

SAR TEST REPORT

HCT CO., LTD

EUT Type:	Android Mini Pad	
FCC ID:	A9B-A930	
Model:	A930	
Date of Issue:	Sep. 26, 2012	
Test report No.:	HCTA1209FS05	
Test Laboratory:	HCT CO., LTD. 105-1, Jangam-ri, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401	
Applicant :	ACTScom, Inc. A-9912, Woolim Lions Valley, 168, Gasandigital 1-ro, Gumchon-Gu, Seoul 153-786, Korea	
Testing has been carried out in accordance with:	RSS-102 Issue 4; Health Canada Safety Code 6 47CFR §2.1093 FCC OET Bulletin 65(Edition 97-01), Supplement C (Edition 01-01) ANSI/ IEEE C95.1 – 1992 IEEE 1528-2003	
Test result:	The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.	
Signature	 Report prepared by : Young-Soo Jang Test Engineer of SAR Part	 Approved by : Jae-Sang So Manager of SAR Part

Table of Contents

<u>1. INTRODUCTION</u>	3
<u>2. DESCRIPTION OF DEVICE</u>	4
<u>3. DESCRIPTION OF TEST EQUIPMENT</u>	5
<u>4. SAR MEASUREMENT PROCEDURE</u>	1 2
<u>5. DESCRIPTION OF TEST POSITION</u>	1 3
<u>6. MEASUREMENT UNCERTAINTY</u>	1 5
<u>7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS</u>	1 6
<u>8. SYSTEM VERIFICATION</u>	1 7
<u>9. RF CONDUCTED POWER MEASUREMENT</u>	1 8
<u>10. SAR Test configuration & Antenna Information</u>	2 1
<u>11. SAR Considerations for Multiple Transmitters and Antennas</u>	2 2
<u>12. SAR TEST DATA SUMMARY</u>	2 3
<u>12.1 Measurement Results (802.11b Head SAR)</u>	2 3
<u>12.2 Measurement Results (802.11b Body-worn SAR)</u>	2 4
<u>13. CONCLUSION</u>	2 5
<u>14. REFERENCES</u>	2 6
<u>Attachment 1. – SAR Test Plots</u>	2 7
<u>Attachment 2. – Dipole Validation Plots</u>	3 8
<u>Attachment 3. – Probe Calibration Data</u>	4 3
<u>Attachment 4. – Dipole Calibration Data</u>	5 5

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dV} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \sigma E^2 / \rho$$

where:

σ = conductivity of the tissue-simulant material (S/m)

ρ = mass density of the tissue-simulant material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

2. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type	Android Mini Pad		
FCC ID:	A9B-A930		
Model:	A930		
Trade Name	ACTScom	Serial Number(s)	#1
Mode(s)of Operation	802.11b/g/n		
Application Type	Certification		
Tx Frequency	2 412 – 2 462 MHz (802.11b/g/n)		
Rx Frequency	2 412 – 2 462 MHz (802.11b/g/n)		
FCC Classification	Digital Transmission System (DTS)		
Production Unit or Identical Prototype	Prototype		
Max SAR	Band	1g SAR (W/kg)	
		Head	Body-worn
	802.11b	0.020	0.181
Date(s) of Tests	Sep. 17, 2012 - Sep. 24, 2012		
Antenna Type	Integral Antenna		

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.3.1).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

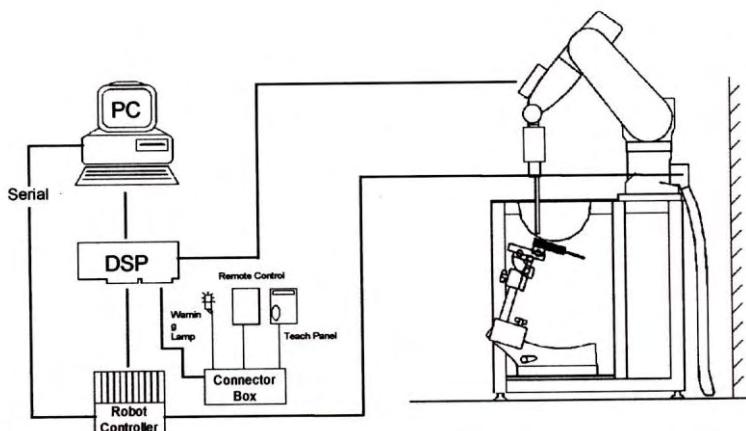


Figure 3.1 HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

3.2 DASY E-FIELD PROBE SYSTEM

3.2.1 ET3DV6 Probe Specification

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges
Calibration	In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy: 8 %)
Frequency	10 MHz to > 3 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic	5 μ W/g to > 100 mW/g;
Range Linearity:	± 0.2 dB
Surface Detection	± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces.
Dimensions	Overall length: 337 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetric measurements up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

Figure 3.2 Photograph of the probe and the Phantom



Figure 3.3 ET3DV6 E-field Probe

The SAR measurements were conducted with the dosimetric probe ET3DV6, designed in the classical triangular configuration [5] and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical mortifier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

3.3 PROBE CALIBRATION PROCESS

3.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than $\pm 10\%$.

The spherical isotropy was evaluated with the proper procedure and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

where:

Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;

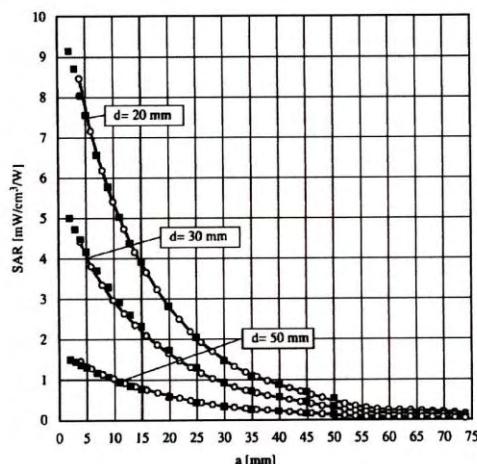


Figure 3.4 E-Field and Temperature measurements at 900 MHz

$$\text{SAR} = \frac{|\mathbf{E}|^2 \cdot \sigma}{\rho}$$

where:

σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

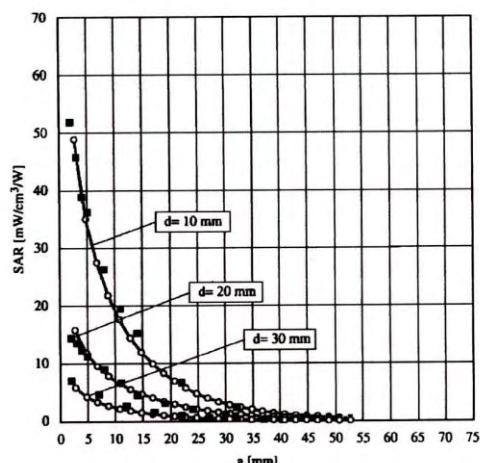


Figure 3.5 E-Field and temperature measurements at 1.8 GHz

3.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with V_i = compensated signal of channel i (i = x,y,z)
 $Norm_i$ = sensor sensitivity of channel i (i = x,y,z)
 $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ $\mu\text{V}/(\text{V}/\text{m})^2$ for E-field probes
 $ConvF$ = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/g
 E_{tot} = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$

with P_{pwe} = equivalent power density of a plane wave in W/cm²
 E_{tot} = total electric field strength in V/m

3.4 SAM Phantom

Triple Modular Phantom consists of three identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids. The MFP V5.1 will be delivered including wooden support only (**non**-standard SPEAG support).

Applicable for system performance check from 700 MHz to 6 GHz (MFP V5.1C) or 800 MHz - 6 GHz (MFP V5.1A) as well as dosimetric evaluations for body-worn operation.

Figure 3.6 MFP V5.1 Triple Modular Phantom

Shell Thickness	2.0 mm \pm 0.2 mm
Filling Volume	approx. 9.2 L
Dimensions	830 mm x 500 mm (L x W)

3.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.7 Device Holder

3.6 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriocide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients (% by weight)	Frequency (MHz)											
	450		750		835		915		1 900		2 450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.2	51.7	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.4	1.0	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	57	47.2	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	0.2	0.0	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.2	0.1	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose
Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose
DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]
Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table 3.1 Composition of the Tissue Equivalent Matter

3.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib. Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F99/5A82A1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE4	648	Apr. 27, 2012	Annual	Apr. 27, 2013
SPEAG	DAE4	912	Nov. 17, 2011	Annual	Nov. 17, 2012
SPEAG	E-Field Probe ET3DV6	1609	Mar. 09, 2012	Annual	Mar. 09, 2013
SPEAG	Validation Dipole D2450V2	743	Aug. 23, 2012	Annual	Aug. 23, 2013
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 04, 2011	Annual	Nov. 04, 2012
Agilent	Power Sensor(G) 8481	MY41090870	Nov. 04, 2011	Annual	Nov. 04, 2012
HP	Dielectric Probe Kit	00721521	N/A	N/A	N/A
HP	Dual Directional Coupler	16072	Nov. 04, 2011	Annual	Nov. 04, 2012
Agilent	Base Station E5515C	GB44400269	Feb. 10, 2012	Annual	Feb. 10, 2013
HP	Signal Generator E4438C	MY42082646	Nov. 11, 2011	Annual	Nov. 11, 2012
HP	Network Analyzer 8753ES	JP39240221	Apr. 3, 2012	Annual	Apr. 3, 2013

NOTE:

The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Validation measurement is performed by HCT Lab. before each test. The brain simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

4. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm x 15 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

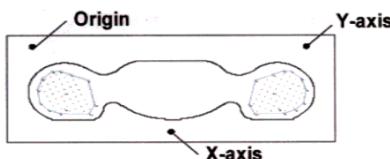


Figure 4.1 SAR Measurement Point in Area Scan

5. DESCRIPTION OF TEST POSITION

5.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

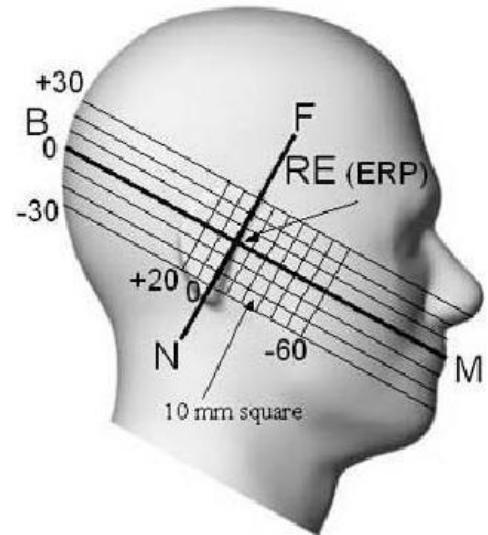


Figure 5.1 Side view of the phantom

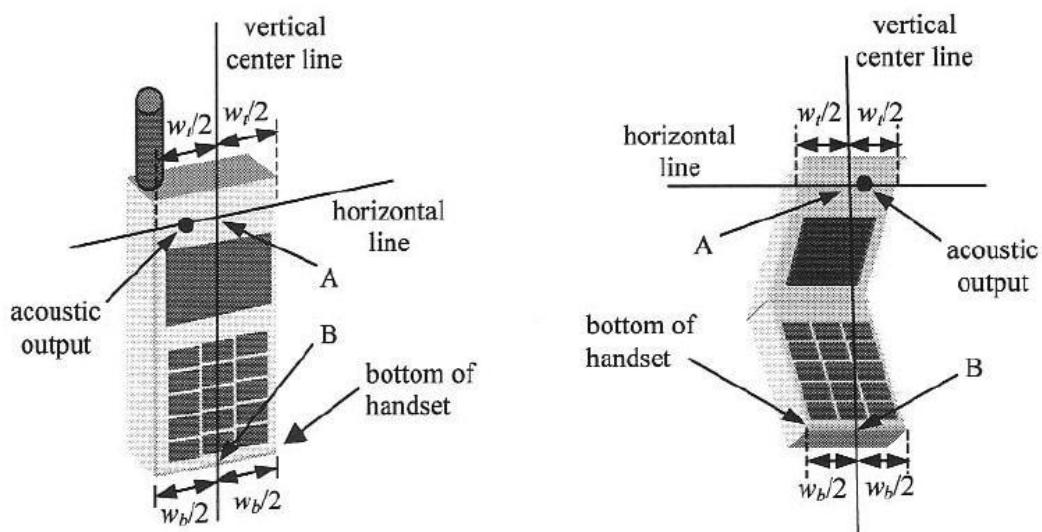


Figure 5.2 Handset vertical and horizontal reference lines

5.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 0.5 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

6. MEASUREMENT UNCERTAINTY

Error Description	Tol (± %)	Prob. dist.	Div.	c _i	Standard Uncertainty (± %)	v _{eff}
1. Measurement System						
Probe Calibration	6.00	N	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2. Test Sample Related						
Device Positioning	2.90	N	1.00	1	2.90	145
Device Holder	3.60	N	1.00	1	3.60	5
Power Drift	5.00	R	1.73	1	2.89	∞
3. Phantom and Setup						
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.07	N	1	0.64	1.32	9
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	5.02	N	1	0.6	3.01	9
Combind Standard Uncertainty						11.13
Coverage Factor for 95 %						k=2
Expanded STD Uncertainty						22.25

Table 6.1 Uncertainty (750 MHz- 2600 MHz)

7. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 7.1 Safety Limits for Partial Body Exposure

NOTES:

* The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

** The Spatial Average value of the SAR averaged over the whole-body.

*** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

8. SYSTEM VERIFICATION

8.1 Tissue Verification

Freq. [MHz]	Date	Liquid	Liquid Temp.[°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]
2 450	Sep. 17, 2012	Head	21.2	ϵ_r	39.2	39	- 0.51	± 5
				σ	1.80	1.79	- 0.56	± 5
2 450	Sep. 24. 2012	Body	21.2	ϵ_r	52.7	54.5	+ 3.42	± 5
				σ	1.95	1.94	- 0.51	± 5

The dielectronic parameters of the liquids were measured prior to the SAR evaluation using an Agilent 85070C Dielectronic Probe Kit and Agilent Network Analyzer.

8.2 System Validation

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at 2 450 by using the system validation kit. (Graphic Plots Attached)

Freq. [MHz]	Date	Probe (SN)	Liquid	Amb. Temp. [°C]	Liquid Temp. [°C]	1 W Target SAR _{1g} (SPEAG) (mW/g)	Measured SAR _{1g} (mW/g)	1 W Normalized SAR _{1g} (mW/g)	Deviation [%]	Limit [%]
2 450	Sep. 17, 2012	1609	Head	21.4	21.2	52.7	5.26	52.6	- 0.19	± 10
2 450	Sep. 24. 2012		Body	21.4	21.2	51.2	5.27	52.7	+ 2.93	± 10

8.3 System Validation Procedure

SAR measurement was Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at target frequency by using the system validation kit. (Graphic Plots Attached)

- Cabling the system, using the validation kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.

Note;

SAR Verification was performed according to the FCC KDB 450824.

9. RF CONDUCTED POWER MEASUREMENT

9.1 WiFi

9.1.1 SAR Testing for 802.11a/b/g/n modes

General Device Setup

Normal Network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

Frequency Channel Configurations

80.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 80.211 b/g modes are tested on channels 1, 6 and 11. 80.211a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; Channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz § 15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11, 15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels.

These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

Mode	GHz	Channel	Turbo Channel	"Default Test Channels"		
				§15.247		UNII
				802.11b	802.11g	
802.11 b/g	2.412	1		✓	✗	
	2.437	6	6	✓	✗	
	2.462	11		✓	✗	
802.11a	5.18	36				✓
	5.20	40	42 (5.21 GHz)			✗
	5.22	44				✗
	5.24	48	50 (5.25 GHz)			✓
	5.26	52				✓
	5.28	56	58 (5.29 GHz)			✗
	5.30	60				✗
	5.32	64				✓
	5.500	100	Unknown			✗
	5.520	104				✓
	5.540	108				✗
	5.560	112				✗
	5.580	116				✓
	5.600	120				✗
	5.620	124				✓
	5.640	128				✗
	5.660	132				✗
	5.680	136				✓
	5.700	140				✗
UNII or §15.247	5.745	149		✓		✓
	5.765	153	152 (5.76 GHz)		*	*
	5.785	157		✓		*
	5.805	161	160 (5.80 GHz)		*	✓
§15.247	5.825	165		✓		

802.11 Test Channels per FCC Requirements

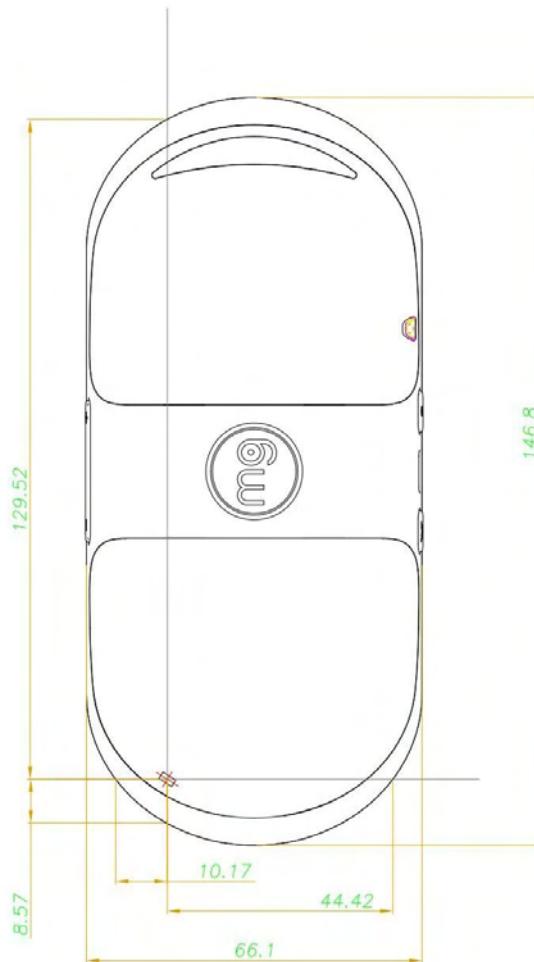
Band	Channel	Conducted Power (dBm)			
		Data Rate (Mbps)			
		1	2	5.5	11
IEEE 802.11b	1	15.88	16.11	15.90	15.72
	6	15.58	15.85	15.68	15.43
	11	15.56	15.76	15.58	15.35

Average IEEE 802.11b Conducted output power

Band	Channel	Conducted Power (dBm)							
		Data Rate (Mbps)							
		6	9	12	18	24	36	48	54
IEEE 802.11g	1	14.95	14.74	14.61	14.42	14.16	13.71	13.39	13.30
	6	14.70	14.47	14.39	14.19	13.87	13.51	13.11	13.07
	11	14.60	14.55	14.43	14.11	13.97	13.51	13.13	13.00

Average IEEE 802.11g Conducted output power

Band	Channel	Conducted Power (dBm)							
		Data Rate (Mbps)							
		6.5	13	19.5	26	39	52	58.5	65
IEEE 802.11n (HT-20)	1	13.80	13.50	13.24	12.97	12.65	12.39	12.29	12.09
	6	13.52	13.25	12.99	12.76	12.41	12.13	12.01	11.85
	11	13.55	13.17	12.95	12.77	12.29	12.01	11.92	11.79


Average IEEE 802.11n Conducted output power

10. SAR Test configuration & Antenna Information

10.1 SAR Test configurations

Mode	Back	Front	Left	Right	Bottom	Top
WLAN	Yes	Yes	No	Yes	Yes	No

10.2 Antenna and Device Information

[Rear side View]

11. SAR Considerations for Multiple Transmitters and Antennas

11.1 SAR Evaluation Considerations

These procedures were followed according to FCC "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", May 2008. The procedures are applicable to phones with built-in unlicensed transmitters, such as 802.11 a/b/g and Bluetooth devices.

	2.45	5.15 - 5.35	5.47 - 5.85	GHz
P _{Ref}	12	6	5	mW
Device output power should be rounded to the nearest mW to compare with values specified in this				

Table. 11.1 Output Power Thresholds for Unlicensed Transmitters

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	<u>Routine evaluation required</u>	<u>SAR not required:</u> Unlicensed only o when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas <u>Licensed & Unlicensed</u> o when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas o when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 <u>SAR required:</u> Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3 ; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition <u>Note:</u> simultaneous transmission exposure conditions for head and body can be different for different style phones; therefore, different test requirements may apply
Unlicensed Transmitters	<u>When there is no simultaneous transmission –</u> o output $\leq 60/f$: SAR not required o output $> 60/f$: stand-alone SAR required <u>When there is simultaneous transmission – Stand-alone SAR not required when</u> o output $\leq 2P_{Ref}$ and antenna is ≥ 5.0 cm from other antennas o output $\leq P_{Ref}$ and antenna is ≥ 2.5 cm from other antennas o output $\leq P_{Ref}$ and antenna is < 2.5 cm from other antennas, each with either output power $\leq P_{Ref}$ or 1-g SAR < 1.2 W/kg <u>Otherwise stand-alone SAR is required</u> <u>When stand-alone SAR is required</u> o test SAR on highest output channel for each wireless mode and exposure condition o if SAR for highest output channel is $> 50\%$ of SAR limit, evaluate all channels according to normal procedures	
Jaw, Mouth and Nose	<u>Flat phantom SAR required</u> o when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation issues o position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations	When simultaneous transmission SAR testing is required, contact the FCC Laboratory for interim guidance.

Table. 11.2 SAR Evaluation Requirements for Cellphones with Multiple Transmitters

12. SAR TEST DATA SUMMARY

12.1 Measurement Results (802.11b Head SAR)

Frequency		Modulation	Power (dBm)	Power Drift (dB)	Battery	Phantom Position	Data Rate (Mbps)	SAR(mW/g)
MHz	Channel							
2.412	1 (Low)	802.11b	15.88	0.092	Standard	Left Ear	1	0.012
			15.88	-0.022	Standard	Left Tilt 15°	1	0.00967
			15.88	-0.066	Standard	Right Ear	1	0.020
			15.88	0.073	Standard	Right Tilt 15	1	0.0066
ANSI/ IEEE C95.1 - 1992- Safety Limit Spatial Peak Uncontrolled Exposure/ General Population						Head 1.6 W/kg (mW/g) Averaged over 1 gram		

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type Standard Extended Slim
Batteries are fully charged for all readings.
- 6 Test Signal Call Mode Manual Test cord Base Station Simulator
- 7 IEEE 802.11g(including 802.11n) SAR testing is required when the conducted powers are equal to or greater than 0.25 dB Than the conducted powers in IEEE 802.11b.
- 8 For 2.4GHz WLAN, Highest average power channel for the lowest data rate was selected for SAR evaluation based on KDB 248227. Other channels are not necessary because 1g-average SAR < 0.8 W/Kg and peak SAR < 1.6W/Kg per KDB 248227.

12.2 Measurement Results (802.11b Body-worn SAR)

Frequency		Modulation	Power (dBm)	Power Drift (dB)	Configuration	Separation Distance	Data Rate	SAR(mW/g)
MHz	Channel							
2.412	1 (Low)	802.11b	15.88	0.017	Rear	0.5 cm	1 Mbps	0.181
			15.88	-0.141	Front	0.5 cm	1 Mbps	0.085
			15.88	-0.099	Right	0.5 cm	1 Mbps	0.045
			15.88	0.029	Bottom	0.5 cm	1 Mbps	0.047
ANSI/ IEEE C95.1 1992 – Safety Limit Spatial Peak Uncontrolled Exposure/ General Population						Body 1.6 W/kg (mW/g) Averaged over 1 gram		

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type Standard Extended Slim
Batteries are fully charged for all readings.
- 6 Test Signal Call Mode Manual Test code Base Station Simulator
- 7 IEEE 802.11g(including 802.11n) SAR testing is required when the conducted powers are equal to or greater than 0.25 dB Than the conducted powers in IEEE 802.11b.
- 8 For 2.4GHz WLAN, Highest average power channel for the lowest data rate was selected for SAR evaluation based on KDB 248227. Other channels are not necessary because 1g-average SAR < 0.8 W/Kg and peak SAR < 1.6W/Kg per KDB 248227.

13. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

14. REFERENCES

- [1] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, July 2001.
- [2] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.
- [3] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [4] ANSI/IEEE C95.1 - 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [5] ANSI/IEEE C95.3 - 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, 1992.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9] K. Pokovi^o, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Receipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [21] SAR Evaluation of Handsets with Multiple Transmitters and Antennas #648474.
- [22] SAR Measurement Procedure for 802.11 a/b/g Transmitters #KDB 248227.

Attachment 1. – SAR Test Plots

Test Laboratory: HCT CO., LTD
EUT Type: Android Mini Pad
Liquid Temperature: 21.2 °C
Ambient Temperature: 21.4 °C
Test Date: Sep. 17, 2012

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.75$ mho/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³
Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

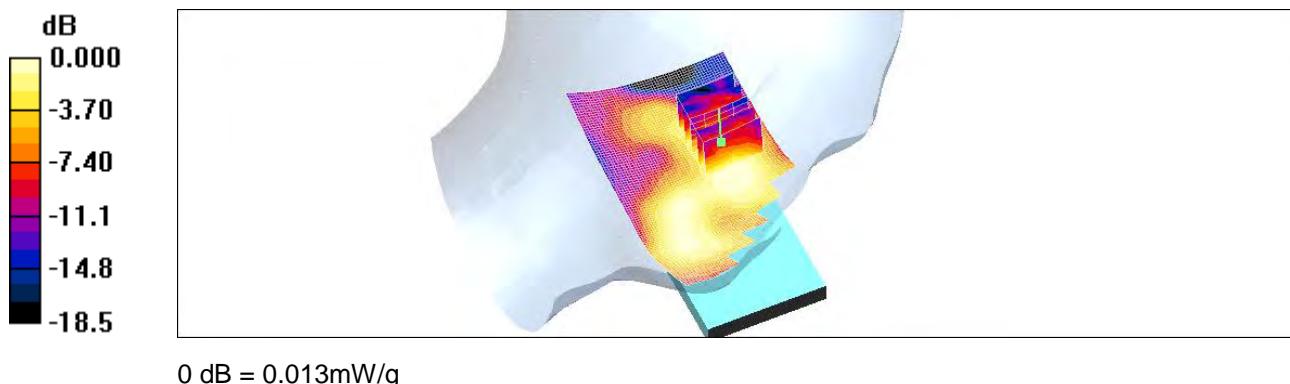
- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2012-04-27
- Phantom: 1800/1900 Phantom; Type: SAM

802.11b Left touch 1ch 1Mbps/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.013 mW/g

802.11b Left touch 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 1.33 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00669 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.013 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Android Mini Pad
Liquid Temperature: 21.2 °C
Ambient Temperature: 21.4 °C
Test Date: Sep. 17, 2012

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2412 \text{ MHz}$; $\sigma = 1.75 \text{ mho/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$
Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

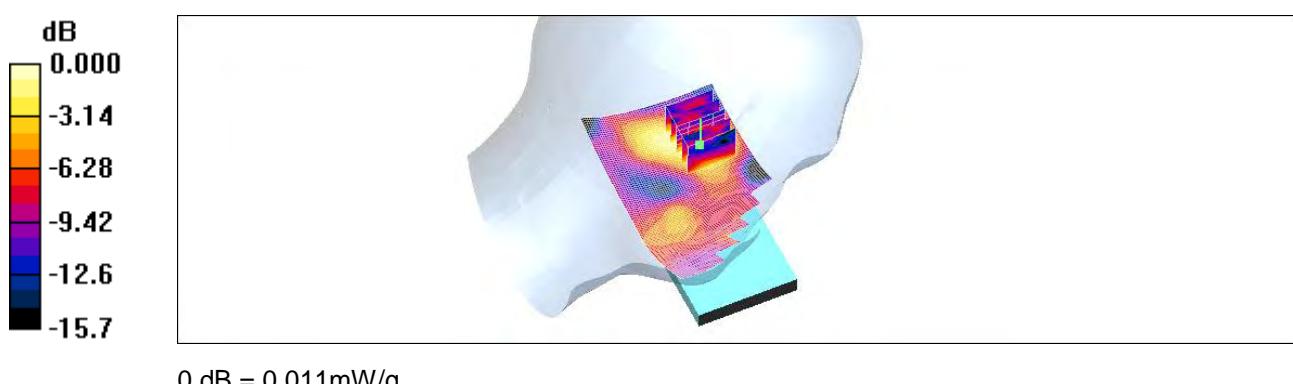
DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2012-04-27
- Phantom: 1800/1900 Phantom; Type: SAM

802.11b Left tilt 1ch 1Mbps/Area Scan (61x111x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.011 mW/g


802.11b Left tilt 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$
Reference Value = 1.85 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.016 W/kg

SAR(1 g) = 0.00967 mW/g; SAR(10 g) = 0.00521 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.011 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Android Mini Pad

Liquid Temperature: 21.2 °C

Ambient Temperature: 21.4 °C

Test Date: Sep. 17, 2012

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2412 \text{ MHz}$; $\sigma = 1.75 \text{ mho/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

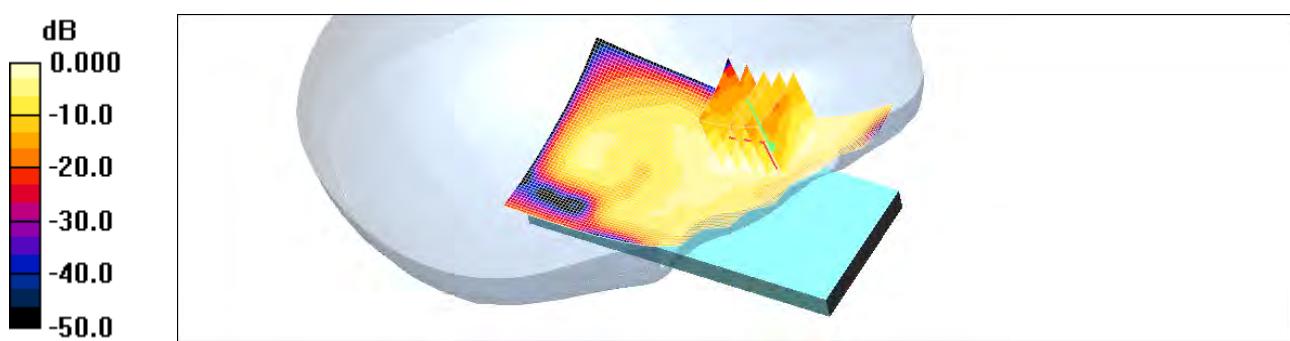
- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2012-04-27
- Phantom: 1800/1900 Phantom; Type: SAM

802.11b Right touch 1ch 1Mbps/Area Scan (61x111x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.025 mW/g

802.11b Right touch 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$


Reference Value = 1.70 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.039 W/kg

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.011 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.023 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Android Mini Pad

Liquid Temperature: 21.2 °C

Ambient Temperature: 21.4 °C

Test Date: Sep. 17, 2012

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2412 \text{ MHz}$; $\sigma = 1.75 \text{ mho/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

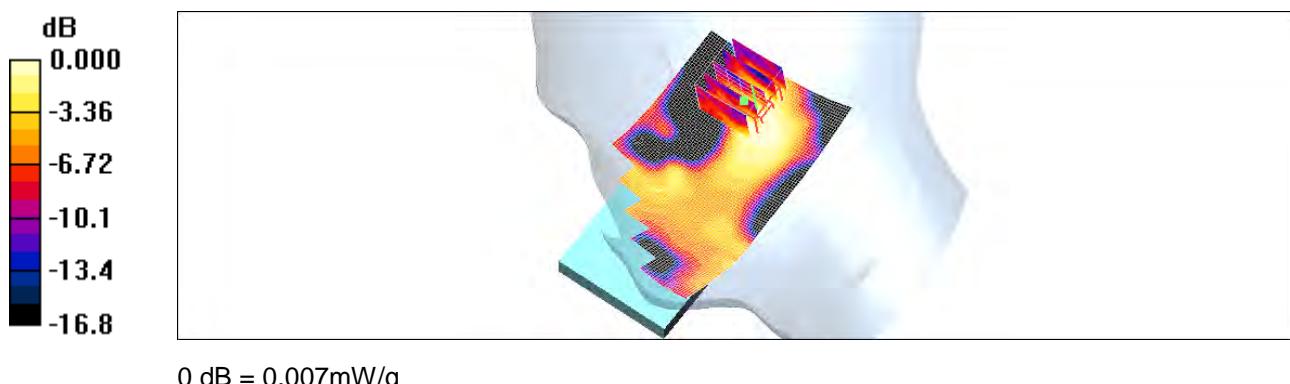
- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2012-04-27
- Phantom: 1800/1900 Phantom; Type: SAM

802.11b Right tilt 1ch 1Mbps/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.012 mW/g

802.11b Right tilt 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 1.88 V/m; Power Drift = 0.073 dB

Peak SAR (extrapolated) = 0.014 W/kg

SAR(1 g) = 0.0066 mW/g; SAR(10 g) = 0.00339 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.007 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Android Mini Pad
Liquid Temperature: 21.2 °C
Ambient Temperature: 21.4 °C
Test Date: Sep. 24, 2012
Separation Distance: 0.5 cm

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.89$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³
Phantom section: Center Section ; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

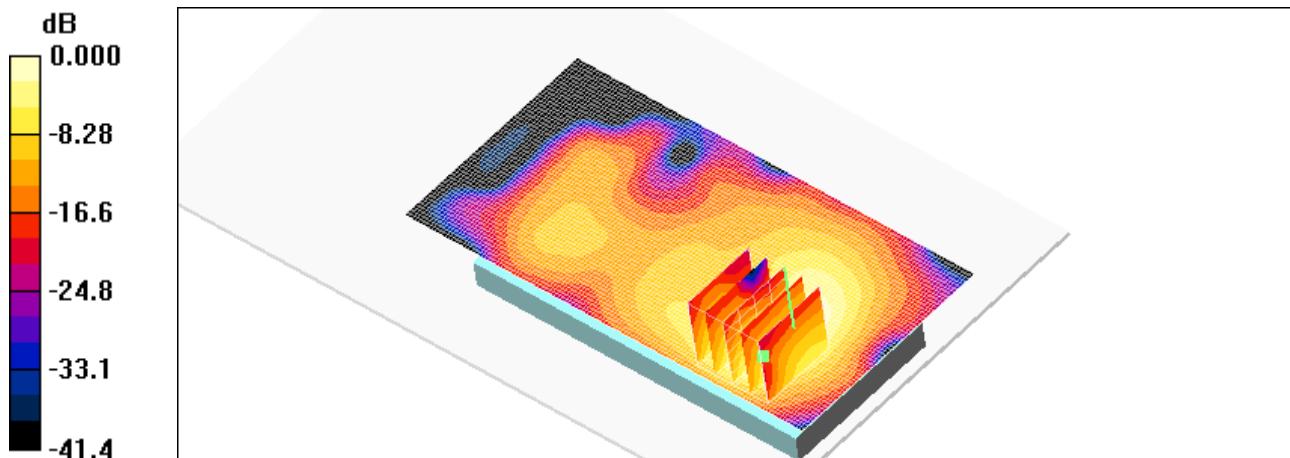
- Probe: ET3DV6 - SN1609; ConvF(4.01, 4.01, 4.01); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn912; Calibrated: 2011-11-17
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

Body rear 1ch 1Mbps/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.254 mW/g

Body rear 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 2.62 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 0.548 W/kg

SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.084 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.213 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Android Mini Pad
Liquid Temperature: 21.2 °C
Ambient Temperature: 21.4 °C
Test Date: Sep. 24, 2012
Separation Distance: 0.5 cm

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.89$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³
Phantom section: Center Section ; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

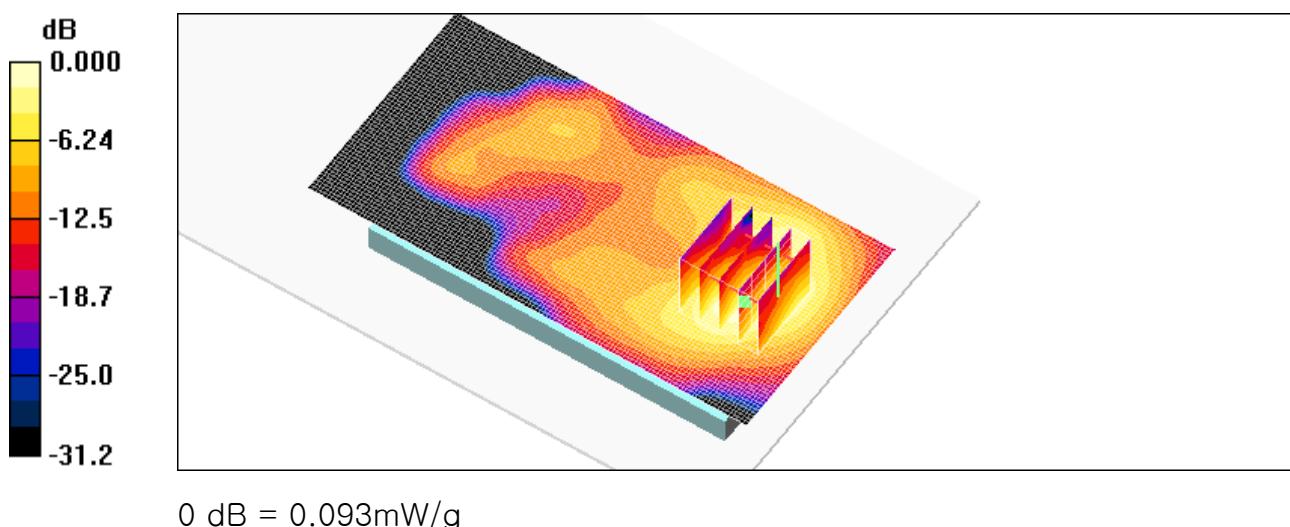
DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.01, 4.01, 4.01); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn912; Calibrated: 2011-11-17
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

Body front 1ch 1Mbps/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.089 mW/g


Body front 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 1.97 V/m; Power Drift = -0.141 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.085 mW/g; SAR(10 g) = 0.040 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.093 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Android Mini Pad
Liquid Temperature: 21.2 °C
Ambient Temperature: 21.4 °C
Test Date: Sep. 24, 2012
Separation Distance: 0.5 cm

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.89$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³
Phantom section: Center Section ; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

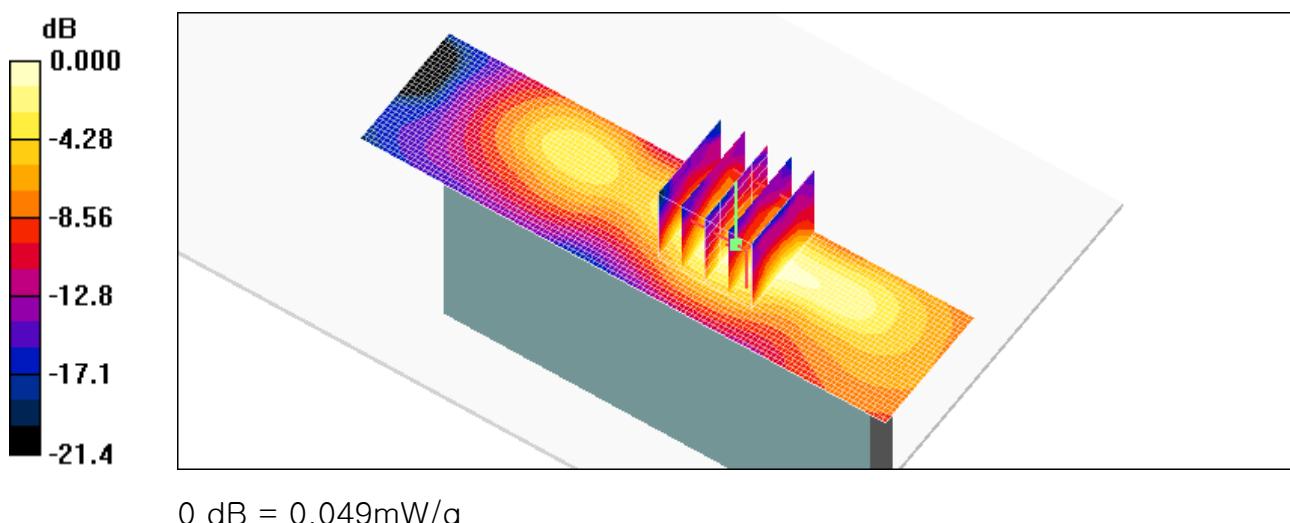
- Probe: ET3DV6 - SN1609; ConvF(4.01, 4.01, 4.01); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn912; Calibrated: 2011-11-17
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

Body right 1ch 1Mbps/Area Scan (31x121x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.052 mW/g

Body right 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 3.28 V/m; Power Drift = -0.099 dB

Peak SAR (extrapolated) = 0.102 W/kg

SAR(1 g) = 0.045 mW/g; SAR(10 g) = 0.023 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.049 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Android Mini Pad
Liquid Temperature: 21.2 °C
Ambient Temperature: 21.4 °C
Test Date: Sep. 24, 2012
Separation Distance: 0.5 cm

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.89$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³
Phantom section: Center Section ; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

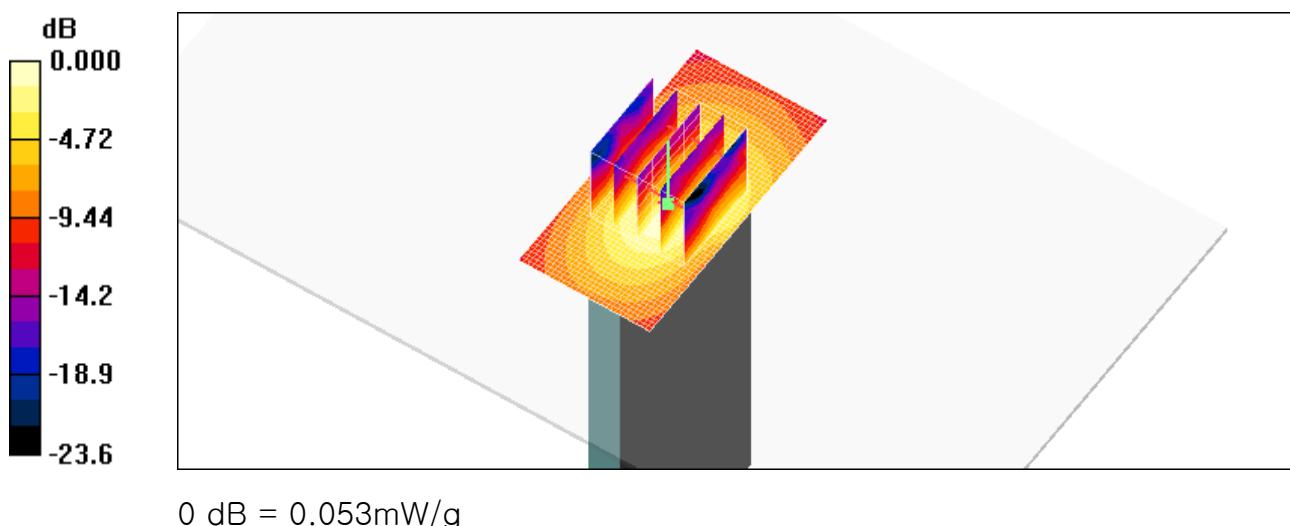
- Probe: ET3DV6 - SN1609; ConvF(4.01, 4.01, 4.01); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn912; Calibrated: 2011-11-17
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

Body Bottom 1ch 1Mbps/Area Scan (61x31x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.055 mW/g

Body Bottom 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 4.73 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.047 mW/g; SAR(10 g) = 0.024 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.053 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Android Mini Pad
Liquid Temperature: 21.2 °C
Ambient Temperature: 21.4 °C
Test Date: Sep. 17, 2012

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.75$ mho/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³
Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

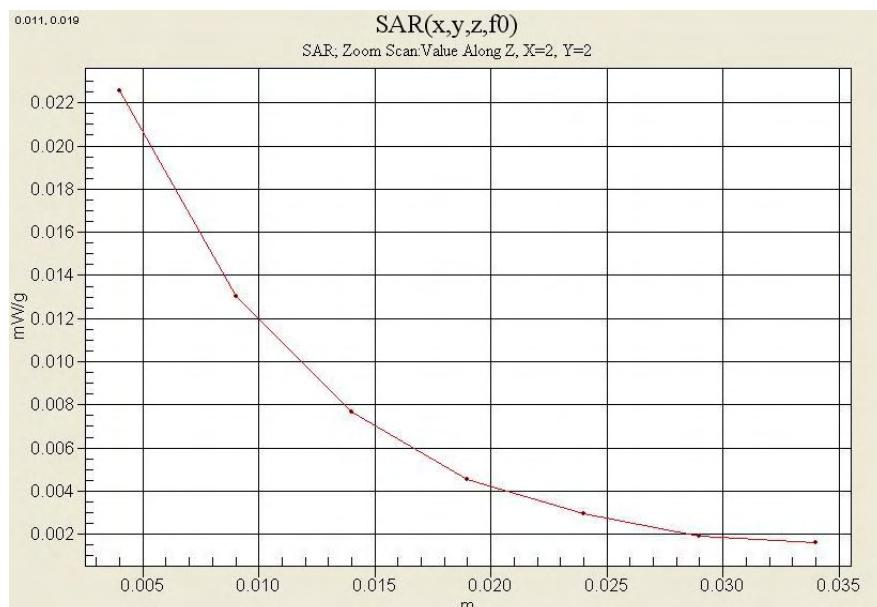
- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2012-04-27
- Phantom: 1800/1900 Phantom; Type: SAM

802.11b Right touch 1ch 1Mbps/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.025 mW/g

802.11b Right touch 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 1.70 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.039 W/kg

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.011 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.023 mW/g

Test Laboratory: HCT CO., LTD
EUT Type: Android Mini Pad
Liquid Temperature: 21.2 °C
Ambient Temperature: 21.4 °C
Test Date: Sep. 24, 2012
Separation Distance: 0.5 cm

DUT: A930; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2412 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.89$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³
Phantom section: Center Section ; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

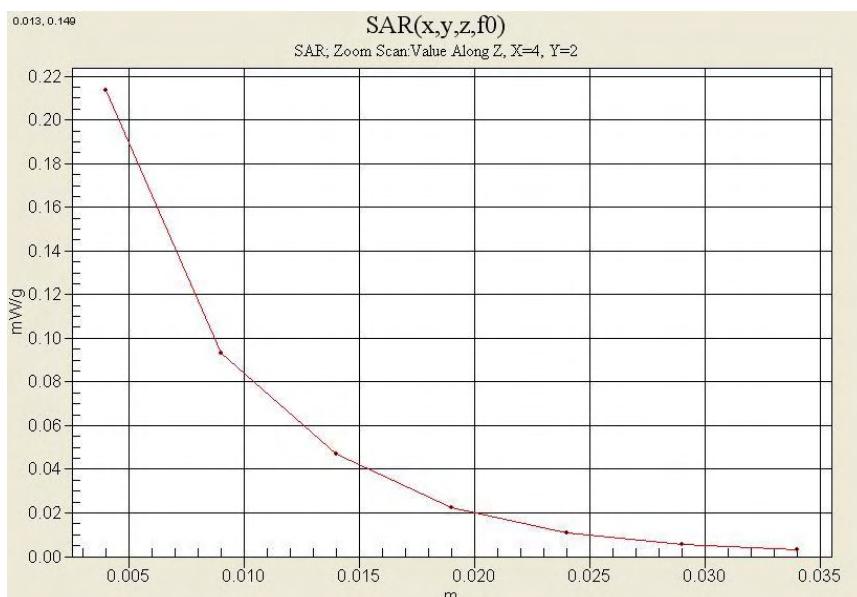
- Probe: ET3DV6 - SN1609; ConvF(4.01, 4.01, 4.01); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn912; Calibrated: 2011-11-17
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

Body rear 1ch 1Mbps/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.254 mW/g

Body rear 1ch 1Mbps/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 2.62 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 0.548 W/kg

SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.084 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.213 mW/g

Attachment 2. – Dipole Validation Plots

■ Validation Data (2450 MHz Head)

Test Laboratory: HCT CO., LTD

Input Power 100 mW (20 dBm)

Liquid Temp: 21.2 °C

Test Date: Sep. 17, 2012

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:743

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.79$ mho/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

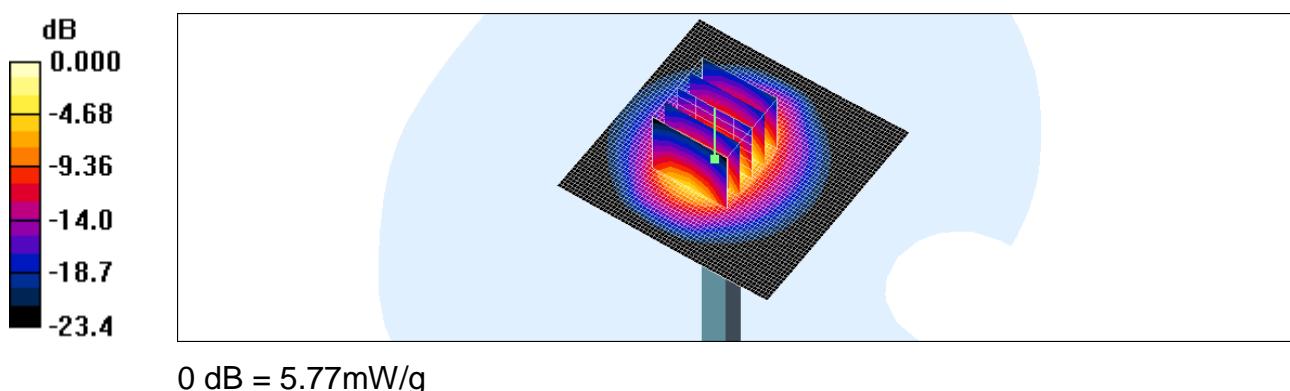
Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn648; Calibrated: 2012-04-27
- Phantom: SAM 1800/1900 MHz; Type: SAM

Validation 2450MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 6.37 mW/g


Validation 2450MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 60.2 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 12.1 W/kg

SAR(1 g) = 5.26 mW/g; SAR(10 g) = 2.39 mW/g

Maximum value of SAR (measured) = 5.77 mW/g

■ Validation Data (2450 MHz Body)

Test Laboratory: HCT CO., LTD

Input Power 100 mW (20 dBm)

Liquid Temp: 21.2 °C

Test Date: Sep. 24, 2012

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:743

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 54.5$; $\rho = 1000$ kg/m³

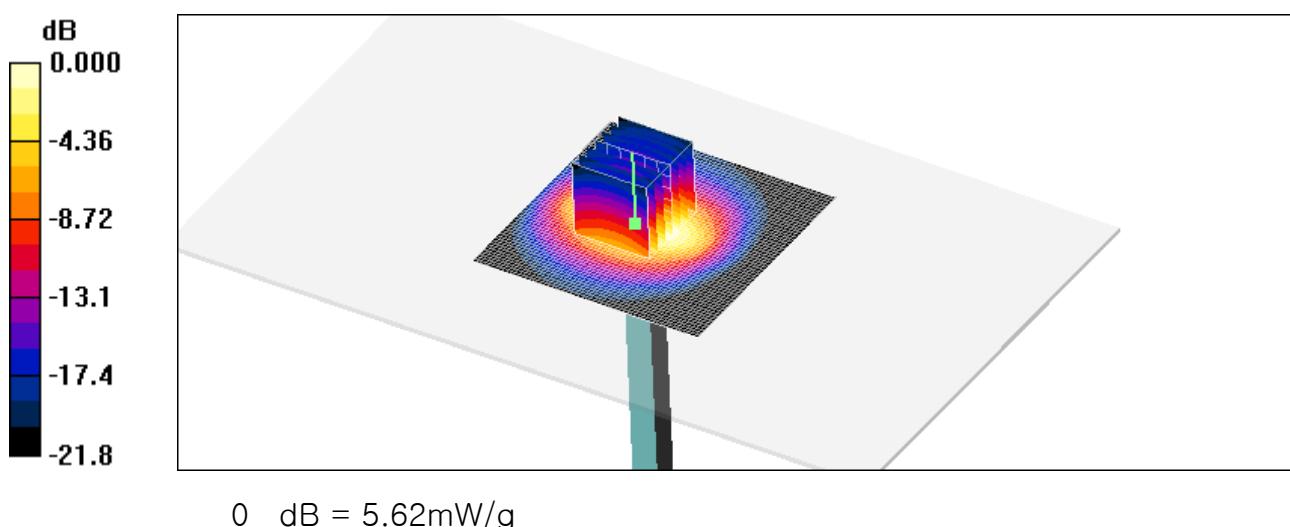
Phantom section: Center Section ; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.01, 4.01, 4.01); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn912; Calibrated: 2011-11-17
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

Validation 2450MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 6.37 mW/g


Validation 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.7 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 13.2 W/kg

SAR(1 g) = 5.27 mW/g; SAR(10 g) = 2.48 mW/g

Maximum value of SAR (measured) = 5.62 mW/g

■ Dielectric Parameter (2450 MHz Head)

Title A930
SubTitle 2 450MHz
Test Date Sep. 17, 2012

Frequency	ϵ'	ϵ''
2400000000.0000	39.3100	13.0404
2405000000.0000	39.2853	13.0413
2410000000.0000	39.2728	13.0597
2415000000.0000	39.2525	13.0653
2420000000.0000	39.2315	13.0633
2425000000.0000	39.2157	13.0736
2430000000.0000	39.1681	13.0693
2435000000.0000	39.1461	13.0850
2440000000.0000	39.0945	13.0983
2445000000.0000	39.0550	13.1124
2450000000.0000	39.0190	13.1238
2455000000.0000	38.9973	13.1453
2460000000.0000	38.9759	13.1666
2465000000.0000	38.9546	13.1879
2470000000.0000	38.9394	13.2096
2475000000.0000	38.9318	13.2526
2480000000.0000	38.9215	13.2729
2485000000.0000	38.9098	13.2945
2490000000.0000	38.9154	13.3261
2495000000.0000	38.9391	13.3366
2500000000.0000	38.9226	13.3486

■ Dielectric Parameter (2 450 MHz Body)

Title A930
SubTitle 2 450MHz
Test Date Sep. 24, 2012

Frequency	ϵ'	ϵ''
2400000000.0000	54.6739	14.0067
2405000000.0000	54.6497	14.0313
2410000000.0000	54.6310	14.0565
2415000000.0000	54.6245	14.0815
2420000000.0000	54.5829	14.0864
2425000000.0000	54.5727	14.1167
2430000000.0000	54.5402	14.1336
2435000000.0000	54.5234	14.1615
2440000000.0000	54.5124	14.1815
2445000000.0000	54.4913	14.1997
2450000000.0000	54.4780	14.2233
2455000000.0000	54.4508	14.2424
2460000000.0000	54.4309	14.2838
2465000000.0000	54.4184	14.3069
2470000000.0000	54.4035	14.3338
2475000000.0000	54.3762	14.3458
2480000000.0000	54.3690	14.3745
2485000000.0000	54.3564	14.3906
2490000000.0000	54.3310	14.4087
2495000000.0000	54.3257	14.4435
2500000000.0000	54.3168	14.4469

Attachment 3. – Probe Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **HCT (Dymstec)**Certificate No: **ET3-1609_Mar12**

CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1609**Calibration procedure(s) **QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4**
Calibration procedure for dosimetric E-field probesCalibration date: **March 19, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: March 19, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f,x,y,z) = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCP_{x,y,z}$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A_{x,y,z}; B_{x,y,z}; C_{x,y,z}, VR_{x,y,z}; A, B, C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ET3DV6 – SN:1609

March 19, 2012

Probe ET3DV6

SN:1609

Manufactured: July 27, 2001
Calibrated: March 19, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

ET3DV6- SN:1609

March 19, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609**Basic Calibration Parameters**

	Sensor X	Sensor Y		Sensor Z	Unc (k=2)
Norm (μ V/(V/m) ²) ^A	2.01	1.81		1.82	\pm 10.1 %
DCP (mV) ^B	97.7	97.4		98.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	112.2	\pm 2.2 %
			Y	0.00	0.00	1.00	107.9	
			Z	0.00	0.00	1.00	109.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6- SN:1609

March 19, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.32	7.32	7.32	0.21	2.26	± 13.4 %
750	41.9	0.89	6.68	6.68	6.68	0.39	2.46	± 12.0 %
835	41.5	0.90	6.36	6.36	6.36	0.32	2.79	± 12.0 %
900	41.5	0.97	6.25	6.25	6.25	0.33	3.00	± 12.0 %
1450	40.5	1.20	5.48	5.48	5.48	0.44	3.00	± 12.0 %
1750	40.1	1.37	5.50	5.50	5.50	0.74	2.42	± 12.0 %
1900	40.0	1.40	5.26	5.26	5.26	0.80	2.18	± 12.0 %
1950	40.0	1.40	5.04	5.04	5.04	0.80	2.09	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.80	1.90	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

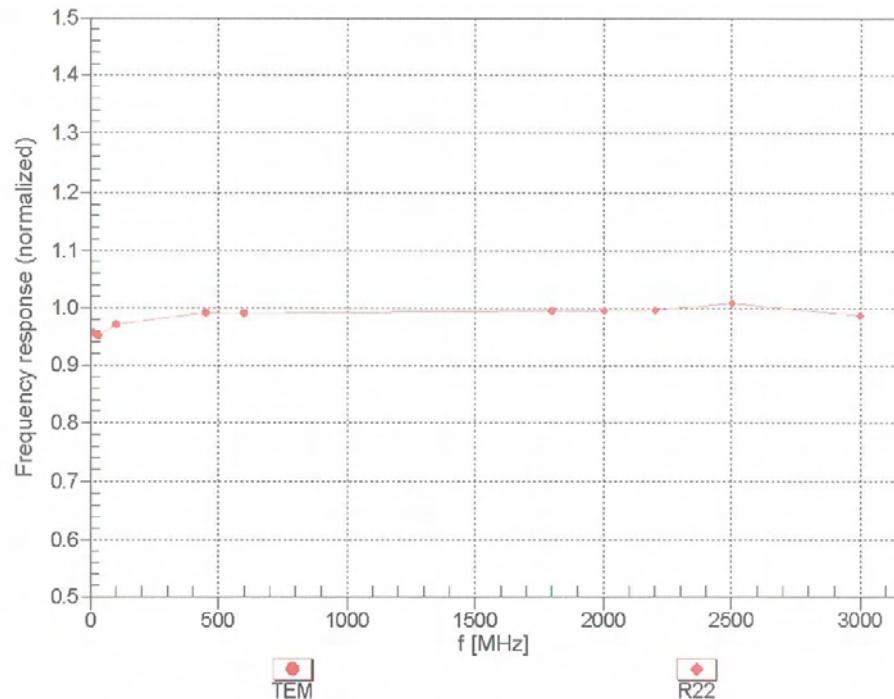
ET3DV6- SN:1609

March 19, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.73	7.73	7.73	0.15	2.32	± 13.4 %
750	55.5	0.96	6.38	6.38	6.38	0.29	3.00	± 12.0 %
835	55.2	0.97	6.24	6.24	6.24	0.39	2.51	± 12.0 %
1750	53.4	1.49	4.80	4.80	4.80	0.80	2.57	± 12.0 %
1900	53.3	1.52	4.55	4.55	4.55	0.80	2.50	± 12.0 %
2450	52.7	1.95	4.01	4.01	4.01	0.70	1.23	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

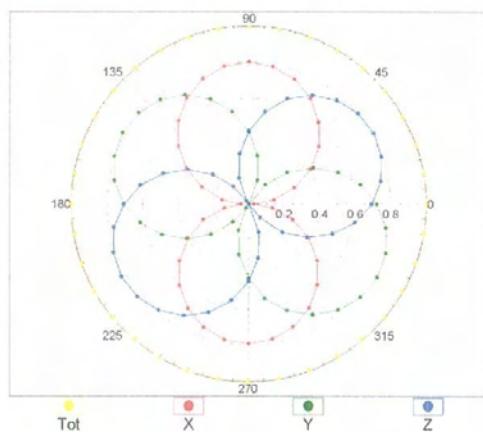

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1609

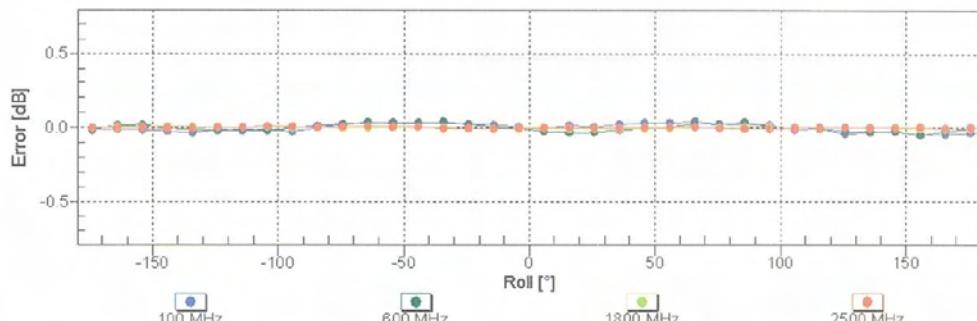
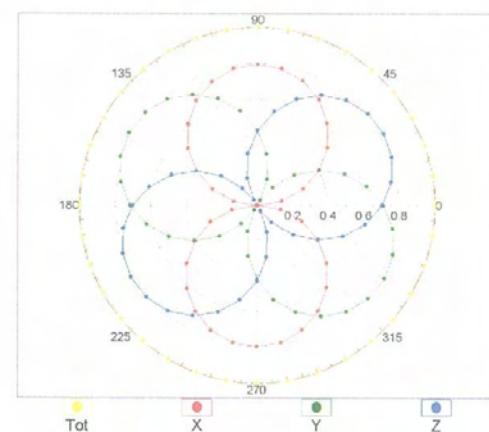
March 19, 2012

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

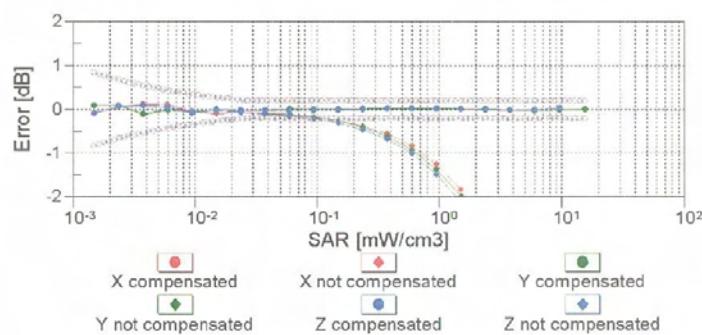
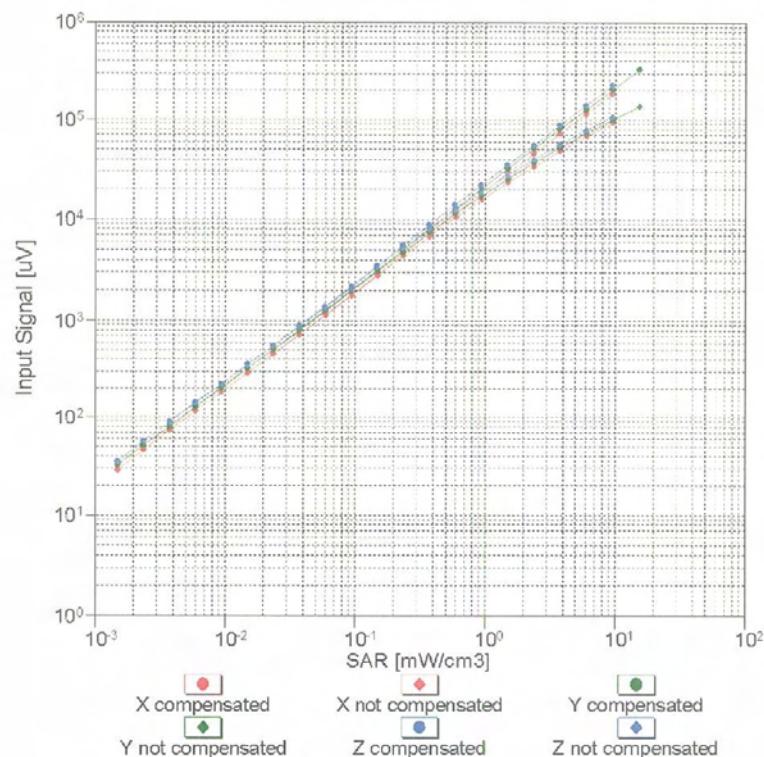

Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$

ET3DV6- SN:1609



March 19, 2012

Receiving Pattern (ϕ), $\theta = 0^\circ$

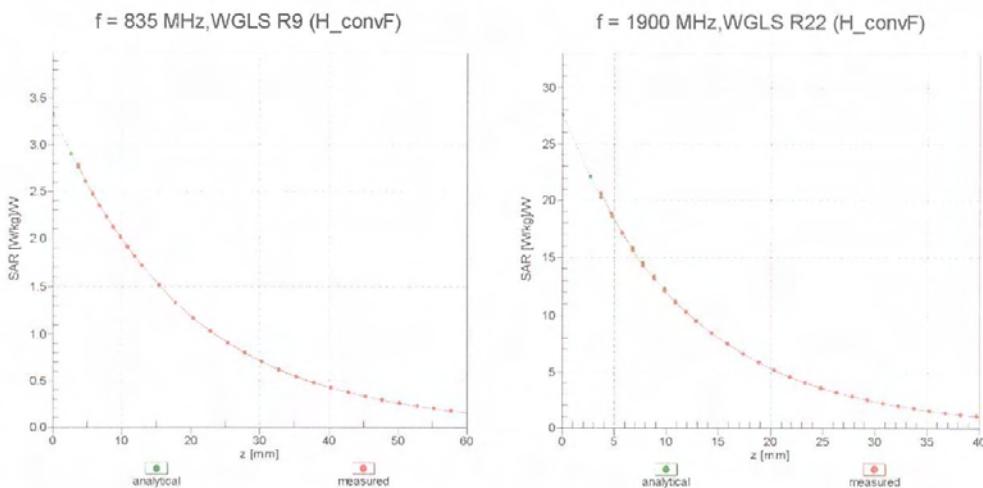
f=600 MHz, TEM

f=1800 MHz, R22

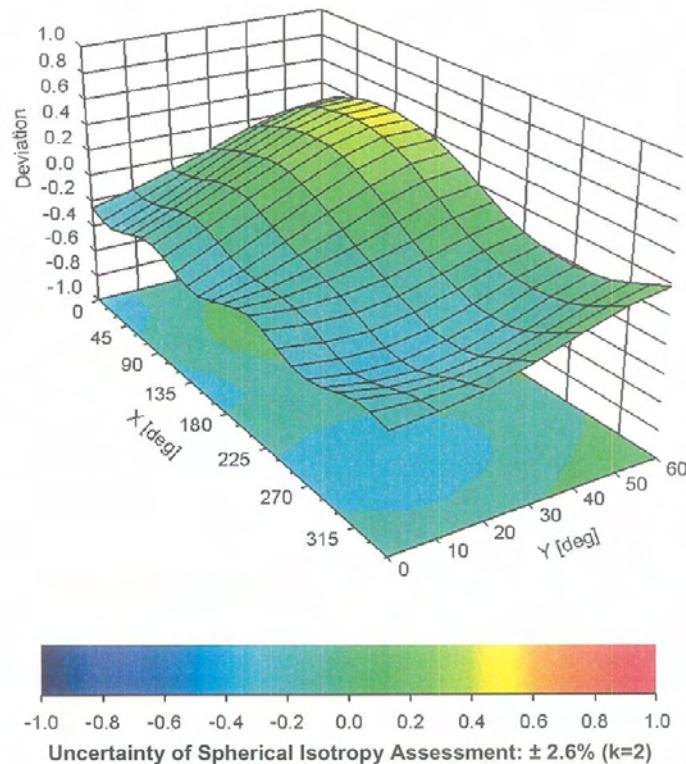
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

ET3DV6- SN:1609


March 19, 2012

Dynamic Range f(SAR_{head})
(TEM cell , f = 900 MHz)Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

ET3DV6- SN:1609


March 19, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900$ MHz

ET3DV6- SN:1609

March 19, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1609**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **HCT (Dymstec)**

Certificate No: **D2450V2-743_Aug12**

CALIBRATION CERTIFICATE

Object **D2450V2 - SN: 743**

Calibration procedure(s) **QA CAL-05.v8**
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **August 23, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by: Name **Israe El-Naouq** Function **Laboratory Technician**

Signature

Approved by: Name **Katja Pokovic** Function **Technical Manager**

Issued: August 23, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalementage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.18 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.0 Ω + 4.7 $j\Omega$
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9 Ω + 6.5 $j\Omega$
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

DASY5 Validation Report for Head TSL

Date: 23.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.81$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

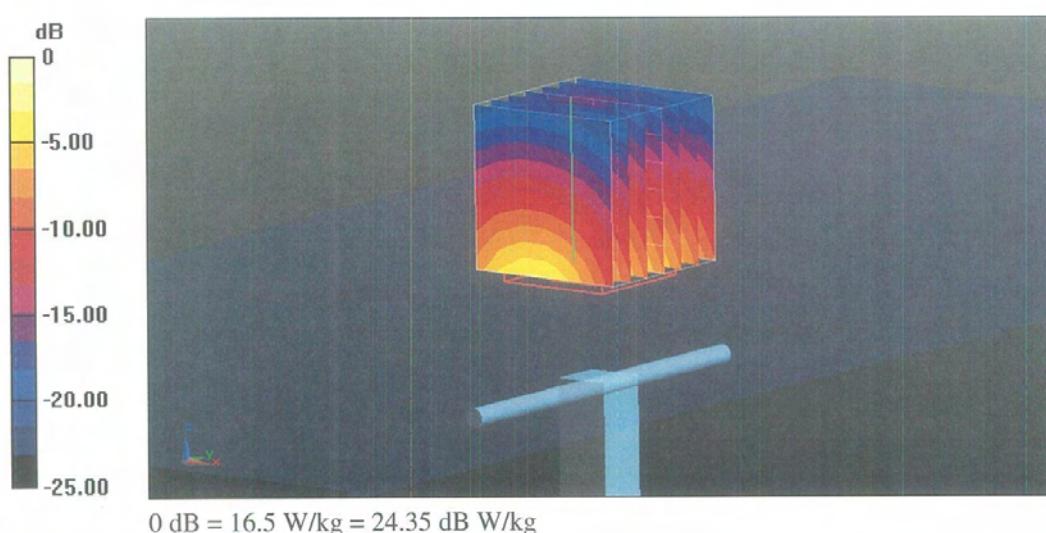
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

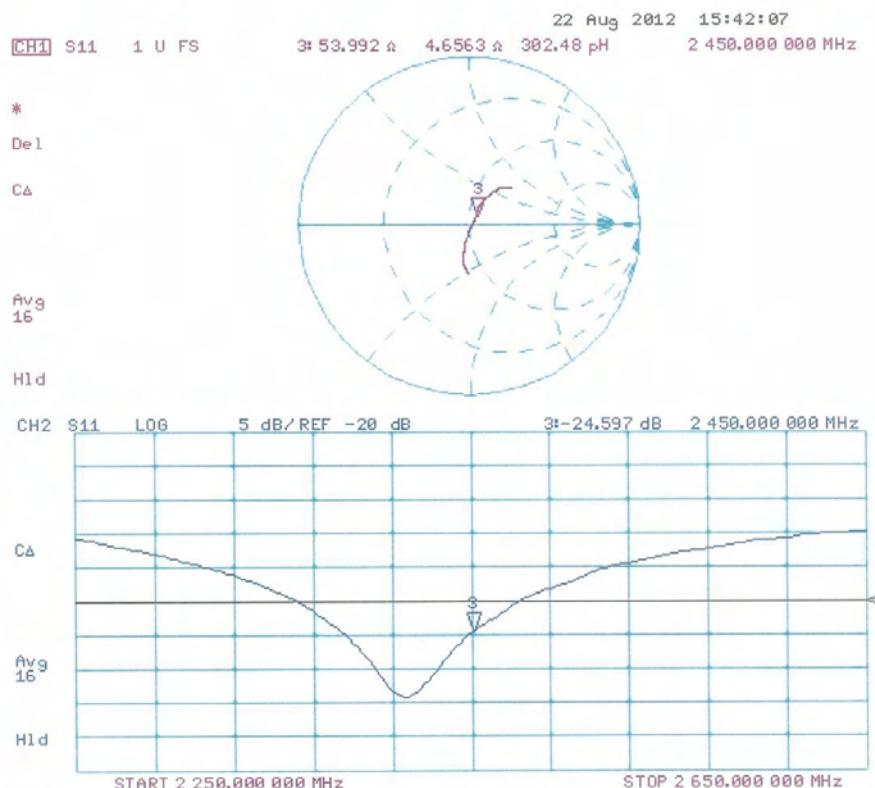
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.554 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 26.584 mW/g

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.18 mW/g

Maximum value of SAR (measured) = 16.5 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 743

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³

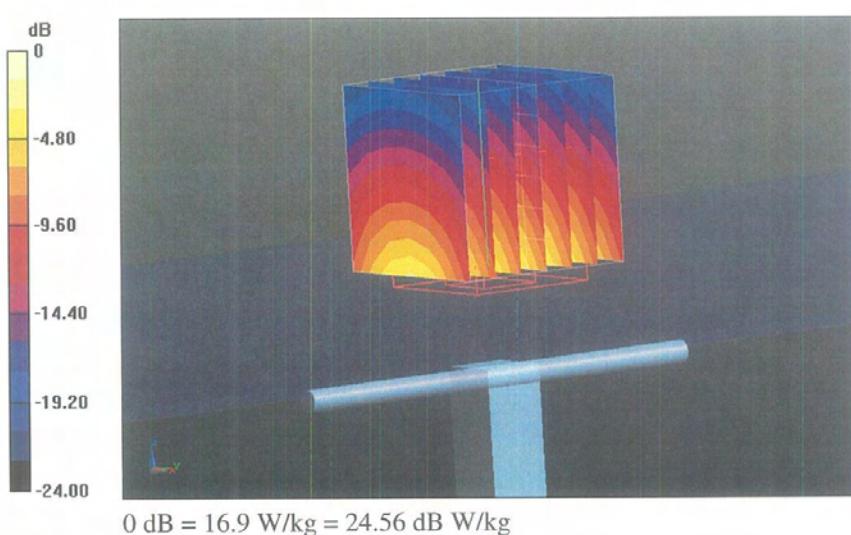
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

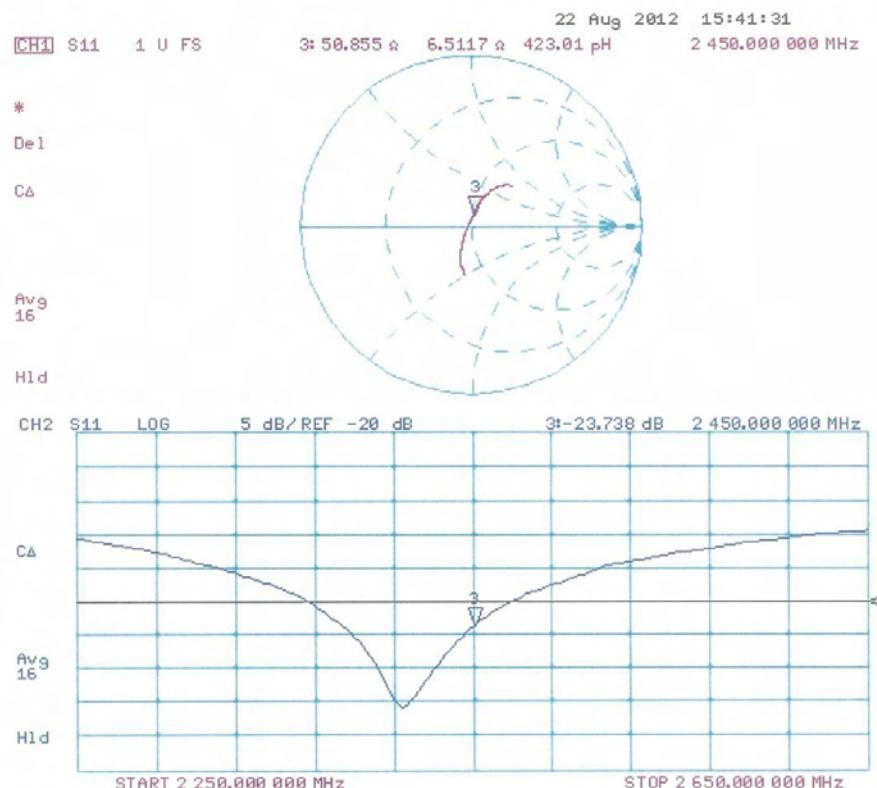
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.699 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 26.489 mW/g

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.1 mW/g

Maximum value of SAR (measured) = 16.9 W/kg

Impedance Measurement Plot for Body TSL

