

Page : 1 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

RADIO TEST REPORT

Test Report No.: 4786001719H-B-R1

Applicant : **NEC Corporation of America**

Type of Equipment : Digital Portable Cellular Telephone

Model No. : KMP7R4H1-6A

Test regulation : FCC Part 24 Subpart E: 2008

FCC ID : A98-FQM6833

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc

2. The results in this report apply only to the sample tested.

3. This sample tested is in compliance with the above regulation.

4. The test results in this report are traceable to the national or international standards.

5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

6. This report is a revised version of 4786001719H-B. 4786001719H-B is replaced with this report.

Date of test:

December 11 to 20, 2012

Representative test engineer:

Katsunori Okai Engineer of WiSE Japan, UL Verification Service

Approved by:

Takahiro Hatakeda Leader of WiSE Japan, UL Verification Service

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 2 of 32

| Issued date | : January 23, 2013 | Revised date | : January 30, 2013 | FCC ID | : A98-FQM6833 |

REVISION HISTORY

Original Test Report No.: 4786001719H-B

Revision	Test report No.	Date	Page revised	Contents
- (Original)	4786001719H-B	January 23, 2013 January 30,	-	-
1	4786001719H-B-R1	2013	P14	Corrected the explanatory sentence about voltage in Section 8.
1	4786001719H-B-R1	January 30, 2013	P16	Corrected RF Output Power (Radiated) data

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.

Page

Issued date Revised date FCC ID : 4786001719H-B-R1 : 3 of 32

: January 23, 2013 : January 30, 2013 : A98-FQM6833

CONTENTS PAGE SECTION 2: Equipment under test (E.U.T.)4 SECTION 3: Test specification, procedures & results.......7 SECTION 5: RF Output Power(Conducted/Radiated)......12 SECTION 8: Frequency Stability(Temperature/Voltage Variation)......14 **APPENDIX 1: Data of EMI test15** RF Output Power (Conducted)15 Peak to Average power Ratio (Conducted)......17 Band-Edge (Radiated)......21 Spurious Emission (Conducted)......22 Spurious Emission (Radiated) ________26 Frequency Stability (Temperature/Voltage Variation)......29 Spurious Radiation......31 Worst Case Position (Horizontal: Z-axis(open)/ Vertical: Y-axis(open))......32

Page : 4 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

SECTION 1: Customer information

Company Name : NEC Corporation of America

Address : Radio Communications Systems Division

6535N. State Highway 161, Irving, TX 75039-2402 USA

Telephone Number : +1 214 262 4241 Facsimile Number : +1 214 262 4225 Contact Person : Sanjay Wadhwa

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Digital Portable Cellular Telephone

Model No. : KMP7R4H1-6A

Serial No. : Refer to Section 4, Clause 4.2
Rating : DC 3.8V (DC 3.4 - 4.2 V)
Receipt Date of Sample : December 10, 2012

Country of Mass-production : Japan

Condition of EUT : Production prototype

Modification of EUT : No Modification by the test lab

2.2 Product description

Model No: KMP7R4H1-6A, (referred to as the EUT in this report), is the Digital Portable Cellular Telephone.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Radio Specification [1/2]

Bluetooth (Ver.2.1 + EDR)

Equipment Type	Transceiver
Frequency of Operation	2402-2480MHz
Type of Modulation	FHSS
Bandwidth & Channel spacing	1MHz & 1MHz
Antenna Connector Type	Integrated antenna
Antenna Type	Pattern Antenna
Antenna Gain	-3.0 dBi

Low Energy (Ver.4.0)

Equipment Type	Transceiver
Frequency of Operation	2402-2480MHz
Bandwidth & Channel spacing	1MHz & 2MHz
Antenna Connector Type	Integrated antenna
Antenna Type	Pattern antenna
Antenna Gain	-3.0 dBi

WLAN (IEEE802.11b/g/n (SISO/HT20))

Equipment Type	Transceiver	
Frequency of Operation	2412-2462MHz	
Type of Modulation	DSSS, OFDM	
Antenna Connector Type	Integrated antenna	
Antenna Type	Pattern antenna	
Antenna Gain	-3.0 dBi	

GSM

GDM			
Equipment Type	Transceiver		
Frequency of Operation	[Up Link]		
	GSM850: 824 – 849MHz		
	PCS: 1850 – 1910MHz		
	[Down Link]		
	GSM850: 869 – 894MHz		
	PCS: 1930 – 1990MHz		
Type of Modulation	GMSK		
Emission Designator	GSM850: 254KGXW,		
	PCS: 259KGXW		
Channel spacing	200kHz		
Antenna Connector Type	Integrated antenna		
Antenna Type	Pattern antenna		
Antenna Gain	+2.5dBi (PCS), 0.0dBi (GSM850)		

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

Radio Specification [2/2]

WCDMA

Equipment Type	Transceiver
Frequency of Operation	[Up Link]
	Band V: 824 – 849MHz
	[Down Link]
	Band V: 869 – 894MHz
Type of Modulation	HPSK
Emission Designator	4M16F9W
Channel spacing	5MHz
Antenna Connector Type	Integrated antenna
Antenna Type	Pattern antenna
Antenna Gain	0 dBi

GPS

Equipment Type	Receiver		
Receiver Type	Direct Downconversion		
Frequency of Operation	1575.42MHz		
Antenna Connector Type	Integrated antenna		
Antenna Type	Pattern antenna		
Antenna Gain	-3.0dBi		

^{*}This test report applies for GSM (PCS).

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 24 Subpart E: 2008, final revised on May 2, 2008

Title : FCC 47CFR Part 24 Subpart E

Broadband PCS

3.2 Procedures and results

Item	Test Specification & Procedure	Remarks	Deviation	Worst margin	Results
RF Output Power(Conducted/ Radiated)	FCC 2.1046	Conducted/	N/A	-	Complied
(Conducted Output Power /	FCC 24.232(c)	Radiated			
Equivalent isotropic radiated power(EIRP))					
Peak to Average power Ratio	FCC 24.232(d)	Conducted	N/A	-	Complied
Emission Bandwidth,	FCC 2.1049	Conducted	N/A	-	Complied
99% Occupied Bandwidth	FCC 24.238				
Band-Edge	FCC 2.1051	Conducted/	N/A	[Conducted]	Complied
	FCC 2.1053	Radiated		3.67dB	
	FCC 24.238			1849.9744MHz	
				[Radiated]	
				13.0dB	
				1910.02MHz, Vertical	
Spurious Emission(Conducted)	FCC 2.1051	Conducted	N/A	-	Complied
	FCC 24.238				_
Spurious Emission(Radiated)	FCC 2.1053	Radiated	N/A	32.8dB	Complied
	FCC 24.238			5729.40MHz, Horizontal	1
Frequency Stability	FCC 2.1055(a)(1)(b)	Conducted	N/A	-	Complied
(Temperature Variation)	FCC 24.235				_
Frequency Stability	FCC 2.1055(d)(1)(2)	Conducted	N/A	-	Complied
(Voltage Variation)	FCC 24.235				
Note: UL Japan's EMI Work Procedures No	. 13-EM-W0420				

^{*}These tests were also referred to ANSI/TIA 603-C-2004 "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards."

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}These tests were performed without any deviations from test procedure except for additions or exclusions.

: 4786001719H-B-R1 Test report No.

Page : 8 of 32

: January 23, 2013 **Issued date** : January 30, 2013 : A98-FQM6833 Revised date FCC ID

3.3 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Radiated Emission (EUT height: 0.8m) (±dB)					
Measurement Distance 3m					
30MHz-300MHz 5.5dB					
300MHz-1000MHz	4.2dB				
1GHz-12.75GHz	4.6dB				

Power meter (<u>+</u> dB)					
Below 1GHz Above 1GHz					
1.0dB	1.0dB				

Antenna te	rminal conducte	ed emission	Antenna terminal	Channel power	
and Power density (<u>+</u> dB)			(<u>+</u> 0	(<u>+</u> dB)	
Below 1GHz	1GHz-3GHz	3GHz-18GHz	18GHz-26.5GHz 26.5GHz-40GHz		
1.0dB	1.1dB	2.7dB	3.2dB	3.3dB	1.5dB

<u>Antenna Terminal Conducted emission test</u>

The data listed in this test report has enough margin, more than the site margin.

 $\frac{Radiated\ emission\ test(3m)}{The\ data\ listed\ in\ this\ test\ report\ has\ enough\ margin,\ more\ than\ the\ site\ margin.}$

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8116 Telephone Facsimile : +81 596 24 8124

Page : 9 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

3.4 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

Telephone: +81 596 24		Facsimile: +81 59			1
	FCC	IC Registration	Width x Depth x	Size of	Other
	Registration	Number	Height (m)	reference ground plane (m) /	rooms
	Number			horizontal conducting plane	
No.1 semi-anechoic	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power
chamber					source room
No.2 semi-anechoic	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	_
chamber	055105	27730 2	7.5 A 5.6 A 5.2III	no a nom	
No.3 semi-anechoic	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3
chamber	146/36	2973C-3	12.0 x 6.3 x 3.9111	0.8 x 3.73III	Preparation
Chamber					^
N. 0.1:11.1			40.60.25	27/4	room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4
chamber					Preparation
					room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic	-	-	60 60 20	60.60	-
chamber			6.0 x 6.0 x 3.9m	6.0 x 6.0m	
No.6 shielded	_	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	_
room				111011111111111111111111111111111111111	
No.6 measurement	_	_	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	_
	_		4.73 X 3.4 X 3.0III	4.73 X 4.13 III	_
room No.7 shielded room			4.7 x 7.5 x 2.7m	4.7 x 7.5m	
No. / snielded room	-	-	4.7 x 7.5 x 2.7m	4./ x /.5m	-
No.8 measurement	-	-	3.1 x 5.0 x 2.7m	N/A	-
room					
No.9 measurement	_	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
room					
No.10 measurement	_	_	2.6 x 2.8 x 2.5m	2.4 x 2.4m	_
room	_	-	2.0 A 2.0 A 2.JIII	2.4 A 2.4III	
			21 24 20	24 24	
No.11 measurement	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-
room					

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.5 Test instruments, Data of EMI, and Test set up

Refer to APPENDIX.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

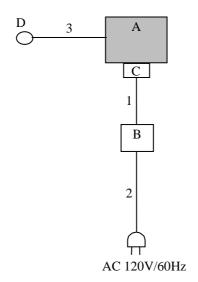
Page : 10 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test	Operating mode	Power Control	Tested frequency	Channel						
RF output Power(Conducted)	Transmitting (Tx) (GSM, GMSK)	Max	1850.2MHz	512						
Peak to Average power Ratio	Transmitting (Tx) (GPRS, GMSK)		1880.0MHz	661						
(Conducted)			1909.8MHz	810						
RF output Power(Radiated),	Transmitting (Tx) (GSM, GMSK)	Max	1850.2MHz	512						
Spurious Emission	*1)		1880.0MHz	661						
(Conducted / Radiated)			1909.8MHz	810						
Band Edge (Conducted)	Transmitting (Tx) (GSM, GMSK)	Max	1850.2MHz	512						
	Transmitting (Tx) (GPRS, GMSK)		1910.0MHz	810						
Band Edge (Radiated)	Transmitting (Tx) (GSM, GMSK)	Max	1850.2MHz	512						
	*1)		1910.0MHz	810						
Emission Bandwidth,	Transmitting (Tx) (GSM, GMSK)	Max	1880.0MHz	661						
99% Occupied Bandwidth,	*1)									
Frequency Stability										
(Temperature/Voltage										
Variation)										
*1) The mode was used for testing as a representative, because it had the worst RF output Power (Conducted).										


Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remark
A	Digital Portable Cellular Telephone	KMP7R4H1-6A	004401201130115 *1) 004401201130149 *2) 004401201130156 *3)	NEC Corporation of America	EUT
В	AC Adaptor	MAS-BH0008-A002	=	MITSUMI	-
С	Micro USB	FOMA charging microUSB adapter N01	-	NEC Corporation of America	-
D	Earphone	-	-	NEC Corporation of America	-

^{*1)} Used for Antenna Terminal Conducted test

List of cables used

No.	Name	Length (m)	S	Remark	
			Cable	Connector	
1	DC Cable	1.6	Shielded	Shielded	-
2	AC Cable	0.6	Unshielded	Unshielded	-
3	Earphone Cable	0.7	Unshielded	Unshielded	-

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Used for Radiated Emission test (Above 1GHz)

^{*3)} Used for Radiated Emission test (Below 1GHz)

Page : 12 of 32 Issued date : January

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

SECTION 5: RF Output Power(Conducted/Radiated)

[Conducted : Conducted Output Power]

Test Procedure

The RF output power was measured with a Wireless Communication Test Set at the antenna port.

Test data : APPENDIX 1

Test result : Pass

[Radiated : Equivalent isotropic radiated power(EIRP)]

Test Procedure

1) EUT was placed on a platform of nominal size, 0.5 by 1.0m, raised 80cm above the conducting ground plane. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The Radiated Electric Field Strength intensity has been measured in a semi anechoic chamber with a ground plane and at a distance of 3m.

The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

- 2) Exchanged the EUT to the Substitution Antenna, the measurement was set for the same height as the EUT. The frequency above 1GHz of the Substitution antenna was used with Horn antenna calibrated with the Half wave dipole antenna, which is harmonized with the measured frequency in 1).
 - The Substitution Antenna was connected with the Signal Generator, and the polarized electromagnetic radiation of the Substitution Antenna was matched with the one of the measuring Antenna, which was set with the Signal Generator to the measured frequency in 1). Then, we set with the Output power (CW) of the Signal Generator where the measuring electromagnetic field is equal to the measured value in 1).
 - The measuring antenna height varied between 1 and 4m to obtain the maximum receiving level.

Its Output power of Signal Generator was recorded.

- 3) Equivalent isotropic radiated power(EIRP) was calculated by subtracting the cable loss and the attenuator loss connected between the Signal Generator and the Substitution Antenna from the Output power of the Signal Generator recorded in 2).
- The carrier level and noise levels were confirmed at each position of X, Y and Z axis of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test data : APPENDIX 1

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 13 of 32 Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

SECTION 6: Bandwidth (Conducted)

Test Procedure

The Emission Bandwidth and 99% Occupied Bandwidth was measured with a spectrum analyzer and attenuator connected to the antenna port.

Test data : APPENDIX 1

Test result : Pass

SECTION 7: Spurious Emission and Band-Edge (Conducted/ Radiated)

[Conducted]

Test Procedure

The Spurious Emission and Band-Edge was measured with a spectrum analyzer and attenuator connected to the antenna port.

Test data : APPENDIX 1

Test result : Pass

[Radiated]

Test Procedure

1) EUT was placed on a platform of nominal size, 0.5 by 1.0m, raised 80cm above the conducting ground plane. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The Radiated Electric Field Strength intensity has been measured in a semi anechoic chamber with a ground plane and at a distance of 3m.

The measuring antenna height was varied between 1 to 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

2) Exchanged the EUT to the Substitution Antenna, the antenna was set for the same height as EUT on the table.

The frequency below 1GHz of the Substitution antenna was used as the Half wave dipole antenna and Shorted dipole antenna calibrated with the Half wave dipole antenna, which is harmonized with the measured frequency in 1). The frequency above 1GHz of the Substitution antenna was used with Horn antenna calibrated with the Half wave dipole antenna.

The Substitution antenna was connected with the Signal Generator, and the polarized electromagnetic radiation of the Substitution antenna was matched with the one of the measuring antenna, which was set with the Signal Generator to the measured frequency in 1). Then, we set with the Output power (CW) of the Signal Generator where the measuring electromagnetic field is equal to the measured value in 1).

The measuring antenna height varied between 1 and 4m to obtain the maximum receiving level. Its Output power of Signal Generator was recorded.

- 3) Equivalent isotropic radiated power was calculated by subtracting the cable loss and the attenuator loss connected between the Signal Generator and the Substitution Antenna from the Output power of the Signal Generator recorded in 2).
- The carrier level and noise levels were confirmed at each position of X, Y and Z axis of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test data : APPENDIX 1

Test result : Pass

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 14 of 32

SECTION 8: Frequency Stability(Temperature/Voltage Variation)

Test Procedure

The Frequency Stability was measured with a Wireless Communication Test Set and attenuator connected to the antenna port.

The Frequency Drift was measured with the 10 deg. C. steps from –30 deg. C. to 50 deg. C., and it is presented as the ppm unit. The Frequency Drift was measured with the normal temperature (20 deg. C.) and Voltage tolerance (DC3.4V to DC4.2V), and it is presented as the ppm unit.

Temperature : -30deg.C to +50deg.C (10 deg. C. step) Voltage : Vnom:DC3.8V, Vmin:DC3.4V, Vmax:DC4.2V

As the operating input voltage of the EUT is between DC3.4V to 4.2V (nominal voltage: DC3.8V), Frequency Stability test was performed under the above condition.

Test data : APPENDIX 1

Test result : Pass

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 4786001719H-B-R1 Test report No.

Page : 15 of 32

: January 23, 2013 **Issued date** Revised date : January 30, 2013 FCC ID : A98-FQM6833

APPENDIX 1: Data of EMI test

RF Output Power (Conducted)

Conducted Output Power

Head Office EMC Lab. No.6 Measurement Room

Test place Project No. 4786001719H 12/20/2012 Date Temperature/ Humidity 22deg. C / 41% RH Katsunori Okai Engineer Mode Tx GSM(GMSK)

Mode	Ch	Frequency	Reading	Cable	Result
			Average frame power	Loss	
		[MHz]	[dBm]	[dB]	[dBm]
GSM	Low	1850.2	30.46	0.87	31.33
(GMSK)	Mid	1880.0	30.28	0.88	31.16
	High	1909.8	29.98	0.88	30.86
GPRS	Low	1850.2	30.45	0.87	31.32
(GMSK)	Mid	1880.0	30.27	0.88	31.15
	High	1909.8	29.97	0.88	30.85

 $Results = Reading + Cable\ Loss$

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8116 Telephone : +81 596 24 8124 **Facsimile**

Page : 16 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

<u>RF Output Power (Radiated)</u> Equivalent Isotropically Radiated Power(EIRP)

Report No. 4786001719H

Test place Head Office EMC Lab.

Semi Anechoic Chamber No.2

Date 12/17/2012

Temperature / Humidity 23deg. C / 32 % RH
Engineer Yutaka Yoshida
Mode Tx GSM(GMSK)

Frequency	Rx S.	A/TR	Tx	SG	Tx	Tx	Tx Ant.	Re	Result		Margin		Horizontal		Vertical		Remarks
	Rea	ding	Read	ding	Cable	Ant.	Atten.	(EI	RP)	(EIRP)			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dE	Bm]	Loss	Gain	Loss	[dF	[dBm] [dBm]		[dB]		Height	Table	Height	Table	
[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
1850.20	90.5	92.1	15.4	14.8	4.0	10.0	0.0	21.5	20.8	33.0	11.5	12.2	104	218	109	248	
1880.00	92.0	92.5	17.5	15.5	4.0	10.2	0.0	23.6	21.7	33.0	9.4	11.3	102	219	105	248	
1909.80	89.8	91.3	15.0	14.8	4.0	10.3	0.0	21.2	21.1	33.0	11.8	11.9	100	219	101	244	

 $Calculation \ Result = SG \ Reading \ - \ Tx \ Cable \ Loss + Tx \ Antenna \ Gain \ - \ Tx \ Antenna \ Attenuator \ Loss$

 $Rx-ANTENNA: Biconical Antenna (30M-300MHz), Logperiodic Antenna (300M-1000MHz), Horn Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz tuned Dipole Antenna (30M-120MHz), Dipole Antenna (120M-1000MHz), Horn Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz tuned Dipole Antenna (30M-120MHz), Dipole Antenna (120M-1000MHz), Horn Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz tuned Dipole Antenna (30M-120MHz), Dipole Antenna (120M-1000MHz), Horn Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz tuned Dipole Antenna (30M-120MHz), Dipole Antenna (120M-1000MHz), Horn Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz tuned Dipole Antenna (30M-120MHz), Dipole Antenna (120M-1000MHz), Horn Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz tuned Dipole Antenna (1G-40GHz) \\ Tx-AN$

Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Detector: S/A PK(RBW:3MHz/VBW:8MHz)

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Radiated RF Output Power level became lower than conducted RF Output Power level due to the transmitting characteristics of the built-in antenna.

Page : 17 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

Peak to Average power Ratio (Conducted)

Test place Head Office EMC Lab. No.6 Measurement Room

Project No. 4786001719H
Date 12/13/2012
Temperature/ Humidity 21deg. C / 38% RH
Engineer Katsunori Okai
Mode Tx GSM(GMSK)
Tx GPRS(GMSK)

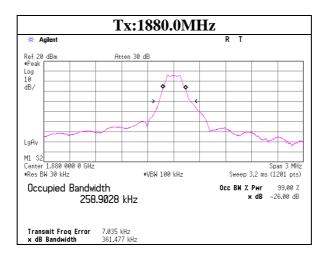
Mode	Channel	Frequency	Peak to Average power Ratio	Limit
		[MHz]	[dB]	[dB]
GSM	512	1850.20	0.07	13
(GMSK)	661	1880.00	0.04	13
	810	1909.80	0.03	13
GPRS	512	1850.20	0.07	13
(GMSK)	661	1880.00	0.04	13
	810	1909.80	0.04	13

^{*}In order to decide the largest deviation between the average and the peak power of the EUT in a bandwidth, an average and a peak trace of the spectrum analyzer was used for GSM Signals.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 18 of 32


Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

Bandwidth(Conducted)

Test place Head Office EMC Lab. No.6 Measurement Room

Project No. 4786001719H
Date 12/13/2012
Temperature/ Humidity 21deg. C / 38% RH
Engineer Katsunori Okai
Mode Tx GSM(GMSK)

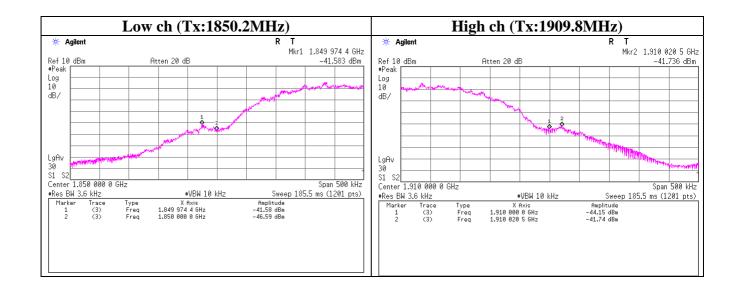
Mode	FREQ	26dB Bandwidth	99% OBW	Limit
	[MHz]	[kHz]	[kHz]	[kHz]
GSM	1880.0	361.477	258.9028	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 19 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

Band-Edge(Conducted)


Test place Head Office EMC Lab. No.6 Measurement Room

Project No. 4786001719H
Date 12/11/2012
Temperature/ Humidity 22deg. C / 41% RH
Engineer Katsunori Okai
Mode Tx GSM(GMSK)

Frequency	Reading	Atten.	Cable	Result	Limit	Margin
			Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
1849.9744	-41.58	19.99	4.92	-16.67	-13.0	3.67
1850.0000	-46.59	19.99	4.92	-21.68	-13.0	8.68
1910.0000	-44.15	20.01	4.95	-19.19	-13.0	6.19
1910.0205	-41.74	20.01	4.95	-16.78	-13.0	3.78

VIDEO AV 30 times

Sample Calculation: Result = Reading + Atten. + Cable Loss

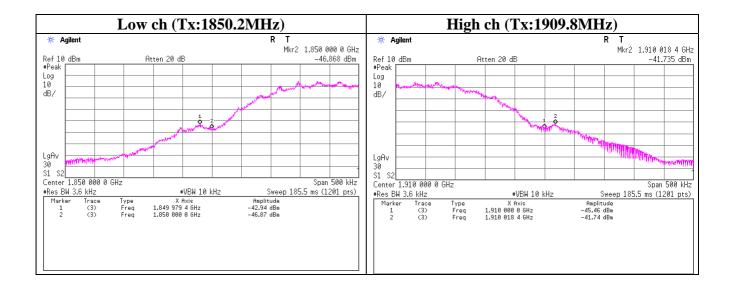
Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 20 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Band-Edge(Conducted)


Test place Head Office EMC Lab. No.6 Measurement Room

Project No. 4786001719H
Date 12/11/2012
Temperature/ Humidity 22deg. C / 41% RH
Engineer Katsunori Okai
Mode Tx GPRS(GMSK)

Frequency	Reading	Atten.	Cable	Result	Limit	Margin
			Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
1849.9794	-42.94	19.99	4.92	-18.03	-13.0	5.03
1850.0000	-46.87	19.99	4.92	-21.96	-13.0	8.96
1910.0000	-45.46	20.01	4.95	-20.50	-13.0	7.50
1910.0184	-41.74	20.01	4.95	-16.78	-13.0	3.78

VIDEO AV 30 times

Sample Calculation: Result = Reading + Atten. + Cable Loss

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 21 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Band-Edge (Radiated)

Report No. 4786001719H

Test place Head Office EMC Lab.

Semi Anechoic Chamber No.2

Date 12/17/2012

Temperature / Humidity 23deg. C / 32 % RH
Engineer Yutaka Yoshida
Mode Tx GSM(GMSK)

Frequency	Rx S.	A/TR	Tx	SG	Tx	Tx	Tx Ant.	Re	sult	Limit	Ma	rgin	Horiz	ontal	Vertical		Remarks		
	Rea	ding	Rea	ding	Cable	Ant.	Atten.	(EI	RP)	(EIRP)			Rx Ant.	Turn	Rx Ant.	Turn			
	[dB	uV]	[dF	Bm]	Loss	Gain	Loss	[dI	Bm]	[dBm] [dB]		[dB]		[dB]		Table	Height	Table	
[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]			
1849.98	42.1	43.5	-33.1	-33.9	4.0	10.0	0.0	-27.1	-27.9	-13.0	14.1	14.9	104	218	109	248			
1850.00	40.7	41.1	-34.5	-36.3	4.0	10.0	0.0	-28.5	-30.3	-13.0	15.5	17.3	104	218	109	248			
1910.00	36.3	38.3	-38.7	-38.4	4.0	10.3	0.0	-32.4	-32.1	-13.0	19.4	19.1	100	219	101	244			
1910.02	42.6	44.4	-32.4	-32.3	4.0	10.3	0.0	-26.1	-26.0	-13.0	13.1	13.0	100	219	101	244			

Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - Tx Antenna Attenuator Loss

Rx-ANTENNA: Biconical Antenna(30M-300MHz), Logperiodic Antenna(30M-1000MHz), Horn Antenna(1G-40GHz) Tx-ANTENNA: 120MHz tuned Dipole Antenna(30M-120MHz), Dipole Antenna(120M-1000MHz), Horn Antenna(1G-40GHz)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Detector: Tx: S/A AV(RBW:3.6kHz/VBW:10kHz)

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 22 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

Spurious Emission (Conducted)

Test place Head Office EMC Lab. No.6 Measurement Room

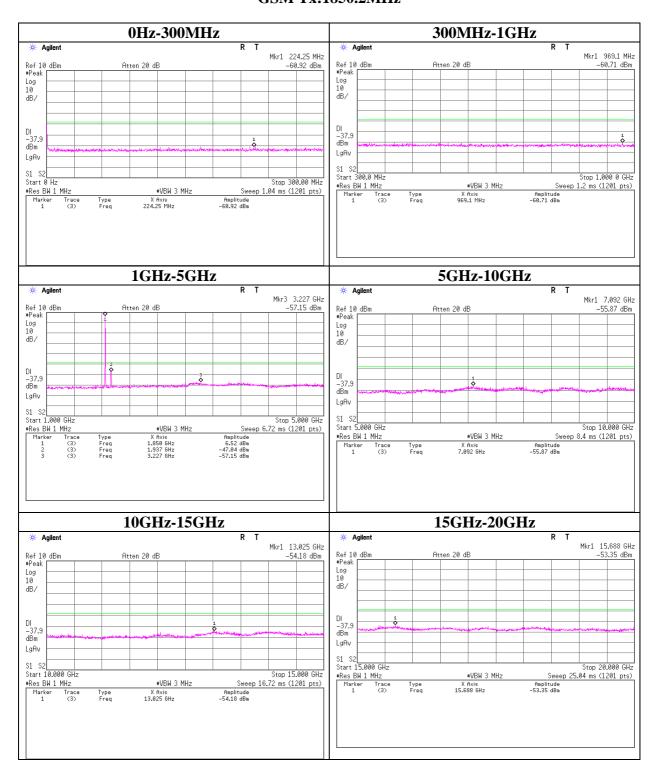
Project No. 4786001719H
Date 12/13/2012
Temperature/ Humidity 21deg. C / 38% RH
Engineer Keisuke Kawamura
Mode Tx GSM(GMSK)

Limit Line

Tx	Limit	Atten.	Cable	Limit Line
Frequency			Loss	
[MHz]	[dBm]	[dB]	[dB]	[dBm]
1850.2	-13.0	19.99	4.92	-37.9
1880.0	-13.0	19.99	4.93	-37.9
1909.8	-13.0	20.01	4.94	-38.0

Sample Calculation: Limit Line = Limit - Atten. - Cable Loss

Head Office EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}All the spurious noises were below the above limit line.

Page : 23 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Spurious Emission (Conducted) GSM Tx:1850.2MHz

UL Japan, Inc.


Head Office EMC Lab.

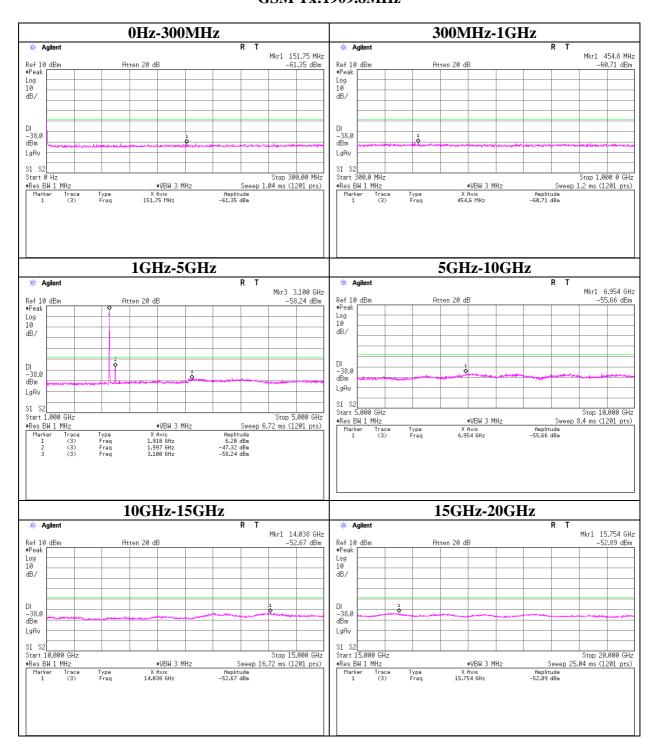
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 24 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Spurious Emission (Conducted) GSM Tx:1880.0MHz

UL Japan, Inc.


Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 25 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Spurious Emission (Conducted) GSM Tx:1909.8MHz

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 26 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Spurious Emission (Radiated)

Report No. 4786001719H

Test place Head Office EMC Lab.
Semi Anechoic Chamber No.2

Semi Anechoic Chamber No.2 No.2 Date 12/17/2012 12/17/2012

Temperature / Humidity 23deg. C / 32 % RH 22deg. C / 25 % RH

Engineer Yutaka Yoshida Katsunori Okai Above 1GHz Below 1GHz

Mode Tx GSM(GMSK)

Tx 1850.2MHz

Frequency	Rx S.	A/TR	Tx	SG	Tx	Tx	Tx Ant.	Re	sult	Limit	Ma	rgin	Horiz	contal	Ver	tical	Remarks
	Rea	ding	Rea	ding	Cable	Ant.	Atten.	(EI	RP)	(EIRP)			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dF	Bm]	Loss	Gain	Loss	[dF	3m]	[dBm]	[d	B]	Height	Table	Height	Table	
[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
3700.40	45.6	44.8	-57.7	-59.1	4.7	12.3	0.0	-50.1	-51.5	-13.0	37.1	38.5	100	211	100	156	
5550.60	44.6	44.3	-54.2	-56.3	5.7	13.4	0.0	-46.6	-48.7	-13.0	33.6	35.7	100	165	100	131	
7400.80	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
9251.00	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
11101.20	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
12951.40	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
14801.60	NS	NS	-	-	-	-	-		-	-13.0	-	-	-	-	-		
16651.80	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
18502.00	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	

Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - Tx Antenna Attenuator Loss

Rx-ANTENNA: Biconical Antenna(30M-300MHz), Logperiodic Antenna(300M-1000MHz), Horn Antenna(1G-40GHz)
Tx-ANTENNA: 120MHz tuned Dipole Antenna(30M-120MHz), Dipole Antenna(120M-1000MHz), Horn Antenna(1G-40GHz)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

NS: No signal detect.

 $Detector: \hspace{1.5cm} S/A \hspace{0.1cm} PK \hspace{0.1cm} (RBW: 1MHz \hspace{0.1cm}, VBW: 3MHz)$

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 27 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Spurious Emission (Radiated)

Report No. 4786001719H

Test place Head Office EMC Lab.

 Semi Anechoic Chamber
 No.2
 No.2

 Date
 12/17/2012
 12/17/2012

Temperature / Humidity 23deg. C / 32 % RH 22deg. C / 25 % RH Engineer Yutaka Yoshida Katsunori Okai

Above 1GHz Below 1GHz

Mode Tx GSM (GSMK)

Tx 1880.0MHz

Frequency	Rx SA/TR		Tx	SG	Tx	Tx	Tx Ant.	Re	sult	Limit	Margin		Horizontal		Vertical		Remarks
	Reading		Read	ding	Cable	Ant.	Atten.	(EI	RP)	(EIRP)			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dE	Bm]	Loss	Gain	Loss	[dF	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
3760.00	47.1	45.4	-55.9	-58.9	4.7	12.3	0.0	-48.4	-51.4	-13.0	35.4	38.4	100	191	100	150	
5640.00	44.7	44.9	-54.6	-56.0	5.8	13.4	0.0	-47.0	-48.4	-13.0	34.0	35.4	100	231	100	345	
7520.00	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
9400.00	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
11280.00	NS	NS	-	1	-	-	-	•	-	-13.0	•	-	-	-	-	-	
13160.00	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
15040.00	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
16920.00	NS	NS	-		-	-	-	-	-	-13.0		-	-	-	-	-	
18800.00	NS	NS	-		-		-	-	-	-13.0	-	-	-	_	_	_	

Calculation Result = SG Reading - Tx Cable Loss + Tx Antenna Gain - Tx Antenna Attenuator Loss

Rx-ANTENNA: Biconical Antenna(30M-300MHz), Logperiodic Antenna(300M-1000MHz), Horn Antenna(1G-40GHz)
Tx-ANTENNA: 120MHz tuned Dipole Antenna(30M-120MHz), Dipole Antenna(120M-1000MHz), Horn Antenna(1G-40GHz)

Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

NS: No signal detect.

Detector: S/A PK (RBW: 1MHz, VBW: 3MHz)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 28 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

Spurious Emission (Radiated)

Report No. 4786001719H Test place Head Office EMC Lab.

Semi Anechoic Chamber
Date
12/17/2012
12/17/2012
12/17/2012
Temperature / Humidity
Engineer
Yutaka Yoshida
Above 1GHz
No.2
No.2
12/17/2012
12/17/2012
22deg. C / 25 % RH
Katsunori Okai
Below 1GHz

Mode Tx GSM (GSMK)

Tx 1909.8MHz

Frequency	Rx SA/TR		Tx	SG	Tx	Tx	Tx Ant.	Re	sult	Limit	Margin		Horiz	ontal	Vertical		Remarks
	Reading		Rea	ding	Cable	Ant.	Atten.	(EI	RP)	(EIRP)			Rx Ant.	Turn	Rx Ant.	Turn	
	[dB	uV]	[dE	Bm]	Loss	Gain	Loss	[dF	Bm]	[dBm]	[d	B]	Height	Table	Height	Table	
[MHz]	HOR	VER	HOR	VER	[dB]	[dBi]	[dB]	HOR	VER		HOR	VER	[cm]	[deg.]	[cm]	[deg.]	
3819.60	47.6	46.8	-55.0	-56.7	4.8	12.2	0.0	-47.5	-49.2	-13.0	34.5	36.2	127	194	131	158	
5729.40	45.4	44.8	-53.4	-56.1	5.8	13.4	0.0	-45.8	-48.5	-13.0	32.8	35.5	100	233	100	267	
7639.20	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-		
9549.00	NS	NS	-	1	-	1	-	1	-	-13.0	1	-	-	-	_	-	
11458.80	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
13368.60	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-		
15278.40	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-	-	
17188.20	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	-	-		
19098.00	NS	NS	-	-	-	-	-	-	-	-13.0	-	-	-	_	_	-	

 $Calculation \ Result = SG \ Reading \ - \ Tx \ Cable \ Loss \ + \ Tx \ Antenna \ Gain \ - \ Tx \ Antenna \ Attenuator \ Loss$

 $Rx-ANTENNA: Biconical \ Antenna (30M-300MHz), Logperio dic \ Antenna (300M-1000MHz), Horn \ Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz \ tuned \ Dipole \ Antenna (30M-120MHz), Dipole \ Antenna (120M-1000MHz), Horn \ Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz \ tuned \ Dipole \ Antenna (30M-120MHz), Dipole \ Antenna (120M-1000MHz), Horn \ Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz \ tuned \ Dipole \ Antenna (30M-120MHz), Dipole \ Antenna (120M-1000MHz), Horn \ Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz \ tuned \ Dipole \ Antenna (30M-120MHz), Dipole \ Antenna (120M-1000MHz), Horn \ Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz \ tuned \ Dipole \ Antenna (1G-40GHz) \\ Tx-ANTENNA: 120MHz \ tuned \ Di$

Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

NS: No signal detect.

Detector: S/A PK (RBW: 1MHz , VBW: 3MHz)

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 29 of 32

Issued date : January 23, 2013
Revised date : January 30, 2013
FCC ID : A98-FQM6833

Frequency Stability (Temperature/Voltage Variation)

Test place Head Office EMC Lab. No.6 Measurement Room

Report No. 4786001719H

Date 12/20/2012

Temperature/ Humidity 22deg. C / 33% RH

Engineer Keisuke Kawamura

Mode Tx GSM(GMSK)

Temp.	Volt.	Frequency	Frequency	Frequency	Remark
		Reading	Error	Error	
[deg.C]	[V]	[MHz]	[Hz]	[ppm]	
-30	3.80	1879.9999778	-2.0	-0.0011	-
-20	3.80	1880.0000199	40.1	0.0213	-
-10	3.80	1879.9999795	-0.3	-0.0002	-
0	3.80	1879.9999821	2.3	0.0012	-
10	3.80	1879.9999780	-1.8	-0.0010	-
20	3.80	1879.9999798	0.0	0.0000	Reference
30	3.80	1880.0000281	48.3	0.0257	-
40	3.80	1880.0000224	42.6	0.0227	-
50	3.80	1880.0000222	42.4	0.0226	-

Temp.	Volt.	Frequency	Frequency	Frequency	Remark
		Reading	Error	Error	
[deg.C]	[V]	[MHz]	[Hz]	[ppm]	
20	4.20	1879.9999707	-9.1	-0.0048	-
20	3.80	1879.9999798	0.0	0.0000	Reference
20	3.40	1880.0000197	39.9	0.0212	-

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 30 of 32

Issued date : January 23, 2013 Revised date : January 30, 2013 FCC ID : A98-FQM6833

APPENDIX 2: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date	Expiration date of the calibration
MOS-14	Thermo-Hygrometer	Custom	CTH-201	-	AT	2012/02/06	2013/02/28
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	AT	2012/04/06	2013/04/30
MURC- 02	Wireless Communication Test Set	Agilent	E5515C	GB47050683	AT	2012/12/19	2013/12/31
MCC-35	Microwave Cable	Hirose Electric	U.FL-2LP-066- A-(200)	(200)		2012/09/05	2013/09/30
MAT-25	Attenuator(10dB) (above1GHz)	Agilent	8493C	71642	AT	2012/06/27	2013/06/30
MPSC-01	Power splitters/Combiners	Mini-Circuit	ZFSC-2-2500	0124	AT	2012/09/12	2013/09/30
MCC-36	Microwave Cable	Hirose Electric	U.FL-2LP-066- A-(200)	-	AT	2012/09/05	2013/09/30
MAT-24	Attenuator(10dB) (above1GHz)	Agilent	8493C	71389	AT	2012/06/27	2013/06/30
MURC- 03	Radio Communication Analyzer	Anritsu	MT8815B	6200711471	AT	2012/12/19	2013/12/31
MCC-138	Microwave cable	HUBER+SUHNER	SUCOFLEX 102	37953/2	AT	2012/10/17	2013/10/31
MCH-04	Temperature and Humidity Chamber	Tabai Espec	PL-2KP	14015723	AT	2012/08/01	2013/08/31
MAEC- 02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2012/06/29	2013/06/30
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2012/11/20	2013/11/30
MURC- 05	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	127576	RE	2012/10/04	2013/10/31
MHA-06	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	254	RE	2012/02/22	2013/02/28
MCC-132	Microwave Cable	HUBER+SUHNER	SUCOFLEX104	336161/4(1m) / 340639(5m)	RE	2012/09/05	2013/09/30
MHF-06	High Pass Filter 3.5-24GHz	TOKIMEC	TF323DCA	601	RE	2012/05/30	2013/05/31
MPA-10	Pre Amplifier	Agilent	8449B	3008A02142	RE	2012/01/25	2013/01/31
MHA-02	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	RE	2012/02/22	2013/02/28
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2012/02/06	2013/02/28
MJM-14	Measure	KOMELON	KMC-36	-	RE	-	-
COTS- MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-	-
MBA-02	Biconical Antenna	Schwarzbeck	BBA9106	VHA91032008	RE	2012/10/08	2013/10/31
MLA-02	Logperiodic Antenna	Schwarzbeck	USLP9143	201	RE	2012/10/08	2013/10/31
MCC-12	Coaxial Cable	Fujikura/Agilent	-	-	RE	2012/02/16	2013/02/28
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2012/11/06	2013/11/30
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2012/09/11	2013/09/30
KSG-05	Signal Generator	Rohde & Schwarz	SMR40	100137	RE	2012/07/23	2013/07/31
MCC-130	Microwave Cable (1-33GHz)	HUBER+SUHNER	SF103/ 11PC3.5-31/ 11PC3.5- 31/8.0m	54308/3	RE	2012/01/05	2013/01/31
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2012/05/25	2013/05/31

The expiration date of the calibration is the end of the expired month.

 $All \ equipment \ is \ calibrated \ with \ valid \ calibrations. \ Each \ measurement \ data \ is \ traceable \ to \ the \ national \ or \ international \ standards.$

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated Emission

AT: Antenna Terminal Conducted

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN