

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA

Tel. 410.290.6652 / Fax 410.290.6654

<http://www.pctestlab.com>

CERTIFICATE OF COMPLIANCE FCC Part 24 Certification

Applicant Name:

NEC Corporation of America
Radio Communications Systems Division
6535 N. State Highway 161
Irving, TX 75039-2402 USA

Date of Testing:

September 7, 2010

Test Site/Location:

PCTEST Lab, Columbia, MD, USA

Test Report Serial No.:

0Y1009021487.A98

FCC ID:**A98-MQJ3588****APPLICANT:****NEC CORPORATION OF AMERICA****Application Type:** Certification**FCC Classification:** PCS Licensed Transmitter Held to Ear (PCE)**FCC Rule Part(s):** §2; §24(E)**EUT Type:** 1900 GSM/GPRS Phone with Bluetooth and RFID**Model(s):** KMP7N4V1-3A**Tx Frequency Range:** 1850.20 - 1909.80MHz (PCS GSM)**Max. RF Output Power:** 1.592 W EIRP PCS GSM (32.02 dBm)**Emission Designator(s):** 242KGXW (PCS GSM)**Test Device Serial No.:** *identical prototype [S/N: 004401200610034]*


This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

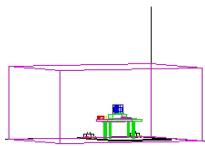
This FCC ID: **A98-MQJ3588** is electrically identical to the previously certified FCC ID: A98-HAE3588.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

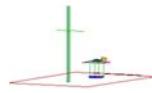
Grant Conditions: Power output listed is EIRP for Part 24.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez
President


FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 1 of 23

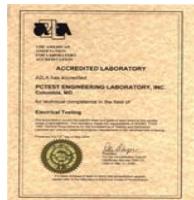
T A B L E O F C O N T E N T S


FCC PART 24 MEASUREMENT REPORT.....	3
1.0 INTRODUCTION	4
1.1 SCOPE	4
1.2 TESTING FACILITY.....	4
2.0 PRODUCT INFORMATION.....	5
2.1 EQUIPMENT DESCRIPTION	5
2.2 EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
2.3 LABELING REQUIREMENTS.....	5
3.0 DESCRIPTION OF TESTS	6
3.1 MEASUREMENT PROCEDURE	6
3.2 OCCUPIED BANDWIDTH EMISSION LIMITS	6
3.3 PCS - BASE FREQUENCY BLOCKS.....	7
3.4 PCS - MOBILE FREQUENCY BLOCKS.....	7
3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.....	7
3.6 RADIATED SPURIOUS AND HARMONIC EMISSIONS	7
3.7 PEAK-AVERAGE RATIO.....	8
3.8 FREQUENCY STABILITY / TEMPERATURE VARIATION	8
4.0 TEST EQUIPMENT CALIBRATION DATA	9
5.0 SAMPLE CALCULATIONS	10
6.0 TEST RESULTS.....	11
6.1 SUMMARY.....	11
6.2 EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA.....	12
6.3 PCS GSM RADIATED MEASUREMENTS	13
6.4 PCS GSM FREQUENCY STABILITY MEASUREMENTS.....	16
7.0 PLOTS OF EMISSIONS.....	18
8.0 CONCLUSION.....	23

FCC ID: A98-MQJ3588	PCTEST ENGINEERING LABORATORY, INC.	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID	Reviewed by: Quality Manager Page 2 of 23

MEASUREMENT REPORT

FCC Part 24



§2.1033 General Information

APPLICANT: NEC Corporation of America
APPLICANT ADDRESS: Radio Communications Systems Division
6535 N. State Highway 161 Irving, TX 75039-2402 USA
TEST SITE: PCTEST ENGINEERING LABORATORY, INC.
TEST SITE ADDRESS: 6660-B Dobbin Road, Columbia, MD 21045 USA
FCC RULE PART(S): §2; §24(E)
BASE MODEL: KMP7N4V1-3A
FCC ID: A98-MQJ3588
FCC CLASSIFICATION: PCS Licensed Transmitter Held to Ear (PCE)
EMISSION DESIGNATOR(S): 242KGXW (PCS GSM)
MODE: GSM
FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)
Test Device Serial No.: 004401200610034 Production Pre-Production Engineering
DATE(S) OF TEST: September 7, 2010
TEST REPORT S/N: 0Y1009021487.A98

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451A-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EVDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: A98-MQJ3588	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 3 of 23

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington International (BWI) airport, the city of Baltimore and the Washington, DC area. (See *Figure 1-1*).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 27, 2006.

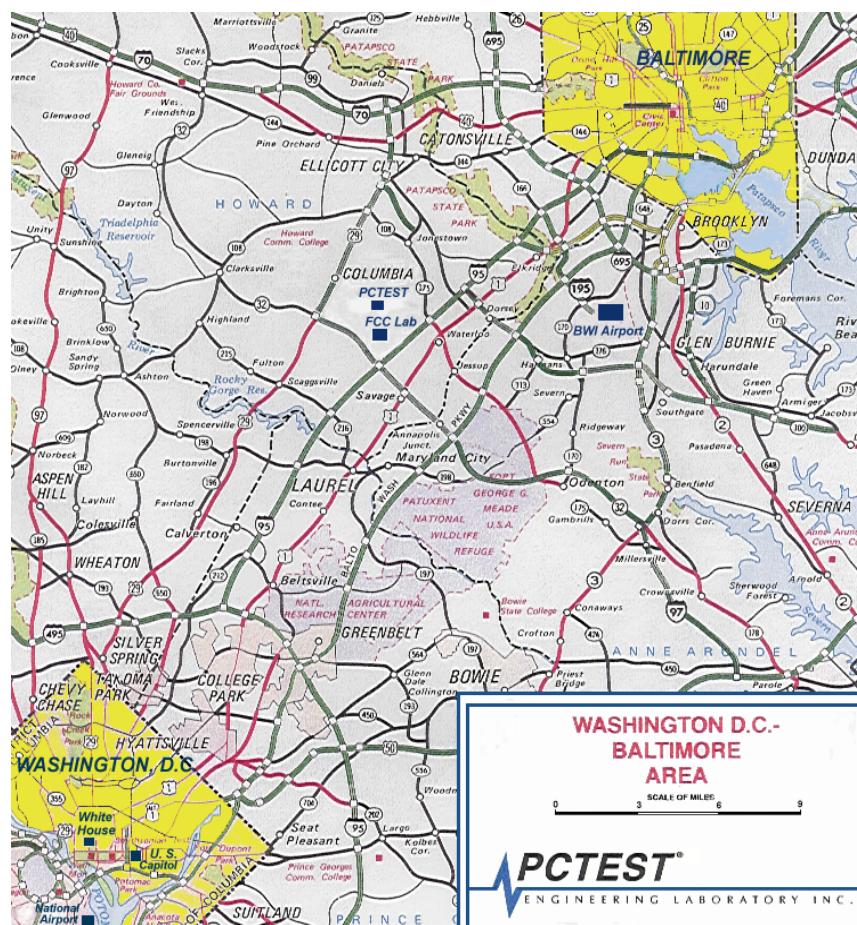


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A98-MQJ3588	PCTEST ENGINEERING LABORATORY, INC.	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 4 of 23

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **NEC 1900 GSM/GPRS Phone with Bluetooth and RFID** **FCC ID: A98-MQJ3588**. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
NEC / Model: KMP7N4V1-3A	A98-MQJ3588	1900 GSM/GPRS Phone with Bluetooth and RFID

Table 2-1. EUT Equipment Description

2.2 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 Labeling Requirements

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

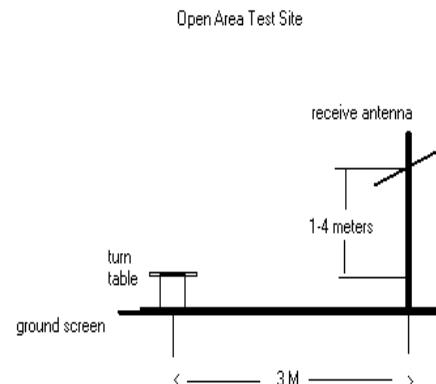
The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: A98-MQJ3588	PCTEST ENGINEERING LABORATORY, INC.	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 5 of 23

3.0 DESCRIPTION OF TESTS

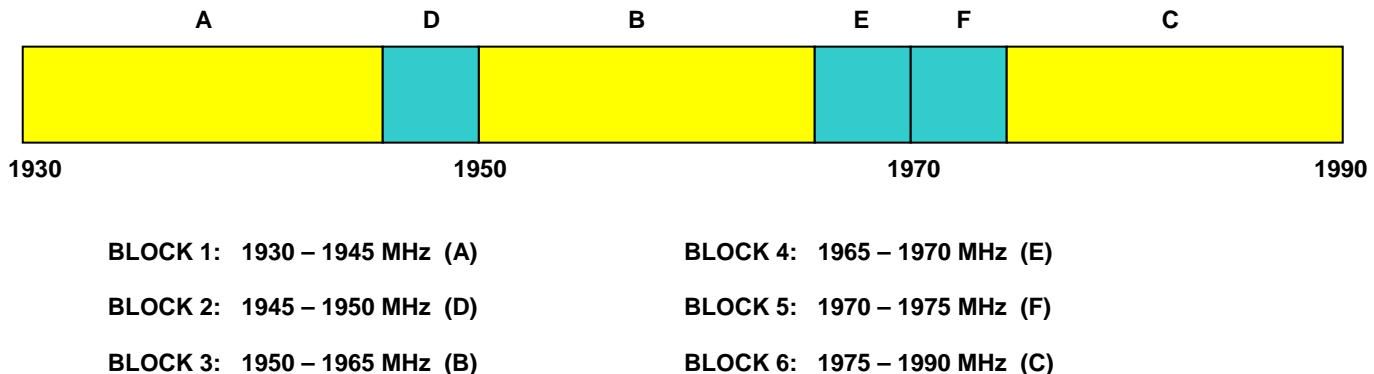
3.1 Measurement Procedure

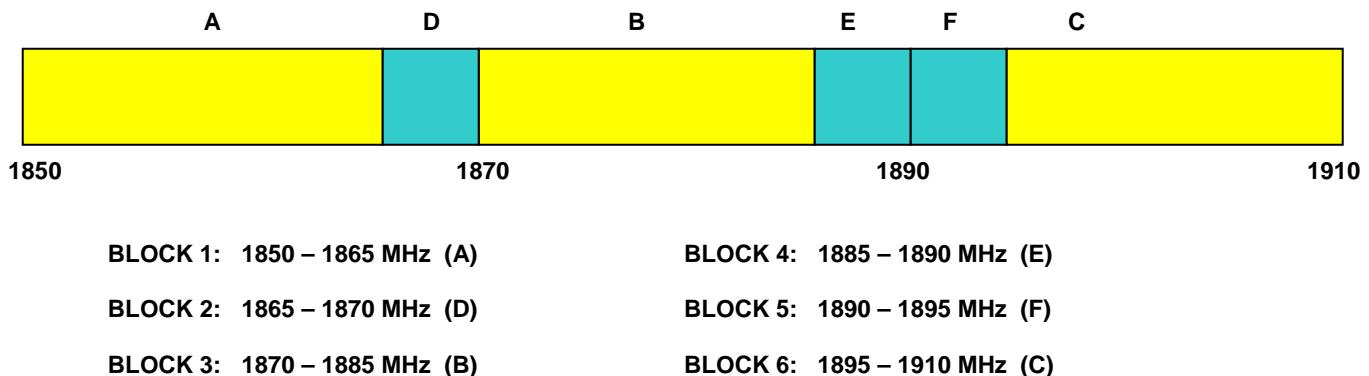

The radiated spurious measurements were made outdoors at a 3-meter test range (See Figure 3-1). The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Deviation from Measurement Procedure.....None

3.2 Occupied Bandwidth Emission Limits

§2.1049, 24.238(a)


- On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB.
- Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.


Figure 3-1. Diagram of 3-meter outdoor test range

FCC ID: A98-MQJ3588	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 6 of 23

3.3 PCS - Base Frequency Blocks

3.4 PCS - Mobile Frequency Blocks

3.5 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, 24.238(a); RSS-133 (6.5.1)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

3.6 Radiated Spurious and Harmonic Emissions

§2.1053, 24.238(a); RSS-133 (6.5.1(i))

Spurious and harmonic radiated emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This level is then measured with a broadband average power meter. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive average power meter reading. This spurious level is recorded with the power meter. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested in all configurations and the highest power is reported in GSM mode with a PCL of "0".

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 7 of 23

3.7 Peak-Average Ratio

§24.232(d)

A peak to average ratio measurement is performed at the conducted port of the EUT. For CDMA and WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth.

3.8 Frequency Stability / Temperature Variation

§2.1055, 24.235; RSS-133 (6.3)

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
2. The equipment is turned on in a “standby” condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

FCC ID: A98-MQJ3588	PCTEST ENGINEERING LABORATORY, INC.	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID			Page 8 of 23

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
-	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent	11713A	Attenuation/Switch Driver	12/2/2009	Annual	12/2/2010	3439A02645
Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/2/2009	Annual	12/2/2010	3008A00985
Agilent	85650A	Quasi-Peak Adapter	12/2/2009	Annual	12/2/2010	3303A01872
Agilent	85650A	Quasi-Peak Adapter	3/30/2010	Annual	3/30/2011	2043A00301
Agilent	8566B	(100Hz-22GHz) Spectrum Analyzer	12/2/2009	Annual	12/2/2010	3638A08713
Agilent	8648D	(9kHz-4GHz) Signal Generator	9/19/2009	Biennial	9/19/2011	3613A00315
Agilent	E4407B	ESA Spectrum Analyzer	3/30/2010	Annual	3/30/2011	US39210313
Agilent	E4432B	ESG-D Series Signal Generator	9/10/2009	Annual	9/10/2010	US40053896
Agilent	E4448A	PSA (3Hz-50GHz) Spectrum Analyzer	10/1/2009	Annual	10/1/2010	US42510244
Agilent	E5515C	Wireless Communications Test Set	9/10/2009	Annual	9/10/2010	GB46110872
Agilent	E5515C	Wireless Communications Test Set	9/11/2009	Annual	9/11/2010	GB46310798
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/30/2010	Annual	3/30/2011	MY45470194
Agilent	E8267C	Vector Signal Generator	9/29/2009	Biennial	9/29/2011	US42340152
Agilent	N9020A	MXA Signal Analyzer	10/22/2009	Annual	10/22/2010	US46470561
Compliance Design	Roberts	Dipole Set	4/7/2010	Biennial	4/7/2012	146
Compliance Design	Roberts	Dipole Set	4/7/2010	Biennial	4/7/2012	147
Emco	3115	Horn Antenna (1-18GHz)	10/14/2009	Biennial	10/14/2011	9704-5182
Emco	3115	Horn Antenna (1-18GHz)	4/8/2010	Biennial	4/8/2012	9205-3874
Espec	ESX-2CA	Environmental Chamber	4/1/2010	Annual	4/1/2011	17620
Gigatronics	80701A	(0.05-18GHz) Power Sensor	9/9/2009	Annual	9/9/2010	1833460
Gigatronics	8651A	Universal Power Meter	9/9/2009	Annual	9/9/2010	8650319
K & L	11SH10	Band Pass Filter	N/A	Annual	N/A	1300/4000
K & L	11SH10	Band Pass Filter	N/A	Annual	N/A	4000/12000
MiniCircuits	VHF-1300+	High Pass Filter	N/A		N/A	30716
MiniCircuits	VHF-3100+	High Pass Filter	N/A		N/A	30721
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	11/11/2009	Annual	11/11/2010	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	6/21/2010	Annual	6/21/2011	833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator	11/4/2009	Annual	11/4/2010	109892
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Rx	7/17/2009	Biennial	7/17/2011	9105-2404
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Tx	7/17/2009	Biennial	7/17/2011	9105-2403
Sunol	DRH-118	Horn Antenna (1 - 18GHz)	5/14/2009	Biennial	5/14/2011	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	7/17/2009	Biennial	7/17/2011	A051107
Rohde & Schwarz	CMU200	Base Station Simulator	6/17/2010	Annual	6/17/2011	836536/0005
Rohde & Schwarz	FSQ 26	Spectrum Analyzer	9/19/2009	Annual	9/19/2010	200452
Rohde & Schwarz	CMW500	LTE Base Station Simulator	8/30/2010	Annual	8/30/2011	100976
Anritsu	ML2495A	Power Meter	10/12/2009	Annual	10/12/2010	941001

Table 4-1. Test Equipment

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)			Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID			Page 9 of 23

5.0 SAMPLE CALCULATIONS

Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

Spurious Radiated Emission - PCS Band

Example: Channel 512 PCS Mode 2nd Harmonic (3700.40 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the power meter reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was $25.501 \text{ dBm} - (-24.80) = 50.3 \text{ dBc}$.

FCC ID: A98-MQJ3588	 PCTEST ENGINEERING LABORATORY, INC.	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 10 of 23

6.0 TEST RESULTS

6.1 Summary

Company Name: NEC Corporation of America
 FCC ID: A98-MQJ3588
 FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)
 Mode(s): GSM

FCC Part Section(s)	RSS Section	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MODE (TX)						
2.1049, 24.238(a)	N/A	Occupied Bandwidth	N/A	CONDUCTED	PASS	Section 7.0
2.1051, 24.238(a)	RSS-133 (6.5.1)	Band Edge / Conducted Spurious Emissions	< $43 + \log_{10}(P[\text{Watts}])$ at Band Edge and for all out-of-band emissions		PASS	Section 7.0
24.232(d)	N/A	Peak-Average Ratio	< 13 dB		PASS	Section 7.0
2.1055, 24.235	RSS-133 (6.3)	Frequency Stability	< 2.5 ppm		PASS	Section 6.4
24.232(c)	RSS-133 (6.4) [SRSP-510 (5.1.2)]	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.2
2.1053, 24.238(a)	RSS-133 (6.5.1)	Undesirable Emissions	< $43 + \log_{10}(P[\text{Watts}])$ for all out-of-band emissions		PASS	Section 6.3
RECEIVER MODE (RX) / DIGITAL EMISSIONS						
15.107	RSS-Gen (7.2.2)	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.107 limits	LINE CONDUCTED	PASS	Pt. 15B Test Report
15.109	RSS-133(6.7(a) / [RSS-Gen (7.2.2)] / RSS-210 (7.3))	General Field Strength Limits (Restricted Bands and Radiated Emissions Limits)	< FCC 15.109 limits	RADIATED (30MHz-1GHz) (1-25 GHz)	PASS	Pt. 15B Test Report
RF EXPOSURE						
2.1091 / 2.1093	RSS-102	SAR Test	1.6 W/kg (SAR Limit)	SAR	PASS	SAR Report

Table 6-1. Summary of Test Results

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 11 of 23

6.2 Equivalent Isotropic Radiated Power Output Data

§24.232(c); RSS-133 (6.4) [SRSP-510 (5.1.2)]

POWER: PCL "0" (PCS GSM Mode)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Battery Type
1850.20	GSM1900	-11.760	23.64	8.00	H	31.64	1.459	Standard
1880.00	GSM1900	-11.380	24.02	8.00	H	32.02	1.592	Standard
1909.80	GSM1900	-12.300	23.10	8.00	H	31.10	1.288	Standard

Table 6-2. Equivalent Isotropic Radiated Power Output Data

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

This device was tested in all configurations and the highest power is reported in GSM mode with a PCL of "0". This unit was tested with its standard battery.

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 12 of 23

6.3 PCS GSM Radiated Measurements

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1850.20 MHz
 CHANNEL: 512
 MEASURED OUTPUT POWER: 32.020 dBm = 1.592 W
 MODULATION SIGNAL: GSM (Internal)
 DISTANCE: 3 meters
 LIMIT: $43 + 10 \log_{10} (W) =$ 45.02 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBD)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3700.40	-35.15	9.02	-26.13	H	58.2
5550.60	-45.14	10.40	-34.74	H	66.8
7400.80	-39.48	10.50	-28.98	H	61.0
9251.00	-76.58	11.85	-64.73	H	96.8
11101.20	-76.33	12.76	-63.57	H	95.6

Table 6-3. Radiated Spurious Data (PCS GSM Mode – Ch. 512)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method
according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested in all configurations and the highest power is reported in GSM mode with a PCL of "0". This unit was tested with its standard battery.

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 13 of 23

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1880.00 MHz
 CHANNEL: 661
 MEASURED OUTPUT POWER: 32.020 dBm = 1.592 W
 MODULATION SIGNAL: GSM (Internal)
 DISTANCE: 3 meters
 LIMIT: $43 + 10 \log_{10} (W) =$ 45.02 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBD)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3760.00	-35.40	8.00	-27.40	H	59.4
5640.00	-41.75	8.00	-33.75	H	65.8
7520.00	-36.93	8.00	-28.93	H	61.0
9400.00	-70.15	8.00	-62.15	H	94.2
11280.00	-71.71	8.00	-63.71	H	95.7

Table 6-4. Radiated Spurious Data (PCS GSM Mode – Ch. 661)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method
according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested in all configurations and the highest power is reported in GSM mode with a PCL of "0". This unit was tested with its standard battery.

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 14 of 23

PCS GSM Radiated Measurements (Cont'd)

§2.1053, 24.238(a); RSS-133 (6.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1909.80 MHz
 CHANNEL: 810
 MEASURED OUTPUT POWER: 32.020 dBm = 1.592 W
 MODULATION SIGNAL: GSM (Internal)
 DISTANCE: 3 meters
 LIMIT: $43 + 10 \log_{10} (W) =$ 45.02 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3819.60	-35.41	8.00	-27.41	H	59.4
5729.40	-42.24	8.00	-34.24	H	66.3
7639.20	-36.02	8.00	-28.02	H	60.0
9549.00	-68.56	8.00	-60.56	H	92.6
11458.80	-71.84	8.00	-63.84	H	95.9

Table 6-5. Radiated Spurious Data (PCS GSM Mode – Ch. 810)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method
 according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004.

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested in all configurations and the highest power is reported in GSM mode with a PCL of "0". This unit was tested with its standard battery.

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 15 of 23

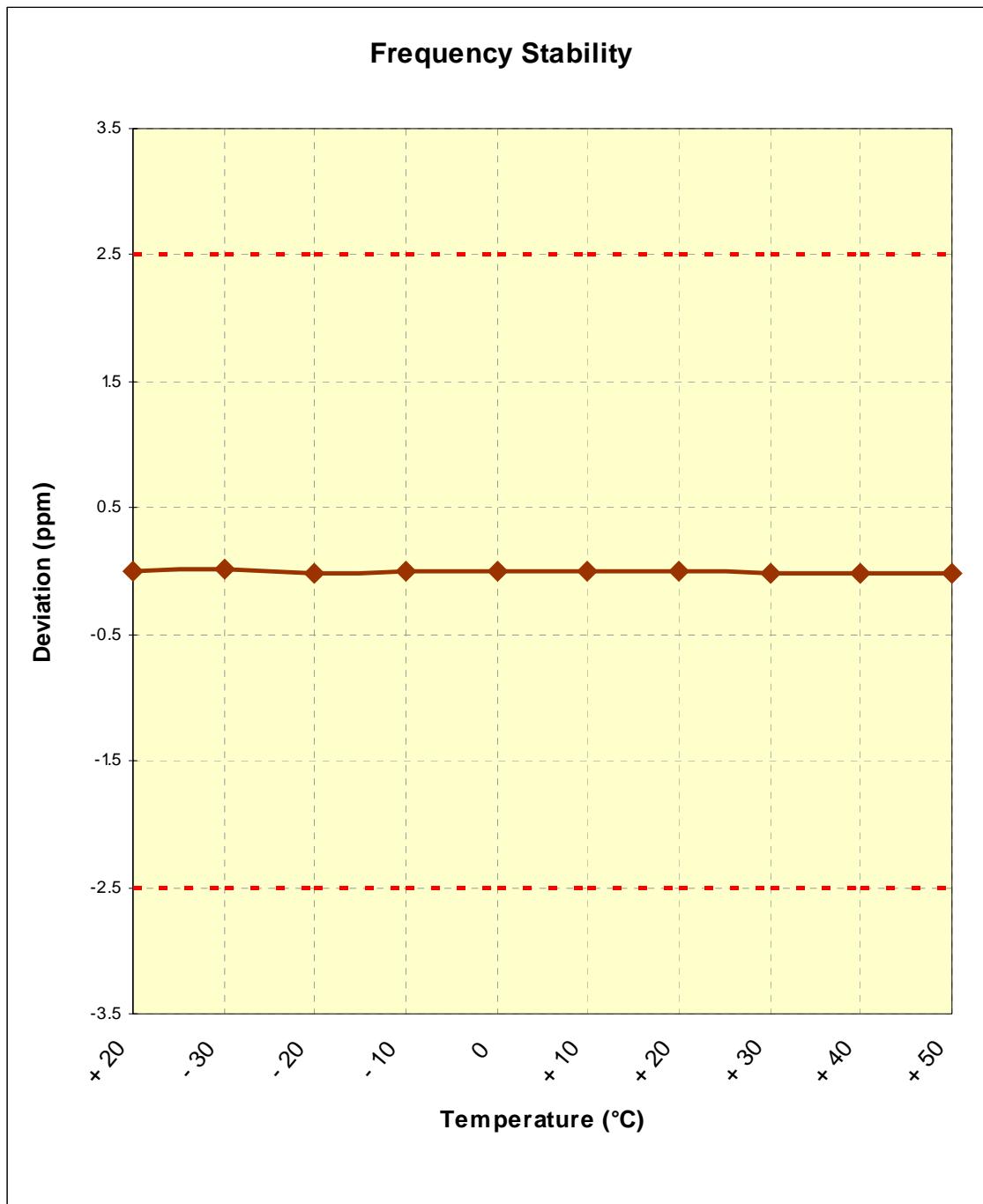
6.4 PCS GSM Frequency Stability Measurements

§2.1055, 24.235; RSS-133 (6.3)

OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 661

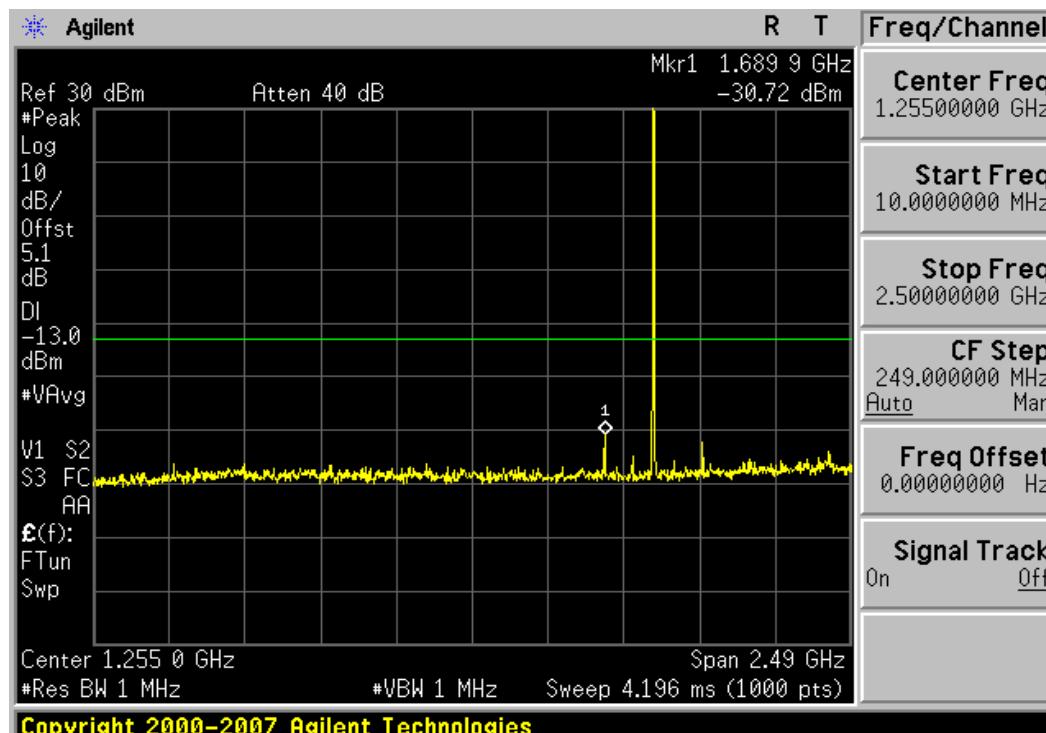
REFERENCE VOLTAGE: 3.8 VDC

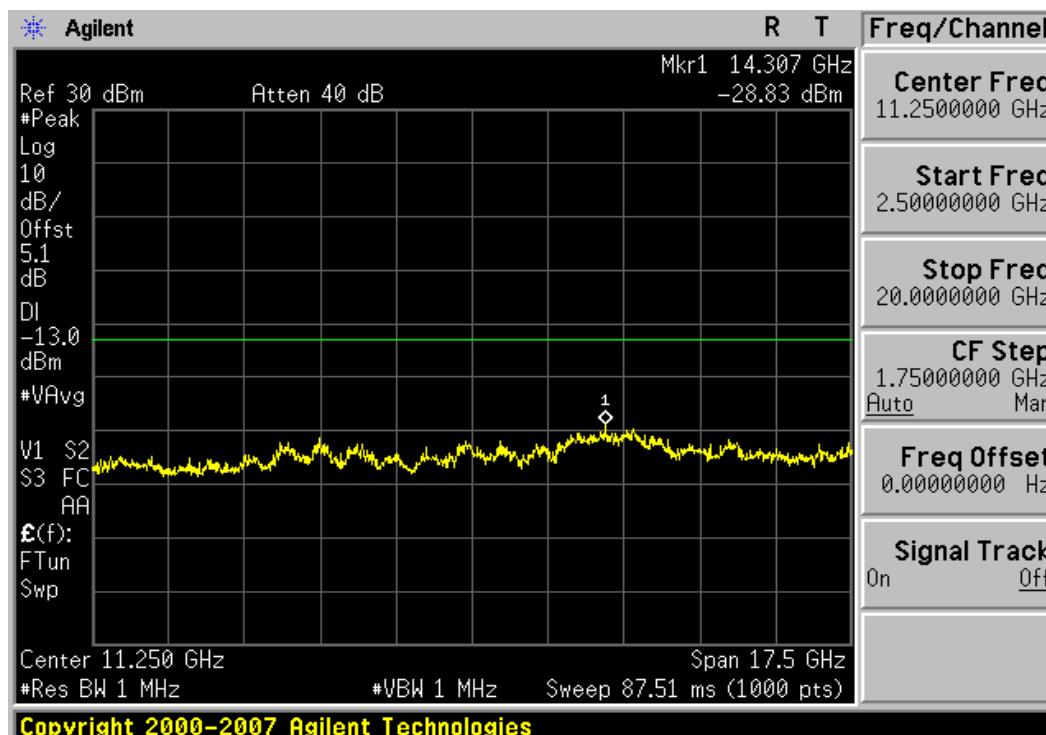

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	1,880,000,008	8	0.000000
100 %		- 30	1,880,000,041	41	0.000002
100 %		- 20	1,879,999,965	-35	-0.000002
100 %		- 10	1,879,999,997	-3	0.000000
100 %		0	1,879,999,989	-11	-0.000001
100 %		+ 10	1,880,000,011	11	0.000001
100 %		+ 20	1,879,999,994	-6	0.000000
100 %		+ 30	1,879,999,983	-17	-0.000001
100 %		+ 40	1,879,999,972	-28	-0.000001
100 %		+ 50	1,879,999,974	-26	-0.000001
115 %		+ 20	1,879,999,966	-34	-0.000002
BATT. ENDPOINT	3.41	+ 20	1,879,999,957	-43	-0.000002

Table 6-6. Frequency Stability Data (PCS GSM Mode – Ch. 661)

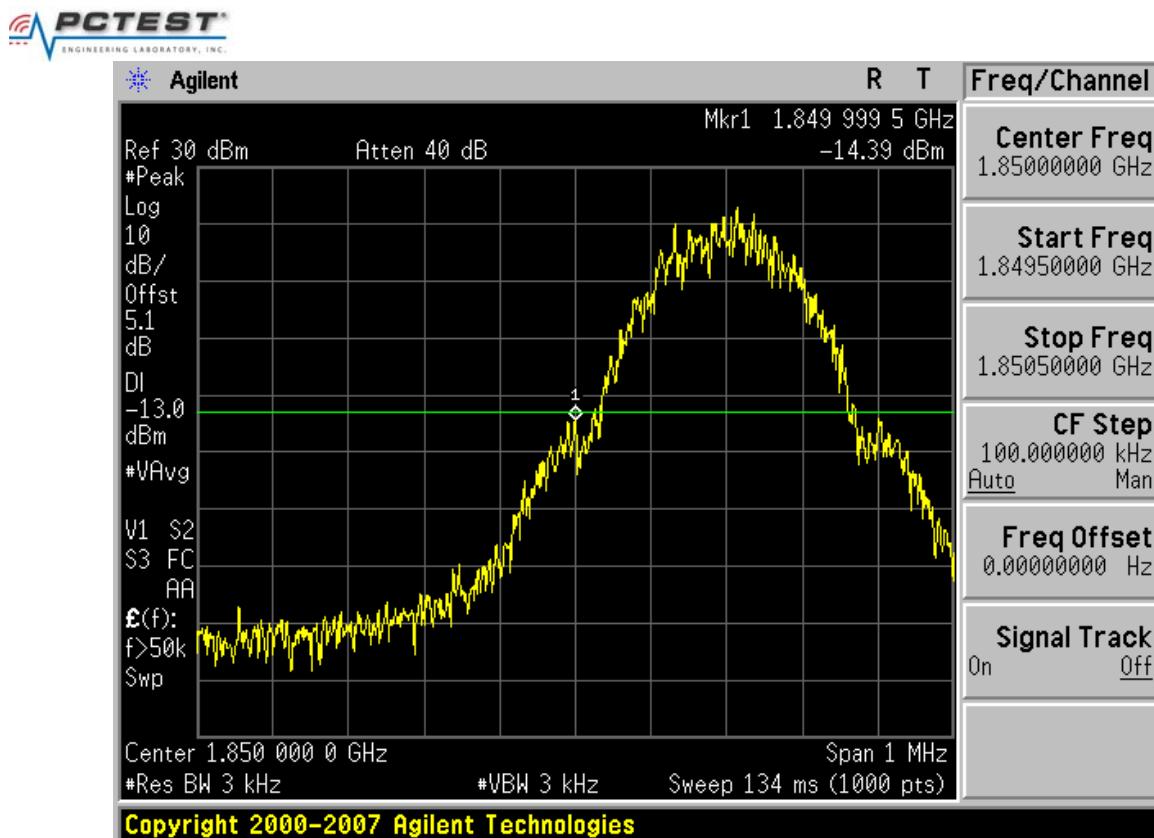
FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 16 of 23


PCS GSM Frequency Stability Measurements (Cont'd)
§2.1055, 24.235; RSS-133 (6.3)

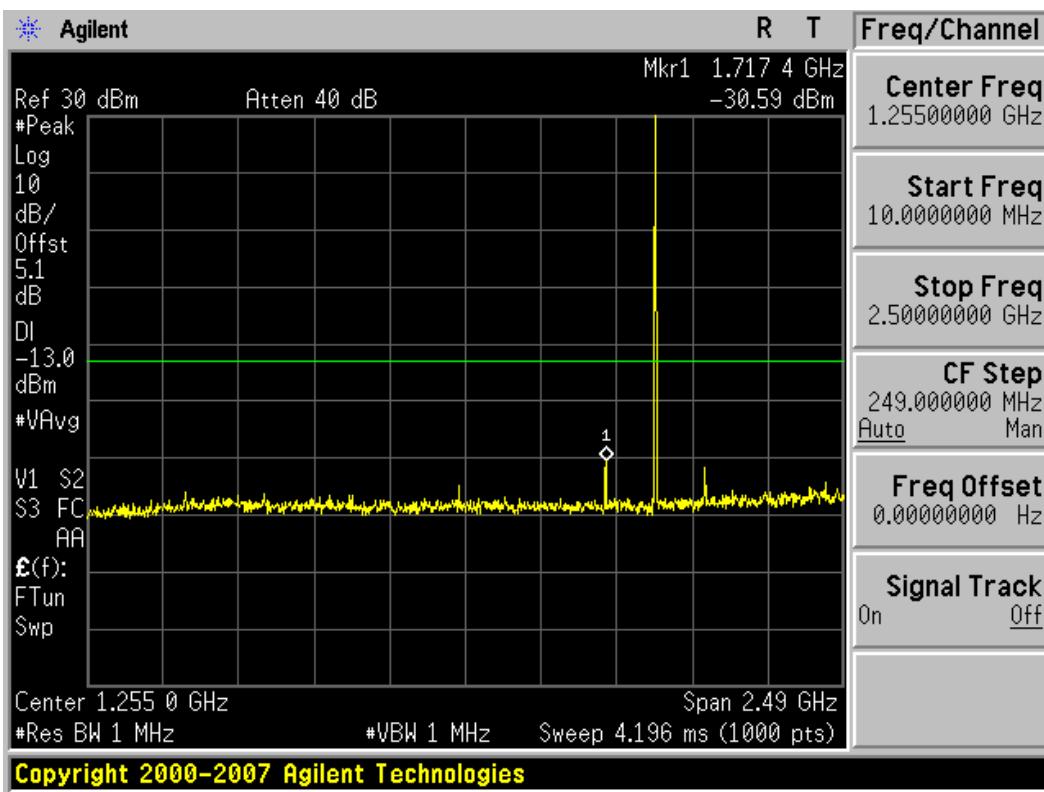

Plot 6-1. Frequency Stability Graph (PCS GSM Mode – Ch. 661)

FCC ID: A98-MQJ3588	PCTEST ENGINEERING LABORATORY, INC.	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 17 of 23

7.0 PLOTS OF EMISSIONS



Plot 7-1. Conducted Spurious Plot (PCS GSM Mode – Ch. 512)



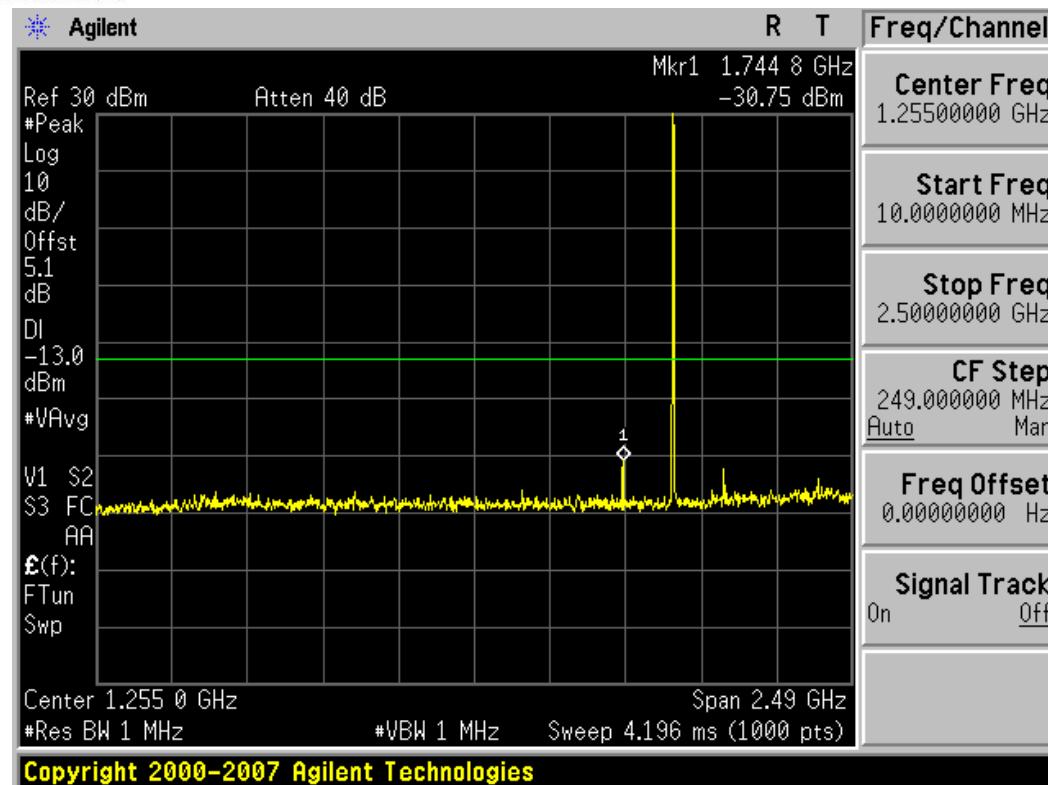
Plot 7-2. Conducted Spurious Plot (PCS GSM Mode – Ch. 512)

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 18 of 23

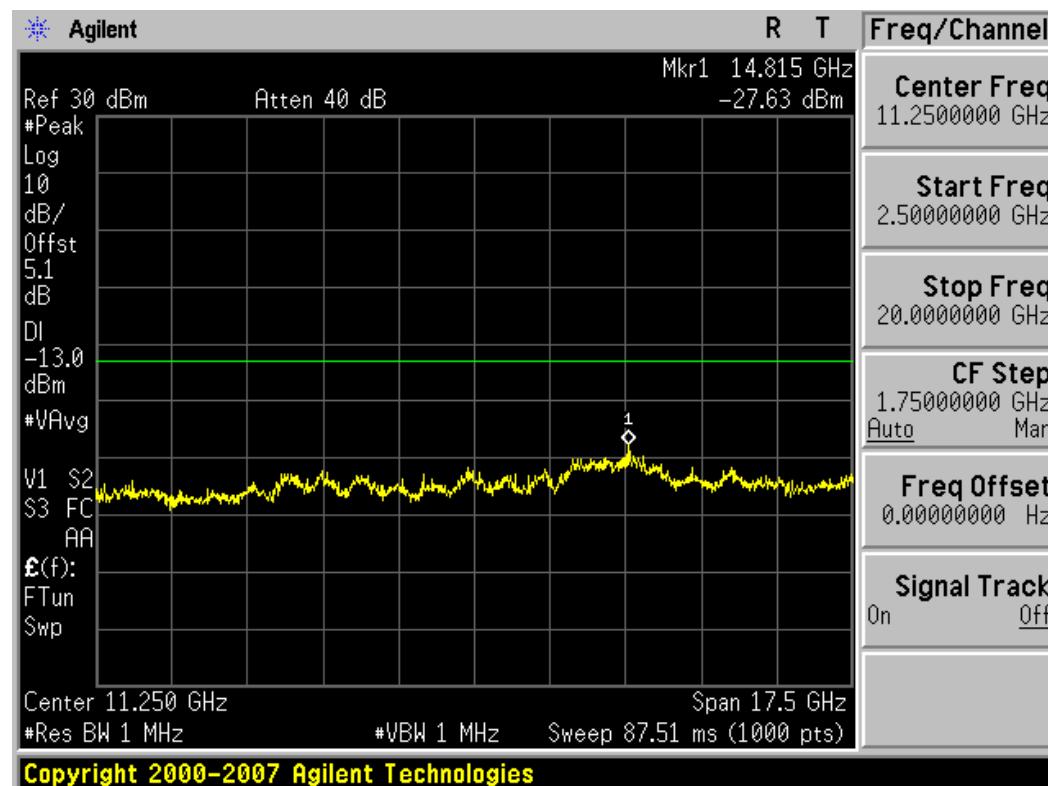
Plot 7-3. Band Edge Plot (PCS GSM Mode – Ch. 512)

Plot 7-4. Conducted Spurious Plot (PCS GSM Mode – Ch. 661)

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 19 of 23
© 2010 PCTEST Engineering Laboratory, Inc.				REV 2.7SPC

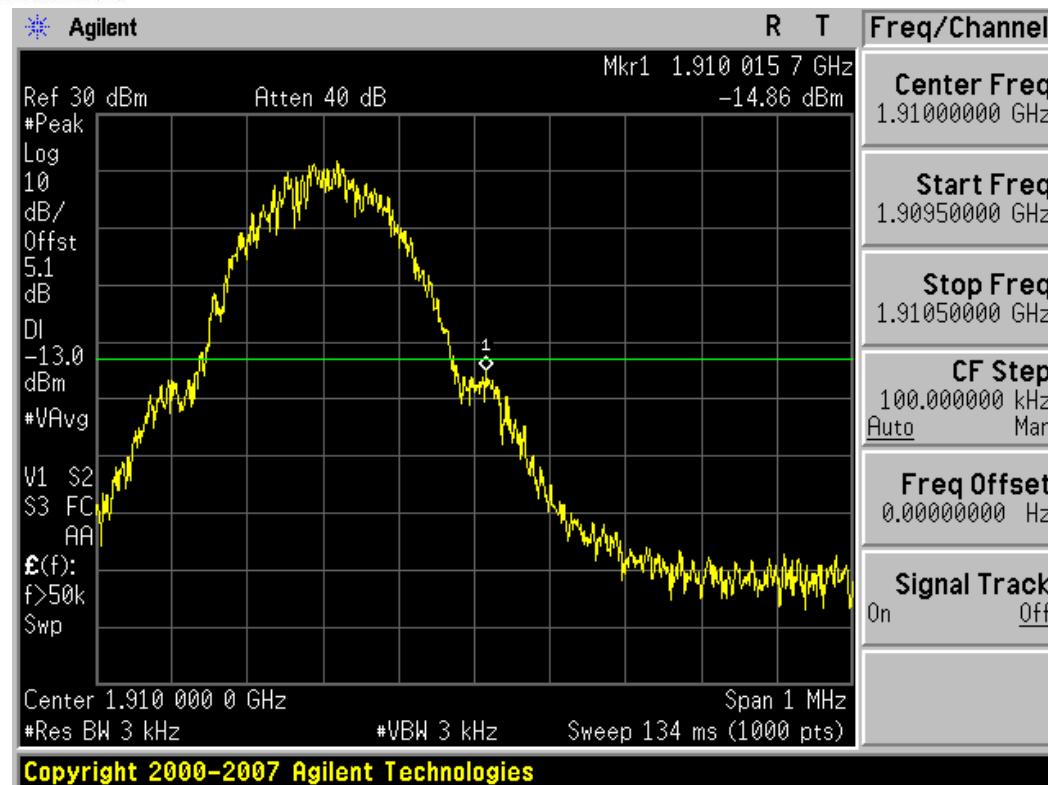


Plot 7-5. Conducted Spurious Plot (PCS GSM Mode – Ch. 661)

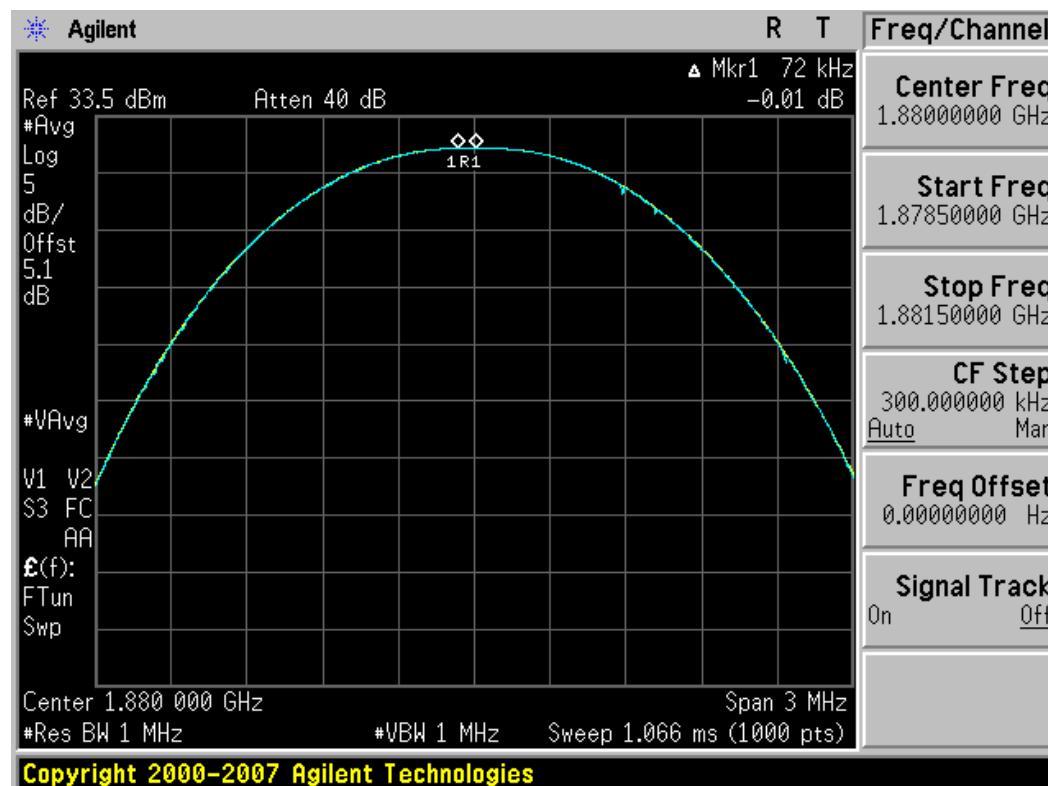


Plot 7-6. Occupied Bandwidth Plot (PCS GSM Mode – Ch. 661)

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID	Page 20 of 23



Plot 7-7. Conducted Spurious Plot (PCS GSM Mode – Ch. 810)



Plot 7-8. Conducted Spurious Plot (PCS GSM Mode – Ch. 810)

FCC ID: A98-MQJ3588	PCTEST ENGINEERING LABORATORY, INC.	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 21 of 23

Plot 7-9. Band Edge Plot (PCS GSM Mode – Ch. 810)

Plot 7-10. Peak-Average Ratio Plot (PCS GSM Mode – Ch. 661)

FCC ID: A98-MQJ3588		FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 22 of 23

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **NEC 1900 GSM/GPRS Phone with Bluetooth and RFID** FCC ID: A98-MQJ3588 complies with all the requirements of Parts 2 and 24 of the FCC rules.

FCC ID: A98-MQJ3588	 PCTEST ENGINEERING LABORATORY, INC.	FCC Pt. 24 GSM MEASUREMENT REPORT (CERTIFICATION)	NEC	Reviewed by: Quality Manager
Test Report S/N: 0Y1009021487.A98	Test Dates: September 7, 2010	EUT Type: 1900 GSM/GPRS Phone with Bluetooth and RFID		Page 23 of 23