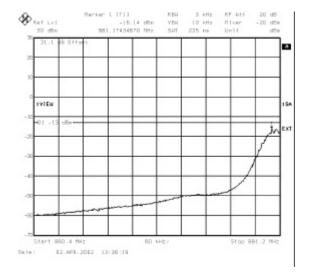



Figure 9: -1 MHz adjacent band (Channel 189, Pmax) with H2D

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 17/30

Figure 10: +1 MHz adjacent band (Channel 251, Pmax and Pmax-2dB) with Duplexer

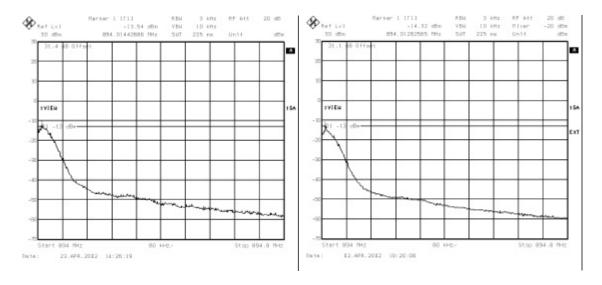
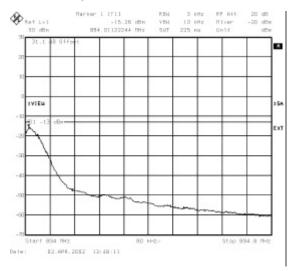
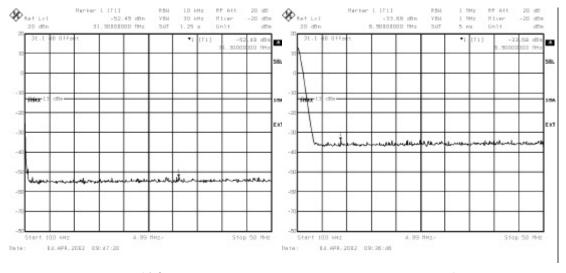



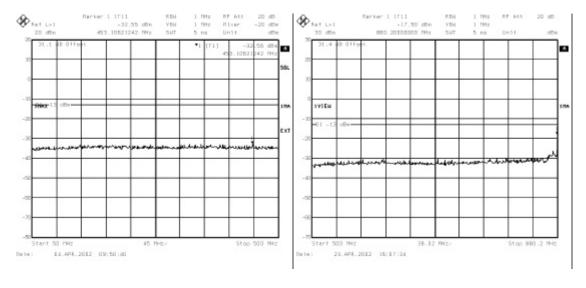
Figure 11: +1 MHz adjacent band (Channel 251, Pmax) with H2D



PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 18/30

Figure 12: Out of block emissions (channel 189, Pmax) with Duplexer

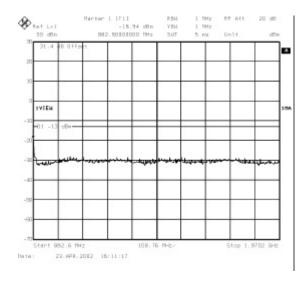
Band 100 kHz - 50 Mhz


RBW = 10 kHz

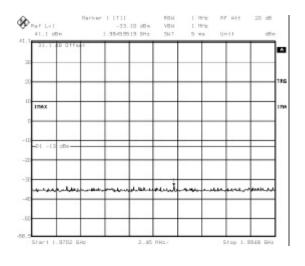
RBW = 1 MHz

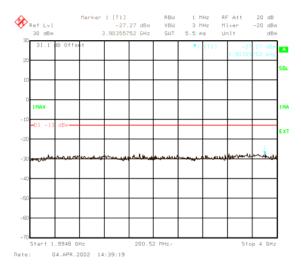
Note: spectrum line s at 100 kHz are internal DC spectrum line of Analyser

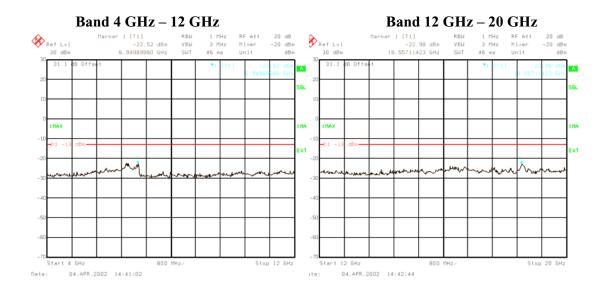
Band 50 Mhz - 500 MHz


Band 500 Mhz - 880.2 MHz

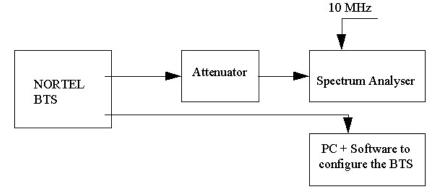
PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 19/30




Band 882.6 Mhz - 1970.2 MHz


Band 1970.2 Mhz - 1994.8 MHz

Band 1994.8 Mhz – 4 GHz


PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 20/30

3.5.3 TEST PROCEDURE

The equipment was configured as shown in figure 12.

Figure 13: Test configuration for Spurious emissions at antenna terminals

For adjacent channels emissions, the BTS nominal carrier frequency was adjusted to each block edge channel.

Channels 128 and 251 are those channels which are at the lower and upper edges of the eGSM 850 band respectively.

Initially the transmitter was set to operate to maximum power. Then in case of out of limits, the power has been decreased by 2 dB. The Tx activation mode was GMSK no synchro.

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 21/30

For these measurements, the resolution bandwidth was of the spectrum analyzer was set to at least 1% of the emission bandwidth. In this case the emission bandwidth measured was 330 kHz. Therefore, the resolution bandwidth was set to 3 kHz.

The spectrum analyzer had the following settings for adjacent band:

Resolution bandwidth: 3 kHz
Video bandwidth: 10 kHz
Span: 1 MHz
Reference level: 30 dBm

Reference Level Offset: Corrected to account for cable(s), filter and

attenuator losses

Level range: 100 dB
Sweep time: Coupled
Detector: Sample
Trace: Average
Sweep count: 200

For all other measurements the BTS carrier frequency was adjusted to Channel 189.

The spectrum analyzer had the following settings for out of block emissions.

Resolution bandwidth: 1 MHz Video bandwidth: 1 MHz

The emissions were investigated up to the twentieth harmonic of the fundamental emission (20 GHz).

The measured level of the emissions was recorded and compared to the -13 dBm limit.

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 22/30

3.6. NAME OF TEST: 2.1055 FREQUENCY STABILITY

S8000 Outdoor and Indoor BTS e-GSM 850: FCC Part 22 exhibit document

3.6.1 FCC REQUIREMENTS

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.6.2 TEST RESULTS

Table 5a shows Frequency Stability for channel 189 (f=881.4MHz) in Quick Test Bench configuration in extreme conditions

Table 5b shows Frequency Stability in BTS S8000 Outdoor at ambient temperature for channels B,M,T.

Table 5a: Frequency Stability in quick test bench configuration - Channel 189

Module	Maximum Carrier Frequency Deviation (Hz) in quick test bench configuration			
Temperature (°C)	DC Supply Voltage DRX - 40V PA - 36V	DC Supply Voltage DRX - 48V PA - 48V	DC Supply Voltage DRX - 57V PA - 60V	
-5	-6.91	6.91	5.94	
5	-7.75	-9.3	-7.17	
15	8.85	7.1	-9.1	
25	-7.81	-9.17	8.14	
35	-9.04	-7.81	-9.43	
45	-7.68	-7.49	8.52	
55	-8.78	-7.43	-6.84	
65	-8.52	-9.88	-7.68	

Table 5b: Frequency Stability in BTS S8000 Outdoor at ambient temperature

	Maximum Carrier Frequency Deviation (Hz) in BTS Configuration			
	Ambient temperature			
Channel	C128 (f=869.2 MHz)	C189 (f=881.4 MHz)	C251 (f= 893.8 MHz)	
	-9	-11	+9	

The maximum frequency deviation allowed is 90 Hz.

The maximum deviation measured (-11Hz) is more than sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The S8000 Indoor BTS still complies with the requirement.

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 23/30

3.6.3 TEST PROCEDURE

Thermal tests has been performed with modules eDRX with eSCPA inside BTS8000. These tests have shown that thermal features of eDRX/eSCPA were equivalent or better than old DRX and PA versions inside BTS S8000 in extreme conditions. [R1], [R2], [R3].

The BTS S8000 must operate in following external extreme temperatures:

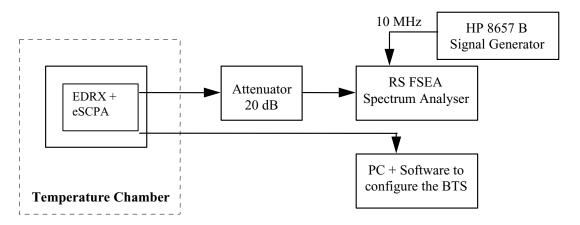
- BTS S8000 Indoor: - 5°C / + 45 °C - BTS S8000 Outdoor: - 40°C / + 50°C

These external temperature ranges involve the extreme temperature range from - 5°C to +65°C on eDRX and eSCPA modules.

Frequency stability are checked in BTS S8000 Outdoor at ambient temperature.

Frequency stability test is performed with a Quick Test Bench for module configuration in following extreme conditions:

- Temperature from -5 to +65 centigrades at intervals of 10 centigrades
- With DC power supply variations eSCPA (-36V/-60V) and eDRX (-40V/-57V)


Modules (eDRX and eSCPA) run with nominal power regulation at maximum power (30W) in GMSK modulation.

The eDRX/eSCPA were configured to transmit at maximum power (Static level 0).

A period of at least one hour was allowed prior to measurement to ensure that all of the components of the oscillator circuit had stabilized at each temperature.

The equipment was configured as shown in figure 13.

Figure 14: Test configuration for Frequency Stability

3.7. MEASUREMENT EQUIPMENT LIST

Table 7 is a list of all of the measurement equipment used in this report.

Table 7: Measurement Equipment List

Equipment Description	Manufacturer	Model No.	Serial No.	V/A date
Network Analyzer	НР	8719D	521768	12/03
Power Meter	Giga-tronics	8542C	519565	02/03
CW Power Sensor	Giga-tronics	80401A	522394	02/03
Spectrum Analyzer	Rohde & Schwarz	FSEM	517751	03/03
30 dB attenuator	НР	8498A	519471	
Signal Generator	HP	HP 8657 B	509093	03/03
Programmable DC source	LAMBDA	Model LLS9060	ELC08493	03/03
Programmable DC source	LAMBDA	Model LLS9060	500222	03/03
Attenuator 20 dB	Radiall	R417020128	-	

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 25/30

4. EXHIBIT 2: UPDATED EQUIPMENT LIST

Description	Hardware code	Comment
Base Cabinet	NTQA30AA	To be used with ACU cooling system
	NTQA30EA	"
	NTQA30CA	To be used with DACS cooling system
	NTQA30FA	II .
Sectorial or extension cabinet	NTQA30BA	To be used with ACU cooling system
	NTQA30EA	"
	NTQA30DA	To be used with DACS cooling system
	NTQA30FA	II
AC main US	NTQA90AA	
ACU	NTQA95AB	
DACS	NTQA97AA	
Rectifier unit	NTQA91AA	Philips
	NT5C15BC	APS
	NT6C34AB	APS Low Cost
Power Control Unit	NTQA9101	
	NT5C90LZ	
	NT5C90NP	
Converter Type F	NTQA57AA	
Converter Type J	NTQA02CA	
PSCMD	NTQA08AA	
GTW	NTQA06AA	
CSWM	NTQA09AA	
PCMI T1	NTQA04AA	
DSC	NTQA05AA	
SYNC	NTQA03AA	
ALCO	NTQA21AA	
COMICO	NTQA60AA	Interconnection panel
	NTQA60CA	•
PAICO	NTQA41AA	Interconnection panel
DRXICO	NTQA40AA	Interconnection panel
RECAL	NTQA66DA	<u> </u>
CPCMI T1	NTQA66AA	
CMCF	NTQA66CA	
CBCF	NTQA66BA	

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 26/30

Description	Hardware code	Comment

Radio Modules GSM 850		
GSM 850 DRX	NTQA88HA	eDRX
GSM 850 Splitter	NTQA88XA	
GSM 850 Power Amplifier	NTQA37AA	eSCPA
GSM 850 Duplexer	NTQA38CA	(*)
		Transmit Power Level : $PD \max -2dB = 42 dBm$
GSM 850 Two Ways Hybrid	NTQA38BA	Transmit Power Level: PH2D max = 41 dBm
Duplexer		

(*) Power limitation to comply to Adjacent Band spurious

In order to comply with the emission limits in the 1 MHz bands immediately adjacent to the frequency block, the transmit power level of the block edge channels has been reduced by 2 dB at antenna connector (PDmax - 2dB = 42dBm) with a Duplexer configuration.

The transmit power level of the block edge channels power has been done at PH2Dmax = 41 dBm at antenna connector with H2D configuration.

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 27/30

5. EXHIBIT 3 : SCHEMATICS

5.1. E-DRX ASSEMBLY

NTQA88HA

5.2. E-RDRX (RADIO BOARD)

NTQA8810

5.3. E-LDRX (LOGIC BOARD)

NTQA8001

5.4. E-SCPA ASSEMBLY

NTQA37AA

5.5. RX SPLITTER

NTQA88XA

5.6. **DUPLEXER**

NTQA38CA

5.7. H2D

NTQA38BA

6. ABBREVIATIONS AND DEFINITIONS

6.1. ABBREVIATIONS

BCF Base Common Function
BTS Base Transceiving Station
DRX Driver Receiver Unit

EDGE Enhanced Data for GSM Evolution

e-DRX EDGE DRX

e-SCPA EDGE Single Carrier PA GPRS General Packet Radio Service

GSM Global System for Mobile Communications

LNA Low Noise Amplifier
MSC Mobile Switching Center

OMC Operation and Maintenance Center

PA Power Amplifier RF Radio Frequency TCU Trans-Coding Unit

Tx Transmitter

6.2. **DEFINITIONS**

Frequency Band and Channels

GSM 850	C128	C189	C251
Short	В	M	T
F Tx (MHz)	869.2	881.4	893.8
F Rx (MHz)	824.2	836.4	848.8

For
$$128 < n < 251$$

 $F_{Rx}(n) = 824.2 + 0.2*(n-128)$
 $T_{Tx}(n) = F_{Rx}(n) + 45$

IF frequencies on Radio Board: For Tx path 133 MHz

For Rx path 71 MHz

Clock frequency on the Radio Board 13MHz created from 4.096MHz coming from the Digital board.

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 29/30

 \bowtie END OF DOCUMENT \bowtie

PE/BTS/DJD/2630 01.01 / EN Approved 24/APR/2002 Page 30/30