



# PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA  
Tel. +1.410.290.6652 / Fax +1.410.290.6654  
<http://www.pctestlab.com>



## SAR EVALUATION REPORT

**Applicant Name:**

NEC Corporation of America  
Radio Communications Systems Division  
6535 N. State Highway 161  
Irving, TX 75039-2402 USA

**Date of Testing:**

04/04/12 - 05/02/12

**Test Site/Location:**

PCTEST Lab, Columbia, MD, USA

**Document Serial No.:**

0Y1204040419.A98

**FCC ID:** **A98-FBC3105**

**APPLICANT:**

**NEC CORPORATION OF AMERICA**

**DUT Type:** Portable Device

**Application Type:** Certification

**FCC Rule Part(s):** CFR §2.1093

**Model(s):** KMP7R4D1-1A

**Test Device Serial No.:** Pre-Production [S/N: 004401200910087, 351606050002004]

| Band & Mode                                 | Tx Frequency          | Conducted Power [dBm] | SAR              |                  |
|---------------------------------------------|-----------------------|-----------------------|------------------|------------------|
|                                             |                       |                       | 1 gm Head (W/kg) | 1 gm Body (W/kg) |
| GSM/GPRS 850                                | 824.20 - 848.80 MHz   | 29.19                 | 0.06             | 1.08             |
| WCDMA/HSPA 850                              | 826.40 - 846.60 MHz   | 19.03                 | 0.05             | 0.67             |
| GSM/GPRS 1900                               | 1850.20 - 1909.80 MHz | 23.10                 | 0.01             | 0.63             |
| 2.4 GHz WLAN                                | 2412 - 2462 MHz       | 13.22                 | 0.57             | 1.11             |
| Bluetooth                                   | 2402 - 2480 MHz       | 2.42                  | N/A              |                  |
| <b>Simultaneous SAR per KDB 690783 D01:</b> |                       |                       | 0.61             | 1.11             |

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

*PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.*

  
\_\_\_\_\_  
Randy Ortanez  
President

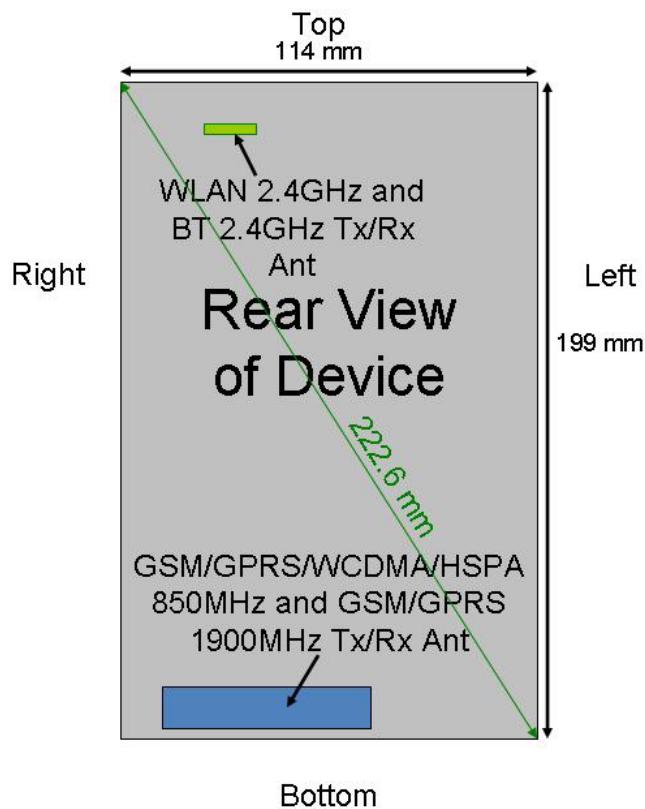


|                                   |                                               |  |                              |              |                                 |
|-----------------------------------|-----------------------------------------------|--|------------------------------|--------------|---------------------------------|
| FCC ID: A98-FBC3105               | <b>PCTEST</b><br>Engineering Laboratory, Inc. |  | <b>SAR EVALUATION REPORT</b> | <b>NEC</b>   | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12            |  | DUT Type:<br>Portable Device | Page 1 of 32 |                                 |

## T A B L E   O F   C O N T E N T S

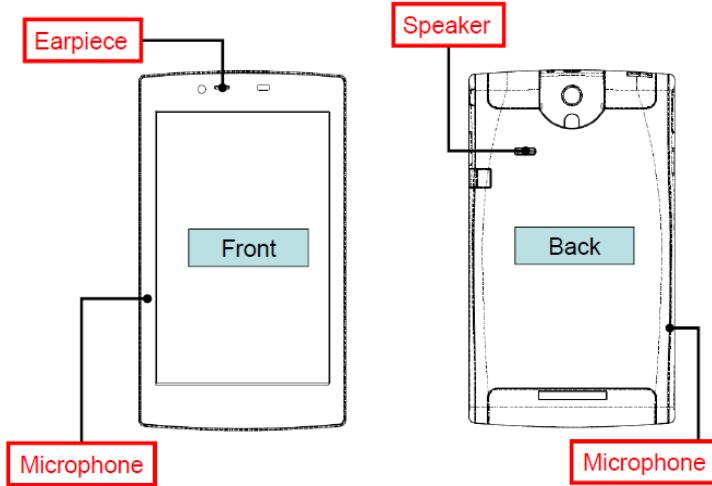
---

|    |                                                  |    |
|----|--------------------------------------------------|----|
| 1  | DEVICE UNDER TEST .....                          | 3  |
| 2  | INTRODUCTION .....                               | 6  |
| 3  | SAR MEASUREMENT SETUP .....                      | 7  |
| 4  | DOSIMETRIC ASSESSMENT .....                      | 8  |
| 5  | DEFINITION OF REFERENCE POINTS .....             | 9  |
| 6  | TEST CONFIGURATION POSITIONS FOR HANDSETS .....  | 10 |
| 7  | FCC RF EXPOSURE LIMITS.....                      | 12 |
| 8  | FCC MEASUREMENT PROCEDURES.....                  | 13 |
| 9  | RF CONDUCTED POWERS.....                         | 16 |
| 10 | SYSTEM VERIFICATION.....                         | 19 |
| 11 | SAR DATA SUMMARY .....                           | 21 |
| 12 | FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS..... | 25 |
| 13 | EQUIPMENT LIST.....                              | 28 |
| 14 | MEASUREMENT UNCERTAINTIES .....                  | 29 |
| 15 | CONCLUSION.....                                  | 30 |
| 16 | REFERENCES .....                                 | 31 |


|                                   |                                                                                                                                   |                              |  |                                                                                                  |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--------------------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | SAR EVALUATION REPORT        |  |  <b>NEC</b> | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |  |                                                                                                  | Page 2 of 32                    |

# 1 DEVICE UNDER TEST

## 1.1 Device Overview


| Band & Mode    | Tx Frequency          |
|----------------|-----------------------|
| GSM/GPRS 850   | 824.20 - 848.80 MHz   |
| WCDMA/HSPA 850 | 826.40 - 846.60 MHz   |
| GSM/GPRS 1900  | 1850.20 - 1909.80 MHz |
| 2.4 GHz WLAN   | 2412 - 2462 MHz       |
| Bluetooth      | 2402 - 2480 MHz       |

## 1.2 DUT Antenna Locations



**Figure 1-1**  
**DUT Antenna Locations**

|                                   |                                                                                            |                              |  |                                                                                                                       |
|-----------------------------------|--------------------------------------------------------------------------------------------|------------------------------|--|-----------------------------------------------------------------------------------------------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST | SAR EVALUATION REPORT        |  |  Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                         | DUT Type:<br>Portable Device |  | Page 3 of 32                                                                                                          |



**Figure 1-2**  
**DUT Earpiece, Speaker, and Microphone Locations**

Head SAR testing was required for this device because it has a speaker/receiver and a microphone positioned in a way that allows for a held-to-ear configuration usage. Body-worn accessories are not applicable for this device. Per KDB Publication 447498 4)c)i), head SAR was tested according to the handset procedures in the IEEE Std 1528-2003 and OET Bulletin 65 Supplement C 01-01.

### 1.3 Simultaneous Transmission Capabilities

Simultaneous transmissions according to KDB Publication 447498, except for transmissions during network hand-offs with maximum hand-off duration less than 30 seconds, are considered to be transmitting simultaneously when there is overlapping transmission.

This device contains multiple transmitters that may operate simultaneously and, therefore, requires a simultaneous transmission analysis according to KDB Publication 447498 4) b) iii) procedures.

**Table 1-1**  
**Possible Simultaneous Transmission Scenario Supported by DUT**

| No. | Capable Transmit Configurations              | Head                 | Body SAR                                                                  | Note        |
|-----|----------------------------------------------|----------------------|---------------------------------------------------------------------------|-------------|
|     |                                              | IEEE 1528,<br>Supp C | Tablet Configuration per April<br>2011 FCC-TCB Workshop and<br>KDB 447498 |             |
| 1   | 850/1900 MHz GSM Voice + WIFI 2.4 GHz        | Yes                  | Yes                                                                       | -           |
| 2   | 850 MHz WCDMA/HSPA Voice/Data + WIFI 2.4 GHz | Yes                  | Yes                                                                       | 3G Hotspot* |
| 3   | 850/1900 MHz GPRS Data + WIFI 2.4 GHz        | -                    | Yes                                                                       | 2G Hotspot  |

(\*): WCDMA/HSPA hotspot may be active during voice WDCDMA mode because, in WCDMA, both voice and data use the same physical channel. When doing multiple services (multi-Radio Access Bearer or multi-RAB), the power control will be based on a physical control channel (dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the WCDMA+WLAN sum also represents the WCDMA Voice + WCDMA/HSPA Data + WLAN scenario.

The tablet procedures required by KDB Publication 447498 generally do not require separate hotspot mode testing.

|                                   |                                                                                                                                   |                              |  |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | <b>SAR EVALUATION REPORT</b> |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |  | Page 4 of 32                    |

## 1.4 SAR Test Exclusions Applied

### (A) WIFI/BT

The separation between the main antenna and the Bluetooth and WLAN antennas is 172.4 mm. RF Conducted Power of Bluetooth Tx is 1.746 mW. RF Conducted Power of WLAN is 22.080 mW. Please refer to the DSS EMC report field for this DUT for a complete set of Bluetooth powers.

2.4 GHz WIFI and Bluetooth share the same antenna path and cannot transmit simultaneously.

Per KDB Publication 447498, **Bluetooth SAR was not required** based on the maximum conducted power, the Bluetooth/WLAN to main antenna separation distance and Body-SAR of the main antenna.

### (B) Licensed Transmitter(s)

This model does not support Simultaneous Voice and Data for the licensed transmitter in any modes except in WCDMA that allows Multi-RAB transmissions that share voice and data operations on a single physical channel.

GSM/GPRS DTM is not supported. Therefore GSM Voice cannot transmit simultaneously with GPRS Data.

This device is only capable of QPSK HSUPA in the uplink, but is capable of HSPA+ in the downlink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01.

When the user utilizes multiple services in WCDMA 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCH]) and power control will be adjusted to meet the needs of both services. Therefore, the WCDMA+WLAN scenario also represents the WCDMA Voice/DATA + WLAN Hotspot scenario.

## 1.5 Power Reduction for SAR

There is no power reduction for any band/mode implemented in this device for SAR purposes.

## 1.6 Guidance Applied

- FCC KDB 941225 (2G/3G)
- FCC KDB 248227 (802.11)
- FCC KDB 648474 (Simultaneous)
- FCC KDB 447498 (Tablet SAR Considerations)

|                                   |                                                                                                                                   |                              |  |                                                                                                  |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--------------------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | SAR EVALUATION REPORT        |  |  <b>NEC</b> | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |  |                                                                                                  | Page 5 of 32                    |

## 2 INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

### 2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy ( $dU$ ) absorbed by (dissipated in) an incremental mass ( $dm$ ) contained in a volume element ( $dV$ ) of a given density ( $\rho$ ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

**Equation 2-1**  
**SAR Mathematical Equation**

$$S A R = \frac{d}{d t} \left( \frac{d U}{d m} \right) = \frac{d}{d t} \left( \frac{d U}{\rho d v} \right)$$

**SAR is expressed in units of Watts per Kilogram (W/kg).**

$$S A R = \frac{\sigma \cdot E^2}{\rho}$$

where:

$\sigma$  = conductivity of the tissue-simulating material (S/m)

$\rho$  = mass density of the tissue-simulating material (kg/m<sup>3</sup>)

$E$  = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

|                                   |                                                                                                                                   |                              |  |                                                                                       |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | <b>SAR EVALUATION REPORT</b> |  |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |  |                                                                                       | Page 6 of 32                    |

## 3 SAR MEASUREMENT SETUP

### 3.1 Automated SAR Measurement System

Measurements are performed using the DASY automated dosimetric SAR assessment system. The DASY is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). See [www.speag.com](http://www.speag.com) for more information about the specification of the SAR assessment system.



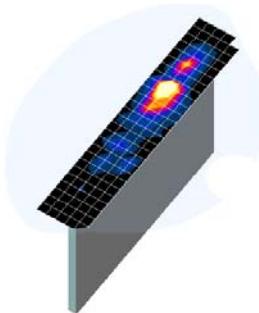
Figure 3-1  
SAR Measurement System



Figure 3-2  
Near-Field Probe

Table 3-1  
Composition of the Tissue Equivalent Matter

| Frequency (MHz)           | 835   | 835   | 1900  | 1900  | 2450  | 2450 |
|---------------------------|-------|-------|-------|-------|-------|------|
| Tissue                    | Head  | Body  | Head  | Body  | Head  | Body |
| Ingredients (% by weight) |       |       |       |       |       |      |
| Bactericide               | 0.1   | 0.1   |       |       |       |      |
| DGBE                      |       |       | 44.92 | 29.44 | 7.99  | 26.7 |
| HEC                       | 1     | 1     |       |       |       |      |
| NaCl                      | 1.45  | 0.94  | 0.18  | 0.39  | 0.16  | 0.1  |
| Sucrose                   | 57    | 44.9  |       |       |       |      |
| Triton X-100              |       |       |       |       | 19.97 |      |
| Water                     | 40.45 | 53.06 | 54.9  | 70.17 | 71.88 | 73.2 |


|                                   |                                                                                                                  |                                                                                       |                                 |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>SAR EVALUATION REPORT</b> |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                               | DUT Type:<br>Portable Device                                                          | Page 7 of 32                    |

## 4 DOSIMETRIC ASSESSMENT

### 4.1 Measurement Procedure

The evaluation was performed using the following procedure:

1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head interface and the horizontal grid resolution was 15mm and 15mm for frequencies < 3 GHz in the x and y directions respectively. When applicable, for frequencies above 3 GHz, a 10 mm by 10 mm resolution was used.
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1 gram cube evaluation. SAR at this fixed point was measured and used as a reference value.
3. Based on the area scan data, the peak area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring at least 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
  - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
  - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
  - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.



**Figure 4-1**  
**Sample SAR Area Scan**

|                                   |                                                                                                                                   |                              |                                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | <b>SAR EVALUATION REPORT</b> |                                                 |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device | Reviewed by:<br>Quality Manager<br>Page 8 of 32 |

## 5 DEFINITION OF REFERENCE POINTS

### 5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5-2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

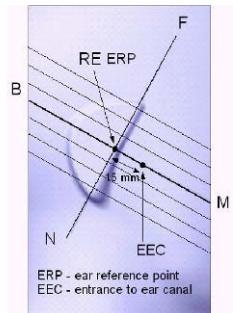



Figure 5-1  
Close-Up Side view  
of ERP

### 5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.



Figure 5-2  
Front, back and side view of SAM Twin Phantom

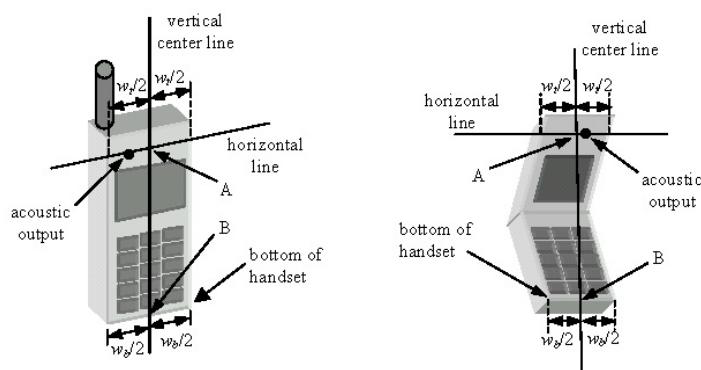



Figure 5-3  
Handset Vertical Center & Horizontal Line Reference Points

|                                   |                                    |                              |     |                                 |
|-----------------------------------|------------------------------------|------------------------------|-----|---------------------------------|
| FCC ID: A98-FBC3105               | PCTEST®<br>SAR EVALUATION REPORT   |                              | NEC | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12 | DUT Type:<br>Portable Device |     | Page 9 of 32                    |

## 6 SAR TABLET TESTING

### 6.1 SAR Testing for Tablet per KDB Publication 447498 Section 4

Lap-touching devices that have transmitting antennas located less than 20 cm from the body of the user require routine SAR evaluation. Such devices are considered portable, and are capable of being held to the body. Devices are to be setup according to KDB publication 447498 requirements and are configured with maximum output power during SAR assessment for a worst-case SAR evaluation.

Per KDB 447498 4) b)i), the bottom face (back of the device) is required to be tested touching the flat phantom.

Per KDB Publication 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user. According to KDB Publication 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.

**Since the diagonal dimension of the device is more than 20 cm (22.26 cm), this device is a tablet (not a mini-tablet).**

**Head SAR testing was required** for this device because it has a speaker/receiver and a microphone positioned in a way that allows for a held-to-ear configuration usage. Body-worn accessories are not applicable for this device. Per KDB Publication 447498 4)c)i), head SAR was tested according to the handset procedures in the IEEE Std 1528-2003 and OET Bulletin 65 Supplement C 01-01.

### 6.2 Display Orientation Capabilities

This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user. 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.

### 6.3 Device Holder

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\epsilon = 3$  and loss tangent  $\delta = 0.02$ .

### 6.4 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

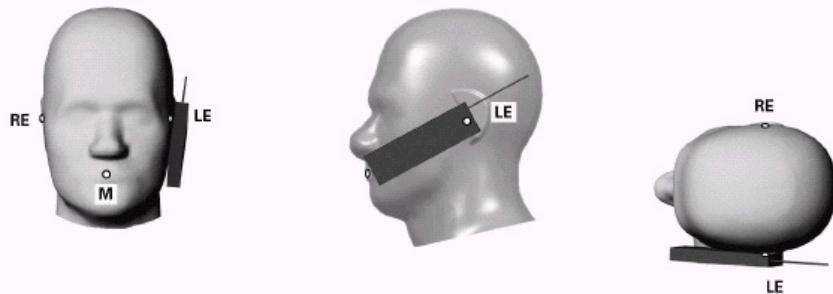



Figure 6-1 Front, Side and Top View of Cheek/Touch Position

2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.

|                                   |                                                                                                                              |                              |                                                  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST<br>AN INDEPENDENT LABORATORY INC. | SAR EVALUATION REPORT        |                                                  |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                           | DUT Type:<br>Portable Device | Reviewed by:<br>Quality Manager<br>Page 10 of 32 |

3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical with respect to the line NF.
5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

## 6.5 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek/Touch Position":

1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degrees.
2. The phone was then rotated around the horizontal line by 15 degrees.
3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

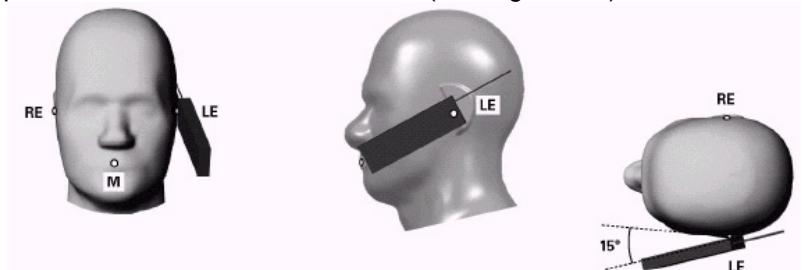



Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

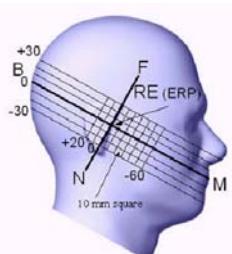



Figure 6-3  
Side view w/ relevant markings



Figure 6-4 Body SAR Sample Photo  
(Not Actual EUT)

|                                   |                                    |                              |     |                                 |
|-----------------------------------|------------------------------------|------------------------------|-----|---------------------------------|
| FCC ID: A98-FBC3105               | PCTEST®<br>SAR EVALUATION REPORT   |                              | NEC | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12 | DUT Type:<br>Portable Device |     | Page 11 of 32                   |

## 7 FCC RF EXPOSURE LIMITS

### 7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

### 7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

**Table 7-1**  
**SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6**

| HUMAN EXPOSURE LIMITS                           |                                                                           |                                                                   |
|-------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                 | UNCONTROLLED ENVIRONMENT<br><i>General Population</i><br>(W/kg) or (mW/g) | CONTROLLED ENVIRONMENT<br><i>Occupational</i><br>(W/kg) or (mW/g) |
| SPATIAL PEAK SAR<br>Brain                       | 1.6                                                                       | 8.0                                                               |
| SPATIAL AVERAGE SAR<br>Whole Body               | 0.08                                                                      | 0.4                                                               |
| SPATIAL PEAK SAR<br>Hands, Feet, Ankles, Wrists | 4.0                                                                       | 20                                                                |

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2. The Spatial Average value of the SAR averaged over the whole body.
3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

|                                   |                                                                                                                                   |                              |                                                                                           |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST <sup>®</sup><br>Engineering Laboratory | SAR EVALUATION REPORT        |  NEC | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |                                                                                           | Page 12 of 32                   |

## 8 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

### 8.1 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

### 8.2 SAR Measurement Conditions for WCDMA

#### 8.2.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s". Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH) are tabulated in the test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations is identified.

#### 8.2.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

#### 8.2.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

|                                   |                                                                                                                                         |                              |                                                                                       |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST <sup>®</sup><br>Engineering Laboratory, Inc. | SAR EVALUATION REPORT        |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                      | DUT Type:<br>Portable Device |                                                                                       | Page 13 of 32                   |

### 8.2.4 Procedures Used to Establish RF Signal for SAR HSDPA Data Devices

The following procedures are applicable to HSDPA data devices operating under 3GPP Release 5. Body exposure conditions are typically applicable to these devices, including handsets and data modems operating in various electronic devices. HSDPA operates in conjunction with WCDMA and requires an active DPCCH. The default test configuration is to measure SAR in WCDMA without HSDPA, with an established radio link between the DUT and a communication test set with 12.2 kbps RMC mode configured in Test Loop Mode 1; and tested with HSDPA with FRC and a 12.2 kbps RMC using the highest SAR configuration in WCDMA. SAR is selectively confirmed for other physical channel configurations according to output power, exposure conditions and device operating capabilities. Maximum output power is verified according to 3GPP TS 23.121 (Release 5) and SAR must be measured according to these maximum output conditions.

### 8.2.5 SAR Measurement Conditions for HSUPA Data Devices

SAR for body exposure configurations are measured according to the 'Body SAR Measurements' procedures in the 'WCDMA Handsets' section of the KDB 941225 D01 FCC 3G document. In addition, Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least  $\frac{1}{4}$  dB higher of that measured without HSPA in 12.2 kbps RMC mode or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than  $\frac{1}{4}$  dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurements should be used to test for head exposure.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and EDCH configurations for HSPA should be configured according to the  $\beta$  values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of the FCC 3G document.

| Sub-test | $\beta_c$            | $\beta_d$            | $\beta_d$<br>(SF) | $\beta_c/\beta_d$    | $\beta_{hs}^{(1)}$ | $\beta_{ec}$ | $\beta_{ed}$                                 | $\beta_{ed}$<br>(SF) | $\beta_{ed}$<br>(codes) | CM <sup>(2)</sup><br>(dB) | MPR<br>(dB) | AG <sup>(4)</sup><br>Index | E-TFCI |
|----------|----------------------|----------------------|-------------------|----------------------|--------------------|--------------|----------------------------------------------|----------------------|-------------------------|---------------------------|-------------|----------------------------|--------|
| 1        | 11/15 <sup>(3)</sup> | 15/15 <sup>(3)</sup> | 64                | 11/15 <sup>(3)</sup> | 22/15              | 209/225      | 1039/225                                     | 4                    | 1                       | 1.0                       | 0.0         | 20                         | 75     |
| 2        | 6/15                 | 15/15                | 64                | 6/15                 | 12/15              | 12/15        | 94/75                                        | 4                    | 1                       | 3.0                       | 2.0         | 12                         | 67     |
| 3        | 15/15                | 9/15                 | 64                | 15/9                 | 30/15              | 30/15        | $\beta_{ed1}: 47/15$<br>$\beta_{ed2}: 47/15$ | 4                    | 2                       | 2.0                       | 1.0         | 15                         | 92     |
| 4        | 2/15                 | 15/15                | 64                | 2/15                 | 4/15               | 2/15         | 56/75                                        | 4                    | 1                       | 3.0                       | 2.0         | 17                         | 71     |
| 5        | 15/15 <sup>(4)</sup> | 15/15 <sup>(4)</sup> | 64                | 15/15 <sup>(4)</sup> | 30/15              | 24/15        | 134/15                                       | 4                    | 1                       | 1.0                       | 0.0         | 21                         | 81     |

Note 1:  $\Delta_{ACK}, \Delta_{NACK}$  and  $\Delta_{QoS} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$ .  
 Note 2: CM = 1 for  $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$ . For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.  
 Note 3: For subtest 1 the  $\beta_c/\beta_d$  ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 10/15$  and  $\beta_d = 15/15$ .  
 Note 4: For subtest 5 the  $\beta_c/\beta_d$  ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 14/15$  and  $\beta_d = 15/15$ .  
 Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.  
 Note 6:  $\beta_{ed}$  can not be set directly; it is set by Absolute Grant Value.

### 8.3 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce

|                                   |                                                                                                                      |                              |  |  |                                                                                       |                                 |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST<br>Engineering Laboratory | SAR EVALUATION REPORT        |  |  |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                   | DUT Type:<br>Portable Device |  |  | Page 14 of 32                                                                         |                                 |

undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 for more details.

### 8.3.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

### 8.3.2 Frequency Channel Configurations [27]

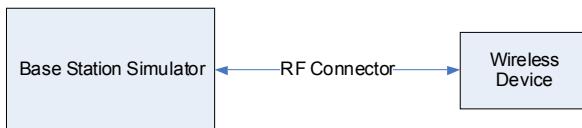
For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg or if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

|                                   |                                                                                                                                   |                              |  |                                                                                                  |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--------------------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | SAR EVALUATION REPORT        |  |  <b>NEC</b> | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |  |                                                                                                  | Page 15 of 32                   |

## 9 RF CONDUCTED POWERS

### 9.1 GSM Conducted Powers


|          |         | Maximum Burst-Averaged Output Power |                      |
|----------|---------|-------------------------------------|----------------------|
|          |         | Voice                               | GPRS Data (GMSK)     |
| Band     | Channel | GSM [dBm] CS (1 Slot)               | GPRS [dBm] 1 Tx Slot |
| Cellular | 128     | 28.87                               | 29.03                |
|          | 190     | 28.81                               | 29.01                |
|          | 251     | 29.07                               | 29.19                |
| PCS      | 512     | 23.11                               | 23.07                |
|          | 661     | 23.05                               | 23.10                |
|          | 810     | 23.15                               | 23.14                |

|          |         | Calculated Maximum Frame-Averaged Output Power |                      |
|----------|---------|------------------------------------------------|----------------------|
|          |         | Voice                                          | GPRS Data (GMSK)     |
| Band     | Channel | GSM [dBm] CS (1 Slot)                          | GPRS [dBm] 1 Tx Slot |
| Cellular | 128     | 19.84                                          | 20.00                |
|          | 190     | 19.78                                          | 19.98                |
|          | 251     | 20.04                                          | 20.16                |
| PCS      | 512     | 14.08                                          | 14.04                |
|          | 661     | 14.02                                          | 14.07                |
|          | 810     | 14.12                                          | 14.11                |

Note: Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

CS1 coding scheme was used in GPRS output power measurements and SAR Testing, as a condition where GMSK modulation was ensured. Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels in the GPRS modes.

**GSM Class:** B  
**GPRS Multislot class:** 8 (max 1 Tx Uplink slots)  
**EDGE Multislot class:** N/A  
**DTM Multislot Class:** N/A



**Figure 9-1**  
**Power Measurement Setup**

|                                   |                                                                                                                            |                              |  |                                 |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------|--|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST<br>Engineering Laboratory, Inc. | SAR EVALUATION REPORT        |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                         | DUT Type:<br>Portable Device |  | Page 16 of 32                   |

## 9.2 HSPA Conducted Powers

| 3GPP Release Version | Mode  | 3GPP 34.121 Subtest | Cellular Band [dBm] |       |       | MPR [dB] |
|----------------------|-------|---------------------|---------------------|-------|-------|----------|
|                      |       |                     | 4132                | 4183  | 4233  |          |
| 99                   | WCDMA | 12.2 kbps RMC       | 19.01               | 19.03 | 19.09 | -        |
| 99                   |       | 12.2 kbps AMR       | 19.00               | 18.93 | 19.06 | -        |
| 6                    | HSDPA | Subtest 1           | 18.93               | 18.96 | 19.09 | 0        |
| 6                    |       | Subtest 2           | 19.08               | 19.00 | 19.14 | 0        |
| 6                    |       | Subtest 3           | 18.48               | 18.50 | 18.73 | 0.5      |
| 6                    |       | Subtest 4           | 18.47               | 18.50 | 18.64 | 0.5      |
| 6                    |       | Subtest 1           | 18.76               | 18.78 | 18.86 | 0        |
| 6                    | HSUPA | Subtest 2           | 17.68               | 17.63 | 17.73 | 2        |
| 6                    |       | Subtest 3           | 18.14               | 18.09 | 17.90 | 1        |
| 6                    |       | Subtest 4           | 17.96               | 17.69 | 17.90 | 2        |
| 6                    |       | Subtest 5           | 18.94               | 18.66 | 18.89 | 0        |

WCDMA SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.



**Figure 9-2**  
**Power Measurement Setup**

## 9.3 WLAN Conducted Powers

**Table 9-1**  
**IEEE 802.11b Average RF Power**

| Mode    | Freq [MHz] | Channel | Conducted Power [dBm] |       |       |       |
|---------|------------|---------|-----------------------|-------|-------|-------|
|         |            |         | Data Rate [Mbps]      |       |       |       |
|         |            |         | 1                     | 2     | 5.5   | 11    |
| 802.11b | 2412       | 1       | 12.87                 | 13.11 | 13.11 | 13.08 |
| 802.11b | 2437       | 6       | 13.22                 | 13.42 | 13.44 | 13.43 |
| 802.11b | 2462       | 11      | 12.79                 | 12.98 | 12.91 | 13.01 |

**Table 9-2**  
**IEEE 802.11g Average RF Power**

| Mode    | Freq [MHz] | Channel | Conducted Power [dBm] |       |       |       |       |       |       |       |
|---------|------------|---------|-----------------------|-------|-------|-------|-------|-------|-------|-------|
|         |            |         | 6                     | 9     | 12    | 18    | 24    | 36    | 48    | 54    |
| 802.11g | 2412       | 1       | 11.85                 | 12.30 | 12.24 | 12.20 | 12.23 | 12.07 | 12.09 | 12.18 |
| 802.11g | 2437       | 6       | 12.12                 | 12.55 | 12.51 | 12.48 | 12.51 | 12.37 | 12.36 | 12.50 |
| 802.11g | 2462       | 11      | 11.62                 | 12.11 | 12.11 | 12.03 | 12.08 | 11.94 | 11.92 | 12.05 |

|                                   |                                                                                                                                           |                              |  |  |  |                                                                                       |                                 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST <sup>®</sup><br>AN INDEPENDENT LABORATORY INC. | SAR EVALUATION REPORT        |  |  |  |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                        | DUT Type:<br>Portable Device |  |  |  | Page 17 of 32                                                                         |                                 |

**Table 9-3**  
**IEEE 802.11n LGI Average RF Power**

| Mode    | Freq<br>[MHz] | Channel | Conducted Power [dBm] LGI |       |       |       |       |       |       |       |
|---------|---------------|---------|---------------------------|-------|-------|-------|-------|-------|-------|-------|
|         |               |         | Data Rate [Mbps]          |       |       |       |       |       |       |       |
|         |               |         | 6.5                       | 13    | 20    | 26    | 39    | 52    | 58    | 65    |
| 802.11n | 2412          | 1       | 11.90                     | 12.17 | 12.23 | 12.06 | 12.04 | 11.02 | 10.98 | 11.08 |
| 802.11n | 2437          | 6       | 12.23                     | 12.54 | 12.51 | 12.41 | 12.33 | 11.52 | 11.42 | 11.52 |
| 802.11n | 2462          | 11      | 11.73                     | 12.09 | 12.07 | 11.97 | 11.92 | 10.99 | 10.97 | 11.08 |

**Table 9-4**  
**IEEE 802.11n SGI Average RF Power**

| Mode    | Freq<br>[MHz] | Channel | Conducted Power [dBm] SGI |       |       |       |       |       |       |       |
|---------|---------------|---------|---------------------------|-------|-------|-------|-------|-------|-------|-------|
|         |               |         | Data Rate [Mbps]          |       |       |       |       |       |       |       |
|         |               |         | 7.2                       | 14.4  | 22    | 29    | 43    | 58    | 65    | 72    |
| 802.11n | 2412          | 1       | 11.92                     | 12.27 | 12.24 | 12.12 | 12.11 | 11.03 | 11.03 | 10.83 |
| 802.11n | 2437          | 6       | 12.17                     | 12.55 | 12.54 | 12.42 | 12.43 | 11.48 | 11.49 | 11.37 |
| 802.11n | 2462          | 11      | 11.74                     | 12.14 | 12.11 | 11.98 | 12.00 | 11.01 | 11.04 | 10.91 |

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The underlined data rate and channel above were tested for SAR.



**Figure 9-3**  
**Power Measurement Setup**

|                                   |                                                                                                                               |                              |                                                                                       |                                 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>AN INNOVATION LABORATORY | SAR EVALUATION REPORT        |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                            | DUT Type:<br>Portable Device |                                                                                       | Page 18 of 32                   |

## 10 SYSTEM VERIFICATION

### 10.1 Tissue Verification

**Table 10-1**  
**Measured Tissue Properties**

| Calibrated for Tests Performed on: | Tissue Type | Tissue Temp During Calibration (C°) | Measured Frequency (MHz) | Measured Conductivity, $\sigma$ (S/m) | Measured Dielectric Constant, $\epsilon$ | TARGET Conductivity, $\sigma$ (S/m) | TARGET Dielectric Constant, $\epsilon$ | % dev $\sigma$ | % dev $\epsilon$ |
|------------------------------------|-------------|-------------------------------------|--------------------------|---------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------|----------------|------------------|
| 4/6/2012                           | 835H        | 19.7                                | 820                      | 0.891                                 | 42.42                                    | 0.898                               | 41.571                                 | -0.78%         | 2.04%            |
|                                    |             |                                     | 835                      | 0.908                                 | 42.24                                    | 0.900                               | 41.500                                 | 0.89%          | 1.78%            |
|                                    |             |                                     | 850                      | 0.929                                 | 41.86                                    | 0.916                               | 41.500                                 | 1.42%          | 0.87%            |
| 4/9/2012                           | 1900H       | 22.7                                | 1850                     | 1.377                                 | 38.23                                    | 1.40                                | 40.00                                  | -1.64%         | -4.43%           |
|                                    |             |                                     | 1880                     | 1.410                                 | 38.06                                    | 1.40                                | 40.00                                  | 0.71%          | -4.85%           |
|                                    |             |                                     | 1910                     | 1.437                                 | 38.02                                    | 1.40                                | 40.00                                  | 2.64%          | -4.95%           |
| 5/2/2012                           | 2450H       | 22.9                                | 2401                     | 1.827                                 | 37.92                                    | 1.758                               | 39.298                                 | 3.92%          | -3.51%           |
|                                    |             |                                     | 2450                     | 1.883                                 | 37.70                                    | 1.800                               | 39.200                                 | 4.61%          | -3.83%           |
|                                    |             |                                     | 2499                     | 1.940                                 | 37.47                                    | 1.852                               | 39.135                                 | 4.75%          | -4.25%           |
| 4/4/2012                           | 835B        | 22.8                                | 820                      | 0.970                                 | 55.28                                    | 0.969                               | 55.284                                 | 0.10%          | -0.01%           |
|                                    |             |                                     | 835                      | 0.989                                 | 55.12                                    | 0.970                               | 55.200                                 | 1.96%          | -0.14%           |
|                                    |             |                                     | 850                      | 1.004                                 | 55.01                                    | 0.988                               | 55.154                                 | 1.62%          | -0.26%           |
| 4/9/2012                           | 835B        | 22.8                                | 820                      | 0.953                                 | 53.08                                    | 0.969                               | 55.284                                 | -1.65%         | -3.99%           |
|                                    |             |                                     | 835                      | 0.966                                 | 53.02                                    | 0.970                               | 55.200                                 | -0.41%         | -3.95%           |
|                                    |             |                                     | 850                      | 0.980                                 | 52.93                                    | 0.988                               | 55.154                                 | -0.81%         | -4.03%           |
| 4/9/2012                           | 1900B       | 20.2                                | 1850                     | 1.497                                 | 51.26                                    | 1.520                               | 53.300                                 | -1.51%         | -3.83%           |
|                                    |             |                                     | 1880                     | 1.531                                 | 51.27                                    | 1.520                               | 53.300                                 | 0.72%          | -3.81%           |
|                                    |             |                                     | 1910                     | 1.571                                 | 51.09                                    | 1.520                               | 53.300                                 | 3.36%          | -4.15%           |
| 4/30/2012                          | 2450B       | 22.8                                | 2401                     | 1.937                                 | 51.01                                    | 1.903                               | 52.765                                 | 1.79%          | -3.33%           |
|                                    |             |                                     | 2450                     | 1.893                                 | 50.32                                    | 1.950                               | 52.700                                 | -2.92%         | -4.52%           |
|                                    |             |                                     | 2499                     | 2.072                                 | 50.33                                    | 2.019                               | 52.638                                 | 2.63%          | -4.38%           |

Note: KDB Publication 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

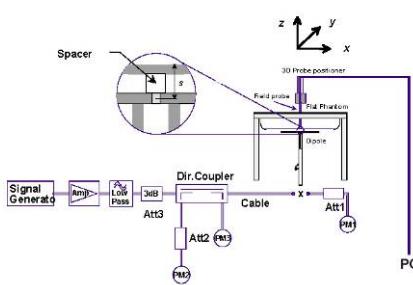
The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

### 10.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity  $\epsilon_r$  for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\epsilon_r\epsilon_0}{[\ln(b/a)]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp[-j\omega r(\mu_0\epsilon_r\epsilon_0)^{1/2}]}{r} d\phi' d\rho' d\rho$$

where  $Y$  is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively,  $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos\phi'$ ,  $\omega$  is the angular frequency, and  $j = \sqrt{-1}$ .


|                                   |                                                                                            |                              |  |                                                                                           |                                 |
|-----------------------------------|--------------------------------------------------------------------------------------------|------------------------------|--|-------------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST | SAR EVALUATION REPORT        |  |  NEC | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                         | DUT Type:<br>Portable Device |  | Page 19 of 32                                                                             |                                 |

### 10.3 Test System Verification

Prior to assessment, the system is verified to  $\pm 10\%$  of the manufacturer SAR measurement on the reference dipole at the time of calibration.

**Table 10-2**  
**System Verification Results**

| System Verification<br>TARGET & MEASURED |             |            |                |                  |                 |           |          |                                   |                                     |                                         |               |
|------------------------------------------|-------------|------------|----------------|------------------|-----------------|-----------|----------|-----------------------------------|-------------------------------------|-----------------------------------------|---------------|
| Tissue Frequency (MHz)                   | Tissue Type | Date:      | Amb. Temp (°C) | Liquid Temp (°C) | Input Power (W) | Dipole SN | Probe SN | Measured SAR <sub>1g</sub> (W/kg) | 1 W Target SAR <sub>1g</sub> (W/kg) | 1 W Normalized SAR <sub>1g</sub> (W/kg) | Deviation (%) |
| 835                                      | Head        | 04/06/2012 | 23.5           | 21.7             | 0.100           | 4d026     | 3258     | 0.971                             | 9.460                               | 9.710                                   | 2.64%         |
| 1900                                     | Head        | 04/09/2012 | 21.7           | 20.8             | 0.040           | 502       | 3209     | 1.53                              | 39.200                              | 38.250                                  | -2.42%        |
| 2450                                     | Head        | 05/02/2012 | 22.4           | 21.1             | 0.100           | 719       | 3022     | 5.57                              | 53.800                              | 55.700                                  | 3.53%         |
| 835                                      | Body        | 04/04/2012 | 24.5           | 22.3             | 0.100           | 4d047     | 3263     | 1.01                              | 9.410                               | 10.100                                  | 7.33%         |
| 835                                      | Body        | 04/09/2012 | 22.3           | 20.8             | 0.100           | 4d026     | 3258     | 1.02                              | 9.660                               | 10.200                                  | 5.59%         |
| 1900                                     | Body        | 04/09/2012 | 20.6           | 21.0             | 0.100           | 502       | 3022     | 3.92                              | 38.900                              | 39.200                                  | 0.77%         |
| 2450                                     | Body        | 04/30/2012 | 23.1           | 21.3             | 0.100           | 719       | 3022     | 4.88                              | 51.300                              | 48.800                                  | -4.87%        |



**Figure 10-1**  
**System Verification Setup Diagram**



**Figure 10-2**  
**System Verification Setup Photo**

|                                   |                                                                                                                               |                              |                                                                                       |                                 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>AN INNOVATION LABORATORY | <b>SAR EVALUATION REPORT</b> |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                            | DUT Type:<br>Portable Device |                                                                                       | Page 20 of 32                   |

## 11 SAR DATA SUMMARY

### 11.1 Standalone Head SAR Data

**Table 11-1**  
**GSM 850 Head SAR Results**

| MEASUREMENT RESULTS                      |     |           |                       |                  |                      |               |                      |          |
|------------------------------------------|-----|-----------|-----------------------|------------------|----------------------|---------------|----------------------|----------|
| FREQUENCY                                |     | Mode/Band | Conducted Power [dBm] | Power Drift [dB] | Side                 | Test Position | Device Serial Number | SAR (1g) |
| MHz                                      | Ch. |           |                       |                  |                      |               |                      | (W/kg)   |
| 836.60                                   | 190 | GSM 850   | 28.81                 | 0.06             | Right                | Touch         | 004401200910087      | 0.033    |
| 836.60                                   | 190 | GSM 850   | 28.81                 | 0.20             | Right                | Tilt          | 004401200910087      | 0.046    |
| 836.60                                   | 190 | GSM 850   | 28.81                 | -0.07            | Left                 | Touch         | 004401200910087      | 0.039    |
| 836.60                                   | 190 | GSM 850   | 28.81                 | -0.13            | Left                 | Tilt          | 004401200910087      | 0.059    |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |     |           |                       |                  | Head                 |               |                      |          |
| Spatial Peak                             |     |           |                       |                  | 1.6 W/kg (mW/g)      |               |                      |          |
| Uncontrolled Exposure/General Population |     |           |                       |                  | averaged over 1 gram |               |                      |          |

**Table 11-2**  
**WCDMA 850 Head SAR Results**

| MEASUREMENT RESULTS                      |      |           |                       |                  |                      |               |                      |          |
|------------------------------------------|------|-----------|-----------------------|------------------|----------------------|---------------|----------------------|----------|
| FREQUENCY                                |      | Mode/Band | Conducted Power [dBm] | Power Drift [dB] | Side                 | Test Position | Device Serial Number | SAR (1g) |
| MHz                                      | Ch.  |           |                       |                  |                      |               |                      | (W/kg)   |
| 836.60                                   | 4183 | WCDMA 850 | 19.03                 | 0.15             | Right                | Touch         | 004401200910087      | 0.025    |
| 836.60                                   | 4183 | WCDMA 850 | 19.03                 | 0.00             | Right                | Tilt          | 004401200910087      | 0.036    |
| 836.60                                   | 4183 | WCDMA 850 | 19.03                 | 0.05             | Left                 | Touch         | 004401200910087      | 0.029    |
| 836.60                                   | 4183 | WCDMA 850 | 19.03                 | -0.01            | Left                 | Tilt          | 004401200910087      | 0.045    |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |      |           |                       |                  | Head                 |               |                      |          |
| Spatial Peak                             |      |           |                       |                  | 1.6 W/kg (mW/g)      |               |                      |          |
| Uncontrolled Exposure/General Population |      |           |                       |                  | averaged over 1 gram |               |                      |          |

**Table 11-3**  
**GSM 1900 Head SAR Results**

| MEASUREMENT RESULTS                      |     |           |                       |                  |                      |               |                      |          |
|------------------------------------------|-----|-----------|-----------------------|------------------|----------------------|---------------|----------------------|----------|
| FREQUENCY                                |     | Mode/Band | Conducted Power [dBm] | Power Drift [dB] | Side                 | Test Position | Device Serial Number | SAR (1g) |
| MHz                                      | Ch. |           |                       |                  |                      |               |                      | (W/kg)   |
| 1880.00                                  | 661 | GSM 1900  | 23.05                 | 0.18             | Right                | Touch         | 004401200910087      | 0.014    |
| 1880.00                                  | 661 | GSM 1900  | 23.05                 | -0.12            | Right                | Tilt          | 004401200910087      | 0.007    |
| 1880.00                                  | 661 | GSM 1900  | 23.05                 | -0.14            | Left                 | Touch         | 004401200910087      | 0.013    |
| 1880.00                                  | 661 | GSM 1900  | 23.05                 | 0.01             | Left                 | Tilt          | 004401200910087      | 0.010    |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |     |           |                       |                  | Head                 |               |                      |          |
| Spatial Peak                             |     |           |                       |                  | 1.6 W/kg (mW/g)      |               |                      |          |
| Uncontrolled Exposure/General Population |     |           |                       |                  | averaged over 1 gram |               |                      |          |

|                                   |                                                                                                                                   |                              |  |  |  |  |                                                                                       |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | SAR EVALUATION REPORT        |  |  |  |  |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |  |  |  |  | Page 21 of 32                                                                         |                                 |

**Table 11-4**  
**2.4 GHz WLAN Head SAR Results**

| MEASUREMENT RESULTS                      |     |              |         |                       |                  |                      |               |                      |                  |          |        |
|------------------------------------------|-----|--------------|---------|-----------------------|------------------|----------------------|---------------|----------------------|------------------|----------|--------|
| FREQUENCY                                |     | Mode         | Service | Conducted Power [dBm] | Power Drift [dB] | Side                 | Test Position | Device Serial Number | Data Rate (Mbps) | SAR (1g) |        |
| MHz                                      | Ch. |              |         |                       |                  |                      |               |                      |                  | (W/kg)   | (W/kg) |
| 2437                                     | 6   | IEEE 802.11b | DSSS    | 13.22                 | 0.01             | Right                | Touch         | 351606050002004      | 1                | 0.221    |        |
| 2437                                     | 6   | IEEE 802.11b | DSSS    | 13.22                 | 0.04             | Right                | Tilt          | 351606050002004      | 1                | 0.132    |        |
| 2437                                     | 6   | IEEE 802.11b | DSSS    | 13.22                 | 0.13             | Left                 | Touch         | 351606050002004      | 1                | 0.570    |        |
| 2437                                     | 6   | IEEE 802.11b | DSSS    | 13.22                 | 0.06             | Left                 | Tilt          | 351606050002004      | 1                | 0.343    |        |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |     |              |         |                       |                  | Head                 |               |                      |                  |          |        |
| Spatial Peak                             |     |              |         |                       |                  | 1.6 W/kg (mW/g)      |               |                      |                  |          |        |
| Uncontrolled Exposure/General Population |     |              |         |                       |                  | averaged over 1 gram |               |                      |                  |          |        |

## 11.2 Standalone Body SAR Data

**Table 11-5**  
**Licensed Transmitter Body SAR Data**

| MEASUREMENT RESULTS                      |      |           |         |                       |                  |                      |                      |                 |        |          |        |
|------------------------------------------|------|-----------|---------|-----------------------|------------------|----------------------|----------------------|-----------------|--------|----------|--------|
| FREQUENCY                                |      | Mode      | Service | Conducted Power [dBm] | Power Drift [dB] | Spacing              | Device Serial Number | # of GPRS Slots | Side   | SAR (1g) |        |
| MHz                                      | Ch.  |           |         |                       |                  |                      |                      |                 |        | (W/kg)   | (W/kg) |
| 824.20                                   | 128  | GSM 850   | GSM     | 28.87                 | 0.00             | 0 cm                 | 004401200910087      | 1               | back   | 0.991    |        |
| 836.60                                   | 190  | GSM 850   | GSM     | 28.81                 | 0.01             | 0 cm                 | 004401200910087      | 1               | back   | 1.080    |        |
| 848.80                                   | 251  | GSM 850   | GSM     | 29.07                 | 0.09             | 0 cm                 | 004401200910087      | 1               | back   | 1.070    |        |
| 836.60                                   | 190  | GSM 850   | GSM     | 28.81                 | -0.18            | 0 cm                 | 004401200910087      | 1               | bottom | 0.534    |        |
| 836.60                                   | 190  | GSM 850   | GSM     | 28.81                 | -0.17            | 0 cm                 | 004401200910087      | 1               | right  | 0.257    |        |
| 824.20                                   | 128  | GSM 850   | GPRS    | 29.03                 | 0.07             | 0 cm                 | 004401200910087      | 1               | back   | 0.863    |        |
| 836.60                                   | 190  | GSM 850   | GPRS    | 29.01                 | -0.05            | 0 cm                 | 004401200910087      | 1               | back   | 0.944    |        |
| 848.80                                   | 251  | GSM 850   | GPRS    | 29.19                 | -0.09            | 0 cm                 | 004401200910087      | 1               | back   | 0.966    |        |
| 836.60                                   | 190  | GSM 850   | GPRS    | 29.01                 | -0.02            | 0 cm                 | 004401200910087      | 1               | bottom | 0.480    |        |
| 836.60                                   | 190  | GSM 850   | GPRS    | 29.01                 | 0.08             | 0 cm                 | 004401200910087      | 1               | right  | 0.268    |        |
| 836.60                                   | 4183 | WCDMA 850 | RMC     | 19.03                 | -0.02            | 0 cm                 | 004401200910087      | N/A             | back   | 0.665    |        |
| 836.60                                   | 4183 | WCDMA 850 | RMC     | 19.03                 | 0.10             | 0 cm                 | 004401200910087      | N/A             | bottom | 0.334    |        |
| 836.60                                   | 4183 | WCDMA 850 | RMC     | 19.03                 | 0.14             | 0 cm                 | 004401200910087      | N/A             | right  | 0.267    |        |
| 1880.00                                  | 661  | GSM 1900  | GSM     | 23.05                 | 0.01             | 0 cm                 | 004401200910087      | 1               | back   | 0.625    |        |
| 1880.00                                  | 661  | GSM 1900  | GSM     | 23.05                 | -0.19            | 0 cm                 | 004401200910087      | 1               | bottom | 0.321    |        |
| 1880.00                                  | 661  | GSM 1900  | GSM     | 23.05                 | 0.04             | 0 cm                 | 004401200910087      | 1               | right  | 0.253    |        |
| 1880.00                                  | 661  | GSM 1900  | GPRS    | 23.10                 | -0.05            | 0 cm                 | 004401200910087      | 1               | back   | 0.550    |        |
| 1880.00                                  | 661  | GSM 1900  | GPRS    | 23.10                 | 0.06             | 0 cm                 | 004401200910087      | 1               | bottom | 0.301    |        |
| 1880.00                                  | 661  | GSM 1900  | GPRS    | 23.10                 | 0.08             | 0 cm                 | 004401200910087      | 1               | right  | 0.247    |        |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |      |           |         |                       |                  | Body                 |                      |                 |        |          |        |
| Spatial Peak                             |      |           |         |                       |                  | 1.6 W/kg (mW/g)      |                      |                 |        |          |        |
| Uncontrolled Exposure/General Population |      |           |         |                       |                  | averaged over 1 gram |                      |                 |        |          |        |

|                                   |                                                                                            |                              |                                                                                           |                                 |
|-----------------------------------|--------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST | SAR EVALUATION REPORT        |  NEC | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                         | DUT Type:<br>Portable Device |                                                                                           | Page 22 of 32                   |

**Table 11-6**  
**WLAN Body SAR Data**

| MEASUREMENT RESULTS                      |     |              |         |                       |                  |                                                 |                      |                  |       |          |
|------------------------------------------|-----|--------------|---------|-----------------------|------------------|-------------------------------------------------|----------------------|------------------|-------|----------|
| FREQUENCY                                |     | Mode         | Service | Conducted Power [dBm] | Power Drift [dB] | Spacing                                         | Device Serial Number | Data Rate (Mbps) | Side  | SAR (1g) |
| MHz                                      | Ch. |              |         |                       |                  |                                                 |                      |                  |       | (W/kg)   |
| 2412                                     | 1   | IEEE 802.11b | DSSS    | 12.87                 | -0.12            | 0 cm                                            | 351606050002004      | 1                | back  | 1.050    |
| 2437                                     | 6   | IEEE 802.11b | DSSS    | 13.22                 | -0.12            | 0 cm                                            | 351606050002004      | 1                | back  | 1.000    |
| 2462                                     | 11  | IEEE 802.11b | DSSS    | 12.79                 | -0.14            | 0 cm                                            | 351606050002004      | 1                | back  | 1.110    |
| 2437                                     | 6   | IEEE 802.11b | DSSS    | 13.22                 | -0.04            | 0 cm                                            | 351606050002004      | 1                | top   | 0.208    |
| 2437                                     | 6   | IEEE 802.11b | DSSS    | 13.22                 | 0.02             | 0 cm                                            | 351606050002004      | 1                | right | 0.113    |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |     |              |         |                       |                  | Body<br>1.6 W/kg (mW/g)<br>averaged over 1 gram |                      |                  |       |          |
| Spatial Peak                             |     |              |         |                       |                  |                                                 |                      |                  |       |          |
| Uncontrolled Exposure/General Population |     |              |         |                       |                  |                                                 |                      |                  |       |          |

### 11.3 SAR Test Notes

#### General Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.
2. Batteries are fully charged for all readings.
3. Tissue parameters and temperatures are listed on the SAR plots.
4. Liquid tissue depth was at least 15.0 cm. To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period.
5. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
6. Per FCC/OET Bulletin 65 Supplement C and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
7. Head SAR testing was required for this device because it has a speaker/receiver and a microphone positioned in a way that allows for a held-to-ear configuration usage.
8. Per KDB Publication 447498 4) b) i) the back side is required to be tested touching the flat phantom for regular large sized tablet devices.
9. This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB Publication 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user. According to KDB Publication 447498 4) b) ii) (2), for each antenna, SAR is required for the edge with the most conservative exposure condition.

#### WCDMA Notes:

1. WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

|                                   |                                                                                            |                              |                                                                                       |                                 |
|-----------------------------------|--------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST | SAR EVALUATION REPORT        |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                         | DUT Type:<br>Portable Device |                                                                                       | Page 23 of 32                   |

WLAN Notes:

1. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
2. WLAN transmission was verified using an uncalibrated spectrum analyzer.
3. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.

|                                   |                                                                                                                                   |                              |  |            |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | <b>SAR EVALUATION REPORT</b> |  | <b>NEC</b> | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |  |            | Page 24 of 32                   |

## 12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

### 12.1 Simultaneous Transmission Capabilities

This device contains multiple transmitters that may operate simultaneously and, therefore, requires a simultaneous transmission analysis according to KDB Publication 447498 4) b) iii) procedures.

See Section 1.3 for simultaneous transmission scenarios supported by the DUT.

Per KDB Publication 447498, standalone Bluetooth SAR tests were not required. Standalone SAR tests for WLAN were required. See Section 1.3(A) for more information.

### 12.2 Head SAR Simultaneous Transmission Analysis

**Table 12-1**  
**Simultaneous Transmission Scenario (Held to Ear)**

| Simult Tx | Configuration | GSM 850 SAR (W/kg)   | 2.4 GHz WLAN SAR (W/kg) | $\Sigma$ SAR (W/kg) | SPLS Ratio | Volume Scan |
|-----------|---------------|----------------------|-------------------------|---------------------|------------|-------------|
| Head SAR  | Right Cheek   | 0.033                | 0.221                   | 0.254               | N/A        | N/A         |
|           | Right Tilt    | 0.046                | 0.132                   | 0.178               | N/A        | N/A         |
|           | Left Cheek    | 0.039                | 0.570                   | 0.609               | N/A        | N/A         |
|           | Left Tilt     | 0.059                | 0.343                   | 0.402               | N/A        | N/A         |
| Simult Tx | Configuration | WCDMA 850 SAR (W/kg) | 2.4 GHz WLAN SAR (W/kg) | $\Sigma$ SAR (W/kg) | SPLS Ratio | Volume Scan |
| Head SAR  | Right Cheek   | 0.025                | 0.221                   | 0.246               | N/A        | N/A         |
|           | Right Tilt    | 0.036                | 0.132                   | 0.168               | N/A        | N/A         |
|           | Left Cheek    | 0.029                | 0.570                   | 0.599               | N/A        | N/A         |
|           | Left Tilt     | 0.045                | 0.343                   | 0.388               | N/A        | N/A         |
| Simult Tx | Configuration | GSM 1900 SAR (W/kg)  | 2.4 GHz WLAN SAR (W/kg) | $\Sigma$ SAR (W/kg) | SPLS Ratio | Volume Scan |
| Head SAR  | Right Cheek   | 0.014                | 0.221                   | 0.235               | N/A        | N/A         |
|           | Right Tilt    | 0.007                | 0.132                   | 0.139               | N/A        | N/A         |
|           | Left Cheek    | 0.013                | 0.570                   | 0.583               | N/A        | N/A         |
|           | Left Tilt     | 0.010                | 0.343                   | 0.353               | N/A        | N/A         |

The above tables represent a held to ear voice call potentially simultaneously operating with 2.4 GHz WLAN.

|                                   |                                                                                                                                     |                              |  |                                                                                       |                                 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST <sup>®</sup><br>AN INNOVATION LABORATORY | SAR EVALUATION REPORT        |  |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                  | DUT Type:<br>Portable Device |  | Page 25 of 32                                                                         |                                 |

## 12.3 Body SAR Simultaneous Transmission Analysis

**Table 12-2**  
**Simultaneous Transmission Scenario (Body SAR at 0.0 cm)**

| Simult Tx | Configuration | GSM 850 (W/kg)   | 2.4 GHz WLAN SAR (W/kg) | $\Sigma$ SAR (W/kg) | SPLS Ratio | Volume Scan |
|-----------|---------------|------------------|-------------------------|---------------------|------------|-------------|
| Body SAR  | Back          | 1.080            | 1.110                   | See note 2          | 0.12       | N/A         |
|           | Top           | -                | 0.208                   | 0.208               | N/A        | N/A         |
|           | Bottom        | 0.534            | -                       | 0.534               | N/A        | N/A         |
|           | Right         | 0.257            | 0.113                   | 0.370               | N/A        | N/A         |
|           | Left          | -                | -                       | 0.000               | N/A        | N/A         |
| Simult Tx | Configuration | GPRS 850 (W/kg)  | 2.4 GHz WLAN SAR (W/kg) | $\Sigma$ SAR (W/kg) | SPLS Ratio | Volume Scan |
| Body SAR  | Back          | 0.966            | 1.110                   | See note 2          | 0.12       | N/A         |
|           | Top           | -                | 0.208                   | 0.208               | N/A        | N/A         |
|           | Bottom        | 0.480            | -                       | 0.480               | N/A        | N/A         |
|           | Right         | 0.268            | 0.113                   | 0.381               | N/A        | N/A         |
|           | Left          | -                | -                       | 0.000               | N/A        | N/A         |
| Simult Tx | Configuration | GSM 1900 (W/kg)  | 2.4 GHz WLAN SAR (W/kg) | $\Sigma$ SAR (W/kg) | SPLS Ratio | Volume Scan |
| Body SAR  | Back          | 0.625            | 1.110                   | See note 2          | 0.09       | N/A         |
|           | Top           | -                | 0.208                   | 0.208               | N/A        | N/A         |
|           | Bottom        | 0.321            | -                       | 0.321               | N/A        | N/A         |
|           | Right         | 0.253            | 0.113                   | 0.366               | N/A        | N/A         |
|           | Left          | -                | -                       | 0.000               | N/A        | N/A         |
| Simult Tx | Configuration | GPRS 1900 (W/kg) | 2.4 GHz WLAN SAR (W/kg) | $\Sigma$ SAR (W/kg) | SPLS Ratio | Volume Scan |
| Body SAR  | Back          | 0.550            | 1.110                   | See note 2          | 0.10       | N/A         |
|           | Top           | -                | 0.208                   | 0.208               | N/A        | N/A         |
|           | Bottom        | 0.301            | -                       | 0.301               | N/A        | N/A         |
|           | Right         | 0.247            | 0.113                   | 0.360               | N/A        | N/A         |
|           | Left          | -                | -                       | 0.000               | N/A        | N/A         |
| Simult Tx | Configuration | WCDMA 850 (W/kg) | 2.4 GHz WLAN SAR (W/kg) | $\Sigma$ SAR (W/kg) | SPLS Ratio | Volume Scan |
| Body SAR  | Back          | 0.665            | 1.110                   | See note 2          | 0.10       | N/A         |
|           | Top           | -                | 0.208                   | 0.208               | N/A        | N/A         |
|           | Bottom        | 0.334            | -                       | 0.334               | N/A        | N/A         |
|           | Right         | 0.267            | 0.113                   | 0.380               | N/A        | N/A         |
|           | Left          | -                | -                       | 0.000               | N/A        | N/A         |

**Note:**

1. Per FCC KDB Publication 447498, the edges with antennas more than 5 cm are not required to be evaluated for SAR ("").
2. No evaluation was performed to determine the aggregate 1-g SAR in this configuration as the SPLS ratio of all antenna pairs was below 0.3 per FCC KDB Publication 648474 D01. See Section 12.4 for SPLS ratio analysis.

|                                   |                                                                                                                               |                              |  |  |                                                                                       |                                 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>AN INNOVATION LABORATORY | SAR EVALUATION REPORT        |  |  |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                            | DUT Type:<br>Portable Device |  |  | Page 26 of 32                                                                         |                                 |

## 12.4 SAR Sum to Peak Location Separation (SPLS) Ratio Analysis

Per FCC KDB Publication 648474 D01, when the sum of the standalone transmitters is more than 1.6 W/kg, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. Based on the 1-g SAR limit and a separation distance of 5 cm., when the SAR peak to location ratio for each pair of antennas is <0.3, simultaneous SAR evaluation is not required.

The sum of the standalone SAR values was above 1.6 W/kg for back side configurations 2.4 GHz WLAN + GSM/GPRS 850/1900 and back side configuration for 2.4GHz WLAN + WCDMA 850.

| Mode/Band   | x (cm) | y (cm) | z (cm) |
|-------------|--------|--------|--------|
| GSM 850     | -3.90  | -9.50  | -20.50 |
| GSM 1900    | -6.35  | -9.85  | -20.40 |
| GPRS 850    | -4.75  | -9.15  | -20.40 |
| GPRS 1900   | -6.20  | -8.25  | -20.50 |
| WCDMA 850   | -4.70  | -8.85  | -20.40 |
| 2.4GHz WLAN | -4.98  | 8.42   | -20.50 |

$$distance = \sqrt{(x_a - x_b)^2 + (y_a - y_b)^2 + (z_a - z_b)^2}$$

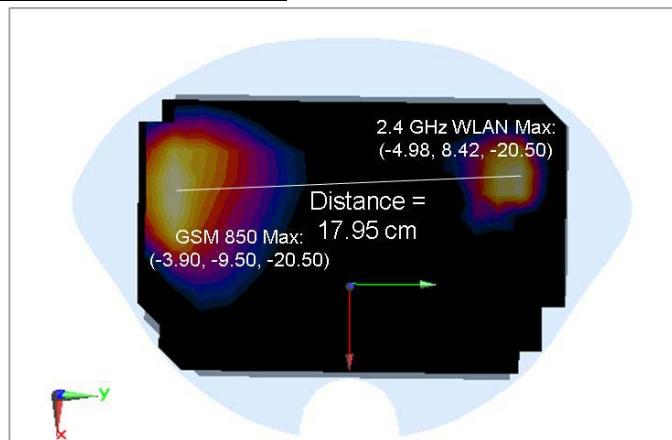



Figure 12-1  
Sample SAR Sum to Peak Location

Table 12-3  
SAR Sum to Peak Location Separation Ratio Calculation Back Side

| Antenna Pair |             | Standalone 1g SAR (W/kg) |      | Standalone SAR Sum (W/kg) | Peak SAR Separation Distance (cm) | SPLS Ratio     |
|--------------|-------------|--------------------------|------|---------------------------|-----------------------------------|----------------|
| Ant "a"      | Ant "b"     | a                        | b    | a+b                       | Da-b                              | (a+b) / (Da-b) |
| GSM 850      | 2.4GHz WLAN | 1.080                    | 1.11 | 2.19                      | 17.95                             | 0.12           |
| GPRS 850     | 2.4GHz WLAN | 0.966                    | 1.11 | 2.076                     | 17.57                             | 0.12           |
| GSM 1900     | 2.4GHz WLAN | 0.625                    | 1.11 | 1.735                     | 18.32                             | 0.09           |
| GPRS 1900    | 2.4GHz WLAN | 0.550                    | 1.11 | 1.66                      | 16.71                             | 0.10           |
| WCDMA 850    | 2.4GHz WLAN | 0.665                    | 1.11 | 1.775                     | 17.27                             | 0.10           |

Since the SPLS Ratio for each antenna pair was less than 0.3, no volumetric simultaneous transmission scenario is required per FCC KDB 648474 Publication D01.

## 12.5 Simultaneous Transmission Conclusion

Per FCC KDB Publication 648474 D01, no aggregate volumetric simultaneous transmission is required for the device, since the sum of the standalone SAR values was not > 1.6 W/kg or the SAR Sum to peak separation ratios are < 0.3 for each antenna pair.

|                                   |                                                                                            |                              |  |                                                                                           |                                 |
|-----------------------------------|--------------------------------------------------------------------------------------------|------------------------------|--|-------------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  PCTEST | SAR EVALUATION REPORT        |  |  NEC | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                         | DUT Type:<br>Portable Device |  | Page 27 of 32                                                                             |                                 |

## 13 EQUIPMENT LIST

| Manufacturer       | Model           | Description                                   | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|-----------------|-----------------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 8594A           | (9kHz-2.9GHz) Spectrum Analyzer               | N/A        | N/A          | N/A        | 3051A00187    |
| Agilent            | 8648D           | (9kHz-4GHz) Signal Generator                  | 10/10/2011 | Annual       | 10/10/2012 | 3613A00315    |
| Agilent            | 8753E           | (30kHz-6GHz) Network Analyzer                 | 4/4/2012   | Annual       | 4/4/2013   | JP38020182    |
| Agilent            | E5515C          | Wireless Communications Test Set              | 10/10/2011 | Annual       | 10/10/2012 | GB46110872    |
| Agilent            | E5515C          | Wireless Communications Test Set              | 10/20/2011 | Annual       | 10/20/2012 | GB46310798    |
| Agilent            | E5515C          | Wireless Communications Test Set              | 10/14/2011 | Annual       | 10/14/2012 | GB41450275    |
| Agilent            | E5515C          | Wireless Communications Test Set              | 2/14/2012  | Annual       | 2/14/2013  | GB43304447    |
| Agilent            | E5515C          | Wireless Communications Test Set              | 2/12/2012  | Annual       | 2/12/2013  | GB45360985    |
| Agilent            | E5515C          | Wireless Communications Test Set              | 2/14/2012  | Annual       | 2/14/2013  | GB43163447    |
| Agilent            | 85070E          | Dielectric Probe Kit                          | 3/8/2012   | Annual       | 3/8/2013   | MY44300633    |
| Agilent            | E5515C          | Wireless Communications Test Set              | 2/9/2012   | Annual       | 2/9/2013   | GB43460554    |
| Agilent            | 85047A          | S-Parameter Test Set                          | N/A        | N/A          | N/A        | 2904A00579    |
| Amplifier Research | 5S1G4           | 5W, 800MHz-4.2GHz                             | CBT        | N/A          | N/A        | 21910         |
| Anritsu            | MA2481A         | Power Sensor                                  | 2/14/2012  | Annual       | 2/14/2013  | 5318          |
| Anritsu            | MA2481A         | Power Sensor                                  | 2/14/2012  | Annual       | 2/14/2013  | 5442          |
| Anritsu            | ML2438A         | Power Meter                                   | 2/14/2012  | Annual       | 2/14/2013  | 1190013       |
| Anritsu            | ML2438A         | Power Meter                                   | 2/14/2012  | Annual       | 2/14/2013  | 98150041      |
| Anritsu            | ML2438A         | Power Meter                                   | 10/13/2011 | Annual       | 10/13/2012 | 1070030       |
| Anritsu            | MA2481A         | Power Sensor                                  | 2/14/2012  | Annual       | 2/14/2013  | 5821          |
| Anritsu            | MA2481A         | Power Sensor                                  | 2/14/2012  | Annual       | 2/14/2013  | 8013          |
| Anritsu            | MA2481A         | Power Sensor                                  | 2/14/2012  | Annual       | 2/14/2013  | 2400          |
| Anritsu            | MA2411B         | Pulse Sensor                                  | 10/13/2011 | Annual       | 10/13/2012 | 1027293       |
| Anritsu            | ML2495A         | Power Meter                                   | 10/13/2011 | Annual       | 10/13/2012 | 1039008       |
| COMTECH            | AR85729-5/5759B | Solid State Amplifier                         | CBT        | N/A          | N/A        | M3W1A00-1002  |
| Control Company    | 61220-416       | Long-Stem Thermometer                         | 2/15/2011  | Biennial     | 2/15/2013  | 111331322     |
| Control Company    | 61220-416       | Long-Stem Thermometer                         | 2/15/2011  | Biennial     | 2/15/2013  | 111331323     |
| Control Company    | 61220-416       | Long-Stem Thermometer                         | 7/1/2011   | Biennial     | 7/1/2013   | 111642916     |
| Control Company    | 36934-158       | Wall-Mounted Thermometer                      | 1/4/2012   | Biennial     | 1/4/2014   | 122014497     |
| Control Company    | 36934-158       | Wall-Mounted Thermometer                      | 1/4/2012   | Biennial     | 1/4/2014   | 122014488     |
| Control Company    | 61220-416       | Long-Stem Thermometer                         | 10/12/2011 | Biennial     | 10/12/2013 | 111860844     |
| Gigatronics        | 8651A           | Universal Power Meter                         | 10/12/2011 | Annual       | 10/12/2012 | 8650319       |
| Intelligent Weigh  | PD-3000         | Electronic Balance                            | 3/27/2012  | Annual       | 3/27/2013  | 11081534      |
| MCL                | BW-N6W5+        | 6dB Attenuator                                | CBT        | N/A          | N/A        | 1139          |
| MiniCircuits       | SLP-2400+       | Low Pass Filter                               | CBT        | N/A          | N/A        | R897950093    |
| MiniCircuits       | VLF-6000+       | Low Pass Filter                               | CBT        | N/A          | N/A        | N/A           |
| MiniCircuits       | VLF-6000+       | Low Pass Filter                               | CBT        | N/A          | N/A        | N/A           |
| Mini-Circuits      | BW-N20W5+       | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT        | N/A          | N/A        | N/A           |
| Mini-Circuits      | NLP-2950+       | Low Pass Filter DC to 2700 MHz                | CBT        | N/A          | N/A        | N/A           |
| Mini-Circuits      | NLP-1200+       | Low Pass Filter DC to 1000 MHz                | CBT        | N/A          | N/A        | N/A           |
| Narda              | 4772-3          | Attenuator (3dB)                              | CBT        | N/A          | N/A        | 9406          |
| Narda              | BW-S3W2         | Attenuator (3dB)                              | CBT        | N/A          | N/A        | 120           |
| Narda              | 4014C-6         | 4 - 8 GHz SMA 6 dB Directional Coupler        | CBT        | N/A          | N/A        | N/A           |
| Pasternack         | PE2208-6        | Bidirectional Coupler                         | 6/3/2011   | Annual       | 6/3/2012   | N/A           |
| Pasternack         | PE2209-10       | Bidirectional Coupler                         | 6/3/2011   | Annual       | 6/3/2012   | N/A           |
| Rohde & Schwarz    | CMU200          | Base Station Simulator                        | 6/1/2011   | Annual       | 6/1/2012   | 833855/0010   |
| Rohde & Schwarz    | NRVD            | Dual Channel Power Meter                      | 4/8/2011   | Biennial     | 4/8/2013   | 101695        |
| Seekonk            | NC-100          | Torque Wrench (8" lb)                         | 11/29/2011 | Triennial    | 11/29/2014 | 21053         |
| Seekonk            | NC-100          | Torque Wrench (8" lb)                         | 3/5/2012   | Triennial    | 3/5/2015   | N/A           |
| SPEAG              | D1900V2         | 1900 MHz SAR Dipole                           | 2/22/2012  | Annual       | 2/22/2013  | 502           |
| SPEAG              | D2450V2         | 2450 MHz SAR Dipole                           | 8/19/2011  | Annual       | 8/19/2012  | 719           |
| SPEAG              | D835V2          | 835 MHz SAR Dipole                            | 1/25/2012  | Annual       | 1/25/2013  | 4d047         |
| SPEAG              | D835V2          | 835 MHz SAR Dipole                            | 8/15/2011  | Annual       | 8/15/2012  | 4d026         |
| SPEAG              | DAE4            | Dasy Data Acquisition Electronics             | 2/20/2012  | Annual       | 2/20/2013  | 649           |
| SPEAG              | ES3DV2          | SAR Probe                                     | 8/25/2011  | Annual       | 8/25/2012  | 3022          |
| SPEAG              | DAE4            | Dasy Data Acquisition Electronics             | 5/19/2011  | Annual       | 5/19/2012  | 859           |
| SPEAG              | ES3DV3          | SAR Probe                                     | 3/16/2012  | Annual       | 3/16/2013  | 3209          |
| SPEAG              | ES3DV3          | SAR Probe                                     | 2/21/2012  | Annual       | 2/21/2013  | 3258          |
| SPEAG              | ES3DV3          | SAR Probe                                     | 11/18/2011 | Annual       | 11/18/2012 | 3263          |
| SPEAG              | DAE4            | Dasy Data Acquisition Electronics             | 1/18/2012  | Annual       | 1/18/2013  | 1272          |
| SPEAG              | DAE4            | Dasy Data Acquisition Electronics             | 2/15/2012  | Annual       | 2/15/2013  | 1323          |
| VWR                | 36934-158       | Wall-Mounted Thermometer                      | 1/21/2011  | Biennial     | 1/21/2013  | 111286445     |
| VWR                | 36934-158       | Wall-Mounted Thermometer                      | 1/21/2011  | Biennial     | 1/21/2013  | 111286460     |
| VWR                | 36934-158       | Wall-Mounted Thermometer                      | 1/21/2011  | Biennial     | 1/21/2013  | 111286454     |

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, attenuator, coupler, amplifier or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

| FCC ID: A98-FBC3105               | PCTEST®<br>AN INDEPENDENT LABORATORY INC. |                              | SAR EVALUATION REPORT | NEC | Reviewed by:<br>Quality Manager |
|-----------------------------------|-------------------------------------------|------------------------------|-----------------------|-----|---------------------------------|
| Document S/N:<br>0Y1204040419,A98 | Test Dates:<br>04/04/12 - 05/02/12        | DUT Type:<br>Portable Device | Page 28 of 32         |     |                                 |

## 14 MEASUREMENT UNCERTAINTIES

| a                                                                             | b                    | c             | d              | e =<br>f(d,k) | f                     | g                        | h =<br>c x f/e                 | i =<br>c x g/e                   | k              |
|-------------------------------------------------------------------------------|----------------------|---------------|----------------|---------------|-----------------------|--------------------------|--------------------------------|----------------------------------|----------------|
| Uncertainty<br>Component                                                      | IEEE<br>1528<br>Sec. | Tol.<br>(± %) | Prob.<br>Dist. | Div.          | c <sub>i</sub><br>1gm | c <sub>i</sub><br>10 gms | 1gm<br>u <sub>i</sub><br>(± %) | 10gms<br>u <sub>i</sub><br>(± %) | v <sub>i</sub> |
| <b>Measurement System</b>                                                     |                      |               |                |               |                       |                          |                                |                                  |                |
| Probe Calibration                                                             | E.2.1                | 6.0           | N              | 1             | 1.0                   | 1.0                      | 6.0                            | 6.0                              | ∞              |
| Axial Isotropy                                                                | E.2.2                | 0.25          | N              | 1             | 0.7                   | 0.7                      | 0.2                            | 0.2                              | ∞              |
| Hemispherical Isotropy                                                        | E.2.2                | 1.3           | N              | 1             | 1.0                   | 1.0                      | 1.3                            | 1.3                              | ∞              |
| Boundary Effect                                                               | E.2.3                | 0.4           | N              | 1             | 1.0                   | 1.0                      | 0.4                            | 0.4                              | ∞              |
| Linearity                                                                     | E.2.4                | 0.3           | N              | 1             | 1.0                   | 1.0                      | 0.3                            | 0.3                              | ∞              |
| System Detection Limits                                                       | E.2.5                | 5.1           | N              | 1             | 1.0                   | 1.0                      | 5.1                            | 5.1                              | ∞              |
| Readout Electronics                                                           | E.2.6                | 1.0           | N              | 1             | 1.0                   | 1.0                      | 1.0                            | 1.0                              | ∞              |
| Response Time                                                                 | E.2.7                | 0.8           | R              | 1.73          | 1.0                   | 1.0                      | 0.5                            | 0.5                              | ∞              |
| Integration Time                                                              | E.2.8                | 2.6           | R              | 1.73          | 1.0                   | 1.0                      | 1.5                            | 1.5                              | ∞              |
| RF Ambient Conditions                                                         | E.6.1                | 3.0           | R              | 1.73          | 1.0                   | 1.0                      | 1.7                            | 1.7                              | ∞              |
| Probe Positioner Mechanical Tolerance                                         | E.6.2                | 0.4           | R              | 1.73          | 1.0                   | 1.0                      | 0.2                            | 0.2                              | ∞              |
| Probe Positioning w/ respect to Phantom                                       | E.6.3                | 2.9           | R              | 1.73          | 1.0                   | 1.0                      | 1.7                            | 1.7                              | ∞              |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E.5                  | 1.0           | R              | 1.73          | 1.0                   | 1.0                      | 0.6                            | 0.6                              | ∞              |
| <b>Test Sample Related</b>                                                    |                      |               |                |               |                       |                          |                                |                                  |                |
| Test Sample Positioning                                                       | E.4.2                | 6.0           | N              | 1             | 1.0                   | 1.0                      | 6.0                            | 6.0                              | 287            |
| Device Holder Uncertainty                                                     | E.4.1                | 3.32          | R              | 1.73          | 1.0                   | 1.0                      | 1.9                            | 1.9                              | ∞              |
| Output Power Variation - SAR drift measurement                                | 6.6.2                | 5.0           | R              | 1.73          | 1.0                   | 1.0                      | 2.9                            | 2.9                              | ∞              |
| <b>Phantom &amp; Tissue Parameters</b>                                        |                      |               |                |               |                       |                          |                                |                                  |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | E.3.1                | 4.0           | R              | 1.73          | 1.0                   | 1.0                      | 2.3                            | 2.3                              | ∞              |
| Liquid Conductivity - deviation from target values                            | E.3.2                | 5.0           | R              | 1.73          | 0.64                  | 0.43                     | 1.8                            | 1.2                              | ∞              |
| Liquid Conductivity - measurement uncertainty                                 | E.3.3                | 3.8           | N              | 1             | 0.64                  | 0.43                     | 2.4                            | 1.6                              | 6              |
| Liquid Permittivity - deviation from target values                            | E.3.2                | 5.0           | R              | 1.73          | 0.60                  | 0.49                     | 1.7                            | 1.4                              | ∞              |
| Liquid Permittivity - measurement uncertainty                                 | E.3.3                | 4.5           | N              | 1             | 0.60                  | 0.49                     | 2.7                            | 2.2                              | 6              |
| <b>Combined Standard Uncertainty (k=1)</b>                                    |                      |               |                |               |                       |                          | 12.1                           | 11.7                             | 299            |
| <b>Expanded Uncertainty<br/>(95% CONFIDENCE LEVEL)</b>                        |                      |               |                |               |                       |                          | 24.2                           | 23.5                             |                |

The above measurement uncertainties are according to IEEE Std. 1528-2003

|                                   |                                                                                                                  |                                                                                       |                                 |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>SAR EVALUATION REPORT</b> |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                               | DUT Type:<br>Portable Device                                                          | Page 29 of 32                   |

## 15 CONCLUSION

### 15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

|                                   |                                                                                                                                   |                              |                                                  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | SAR EVALUATION REPORT        |                                                  |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device | Reviewed by:<br>Quality Manager<br>Page 30 of 32 |

## 16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

|                                   |                                                                                                                                   |                              |  |                                                                                       |                                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A98-FBC3105               |  <b>PCTEST</b><br>Engineering Laboratory, Inc. | <b>SAR EVALUATION REPORT</b> |  |  | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12                                                                                                | DUT Type:<br>Portable Device |  |                                                                                       | Page 31 of 32                   |

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB Publication 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publication 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz – 3 GHz, KDB Publication 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB Publication 616217
- [31] FCC SAR Measurement Requirements for 3 – 6 GHz, KDB Publication 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB Publication 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB Publication 447498
- [34] Anexo à Resolução No. 533, de 10 de Setembro de 2009.
- [35] FCC SAR Test Considerations for LTE Handsets and Data Modems, KDB Publication 941225.
- [36] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [37] FCC Hot Spot SAR v01, KDB Publication 941225 D06.

|                                   |                                    |                              |                       |     |                                 |
|-----------------------------------|------------------------------------|------------------------------|-----------------------|-----|---------------------------------|
| FCC ID: A98-FBC3105               | PCTEST®<br>Engineering Laboratory  |                              | SAR EVALUATION REPORT | NEC | Reviewed by:<br>Quality Manager |
| Document S/N:<br>0Y1204040419.A98 | Test Dates:<br>04/04/12 - 05/02/12 | DUT Type:<br>Portable Device |                       |     | Page 32 of 32                   |

## APPENDIX A: SAR TEST DATA

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Head Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

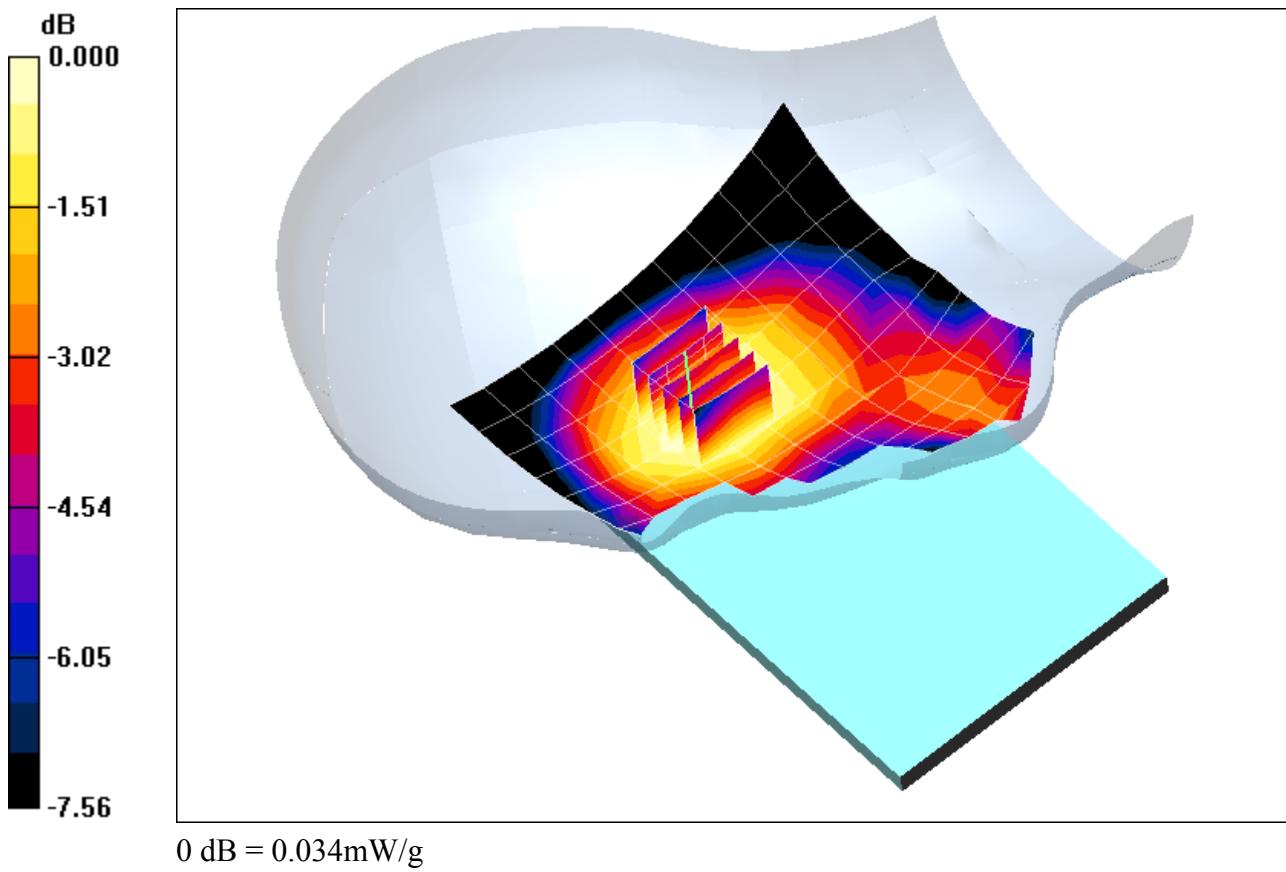
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 850, Right Head, Touch, Mid.ch**


**Area Scan (11x14x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.23 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 0.040 W/kg

**SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.027 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Head Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

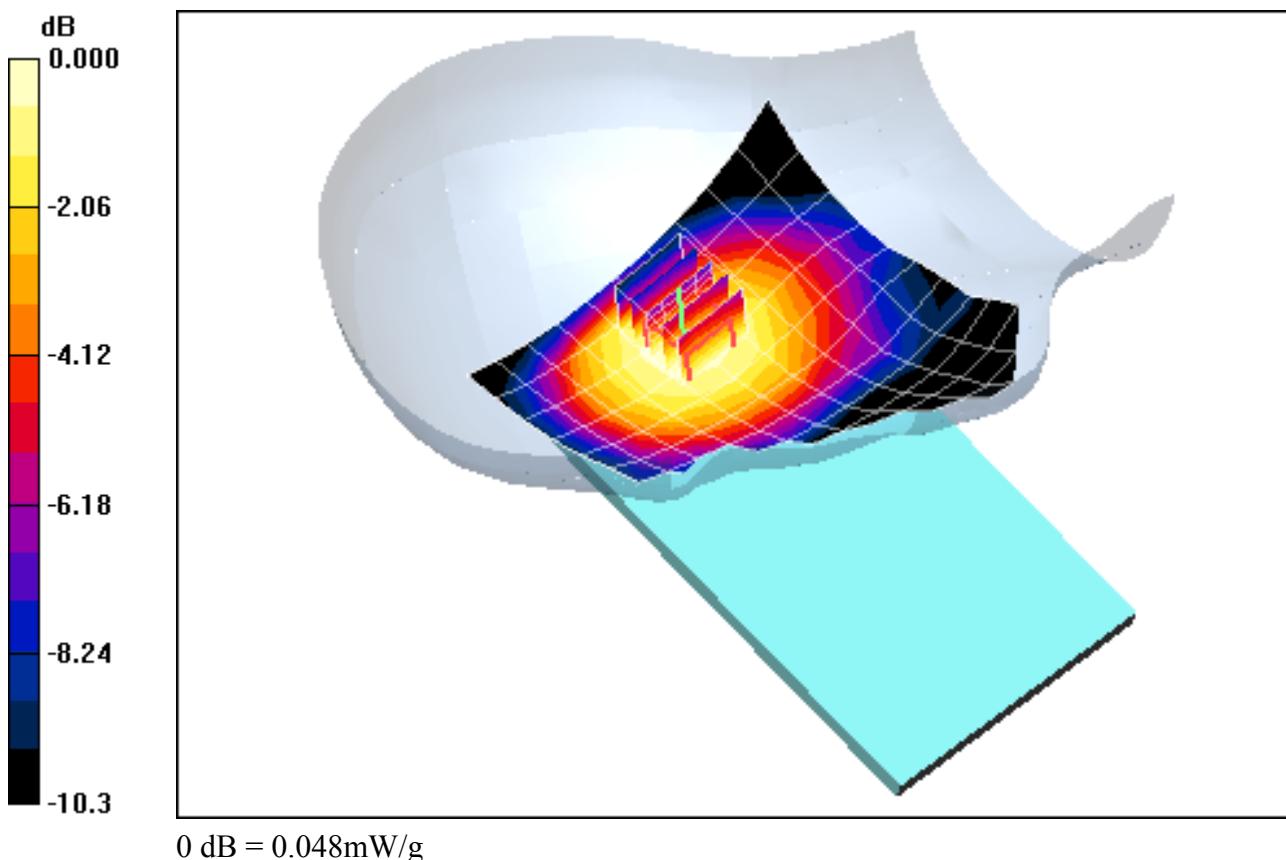
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 850, Right Head, Tilt, Mid.ch**


**Area Scan (11x14x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.36 V/m; Power Drift = 0.195 dB

Peak SAR (extrapolated) = 0.061 W/kg

**SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.035 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Head Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

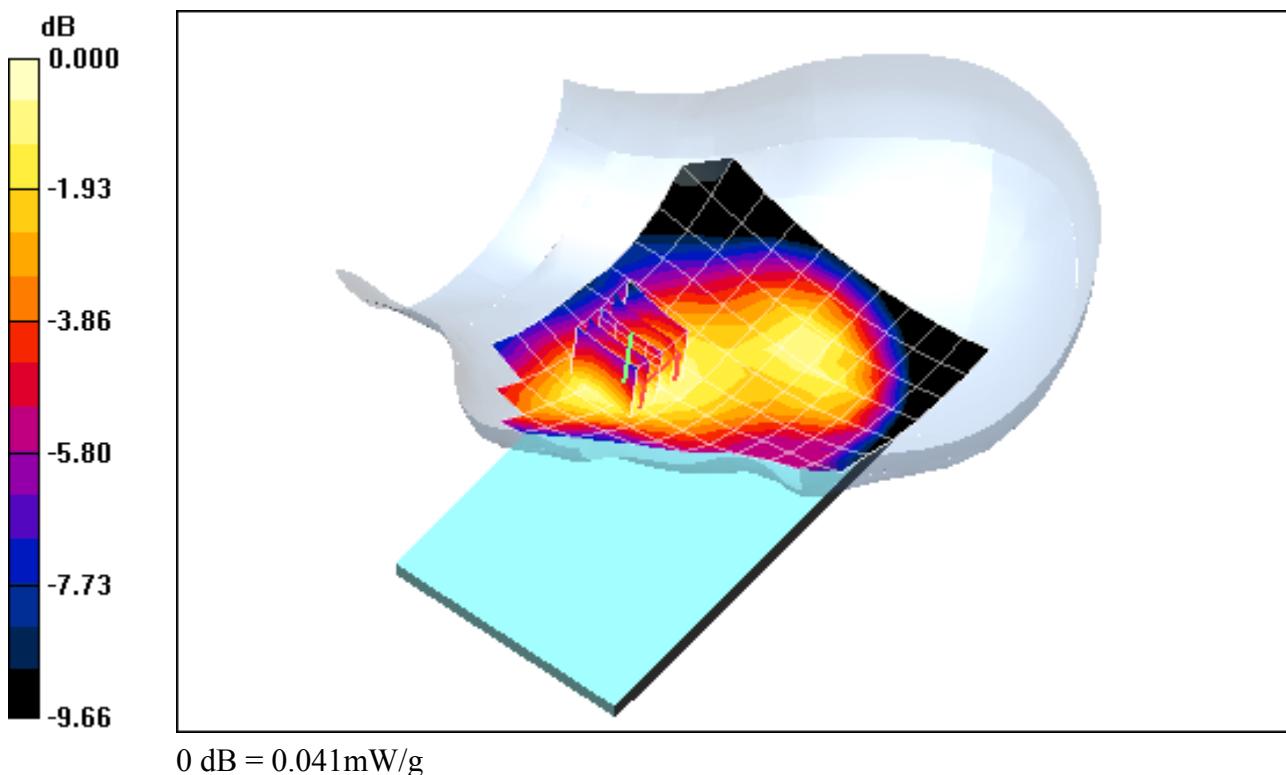
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 850, Left Head, Touch, Mid.ch**


**Area Scan (11x14x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.68 V/m; Power Drift = -0.074 dB

Peak SAR (extrapolated) = 0.048 W/kg

**SAR(1 g) = 0.039 mW/g; SAR(10 g) = 0.030 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Head Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

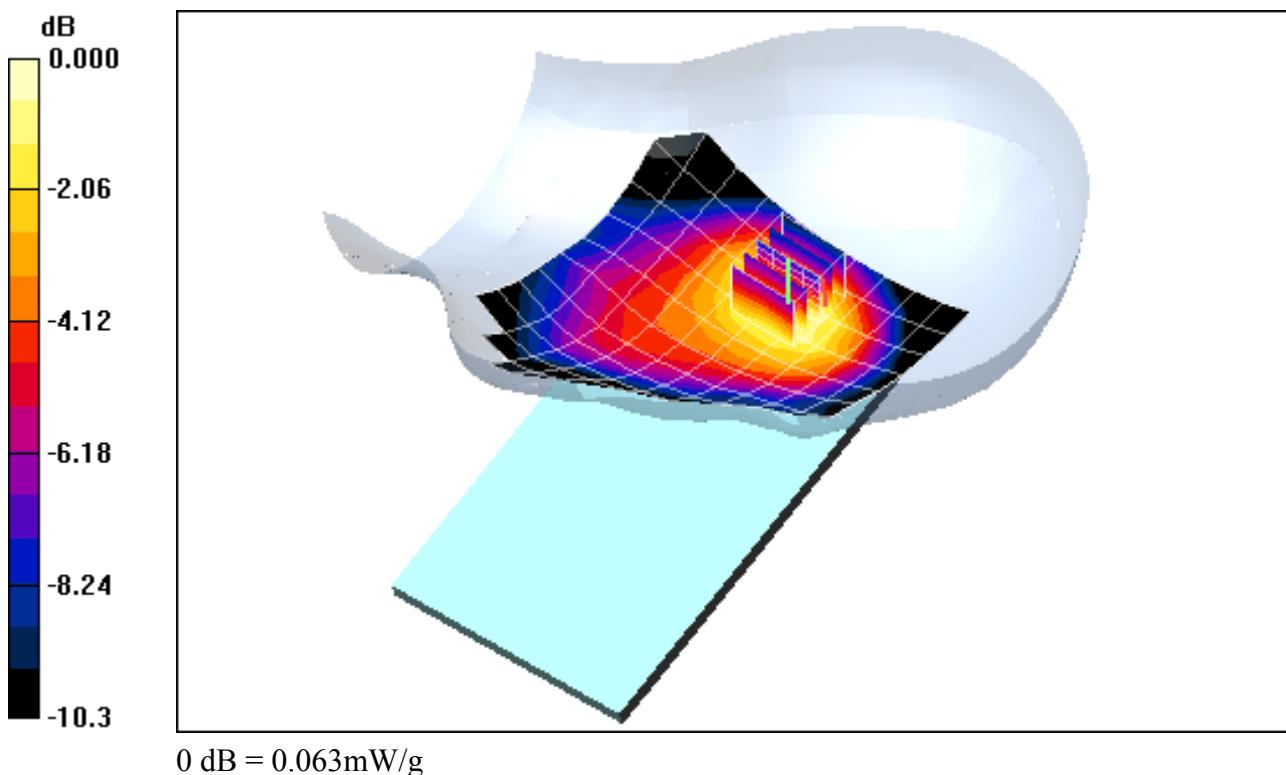
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 850, Left Head, Tilt, Mid.ch**


**Area Scan (11x14x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.25 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 0.081 W/kg

**SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.042 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Head Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

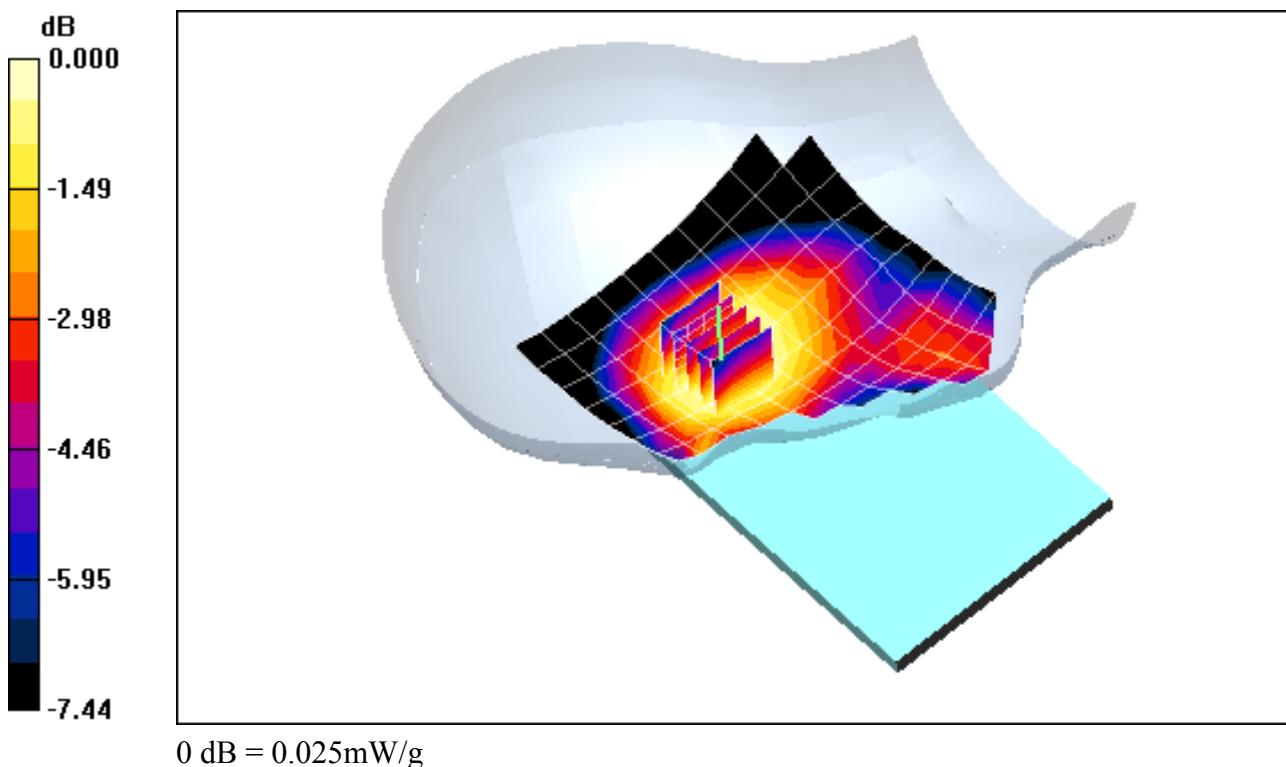
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 850, Right Head, Touch, Mid.ch**


**Area Scan (11x14x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.34 V/m; Power Drift = 0.147 dB

Peak SAR (extrapolated) = 0.029 W/kg

**SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.020 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Head Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

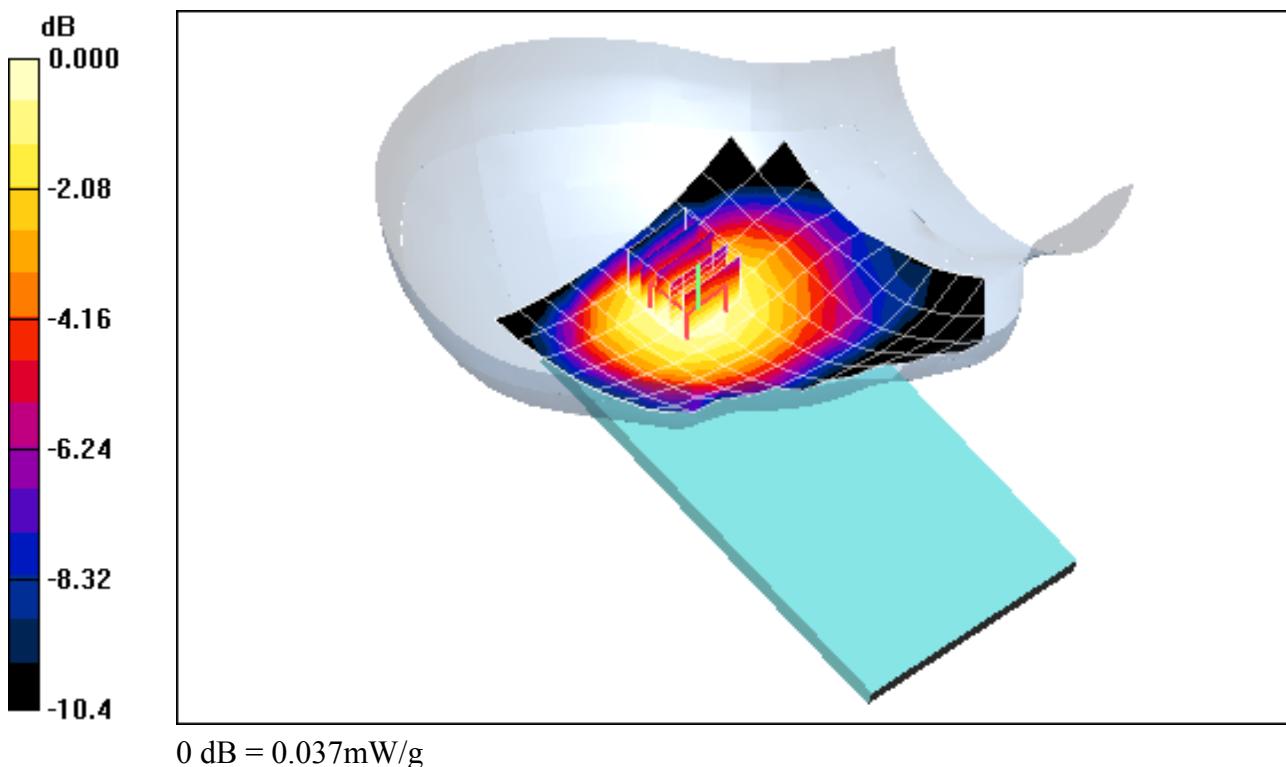
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 850, Right Head, Tilt, Mid.ch**


**Area Scan (11x14x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.49 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 0.046 W/kg

**SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.027 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Head Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 23.9°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

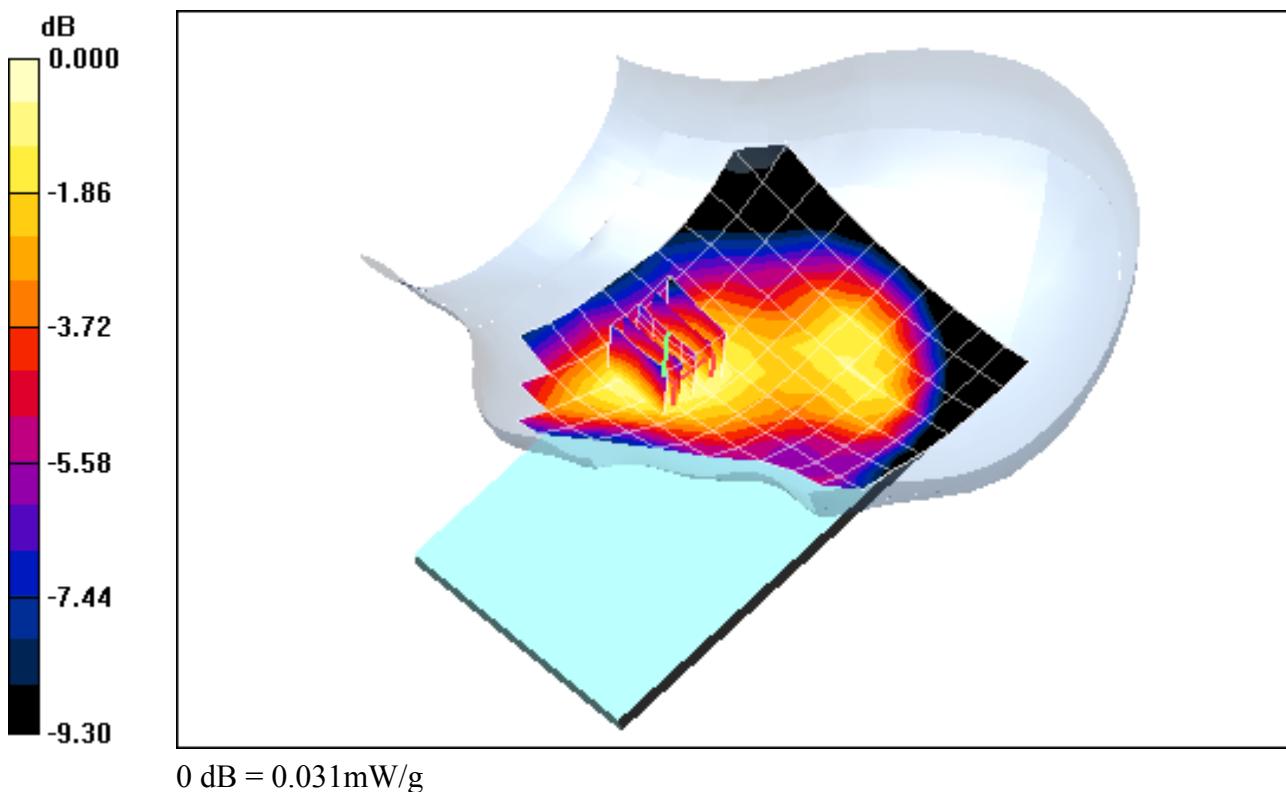
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 850, Left Head, Touch, Mid.ch**


**Area Scan (11x14x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.75 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 0.036 W/kg

**SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.023 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Head Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 42.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

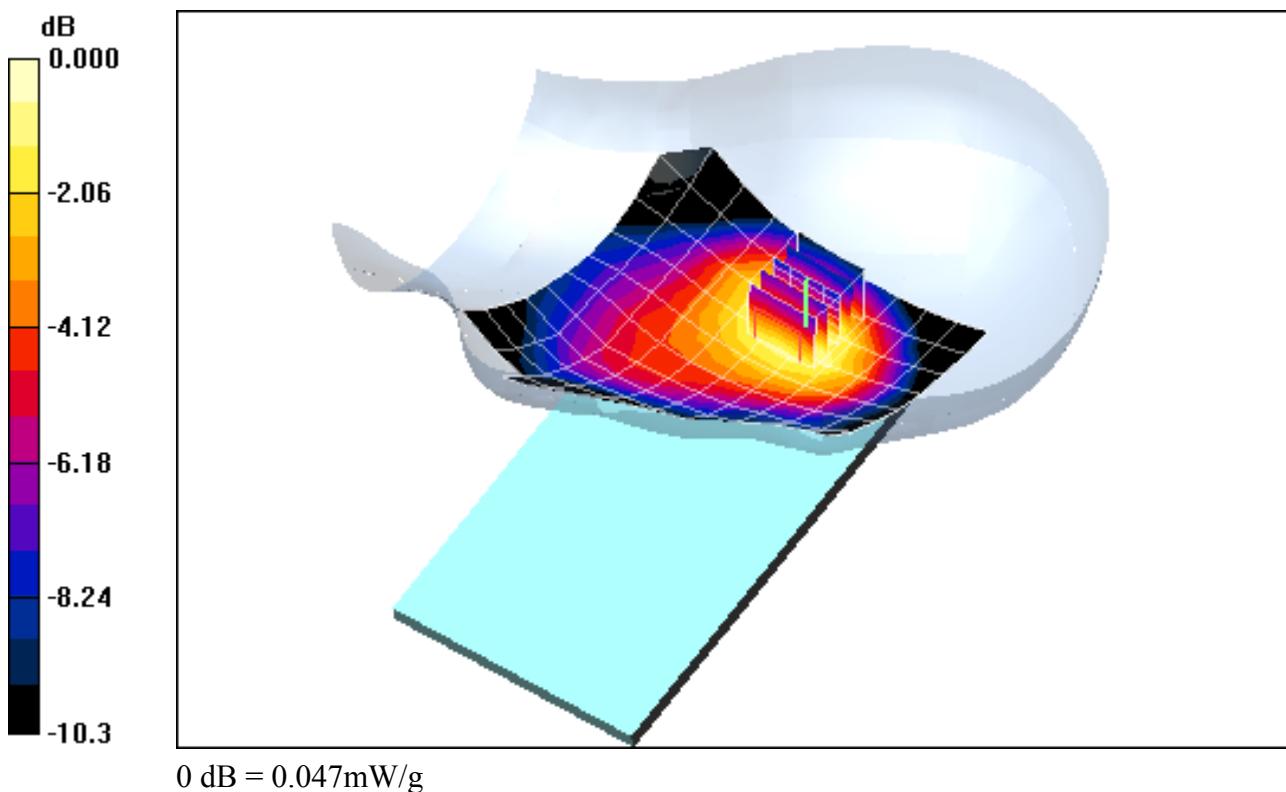
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 850, Left Head, Tilt, Mid.ch**


**Area Scan (11x15x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.00 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.062 W/kg

**SAR(1 g) = 0.045 mW/g; SAR(10 g) = 0.032 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.41 \text{ mho/m}$ ;  $\epsilon_r = 38.1$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 04-09-2012; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012

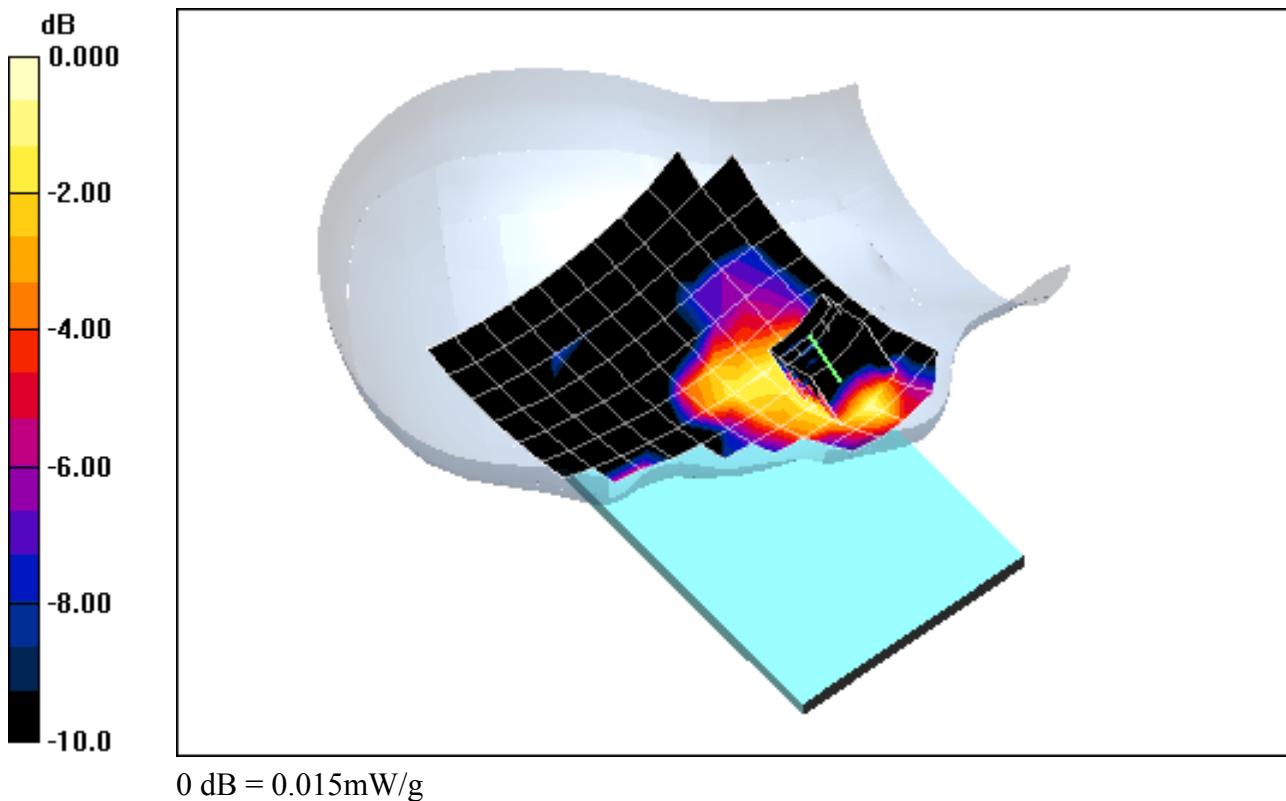
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1323; Calibrated: 2/15/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 1900, Right Head, Touch, Mid.ch**


**Area Scan (11x17x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 3.29 V/m; Power Drift = 0.181 dB

Peak SAR (extrapolated) = 0.021 W/kg

**SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00887 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.41 \text{ mho/m}$ ;  $\epsilon_r = 38.1$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 04-09-2012; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012

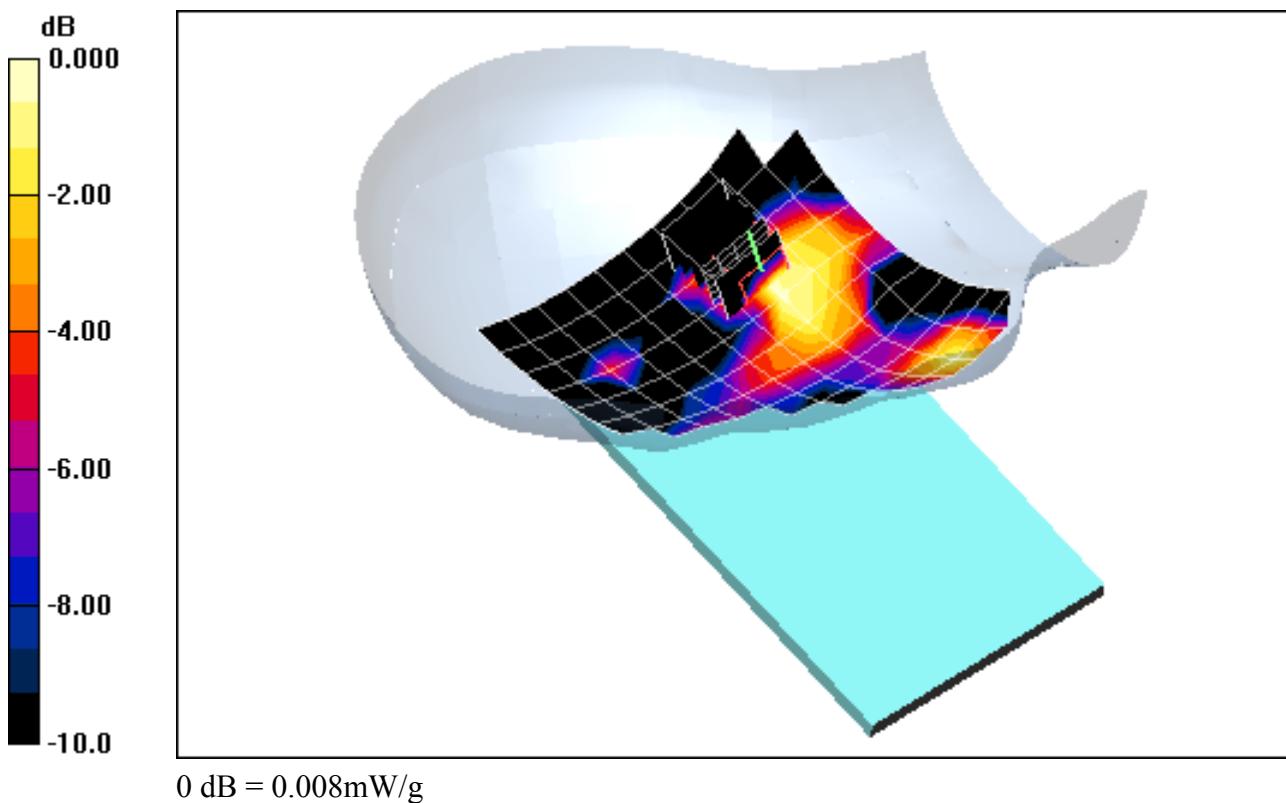
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1323; Calibrated: 2/15/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 1900, Right Head, Tilt, Mid.ch**


**Area Scan (11x17x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 2.37 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 0.029 W/kg

**SAR(1 g) = 0.00693 mW/g; SAR(10 g) = 0.00355 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.41 \text{ mho/m}$ ;  $\epsilon_r = 38.1$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Test Date: 04-09-2012; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012

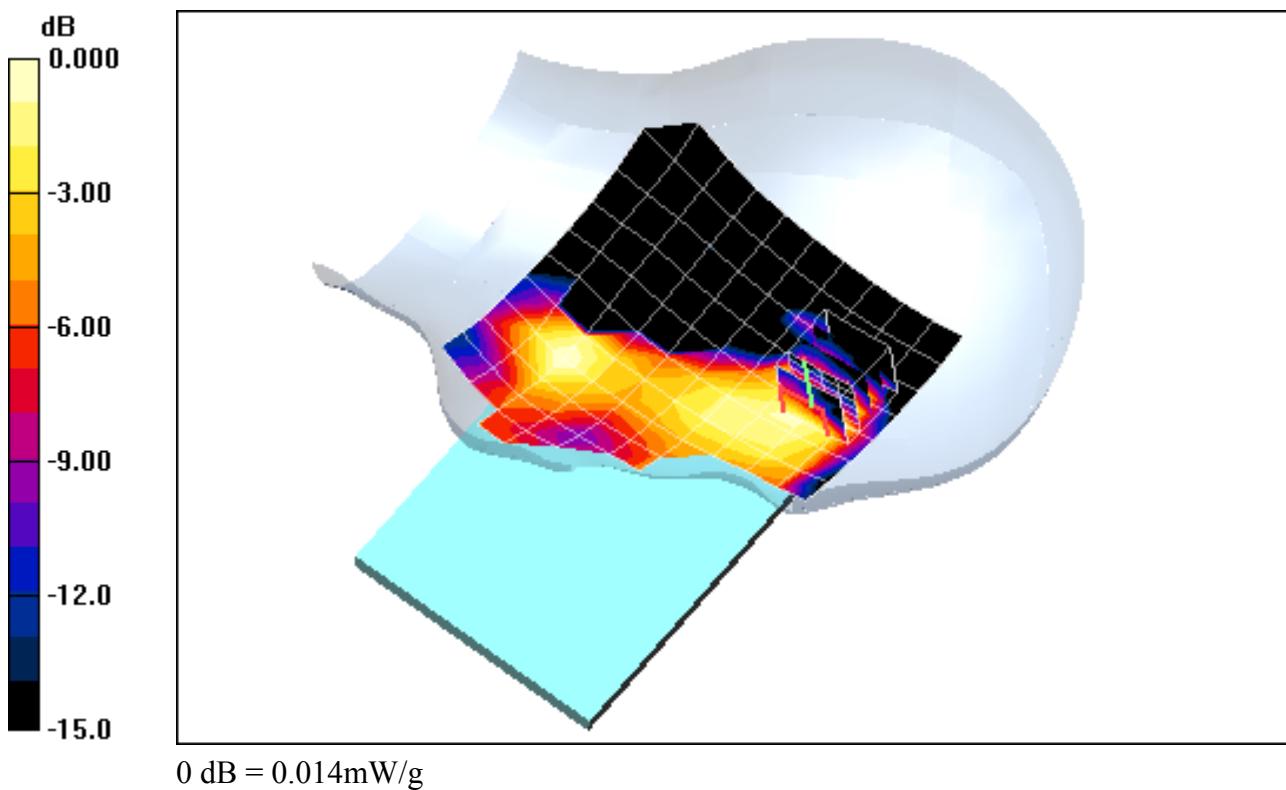
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1323; Calibrated: 2/15/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 1900, Left Head, Touch, Mid.ch**


**Area Scan (11x17x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 3.29 V/m; Power Drift = -0.138 dB

Peak SAR (extrapolated) = 0.021 W/kg

**SAR(1 g) = 0.013 mW/g; SAR(10 g) = 0.0075 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Head Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.41 \text{ mho/m}$ ;  $\epsilon_r = 38.1$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Test Date: 04-09-2012; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012

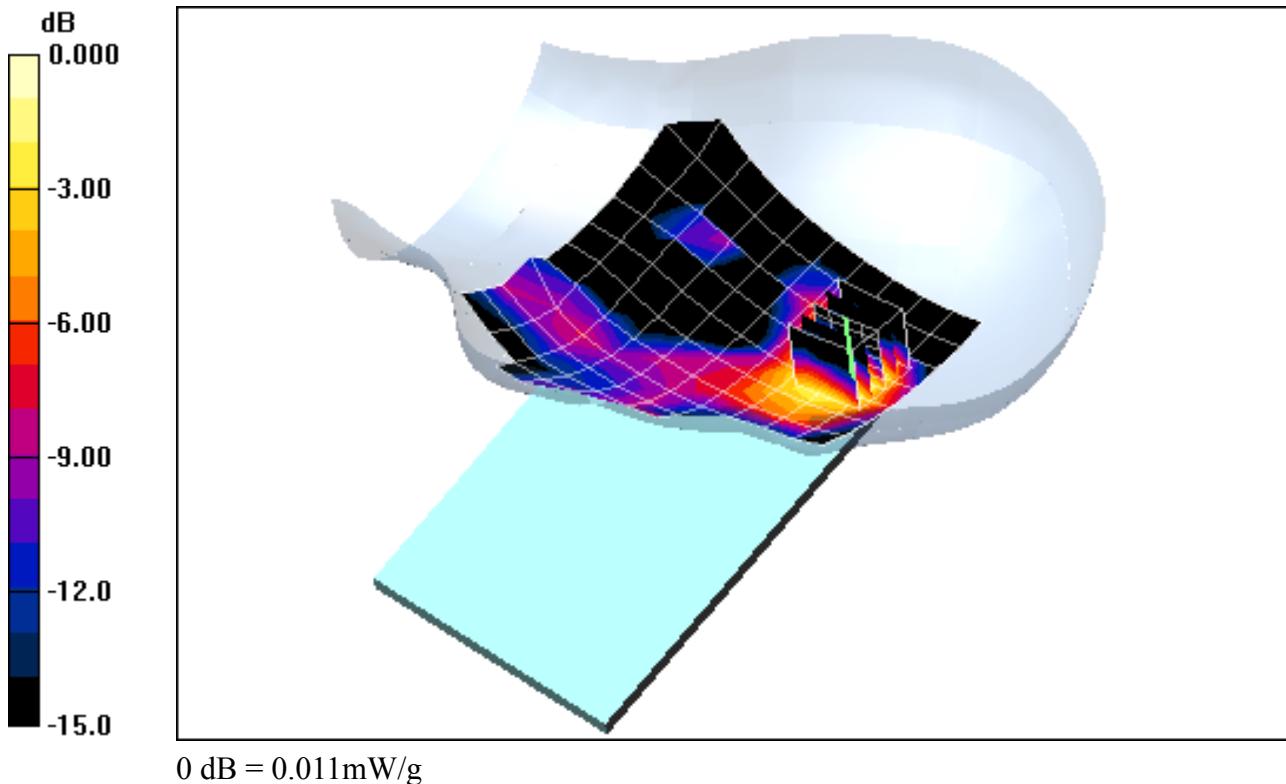
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1323; Calibrated: 2/15/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 1900, Left Head, Tilt, Mid.ch**


**Area Scan (11x17x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 2.80 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 0.017 W/kg

**SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.00577 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 351606050002004**

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used (interpolated):

$f = 2437$  MHz;  $\sigma = 1.868$  mho/m;  $\epsilon_r = 37.758$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

Test Date: 05-02-2012; Ambient Temp: 22.4°C; Tissue Temp: 21.1°C

Probe: ES3DV2 - SN3022; ConvF(4.3, 4.3, 4.3); Calibrated: 8/25/2011

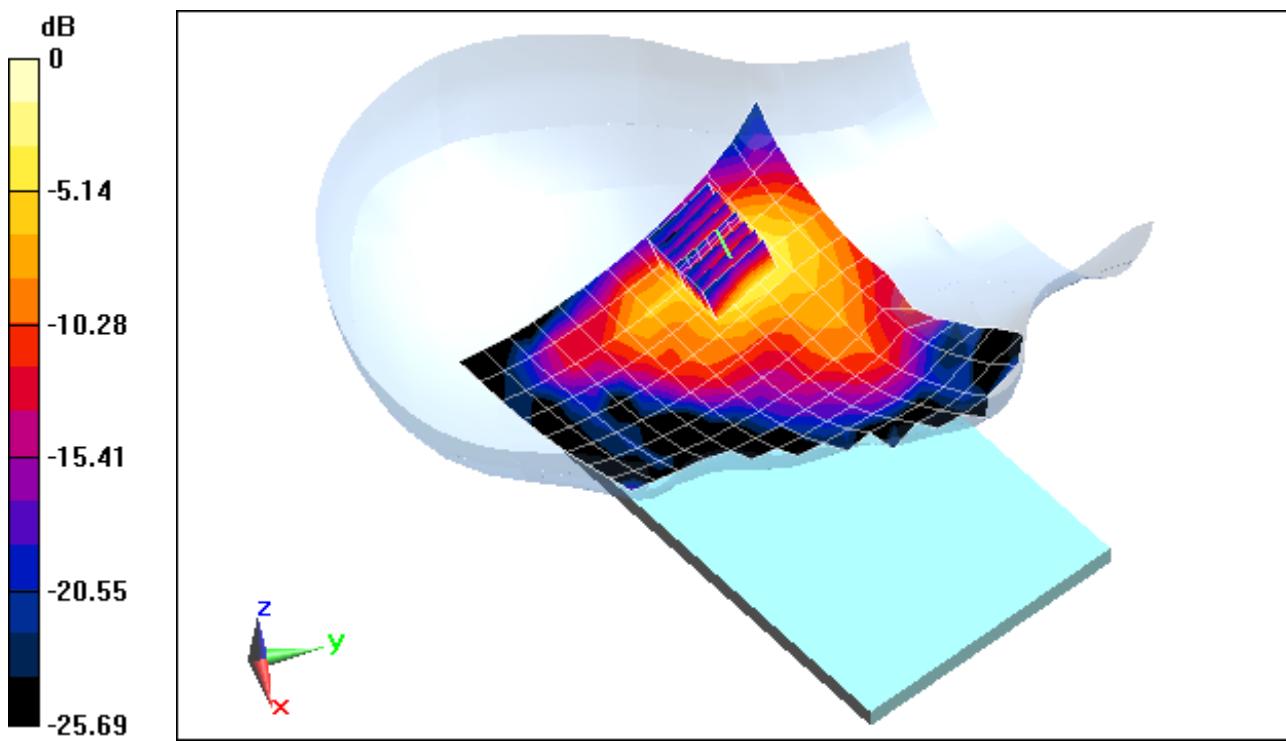
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.4 (4989)

**Mode: IEEE 802.11b, Right Head, Touch, Ch 06, 1 Mbps**


**Area Scan (13x20x1):** Measurement grid: dx=12mm, dy=12mm

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.835 V/m; Power Drift = 0.0066 dB

Peak SAR (extrapolated) = 0.4730

**SAR(1 g) = 0.221 mW/g; SAR(10 g) = 0.096 mW/g**



0 dB = 0.290mW/g = -10.75 dB mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 351606050002004**

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used (interpolated):

$f = 2437$  MHz;  $\sigma = 1.868$  mho/m;  $\epsilon_r = 37.758$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

Test Date: 05-02-2012; Ambient Temp: 22.4°C; Tissue Temp: 21.1°C

Probe: ES3DV2 - SN3022; ConvF(4.3, 4.3, 4.3); Calibrated: 8/25/2011

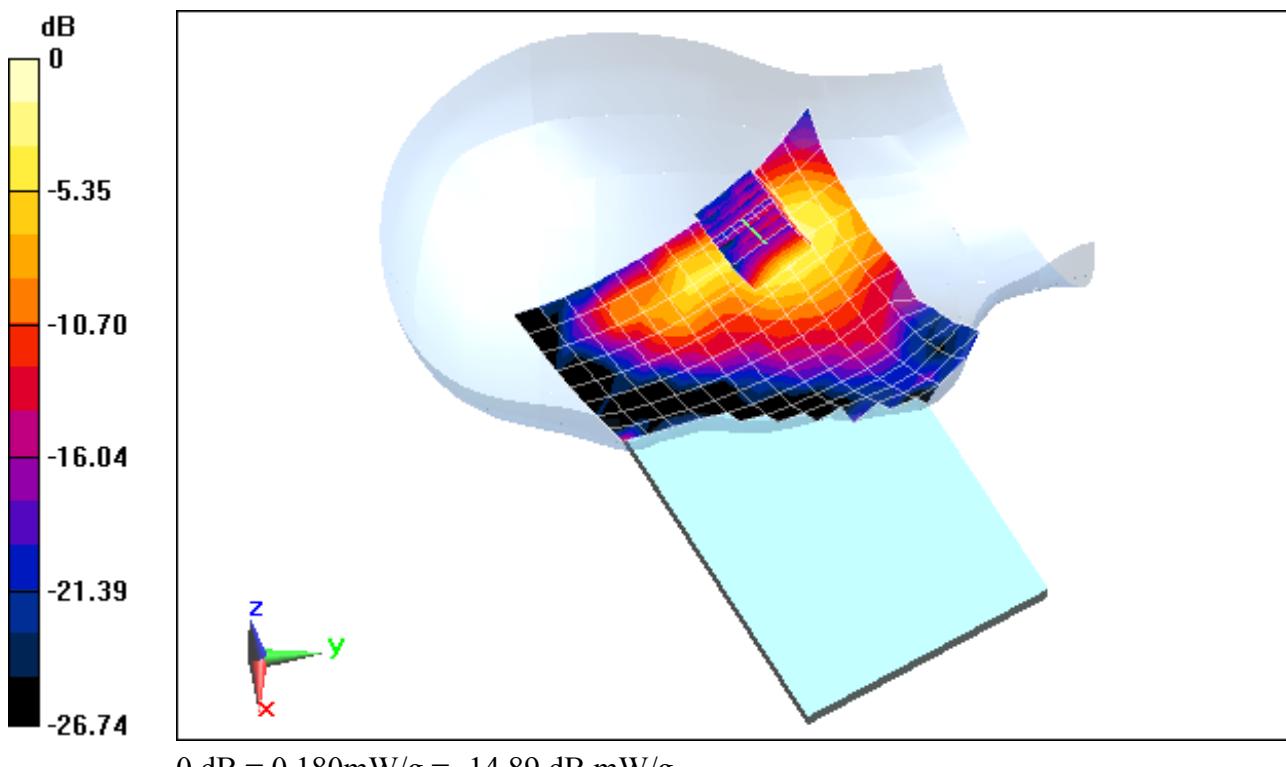
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.4 (4989)

**Mode: IEEE 802.11b, Right Head, Tilt, Ch 06, 1 Mbps**


**Area Scan (13x20x1):** Measurement grid: dx=12mm, dy=12mm

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.857 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.2740

**SAR(1 g) = 0.132 mW/g; SAR(10 g) = 0.062 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 351606050002004**

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used (interpolated):

$f = 2437$  MHz;  $\sigma = 1.868$  mho/m;  $\epsilon_r = 37.758$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

Test Date: 05-02-2012; Ambient Temp: 22.4°C; Tissue Temp: 21.1°C

Probe: ES3DV2 - SN3022; ConvF(4.3, 4.3, 4.3); Calibrated: 8/25/2011

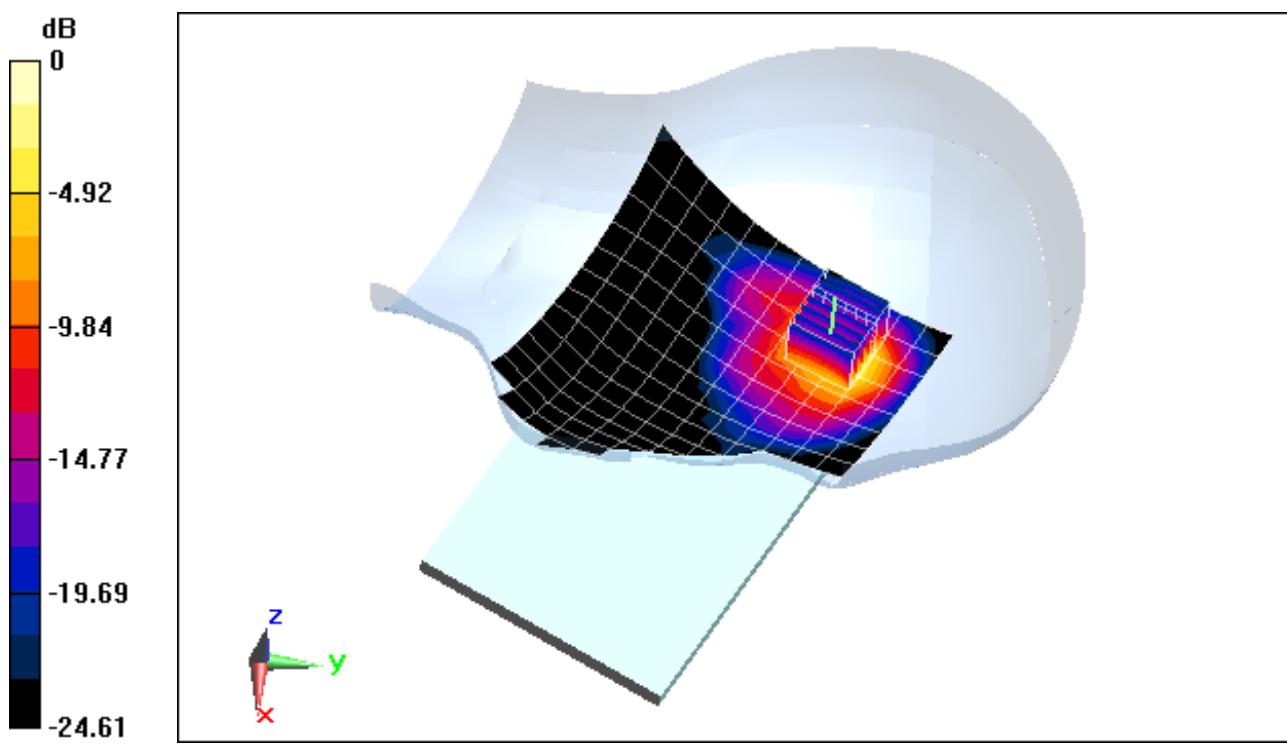
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP:1626

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.4 (4989)

**Mode: IEEE 802.11b, Left Head, Touch, Ch 06, 1 Mbps**


**Area Scan (13x20x1):** Measurement grid: dx=12mm, dy=12mm

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.689 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.3440

**SAR(1 g) = 0.570 mW/g; SAR(10 g) = 0.243 mW/g**



0 dB = 0.790mW/g = -2.05 dB mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 351606050002004**

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used (interpolated):

$f = 2437$  MHz;  $\sigma = 1.868$  mho/m;  $\epsilon_r = 37.758$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

Test Date: 05-02-2012; Ambient Temp: 22.4°C; Tissue Temp: 21.1°C

Probe: ES3DV2 - SN3022; ConvF(4.3, 4.3, 4.3); Calibrated: 8/25/2011

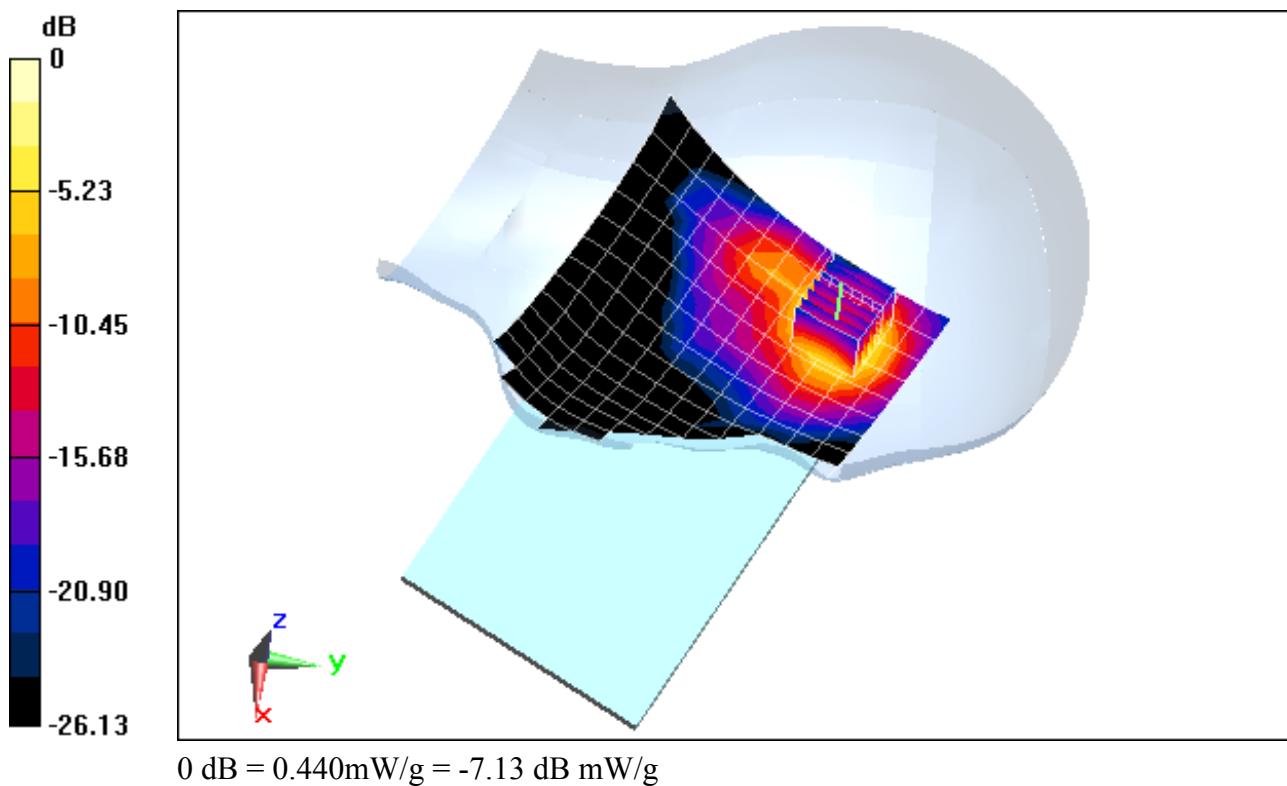
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP:1626

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.4 (4989)

**Mode: IEEE 802.11b, Left Head, Tilt, Ch 06, 1 Mbps**


**Area Scan (13x20x1):** Measurement grid: dx=12mm, dy=12mm

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.812 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.7330

**SAR(1 g) = 0.343 mW/g; SAR(10 g) = 0.162 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.967$  mho/m;  $\epsilon_r = 53$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 22.3°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012

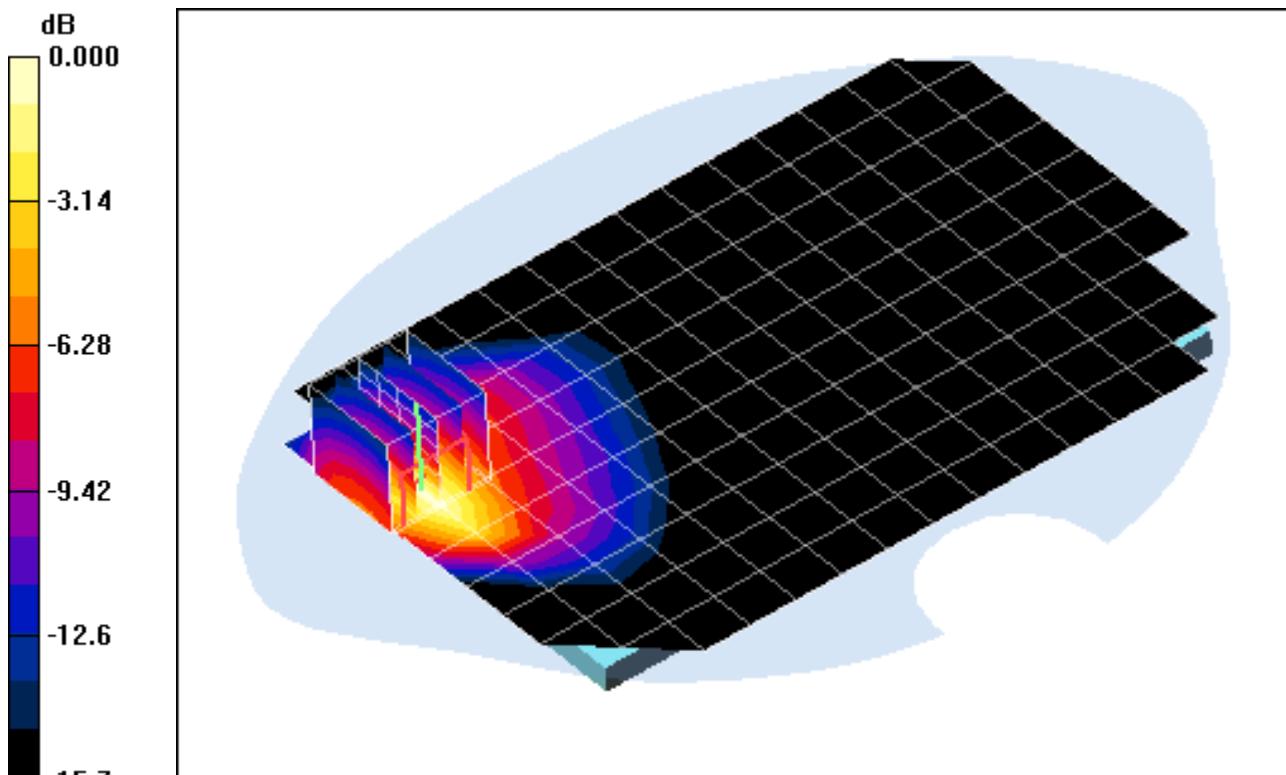
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 850, Body SAR, Back side, Mid.ch**


**Area Scan (11x16x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.6 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 2.14 W/kg

**SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.561 mW/g**



0 dB = 1.29mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.967$  mho/m;  $\epsilon_r = 53$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 22.3°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012

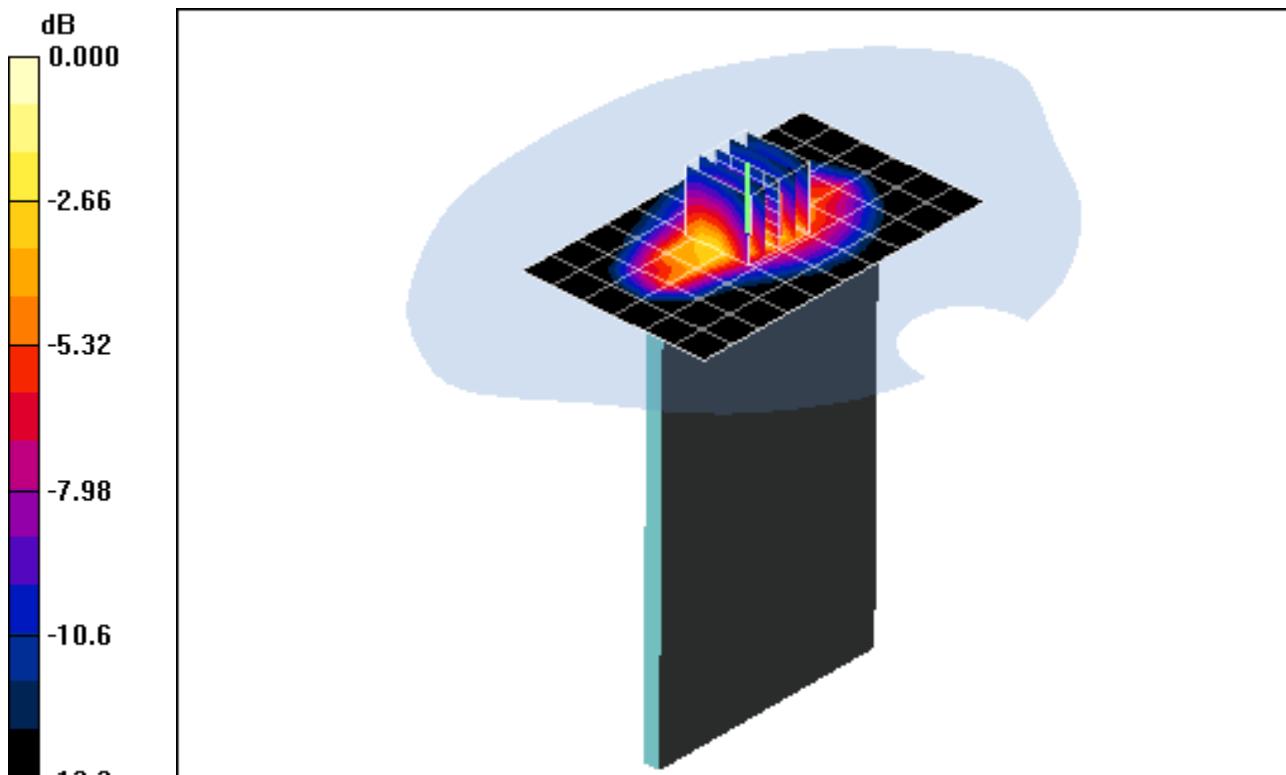
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 850, Body SAR, Bottom edge, Mid.ch**


**Area Scan (7x11x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.40 V/m; Power Drift = -0.183 dB

Peak SAR (extrapolated) = 1.08 W/kg

**SAR(1 g) = 0.534 mW/g; SAR(10 g) = 0.282 mW/g**



0 dB = 0.630mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.967$  mho/m;  $\epsilon_r = 53$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 22.3°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012

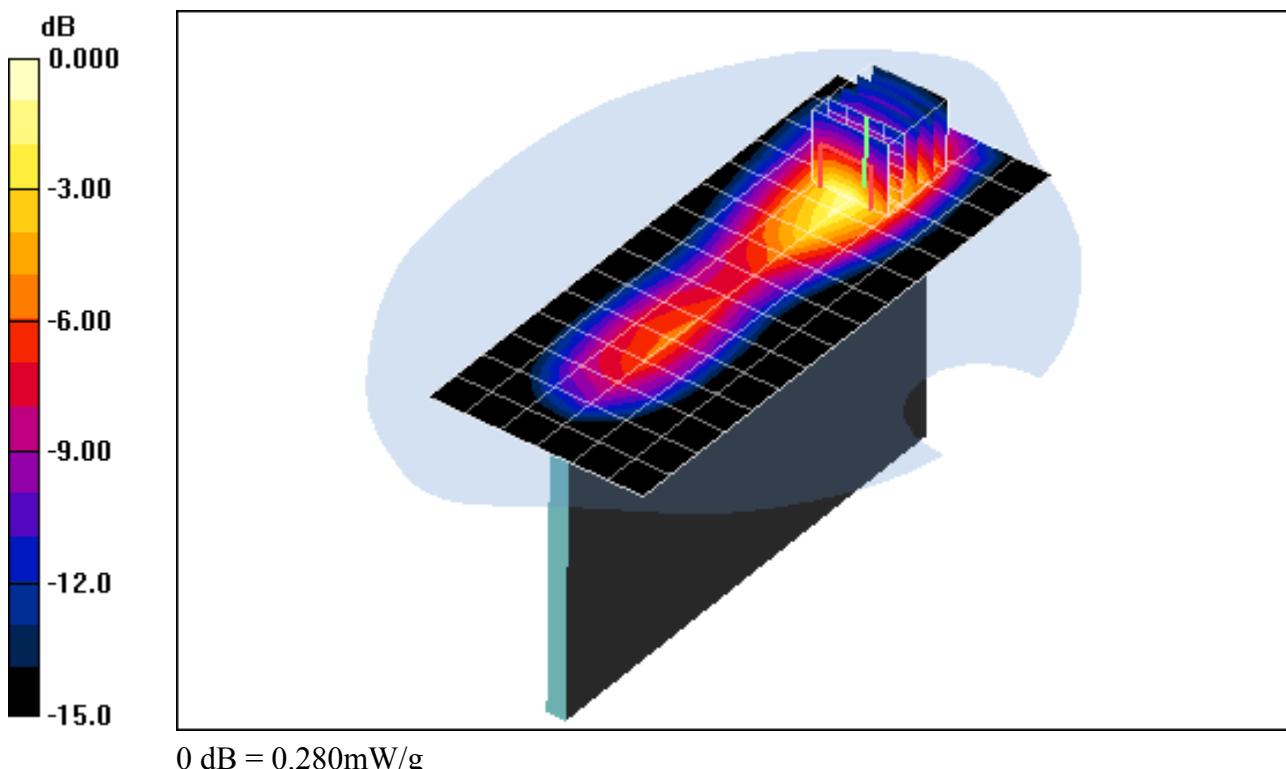
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 850, Body SAR, Right edge, Mid.ch**


**Area Scan (7x16x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.18 V/m; Power Drift = -0.172 dB

Peak SAR (extrapolated) = 0.479 W/kg

**SAR(1 g) = 0.257 mW/g; SAR(10 g) = 0.139 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850 GPRS; 1 Tx slots; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: 835 Body Medium parameters used (interpolated):

$f = 848.8$  MHz;  $\sigma = 1.003$  mho/m;  $\epsilon_r = 55.019$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-04-2012; Ambient Temp: 24.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3263; ConvF(6.22, 6.22, 6.22); Calibrated: 11/18/2011

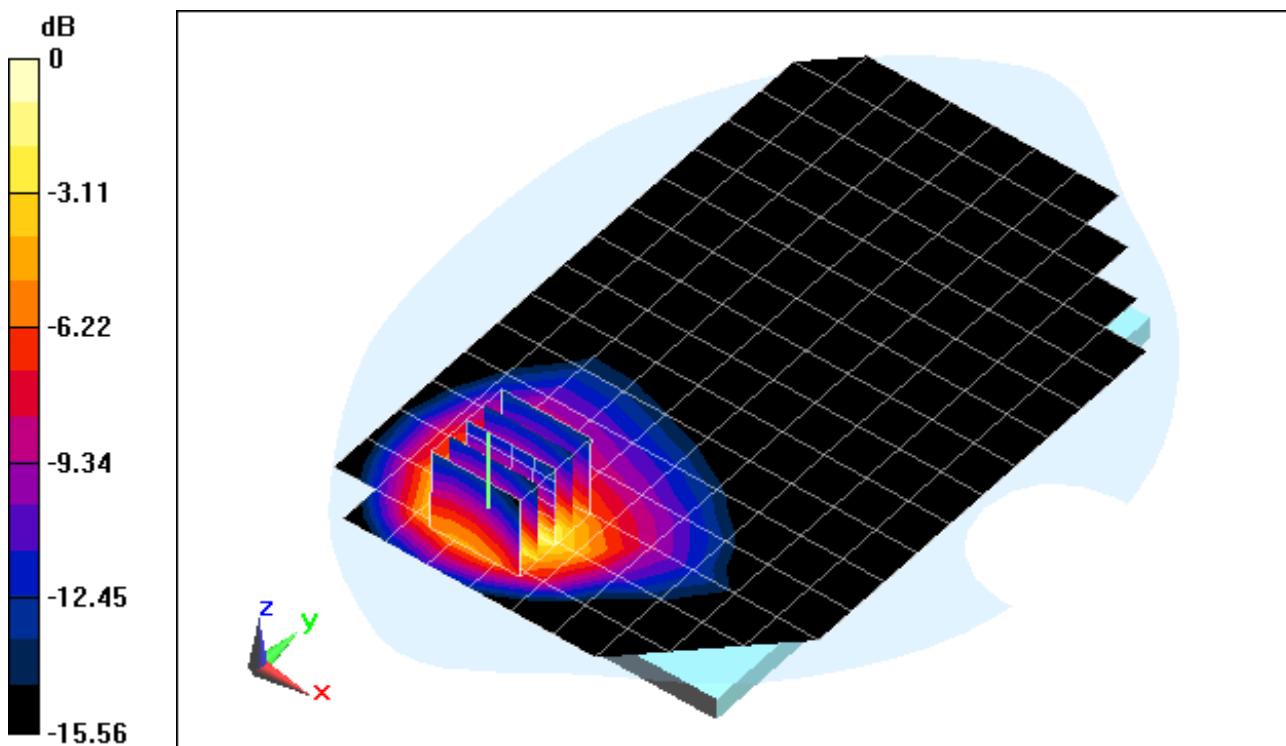
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

## **GPRS 850, Body SAR, Back side, High.ch, 1 Tx Slots**


**Area Scan (11x17x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.945 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.9510

**SAR(1 g) = 0.966 mW/g; SAR(10 g) = 0.507 mW/g**



0 dB = 1.080mW/g = 0.67 dB mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850 GPRS; 1 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.991$  mho/m;  $\epsilon_r = 55.108$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-04-2012; Ambient Temp: 24.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3263; ConvF(6.22, 6.22, 6.22); Calibrated: 11/18/2011

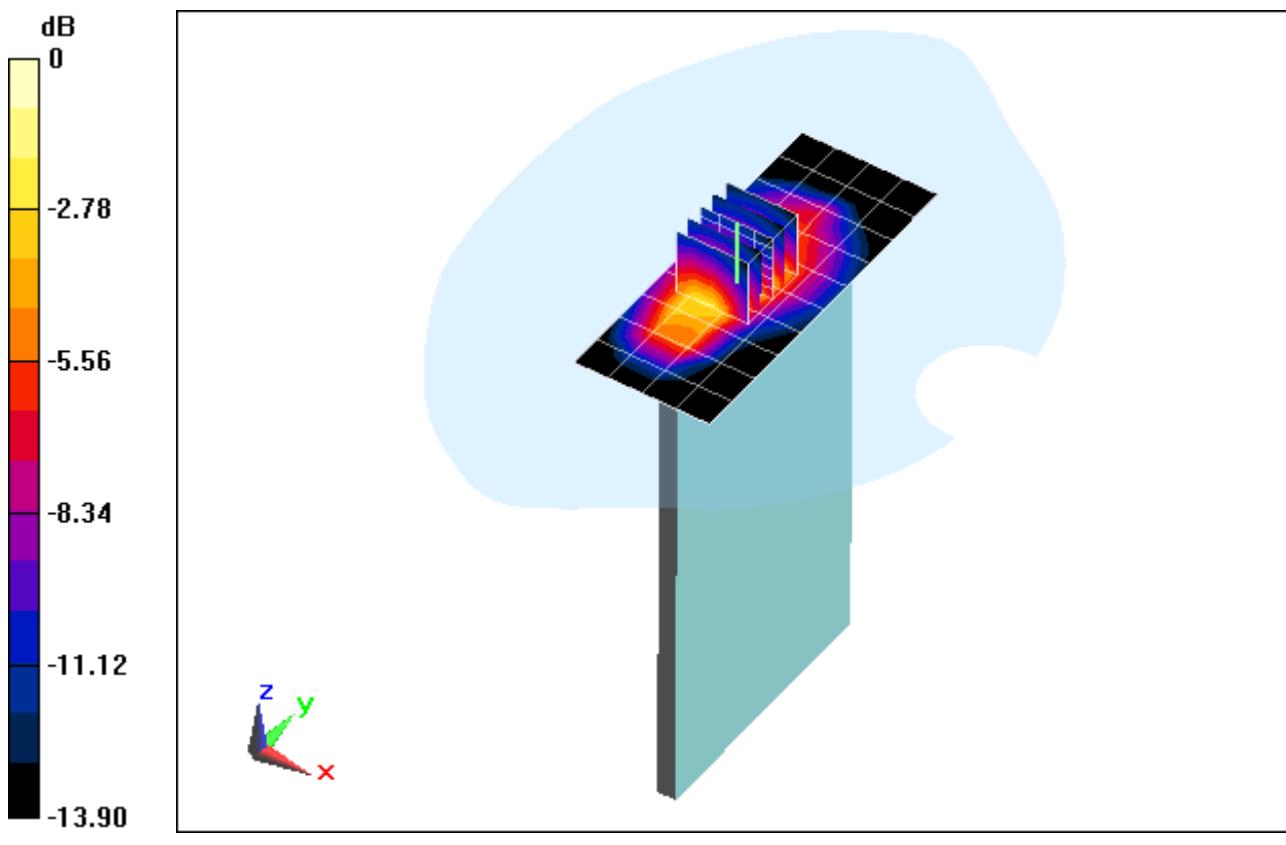
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

## **GPSR 850, Body SAR, Bottom Edge, Mid.ch, 1 Tx Slots**


**Area Scan (5x11x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.597 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.0300

**SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.247 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM850 GPRS; 1 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.991$  mho/m;  $\epsilon_r = 55.108$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-04-2012; Ambient Temp: 24.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3263; ConvF(6.22, 6.22, 6.22); Calibrated: 11/18/2011

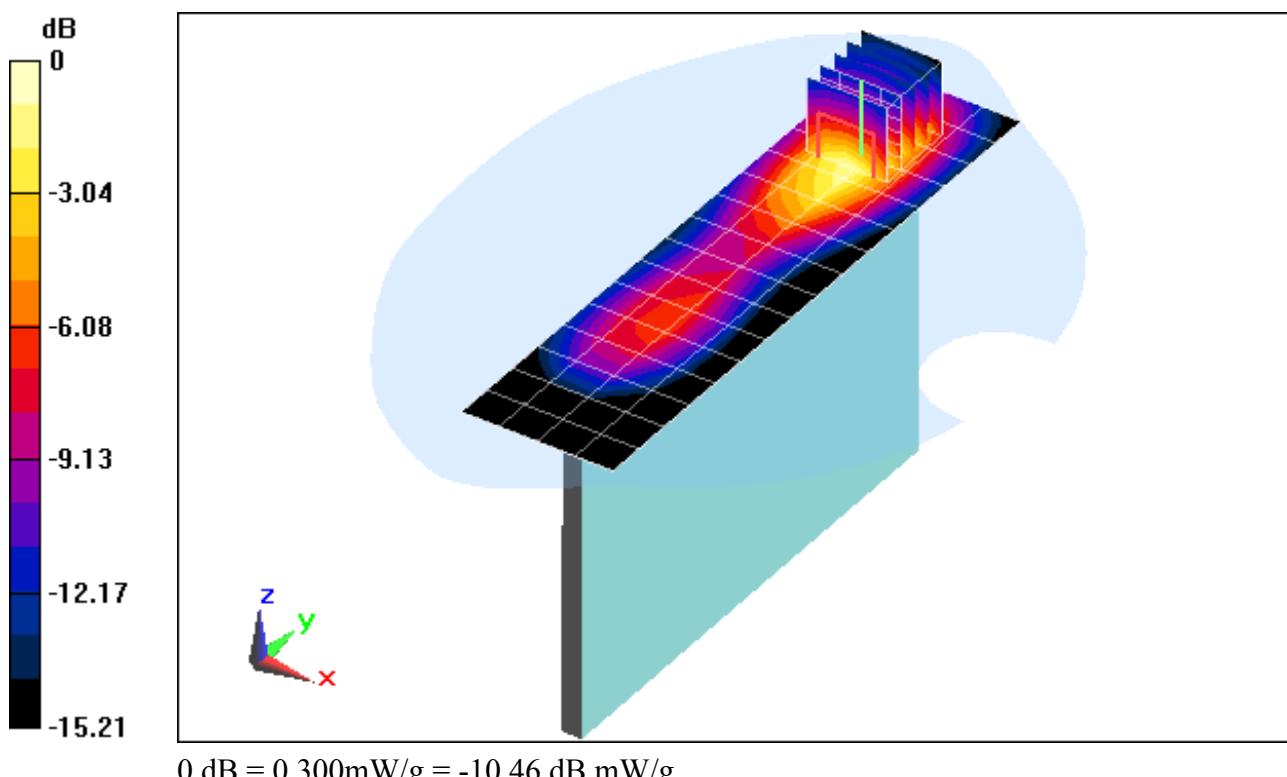
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

## **GPRS 850, Body SAR, Right Edge, Mid.ch, 1 Tx Slots**


**Area Scan (5x17x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.762 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.5190

**SAR(1 g) = 0.268 mW/g; SAR(10 g) = 0.148 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: Cell WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.991$  mho/m;  $\epsilon_r = 55.108$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-04-2012; Ambient Temp: 24.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3263; ConvF(6.22, 6.22, 6.22); Calibrated: 11/18/2011

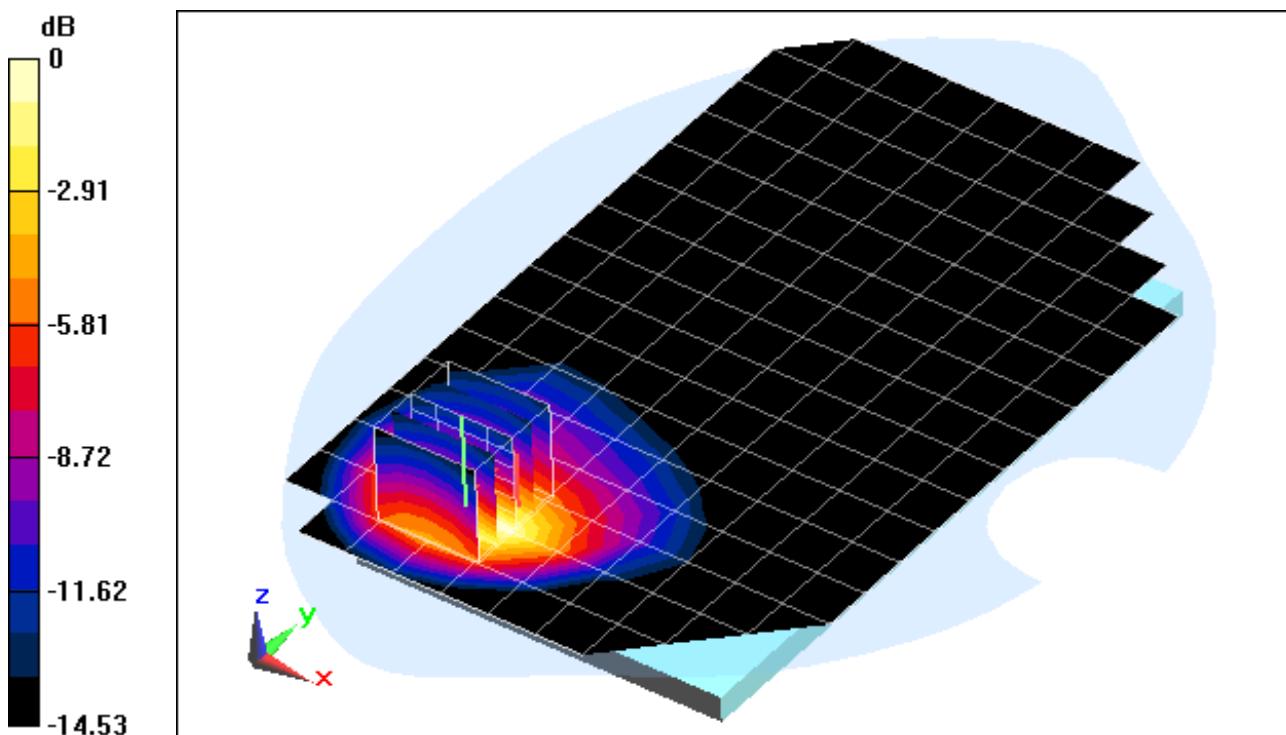
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

## **WCDMA 850, Body SAR, Back side, Mid.ch**


**Area Scan (11x17x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.415 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.3410

**SAR(1 g) = 0.665 mW/g; SAR(10 g) = 0.347 mW/g**



0 dB = 0.730mW/g = -2.73 dB mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: Cell WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.991$  mho/m;  $\epsilon_r = 55.108$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-04-2012; Ambient Temp: 24.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3263; ConvF(6.22, 6.22, 6.22); Calibrated: 11/18/2011

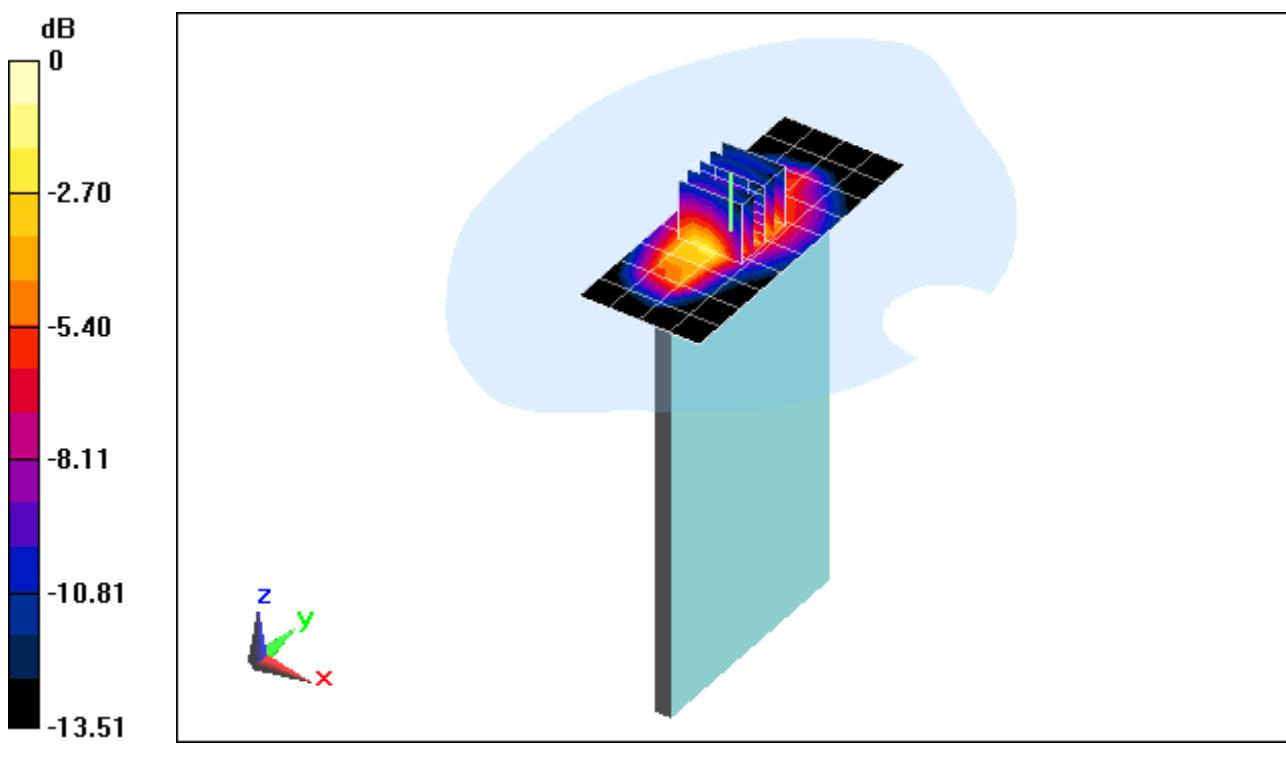
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

## **WCDMA 850, Body SAR, Bottom Edge, Mid.ch**


**Area Scan (5x11x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.404 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.6850

**SAR(1 g) = 0.334 mW/g; SAR(10 g) = 0.174 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: Cell WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.991$  mho/m;  $\epsilon_r = 55.108$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-04-2012; Ambient Temp: 24.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3263; ConvF(6.22, 6.22, 6.22); Calibrated: 11/18/2011

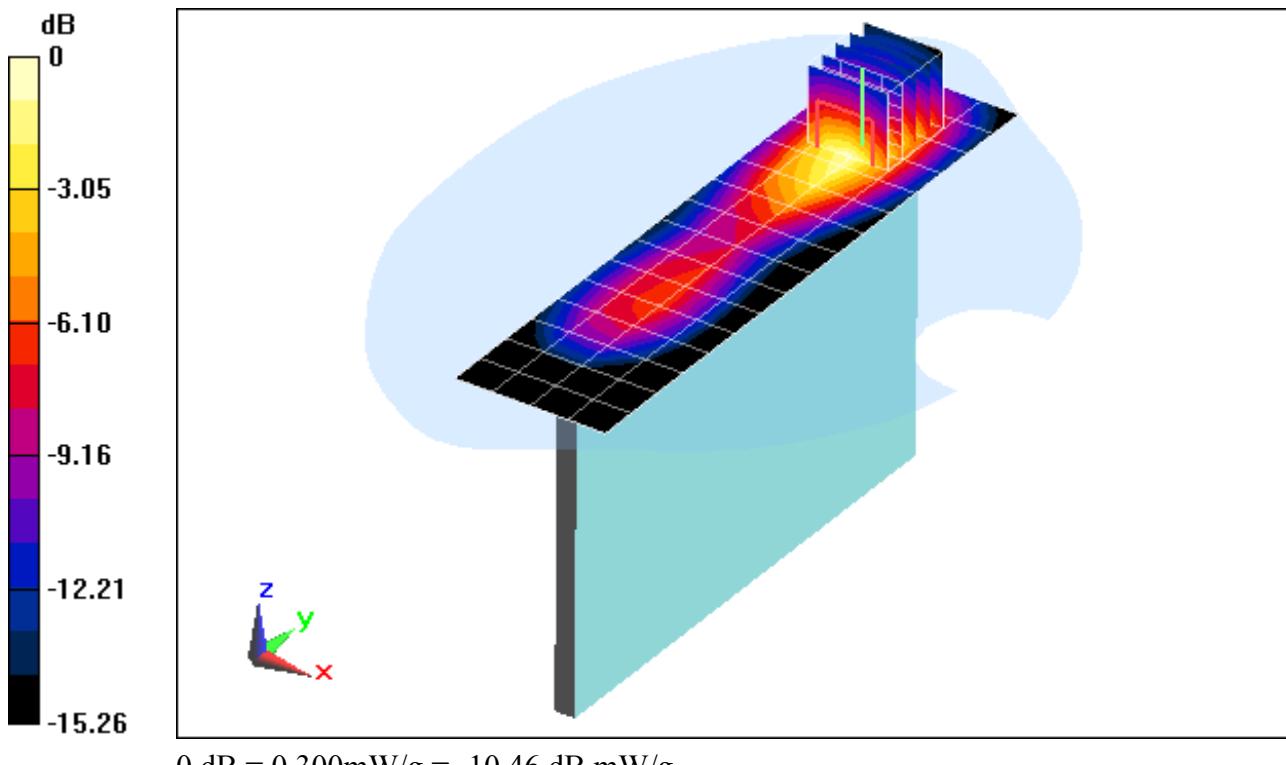
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

## **WCDMA 850, Body SAR, Right Edge, Mid.ch**


**Area Scan (5x17x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.013 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.5100

**SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.147 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Body Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.53 \text{ mho/m}$ ;  $\epsilon_r = 51.27$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 20.6°C; Tissue Temp: 21.0°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011

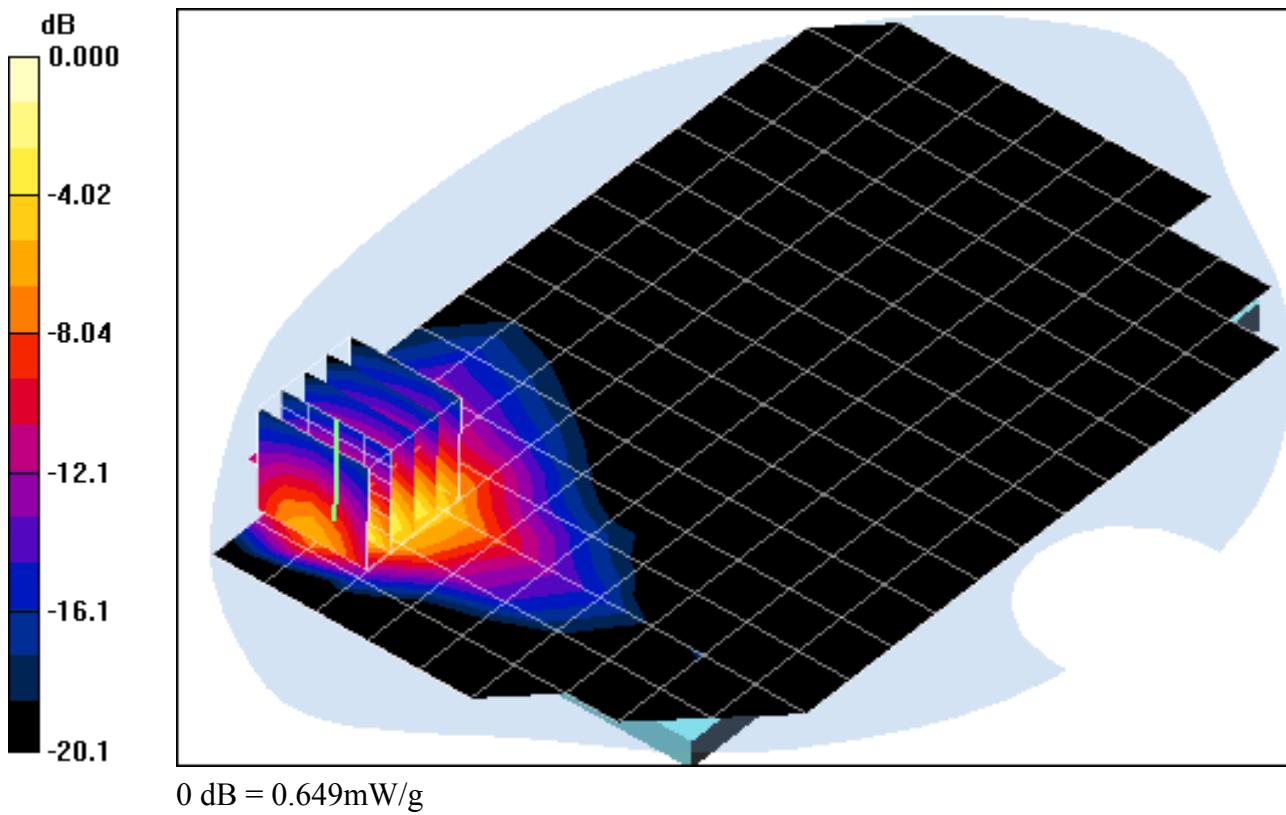
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 1900, Body SAR, Back side, Mid.ch**


**Area Scan (11x17x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 22.0 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 1.32 W/kg

**SAR(1 g) = 0.625 mW/g; SAR(10 g) = 0.289 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Body Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.53 \text{ mho/m}$ ;  $\epsilon_r = 51.27$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 20.6°C; Tissue Temp: 21.0°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011

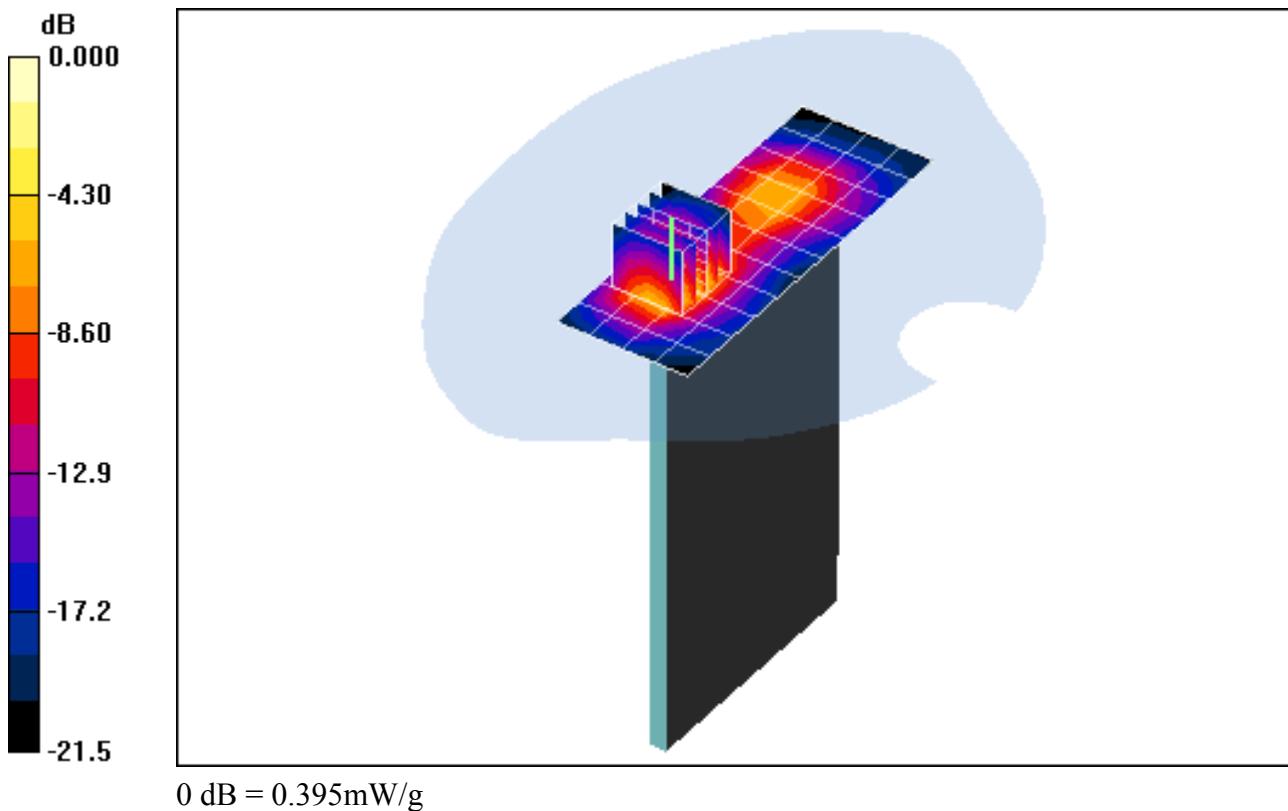
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 1900, Body SAR, Bottom Edge, Mid.ch**


**Area Scan (5x12x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 12.2 V/m; Power Drift = -0.191 dB

Peak SAR (extrapolated) = 0.641 W/kg

**SAR(1 g) = 0.321 mW/g; SAR(10 g) = 0.139 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Body Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.53 \text{ mho/m}$ ;  $\epsilon_r = 51.27$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 20.6°C; Tissue Temp: 21.0°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011

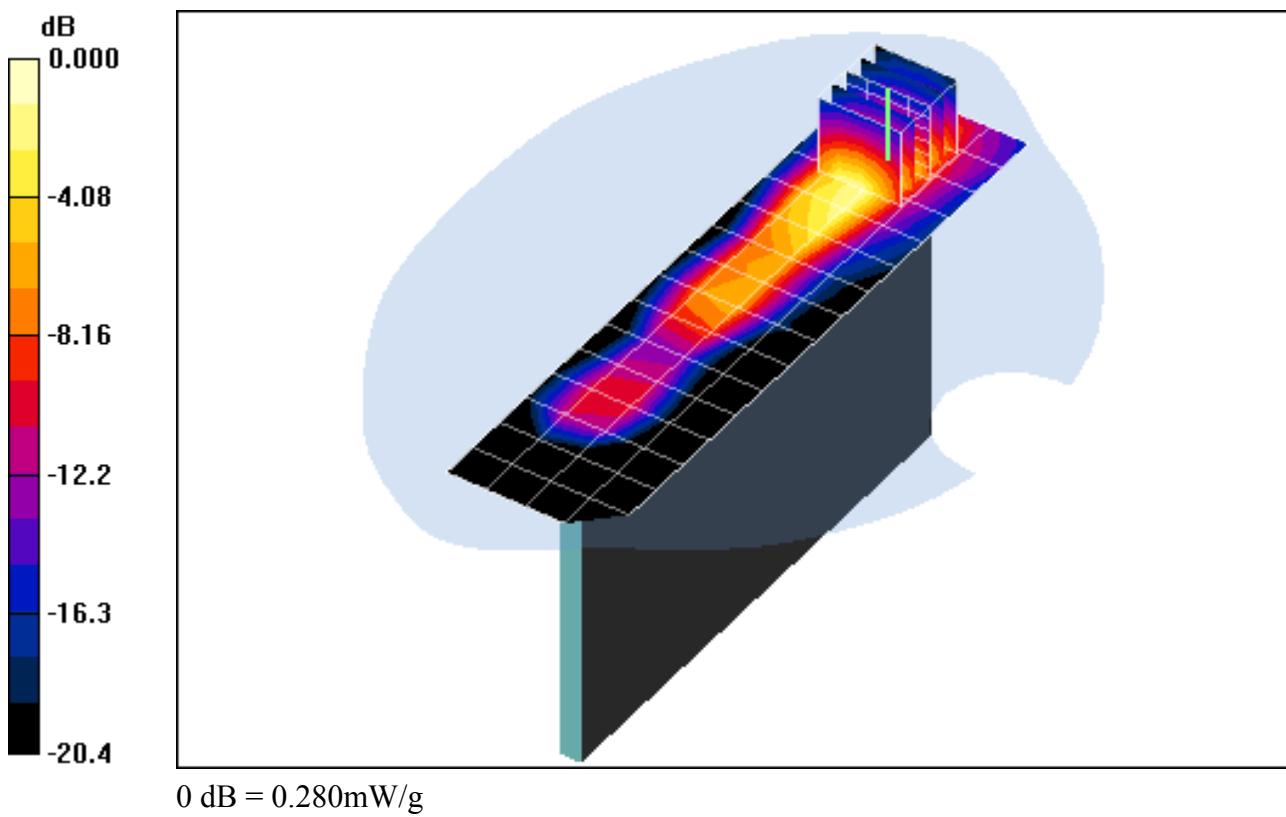
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GSM 1900, Body SAR, Right Edge, Mid.ch**


**Area Scan (5x17x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 13.5 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 0.574 W/kg

**SAR(1 g) = 0.253 mW/g; SAR(10 g) = 0.114 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900 GPRS; 1 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Body Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.53 \text{ mho/m}$ ;  $\epsilon_r = 51.27$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 20.6°C; Tissue Temp: 21.0°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011

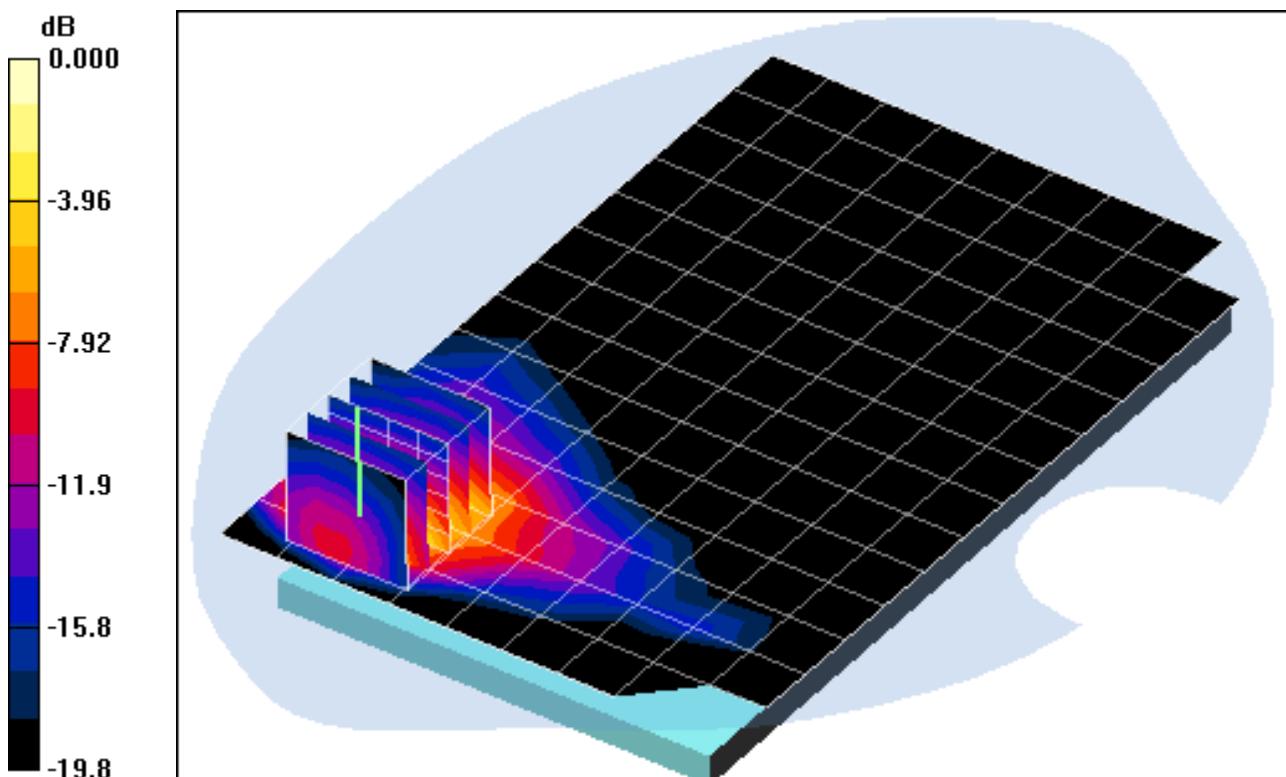
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## **GRPS 1900, Body SAR, Back side, Mid.ch, 1 Tx Slots**


**Area Scan (10x15x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 19.3 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 1.16 W/kg

**SAR(1 g) = 0.550 mW/g; SAR(10 g) = 0.254 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900 GPRS; 1 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Body Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.53 \text{ mho/m}$ ;  $\epsilon_r = 51.27$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 20.6°C; Tissue Temp: 21.0°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011

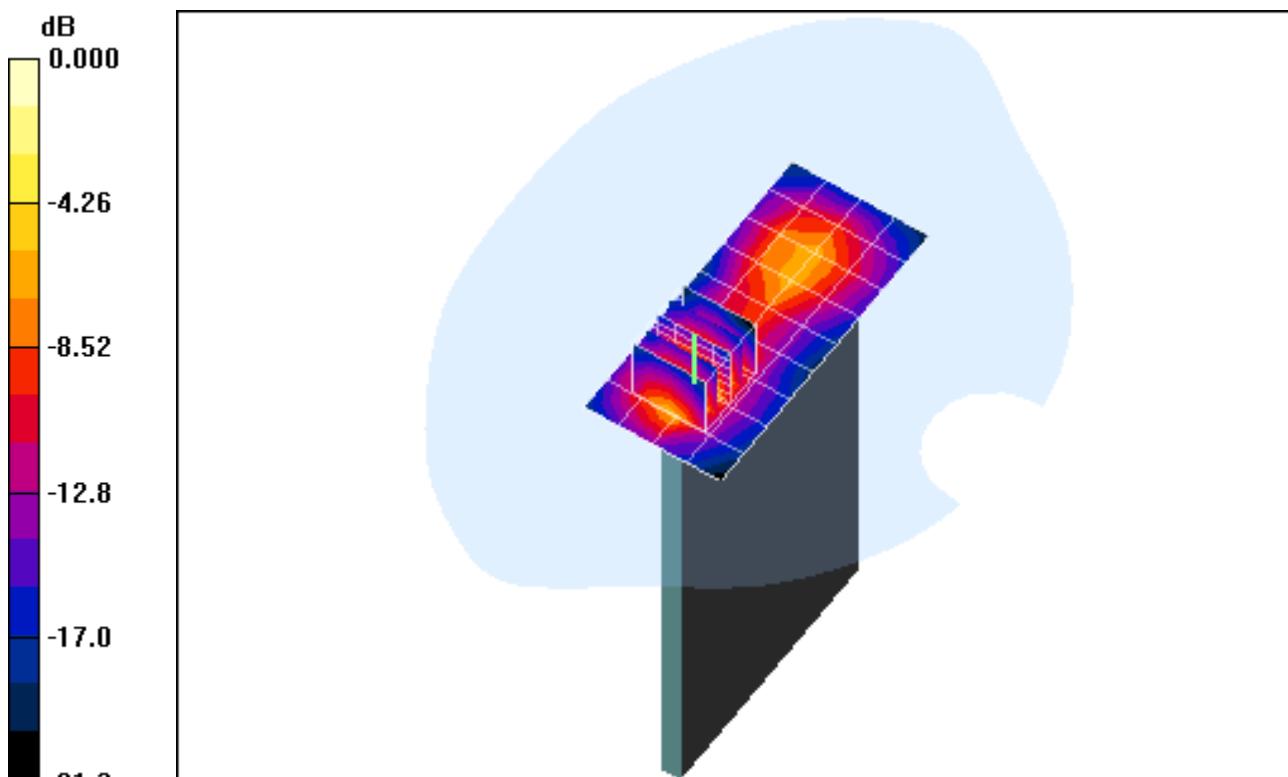
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## **GPRS 1900, Body SAR, Bottom Edge, Mid.ch, 1 Tx Slots**


**Area Scan (5x10x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 5.74 V/m; Power Drift = 0.060 dB

Peak SAR (extrapolated) = 0.604 W/kg

**SAR(1 g) = 0.301 mW/g; SAR(10 g) = 0.129 mW/g**



0 dB = 0.352mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 004401200910087**

Communication System: GSM1900 GPRS; 1 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Body Medium parameters used:

$$f = 1880 \text{ MHz}; \sigma = 1.53 \text{ mho/m}; \epsilon_r = 51.27; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-09-2012; Ambient Temp: 20.6°C; Tissue Temp: 21.0°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011

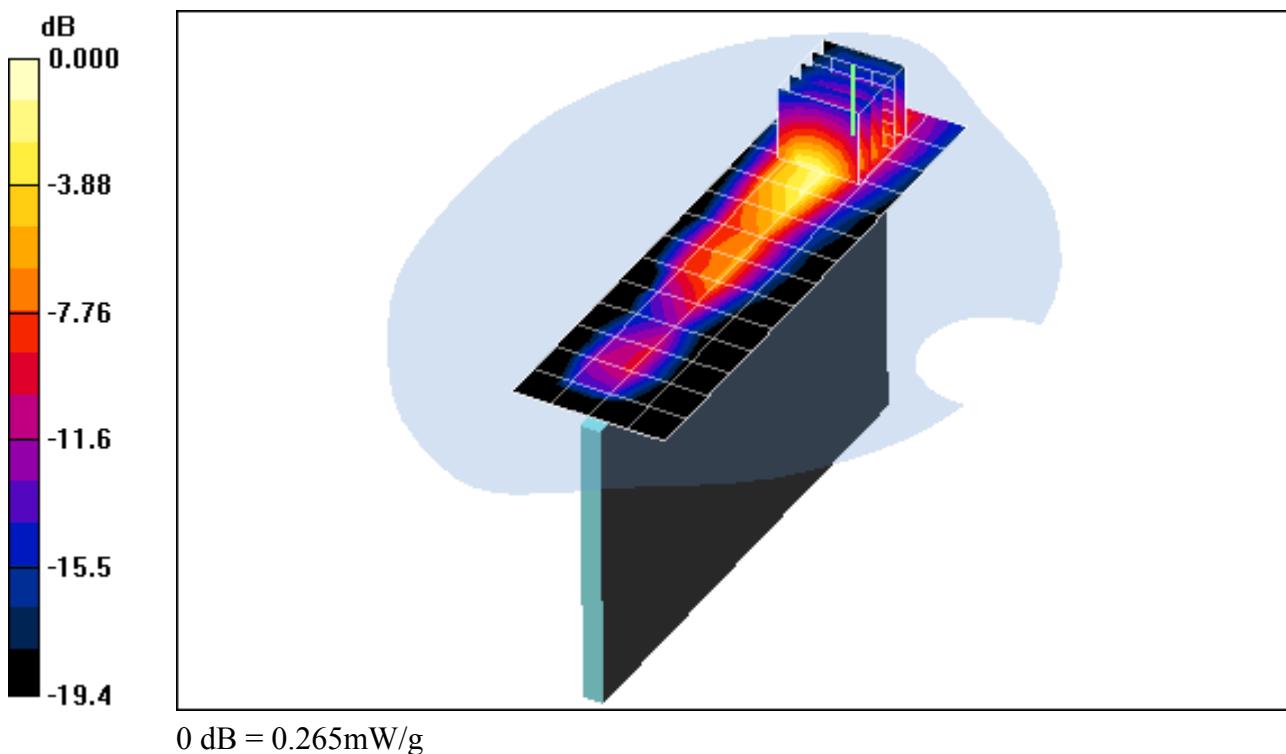
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GPRS 1900, Body SAR, Right Edge, Mid.ch, 1 Tx Slots**


**Area Scan (5x15x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 0.557 W/kg

**SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.112 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 351606050002004**

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2462$  MHz;  $\sigma = 1.937$  mho/m;  $\epsilon_r = 50.322$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-30-2012; Ambient Temp: 23.1°C; Tissue Temp: 21.3°C

Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/25/2011

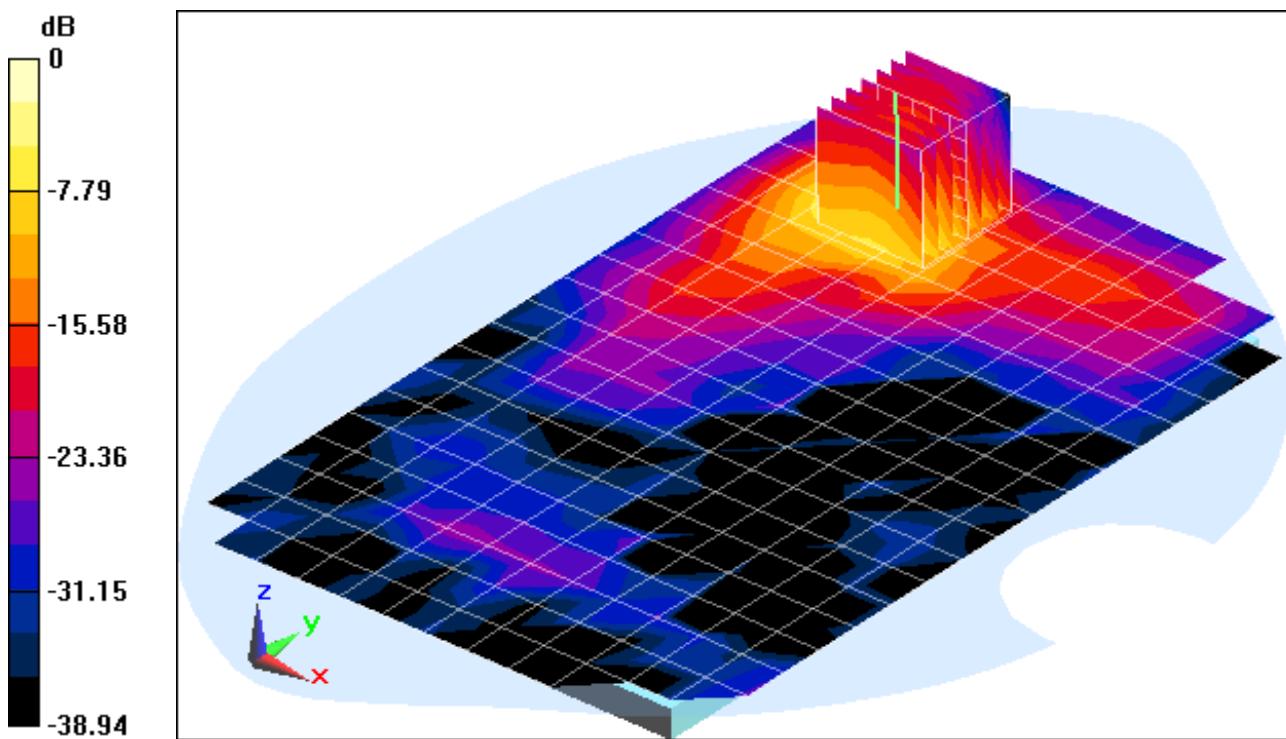
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Mode: IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Back Side**


**Area Scan (13x20x1):** Measurement grid: dx=12mm, dy=12mm

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.134 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 2.7820

**SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.428 mW/g**



0 dB = 1.480 mW/g = 3.41 dB mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 351606050002004**

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2437$  MHz;  $\sigma = 1.905$  mho/m;  $\epsilon_r = 50.503$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-30-2012; Ambient Temp: 23.1°C; Tissue Temp: 21.3°C

Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/25/2011

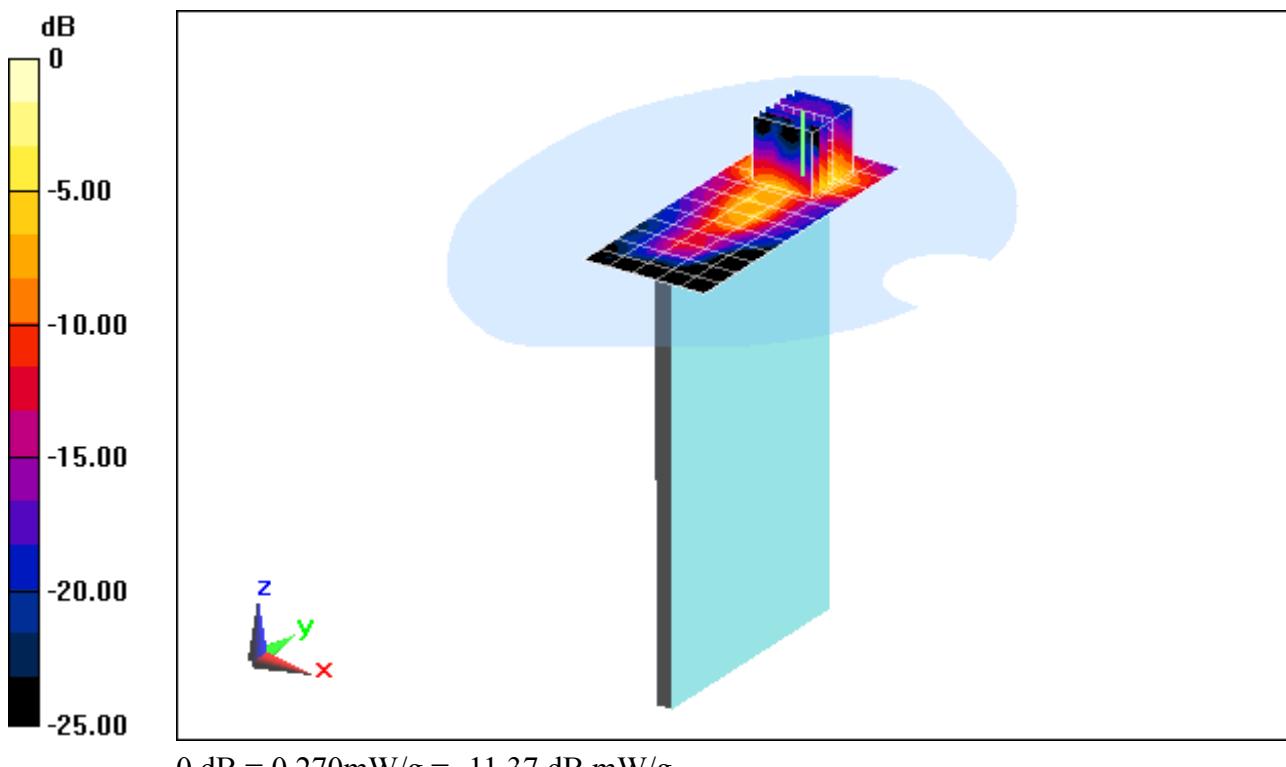
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Mode: IEEE 802.11b, Body SAR, Ch 06, 1 Mbps, Top Edge**


**Area Scan (6x13x1):** Measurement grid: dx=12mm, dy=12mm

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.813 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.4350

**SAR(1 g) = 0.208 mW/g; SAR(10 g) = 0.093 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A98-FBC3105; Type: Portable Device; Serial: 351606050002004**

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2437$  MHz;  $\sigma = 1.905$  mho/m;  $\epsilon_r = 50.503$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-30-2012; Ambient Temp: 23.1°C; Tissue Temp: 21.3°C

Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/25/2011

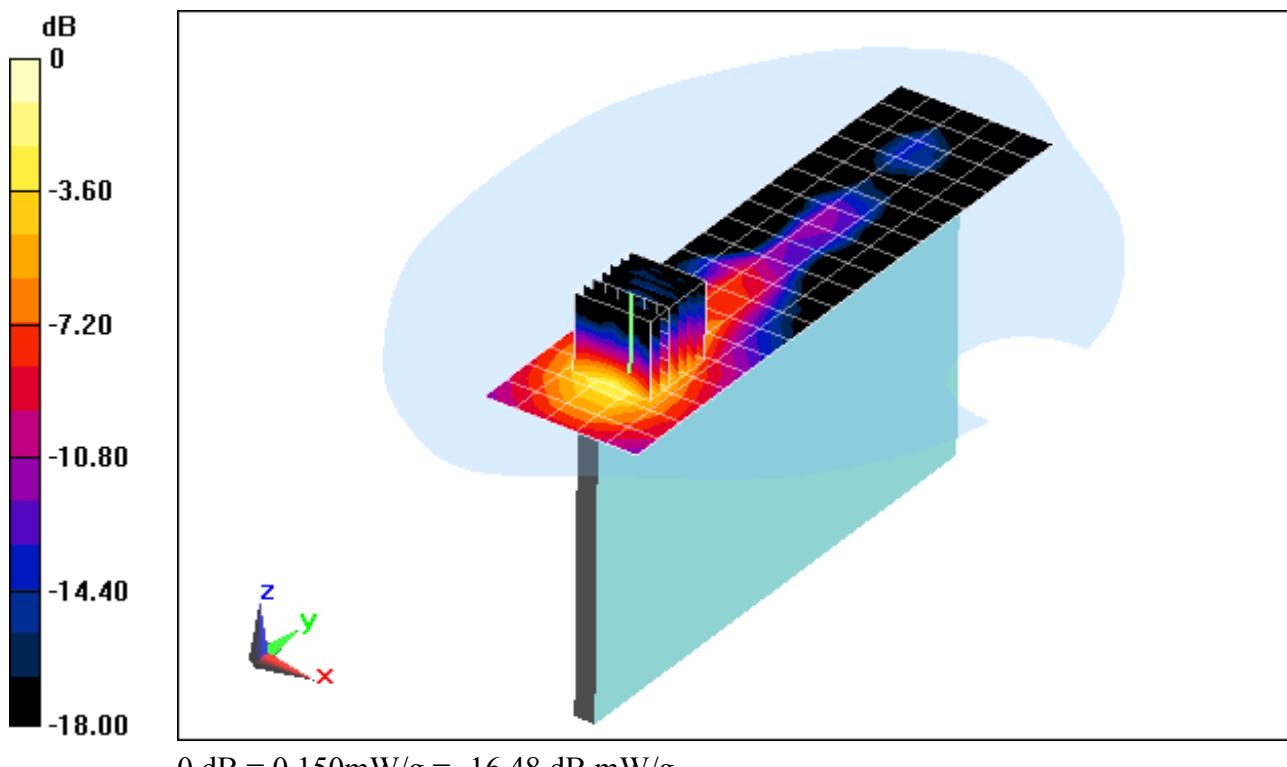
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

**Mode: IEEE 802.11b, Body SAR, Ch 06, 1 Mbps, Right Edge**


**Area Scan (6x20x1):** Measurement grid: dx=12mm, dy=12mm

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.507 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.2740

**SAR(1 g) = 0.113 mW/g; SAR(10 g) = 0.053 mW/g**



## APPENDIX B: SYSTEM VERIFICATION

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d026**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Head Medium parameters used:

$f = 835 \text{ MHz}$ ;  $\sigma = 0.908 \text{ mho/m}$ ;  $\epsilon_r = 42.2$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

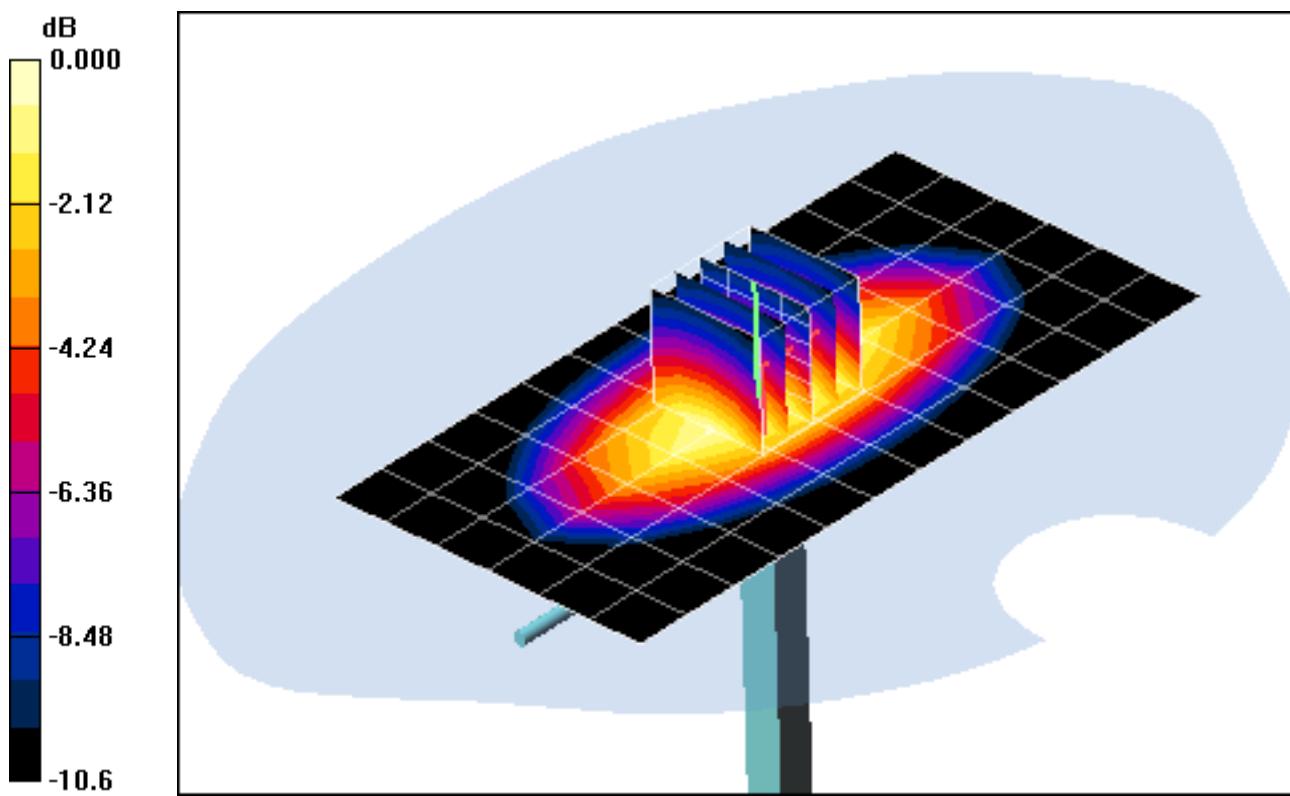
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 835MHz System Verification


**Area Scan (7x13x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power: 20.0 dBm (100 mW)

**SAR(1 g) = 0.971 mW/g; SAR(10 g) = 0.635 mW/g**

Deviation: 2.64%



0 dB = 1.05mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d026**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Head Medium parameters used:

$f = 835 \text{ MHz}$ ;  $\sigma = 0.908 \text{ mho/m}$ ;  $\epsilon_r = 42.2$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-06-2012; Ambient Temp: 23.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3258; ConvF(6.01, 6.01, 6.01); Calibrated: 2/21/2012

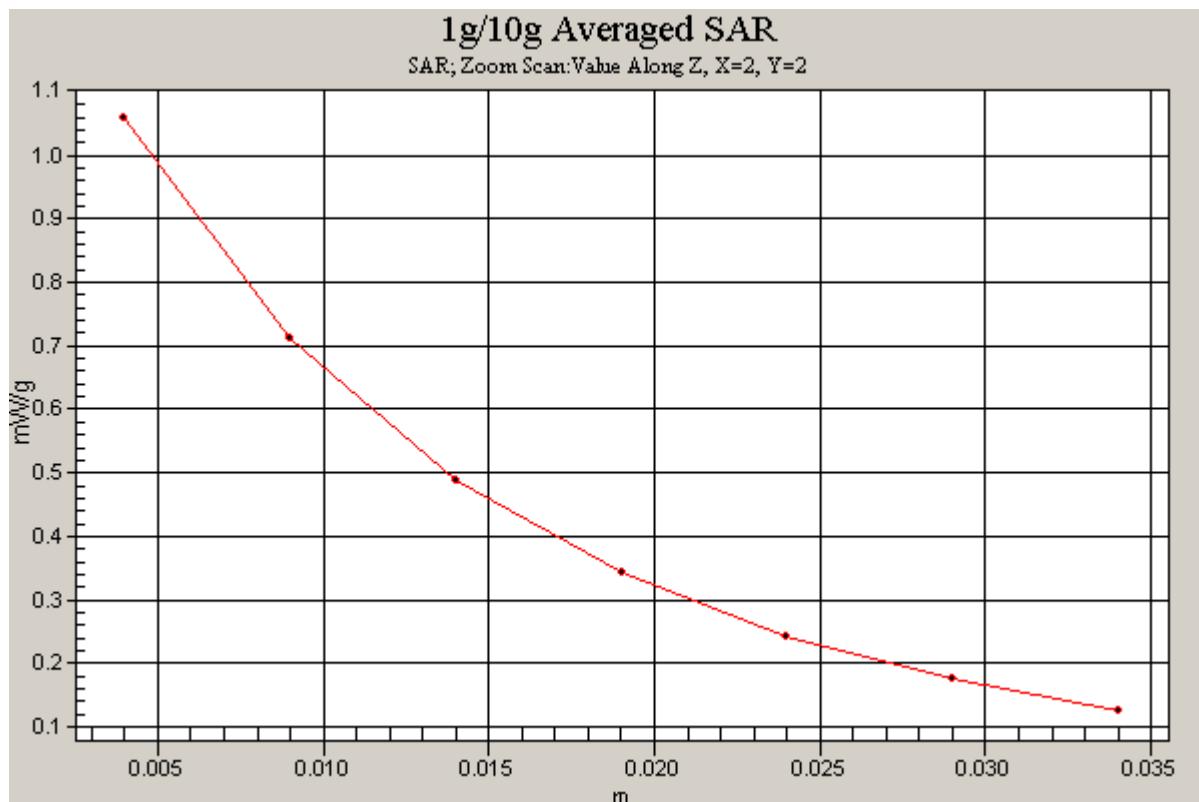
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 835MHz System Verification


**Area Scan (7x13x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power: 20.0 dBm (100 mW)

**SAR(1 g) = 0.971 mW/g; SAR(10 g) = 0.635 mW/g**

Deviation: 2.64%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Head Medium parameters used (interpolated):

$f = 1900$  MHz;  $\sigma = 1.43$  mho/m;  $\epsilon_r = 38.04$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-09-2012; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012

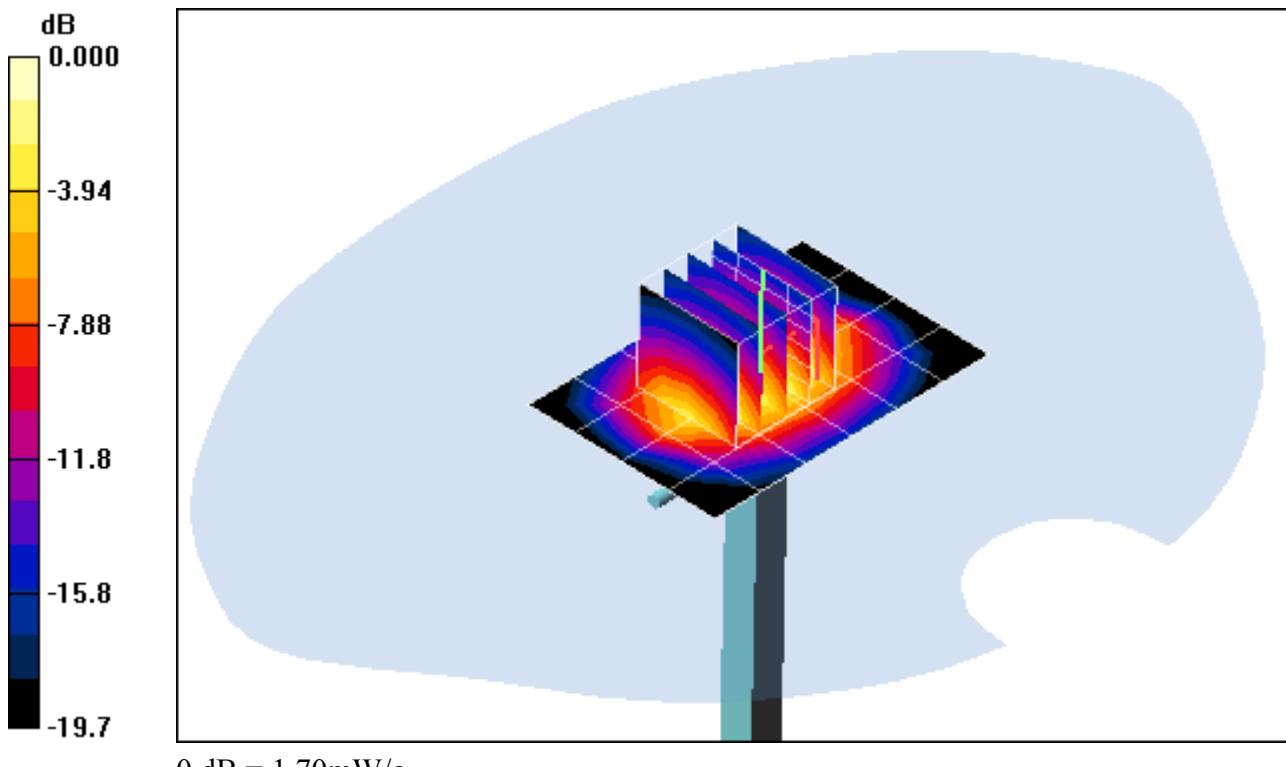
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1323; Calibrated: 2/15/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 1900MHz System Verification


**Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 16.0 dBm (40 mW)

**SAR(1 g) = 1.53 mW/g; SAR(10 g) = 0.768 mW/g**

Deviation: -2.42%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Head Medium parameters used (interpolated):

$f = 1900$  MHz;  $\sigma = 1.43$  mho/m;  $\epsilon_r = 38.04$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-09-2012; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012

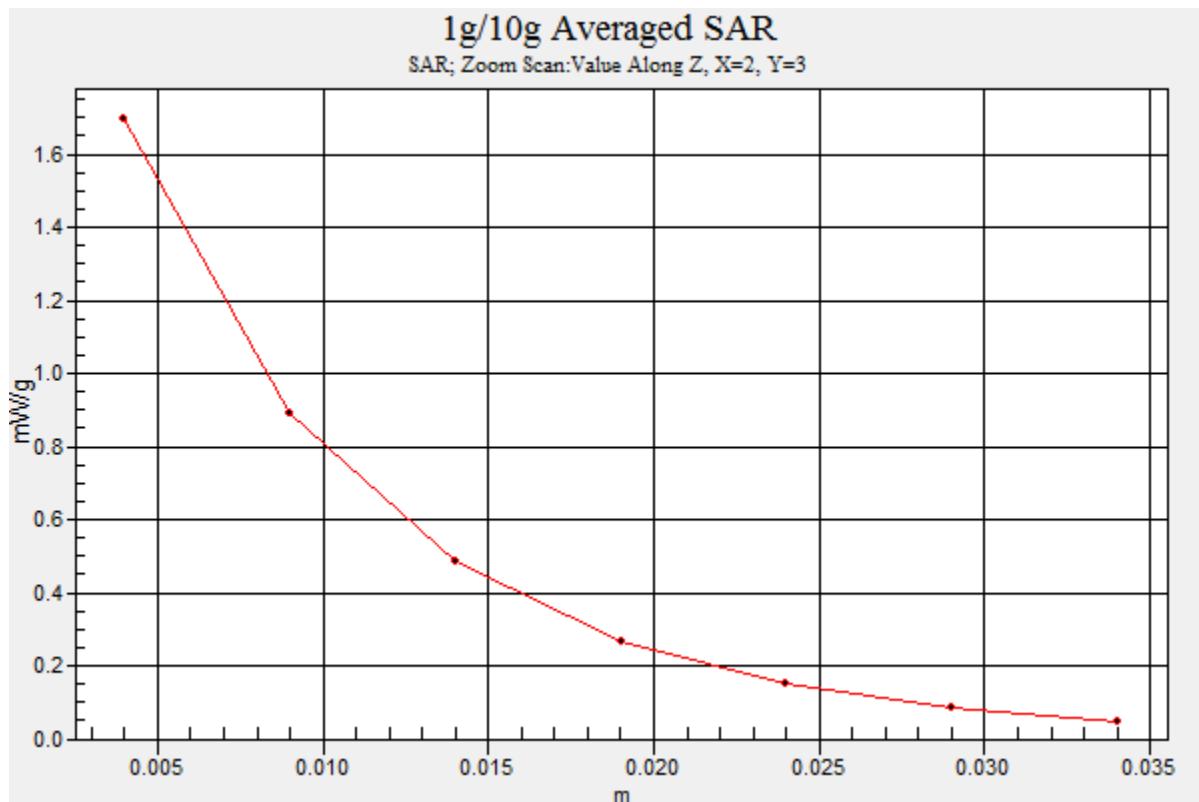
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1323; Calibrated: 2/15/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 1900MHz System Verification


**Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 16.0 dBm (40 mW)

**SAR(1 g) = 1.53 mW/g; SAR(10 g) = 0.768 mW/g**

Deviation: -2.42%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719**

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used:

$f = 2450$  MHz;  $\sigma = 1.883$  mho/m;  $\epsilon_r = 37.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-02-2012; Ambient Temp: 22.4°C; Tissue Temp: 21.1°C

Probe: ES3DV2 - SN3022; ConvF(4.3, 4.3, 4.3); Calibrated: 8/25/2011

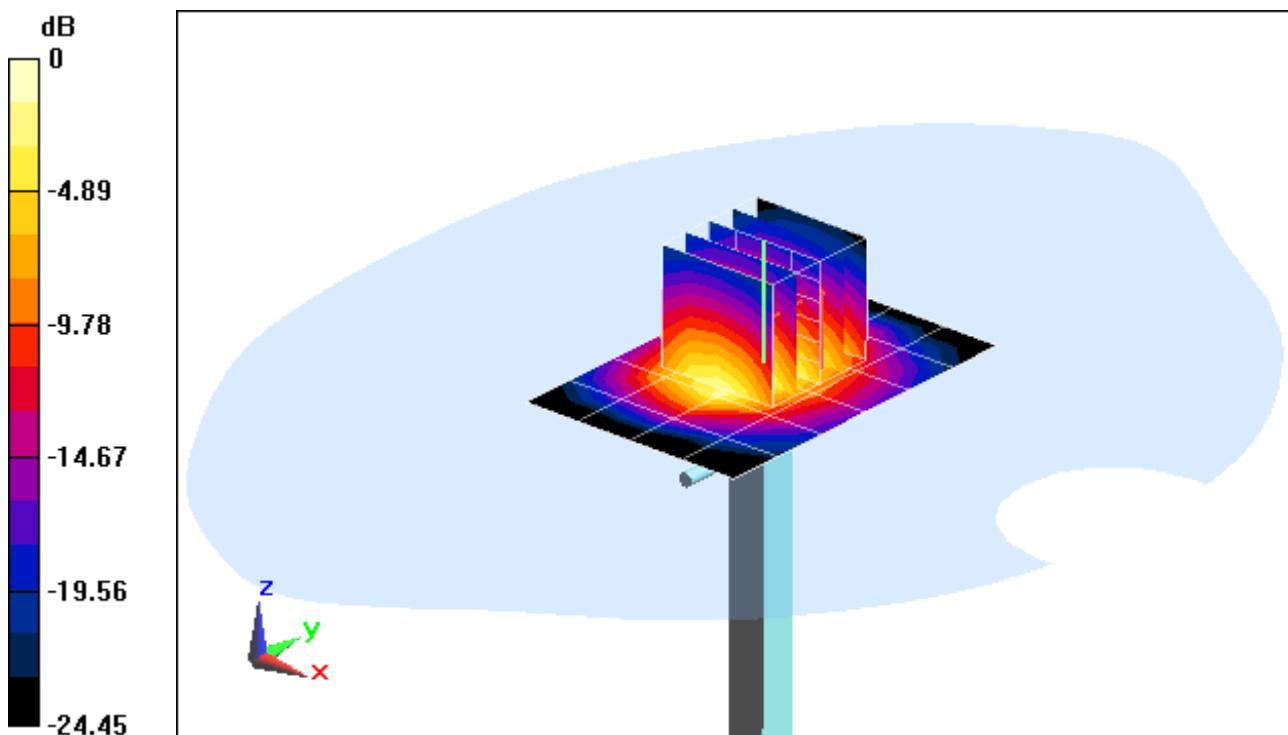
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.4 (4989)

## 2450MHz System Verification


**Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20.0 dBm (100 mW)

**SAR(1 g) = 5.57 mW/g; SAR(10 g) = 2.56 mW/g**

Deviation: 3.53%



0 dB = 7.090mW/g = 17.01 dB mW/g

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719**

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Head Medium parameters used:

$f = 2450$  MHz;  $\sigma = 1.883$  mho/m;  $\epsilon_r = 37.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-02-2012; Ambient Temp: 22.4°C; Tissue Temp: 21.1°C

Probe: ES3DV2 - SN3022; ConvF(4.3, 4.3, 4.3); Calibrated: 8/25/2011

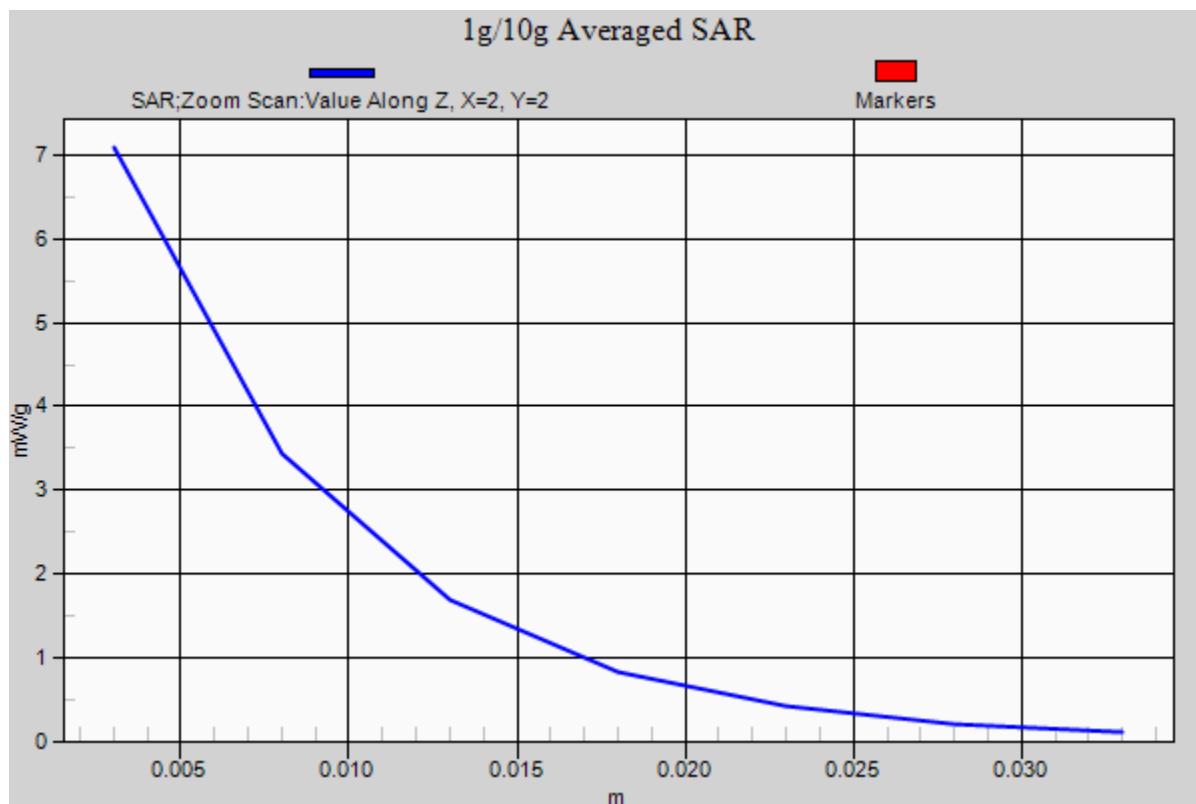
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.4 (4989)

## 2450MHz System Verification


**Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20.0 dBm (100 mW)

**SAR(1 g) = 5.57 mW/g; SAR(10 g) = 2.56 mW/g**

Deviation: 3.53%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 835 MHz; Type: D835V2; Serial: 4d047**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body; Medium parameters used:

$f = 835$  MHz;  $\sigma = 0.989$  mho/m;  $\epsilon_r = 55.12$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-04-2012; Ambient Temp: 24.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3263; ConvF(6.22, 6.22, 6.22); Calibrated: 11/18/2011

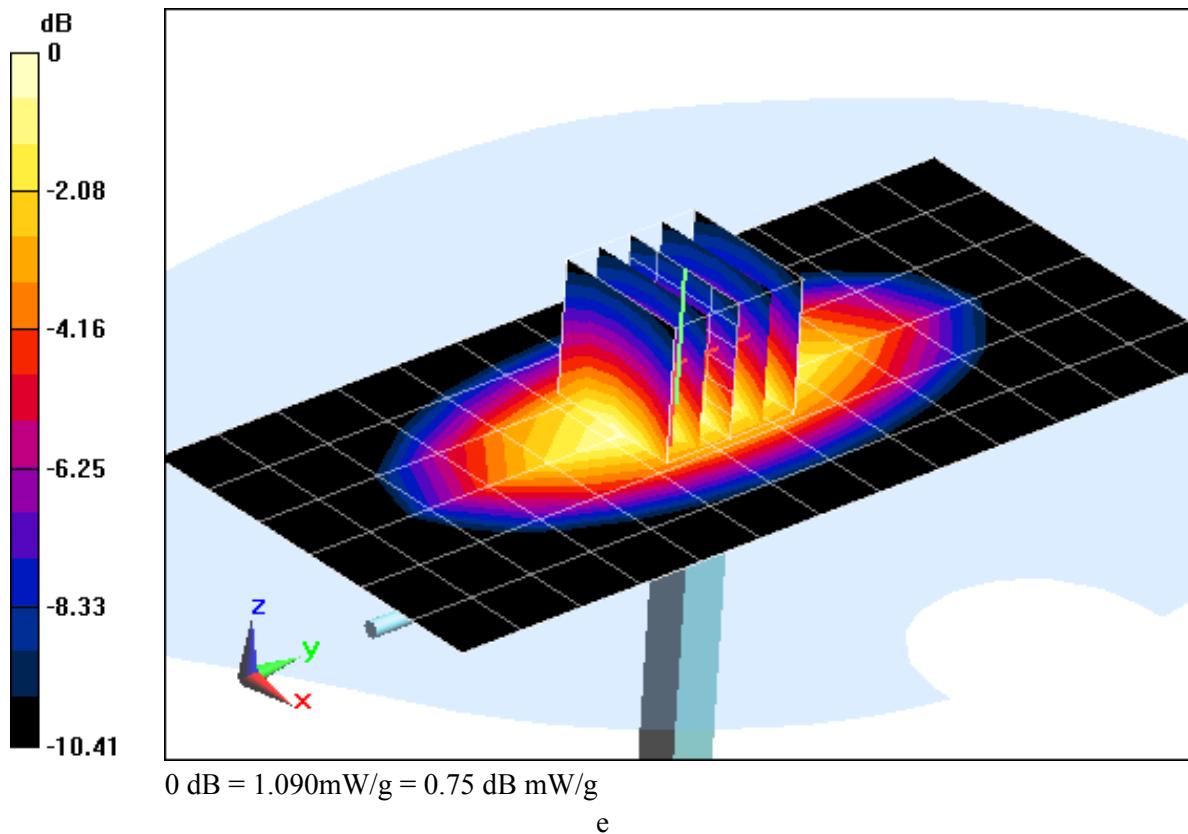
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM v5.0 front; Type: SAM v5.0; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

## 835 MHz System Verification


**Area Scan (7x14x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

**SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.658 mW/g**

Deviation = 7.33 %



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 835 MHz; Type: D835V2; Serial: 4d047**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body; Medium parameters used:

$f = 835 \text{ MHz}$ ;  $\sigma = 0.989 \text{ mho/m}$ ;  $\epsilon_r = 55.12$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-04-2012; Ambient Temp: 24.5°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3263; ConvF(6.22, 6.22, 6.22); Calibrated: 11/18/2011

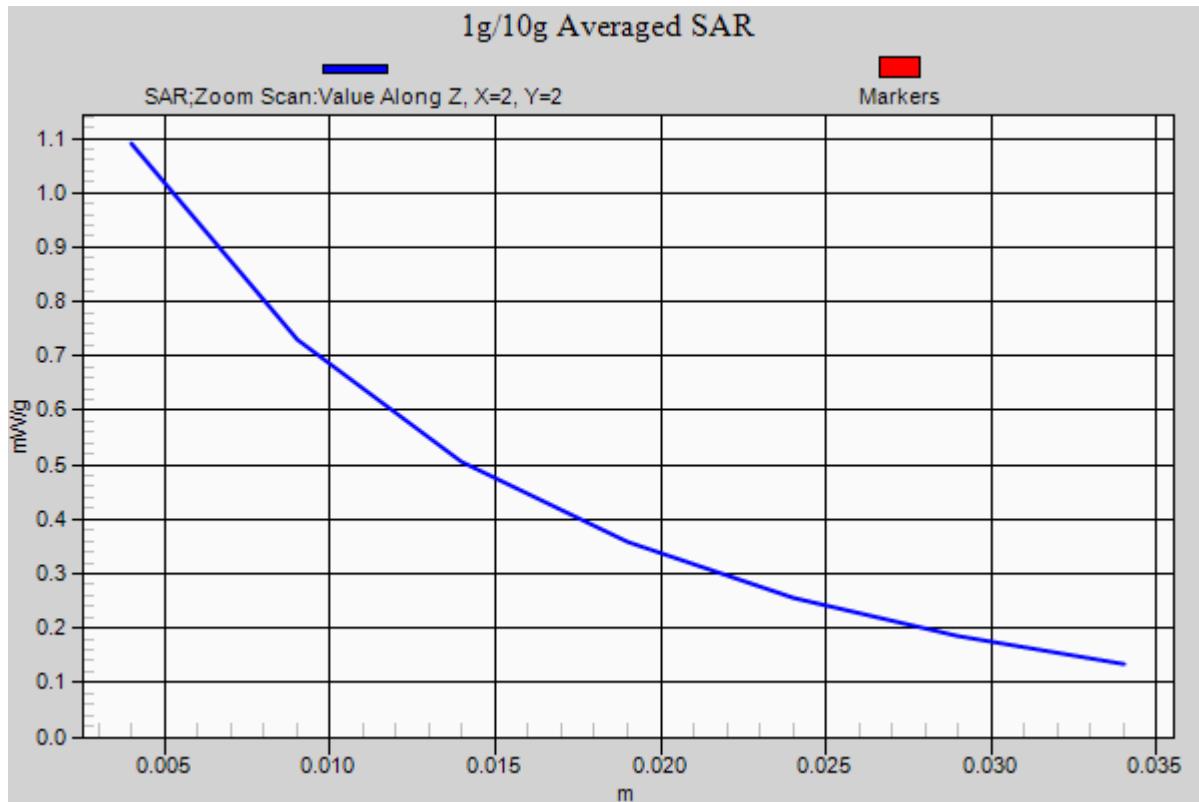
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM v5.0 front; Type: SAM v5.0; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

## 835 MHz System Verification


**Area Scan (7x14x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power = 20.0 dBm (100 mW)

**SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.658 mW/g**

Deviation = 7.33 %



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: 835MHz SAR Validation Dipole; Type: D835V2; Serial: 4d026**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

$f = 835 \text{ MHz}$ ;  $\sigma = 0.966 \text{ mho/m}$ ;  $\epsilon_r = 53$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-09-2012; Ambient Temp: 22.3°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012

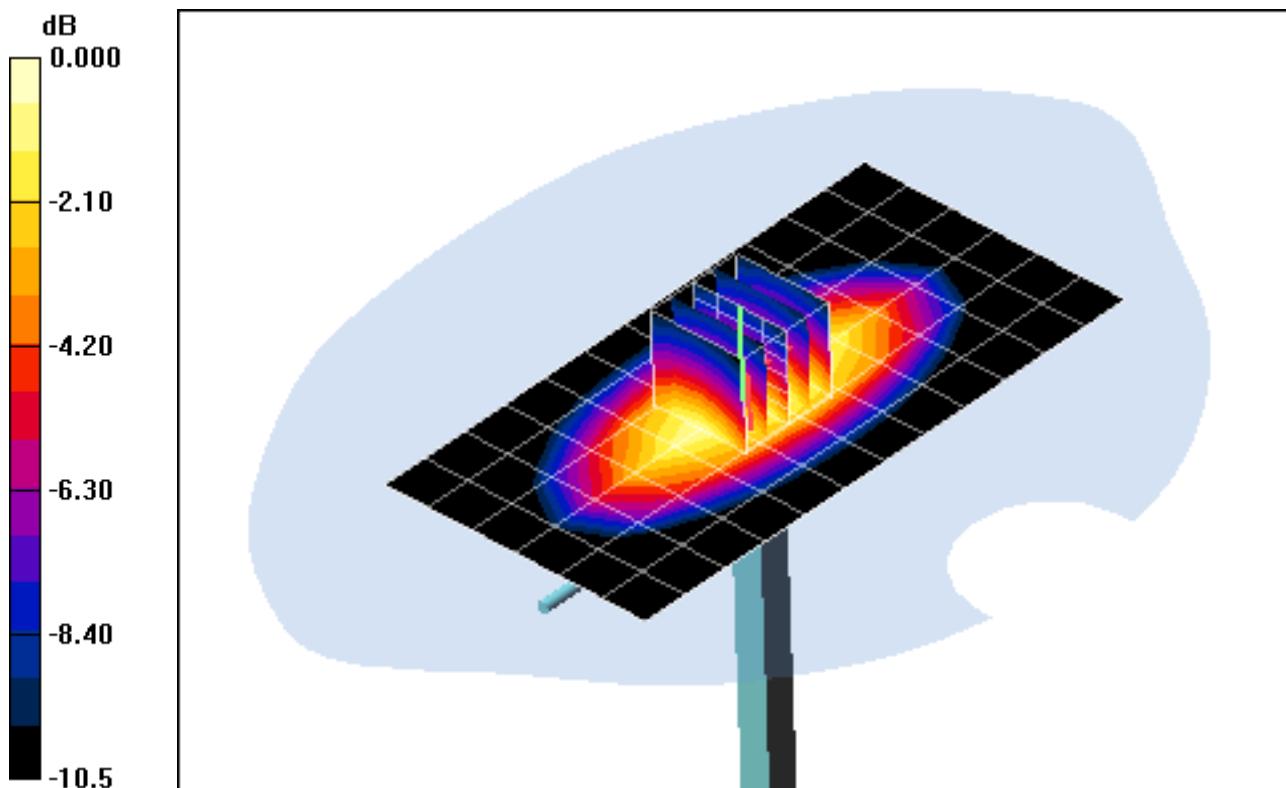
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 835MHz System Verification


**Area Scan (7x13x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power: 20.0 dBm (100 mW)

**SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.673 mW/g**

Deviation: 5.59%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: 835MHz SAR Validation Dipole; Type: D835V2; Serial: 4d026**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

$f = 835 \text{ MHz}$ ;  $\sigma = 0.966 \text{ mho/m}$ ;  $\epsilon_r = 53$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-09-2012; Ambient Temp: 22.3°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012

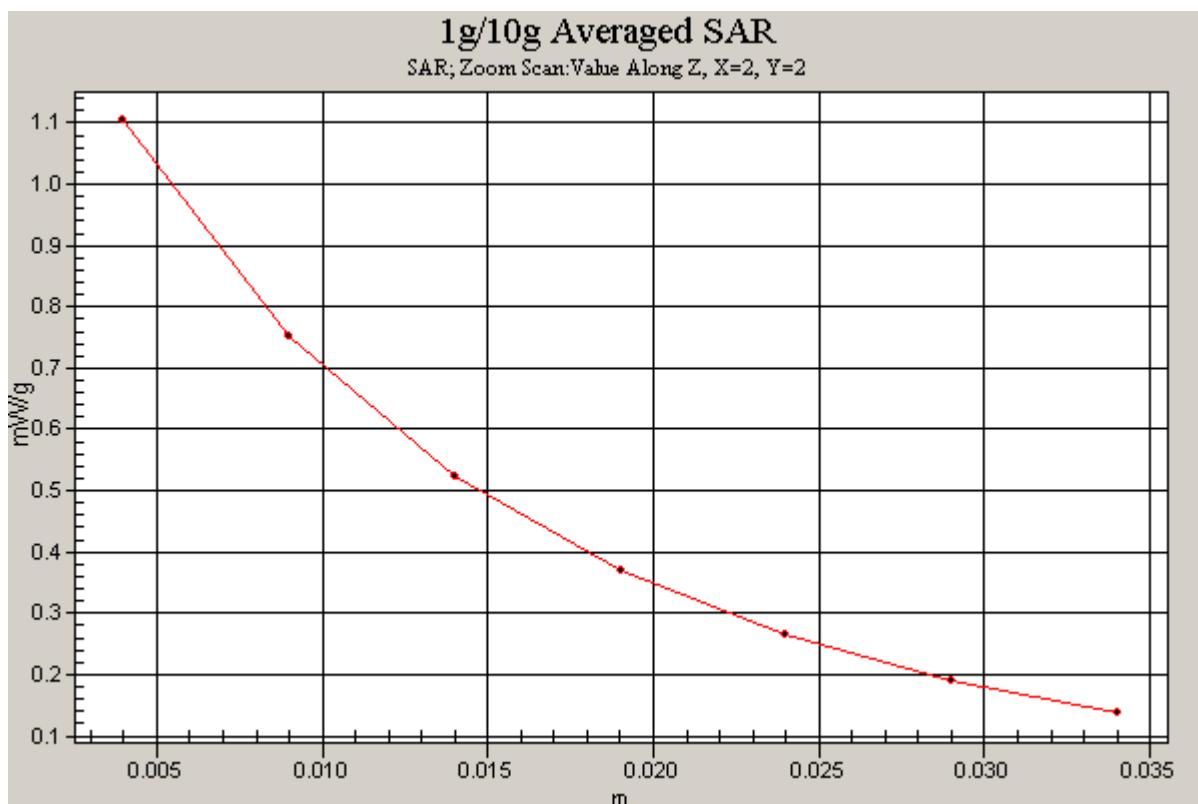
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 835MHz System Verification


**Area Scan (7x13x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power: 20.0 dBm (100 mW)

**SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.673 mW/g**

Deviation: 5.59%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$$f = 1900 \text{ MHz}; \sigma = 1.56 \text{ mho/m}; \epsilon_r = 51.1; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-09-2012; Ambient Temp: 20.6°C; Tissue Temp: 21.0°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011

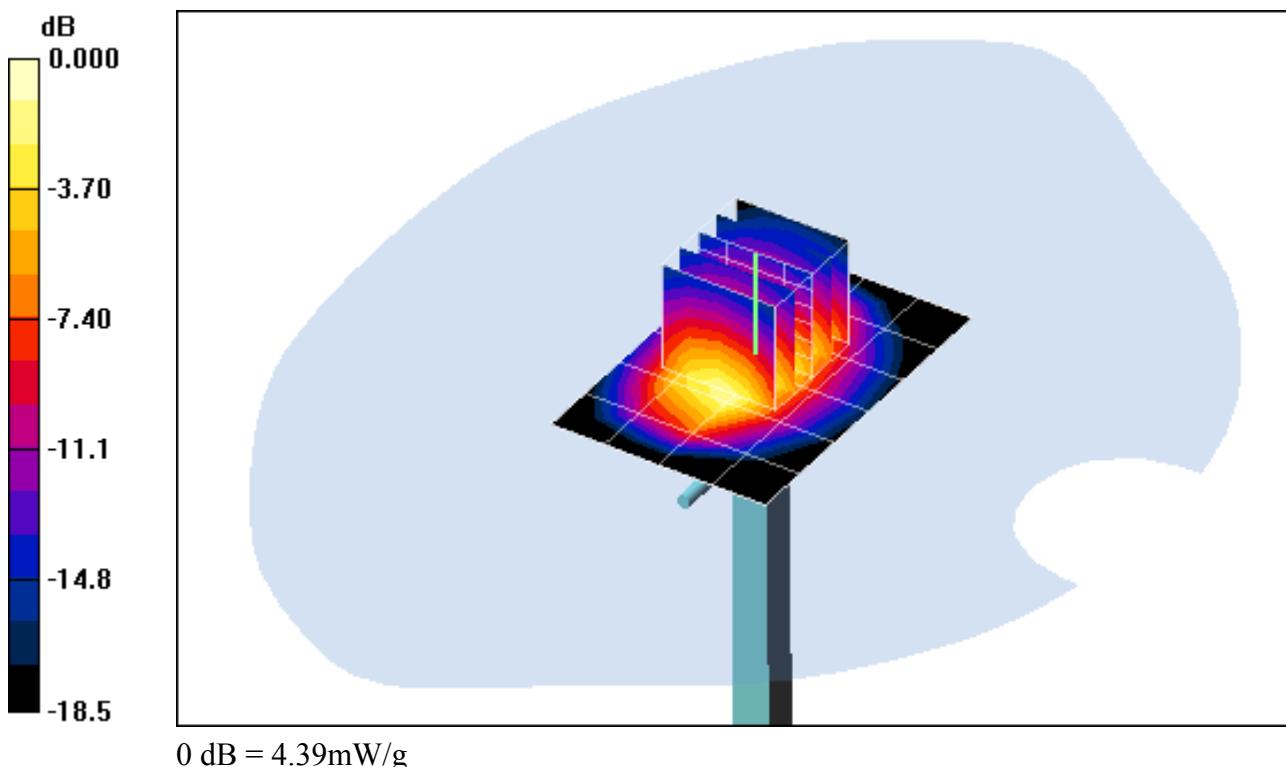
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 1900MHz System Verification


**Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20.0 dBm (100 mW)

**SAR(1 g) = 3.92 mW/g; SAR(10 g) = 2.05 mW/g**

Deviation: 0.77%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$$f = 1900 \text{ MHz}; \sigma = 1.56 \text{ mho/m}; \epsilon_r = 51.1; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-09-2012; Ambient Temp: 20.6°C; Tissue Temp: 21.0°C

Probe: ES3DV2 - SN3022; ConvF(4.41, 4.41, 4.41); Calibrated: 8/25/2011

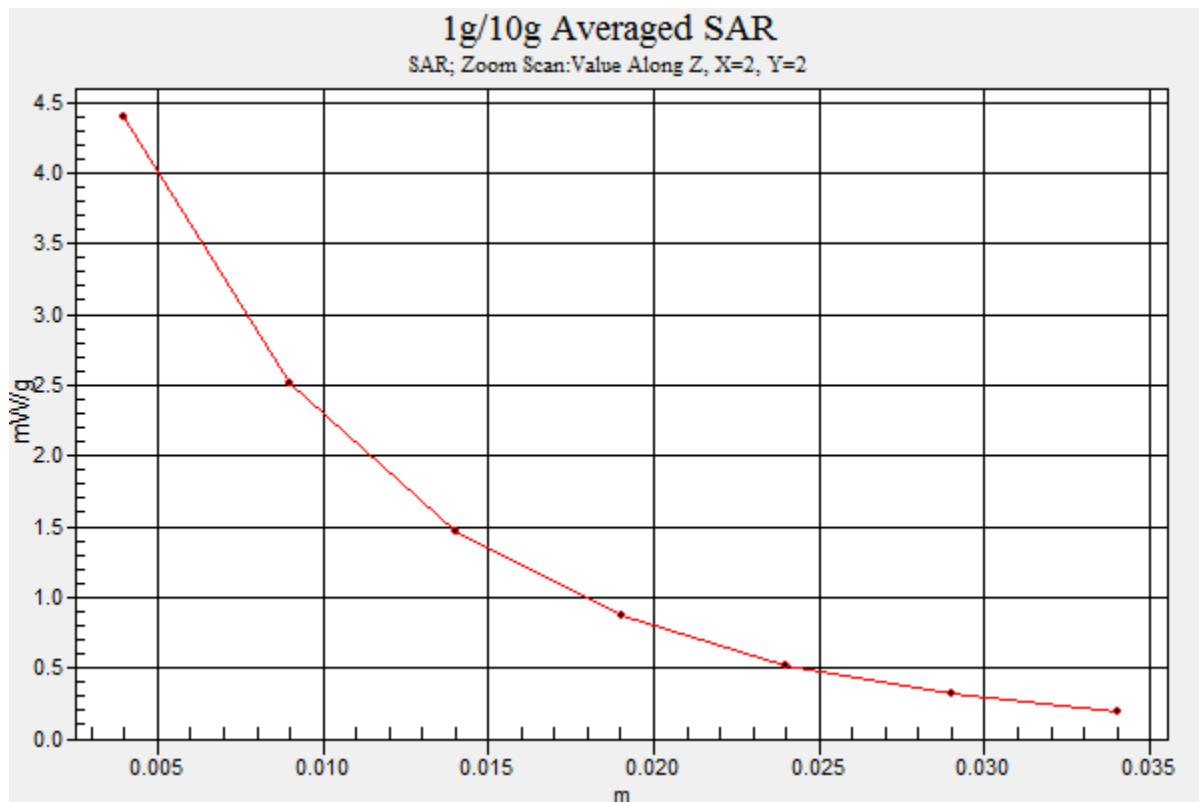
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 1900MHz System Verification


**Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power: 20.0 dBm (100 mW)

**SAR(1 g) = 3.92 mW/g; SAR(10 g) = 2.05 mW/g**

Deviation: 0.77%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719**

Communication System: 2.4GHz WLAN; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

$f = 2450 \text{ MHz}$ ;  $\sigma = 1.893 \text{ mho/m}$ ;  $\epsilon_r = 50.32$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-30-2012; Ambient Temp: 23.1°C; Tissue Temp: 21.3°C

Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/25/2011

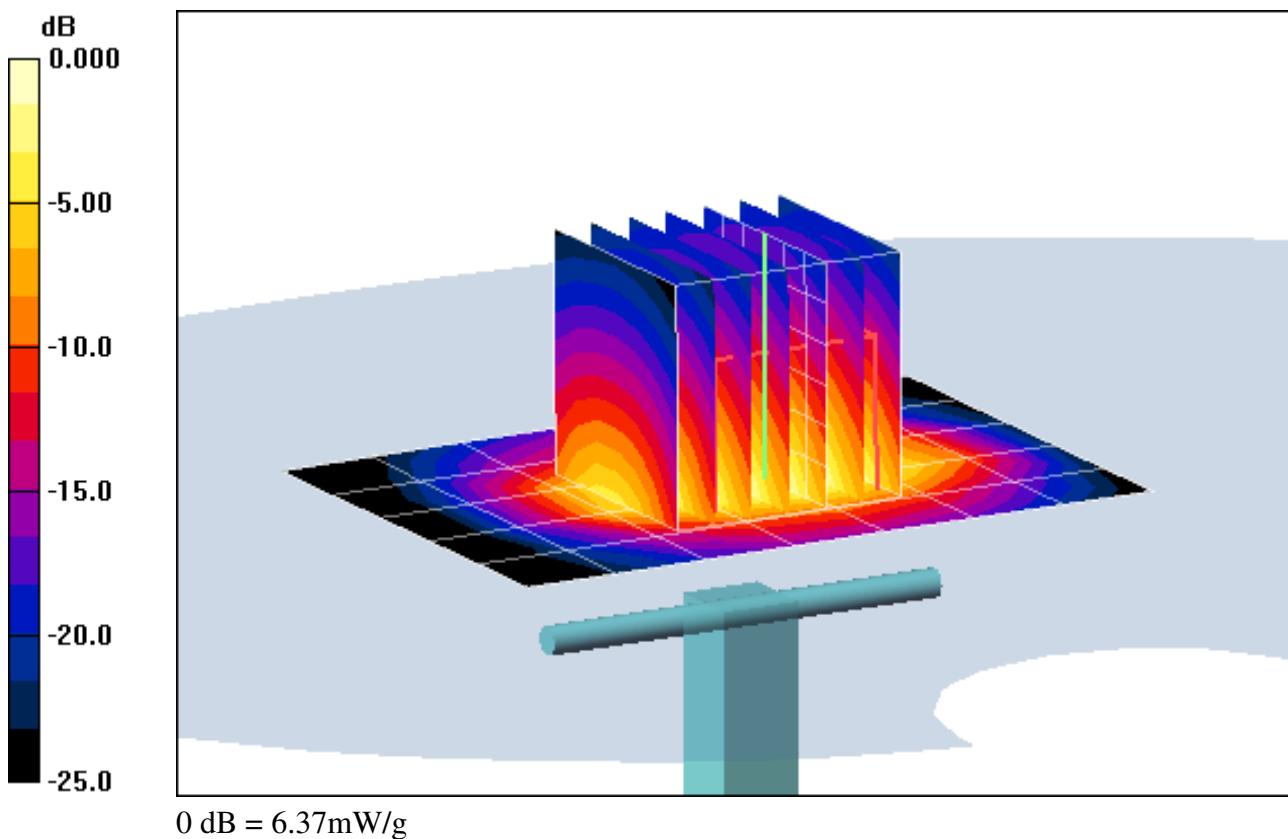
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 2450MHz System Verification


**Area Scan (6x8x1):** Measurement grid:  $dx=12\text{mm}$ ,  $dy=12\text{mm}$

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid:  $dx=5\text{mm}$ ,  $dy=5\text{mm}$ ,  $dz=5\text{mm}$

Input Power = 20.0 dBm (100 mW)

**SAR(1 g) = 4.88 mW/g; SAR(10 g) = 2.2 mW/g**

Deviation = -4.87 %



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719**

Communication System: 2.4GHz WLAN; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

$f = 2450 \text{ MHz}$ ;  $\sigma = 1.893 \text{ mho/m}$ ;  $\epsilon_r = 50.32$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-30-2012; Ambient Temp: 23.1°C; Tissue Temp: 21.3°C

Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/25/2011

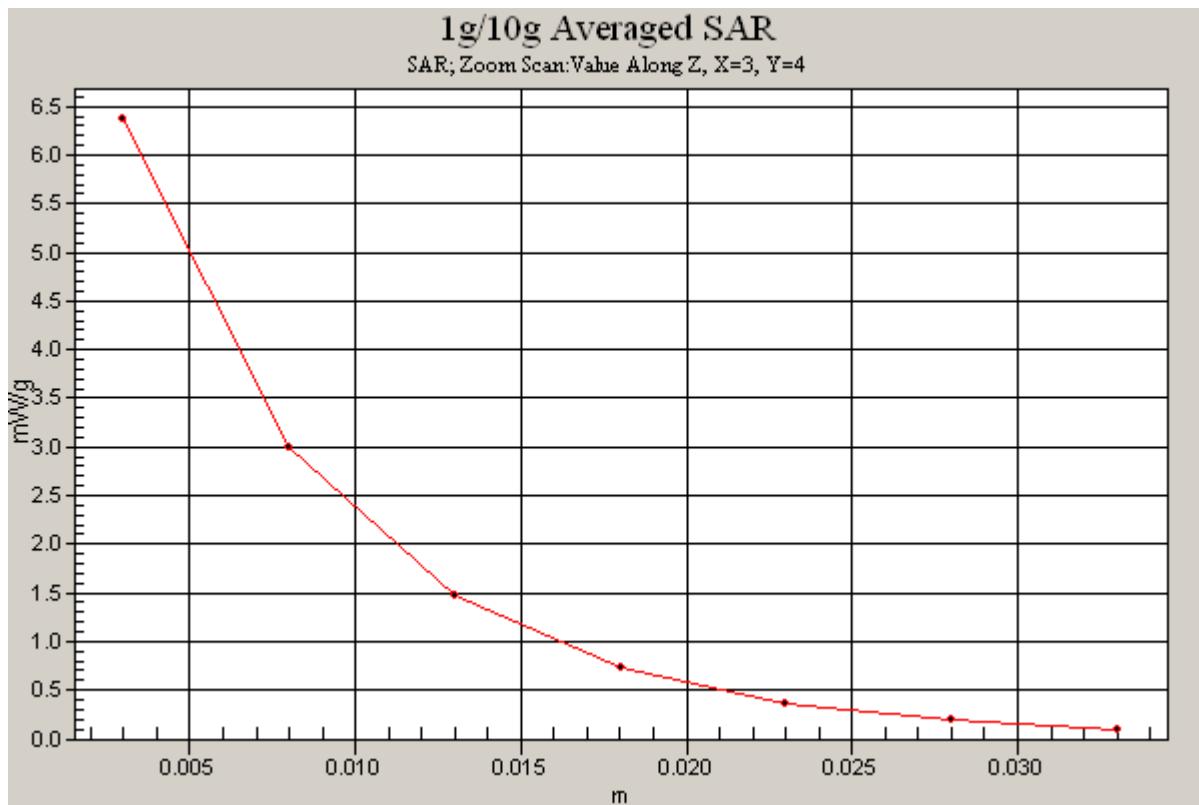
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/19/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 2450MHz System Verification


**Area Scan (6x8x1):** Measurement grid:  $dx=12\text{mm}$ ,  $dy=12\text{mm}$

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid:  $dx=5\text{mm}$ ,  $dy=5\text{mm}$ ,  $dz=5\text{mm}$

Input Power = 20.0 dBm (100 mW)

**SAR(1 g) = 4.88 mW/g; SAR(10 g) = 2.2 mW/g**

Deviation = -4.87 %



## APPENDIX C: PROBE CALIBRATION



Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Client **PC Test**

Certificate No: **D1900V2-502\_Feb12**

## **CALIBRATION CERTIFICATE**

Object **D1900V2 - SN: 502**

Calibration procedure(s) **QA CAL-05.v8**  
 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **February 22, 2012**

*✓ KOK  
2/27/12*

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).  
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .

### Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 05-Oct-11 (No. 217-01451)         | Oct-12                 |
| Power sensor HP 8481A       | US37292783         | 05-Oct-11 (No. 217-01451)         | Oct-12                 |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 29-Mar-11 (No. 217-01368)         | Apr-12                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371)         | Apr-12                 |
| Reference Probe ES3DV3      | SN: 3205           | 30-Dec-11 (No. ES3-3205_Dec11)    | Dec-12                 |
| DAE4                        | SN: 601            | 04-Jul-11 (No. DAE4-601_Jul11)    | Jul-12                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 |

| Calibrated by: | Name           | Function              | Signature             |
|----------------|----------------|-----------------------|-----------------------|
|                | Israe El-Naouq | Laboratory Technician | <i>Israe El-Naouq</i> |
| Approved by:   | Katja Pokovic  | Technical Manager     | <i>K. Pokovic</i>     |

Issued: February 22, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

#### **Glossary:**

|       |                                |
|-------|--------------------------------|
| TS    | tissue simulating liquid       |
| ConvF | sensitivity in TS / NORM x,y,z |
| N/A   | not applicable or not measured |

#### **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

- d) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

## Measurement Conditions

DASY system configuration, as far as not given on page 1.

|                              |                        |             |
|------------------------------|------------------------|-------------|
| DASY Version                 | DASY5                  | V52.8.0     |
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1900 MHz $\pm$ 1 MHz   |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature         | Permittivity   | Conductivity         |
|-----------------------------------------|---------------------|----------------|----------------------|
| Nominal Head TSL parameters             | 22.0 °C             | 40.0           | 1.40 mho/m           |
| Measured Head TSL parameters            | (22.0 $\pm$ 0.2) °C | 40.4 $\pm$ 6 % | 1.40 mho/m $\pm$ 6 % |
| Head TSL temperature change during test | < 0.5 °C            | ----           | ----                 |

## SAR result with Head TSL

|                                                       |                    |                                |
|-------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                                |
| SAR measured                                          | 250 mW input power | 9.79 mW / g                    |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 39.2 mW / g $\pm$ 17.0 % (k=2) |

|                                                         |                    |                                |
|---------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                                |
| SAR measured                                            | 250 mW input power | 5.17 mW / g                    |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.7 mW / g $\pm$ 16.5 % (k=2) |

## Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature         | Permittivity   | Conductivity         |
|-----------------------------------------|---------------------|----------------|----------------------|
| Nominal Body TSL parameters             | 22.0 °C             | 53.3           | 1.52 mho/m           |
| Measured Body TSL parameters            | (22.0 $\pm$ 0.2) °C | 53.0 $\pm$ 6 % | 1.56 mho/m $\pm$ 6 % |
| Body TSL temperature change during test | < 0.5 °C            | ----           | ----                 |

## SAR result with Body TSL

|                                                       |                    |                                |
|-------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                                |
| SAR measured                                          | 250 mW input power | 9.88 mW / g                    |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 38.9 mW / g $\pm$ 17.0 % (k=2) |

|                                                         |                    |                                |
|---------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                                |
| SAR measured                                            | 250 mW input power | 5.17 mW / g                    |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.5 mW / g $\pm$ 16.5 % (k=2) |

## Appendix

### Antenna Parameters with Head TSL

|                                      |                             |
|--------------------------------------|-----------------------------|
| Impedance, transformed to feed point | $51.7 \Omega + 7.2 j\Omega$ |
| Return Loss                          | - 22.8 dB                   |

### Antenna Parameters with Body TSL

|                                      |                             |
|--------------------------------------|-----------------------------|
| Impedance, transformed to feed point | $47.2 \Omega + 7.6 j\Omega$ |
| Return Loss                          | - 21.6 dB                   |

### General Antenna Parameters and Design

|                                  |          |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.206 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

|                 |                   |
|-----------------|-------------------|
| Manufactured by | SPEAG             |
| Manufactured on | November 14, 1998 |

# DASY5 Validation Report for Head TSL

Date: 22.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 502

Communication System: CW; Frequency: 1900 MHz

Medium parameters used:  $f = 1900$  MHz;  $\sigma = 1.4$  mho/m;  $\epsilon_r = 40.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

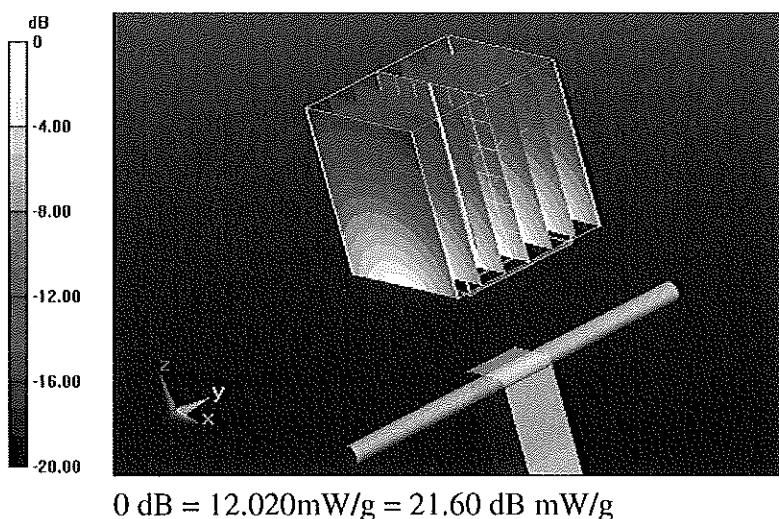
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

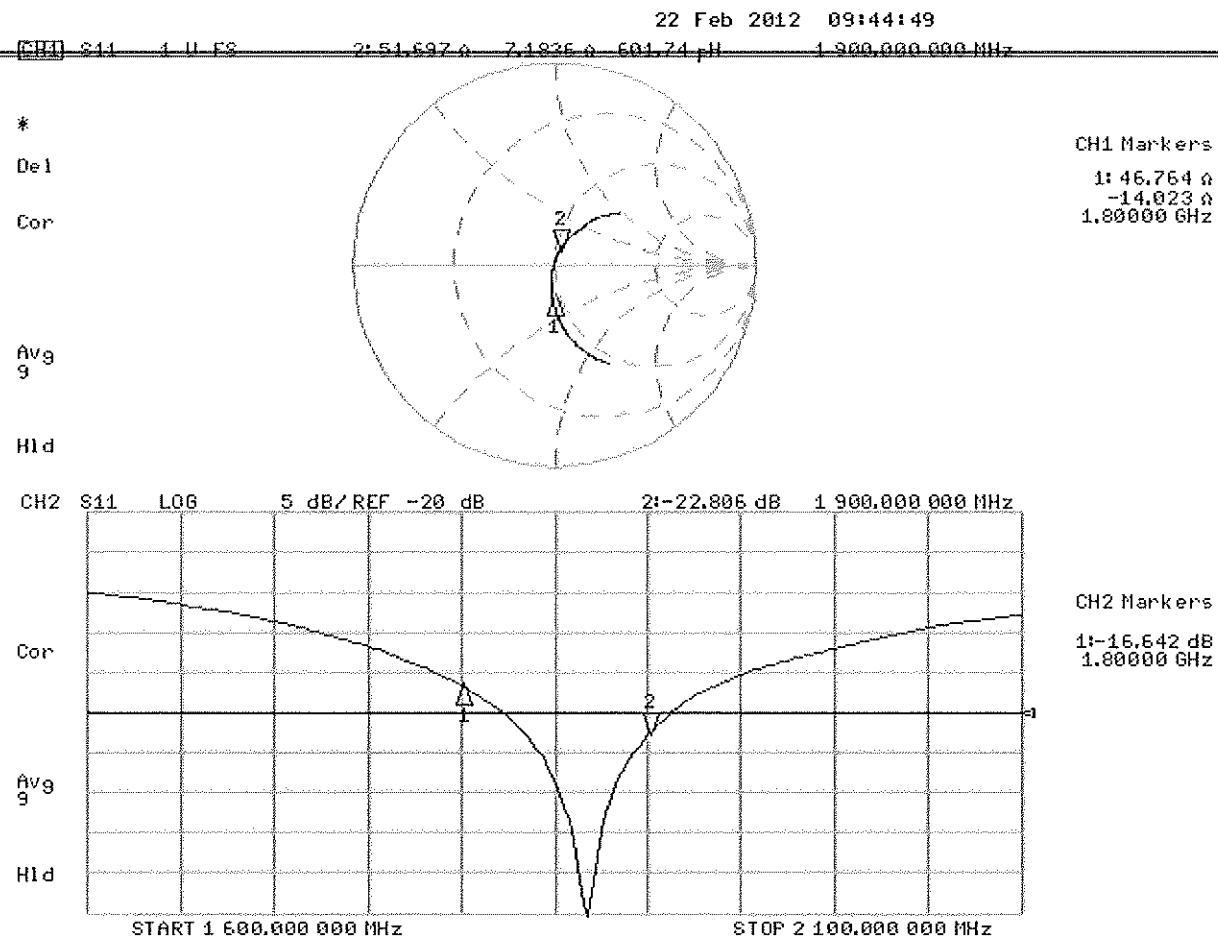
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

## **Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:**


Measurement grid:  $dx=5$  mm,  $dy=5$  mm,  $dz=5$  mm

Reference Value = 96.315 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 17.4000

**SAR(1 g) = 9.79 mW/g; SAR(10 g) = 5.17 mW/g**

Maximum value of SAR (measured) = 12.015 mW/g



# Impedance Measurement Plot for Head TSL



# DASY5 Validation Report for Body TSL

Date: 22.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 502

Communication System: CW; Frequency: 1900 MHz

Medium parameters used:  $f = 1900$  MHz;  $\sigma = 1.56$  mho/m;  $\epsilon_r = 53$ ;  $\rho = 1000$  kg/m<sup>3</sup>

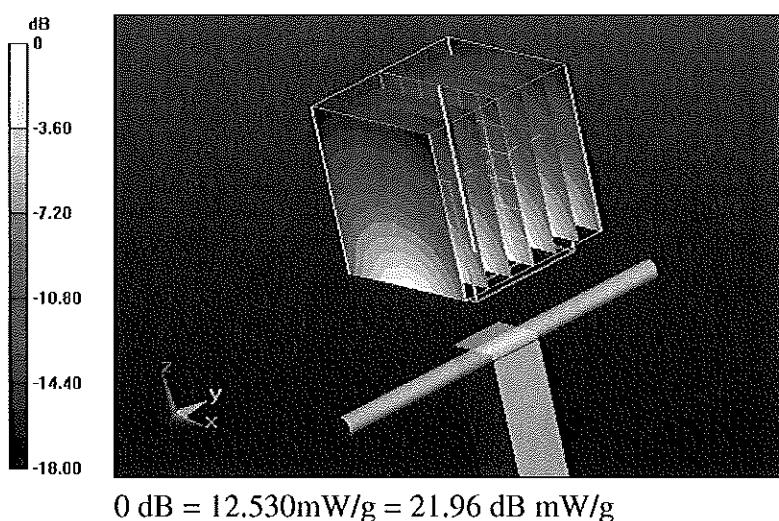
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

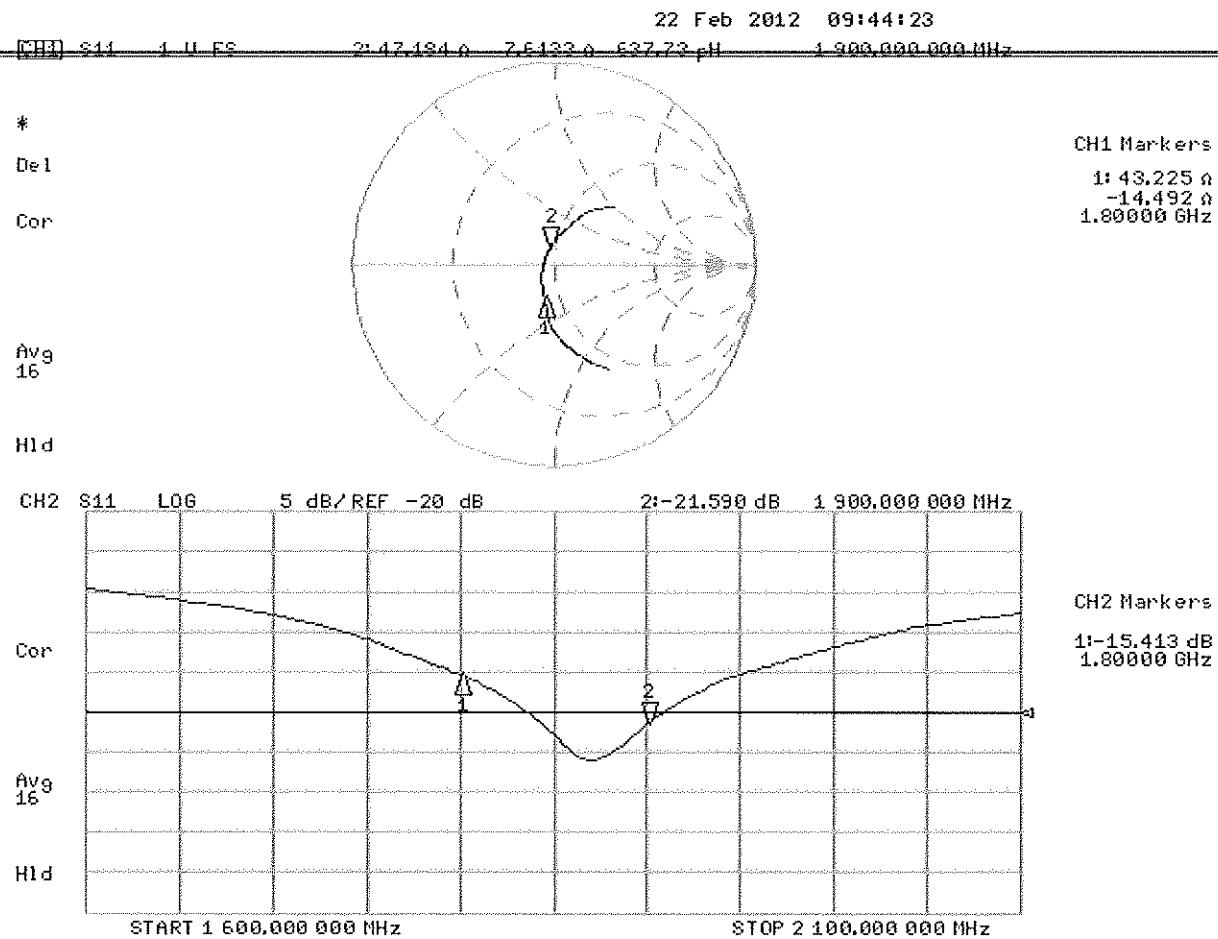
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

## **Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:**


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.607 V/m; Power Drift = 0.0093 dB


Peak SAR (extrapolated) = 17.4260

**SAR(1 g) = 9.88 mW/g; SAR(10 g) = 5.17 mW/g**

Maximum value of SAR (measured) = 12.532 mW/g



# Impedance Measurement Plot for Body TSL





Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Client **PC Test**

Certificate No: **D2450V2-719\_Aug11**

## CALIBRATION CERTIFICATE

Object **D2450V2 - SN: 719**

Calibration procedure(s) **QA CAL-05.v8**  
 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **August 19, 2011**

✓OK  
 9/6/11

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 06-Oct-10 (No. 217-01266)         | Oct-11                 |
| Power sensor HP 8481A       | US37292783         | 06-Oct-10 (No. 217-01266)         | Oct-11                 |
| Reference 20 dB Attenuator  | SN: S5086 (20b)    | 29-Mar-11 (No. 217-01367)         | Apr-12                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371)         | Apr-12                 |
| Reference Probe ES3DV3      | SN: 3205           | 29-Apr-11 (No. ES3-3205_Apr11)    | Apr-12                 |
| DAE4                        | SN: 601            | 04-Jul-11 (No. DAE4-601_Jul11)    | Jul-12                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-09) | In house check: Oct-11 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 |

Calibrated by: Name **Claudio Leubler** Function **Laboratory Technician**

Approved by: Name **Katja Pokovic** Function **Technical Manager**

Issued: August 22, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

|       |                                |
|-------|--------------------------------|
| TS    | tissue simulating liquid       |
| ConvF | sensitivity in TS / NORM x,y,z |
| N/A   | not applicable or not measured |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

- d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

## Measurement Conditions

DASY system configuration, as far as not given on page 1.

|                              |                        |             |
|------------------------------|------------------------|-------------|
| DASY Version                 | DASY5                  | V52.6.2     |
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz $\pm$ 1 MHz   |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature         | Permittivity   | Conductivity         |
|-----------------------------------------|---------------------|----------------|----------------------|
| Nominal Head TSL parameters             | 22.0 °C             | 39.2           | 1.80 mho/m           |
| Measured Head TSL parameters            | (22.0 $\pm$ 0.2) °C | 38.4 $\pm$ 6 % | 1.85 mho/m $\pm$ 6 % |
| Head TSL temperature change during test | < 0.5 °C            | ----           | ----                 |

## SAR result with Head TSL

|                                                       |                    |                                |
|-------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                                |
| SAR measured                                          | 250 mW input power | 13.7 mW / g                    |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 53.8 mW / g $\pm$ 17.0 % (k=2) |

|                                                         |                    |                                |
|---------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                                |
| SAR measured                                            | 250 mW input power | 6.35 mW / g                    |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.2 mW / g $\pm$ 16.5 % (k=2) |

## Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature         | Permittivity   | Conductivity         |
|-----------------------------------------|---------------------|----------------|----------------------|
| Nominal Body TSL parameters             | 22.0 °C             | 52.7           | 1.95 mho/m           |
| Measured Body TSL parameters            | (22.0 $\pm$ 0.2) °C | 51.8 $\pm$ 6 % | 2.02 mho/m $\pm$ 6 % |
| Body TSL temperature change during test | < 0.5 °C            | ----           | ----                 |

## SAR result with Body TSL

|                                                       |                    |                                |
|-------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                                |
| SAR measured                                          | 250 mW input power | 13.1 mW / g                    |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 51.3 mW / g $\pm$ 17.0 % (k=2) |

|                                                         |                    |                                |
|---------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                                |
| SAR measured                                            | 250 mW input power | 6.07 mW / g                    |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.1 mW / g $\pm$ 16.5 % (k=2) |

## Appendix

### Antenna Parameters with Head TSL

|                                      |                             |
|--------------------------------------|-----------------------------|
| Impedance, transformed to feed point | $53.2 \Omega + 3.6 j\Omega$ |
| Return Loss                          | - 26.6 dB                   |

### Antenna Parameters with Body TSL

|                                      |                             |
|--------------------------------------|-----------------------------|
| Impedance, transformed to feed point | $49.6 \Omega + 4.3 j\Omega$ |
| Return Loss                          | - 27.3 dB                   |

### General Antenna Parameters and Design

|                                  |          |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.149 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

|                 |                    |
|-----------------|--------------------|
| Manufactured by | SPEAG              |
| Manufactured on | September 10, 2002 |

# DASY5 Validation Report for Head TSL

Date: 18.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

~~DUT: Dipole 2450 MHz, Type: D2450V2, Serial: D2450V2 - SN: 719~~

Communication System: CW; Frequency: 2450 MHz

Medium parameters used:  $f = 2450$  MHz;  $\sigma = 1.85$  mho/m;  $\epsilon_r = 38.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

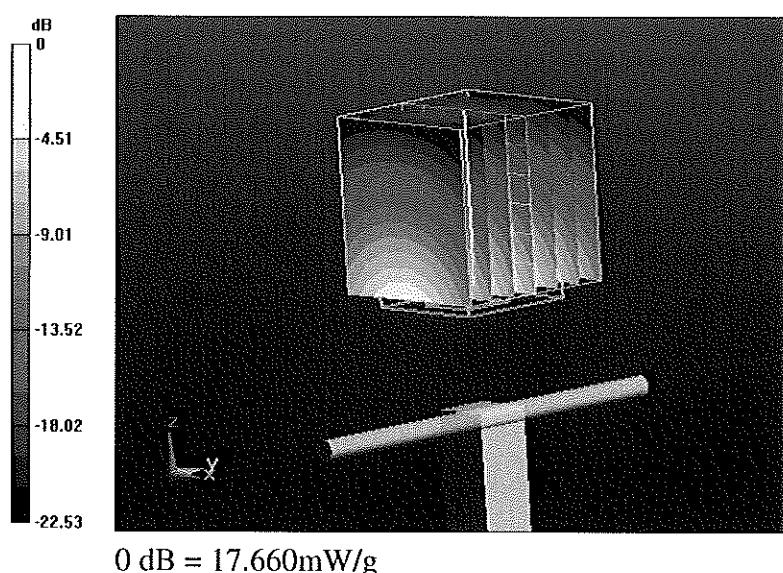
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

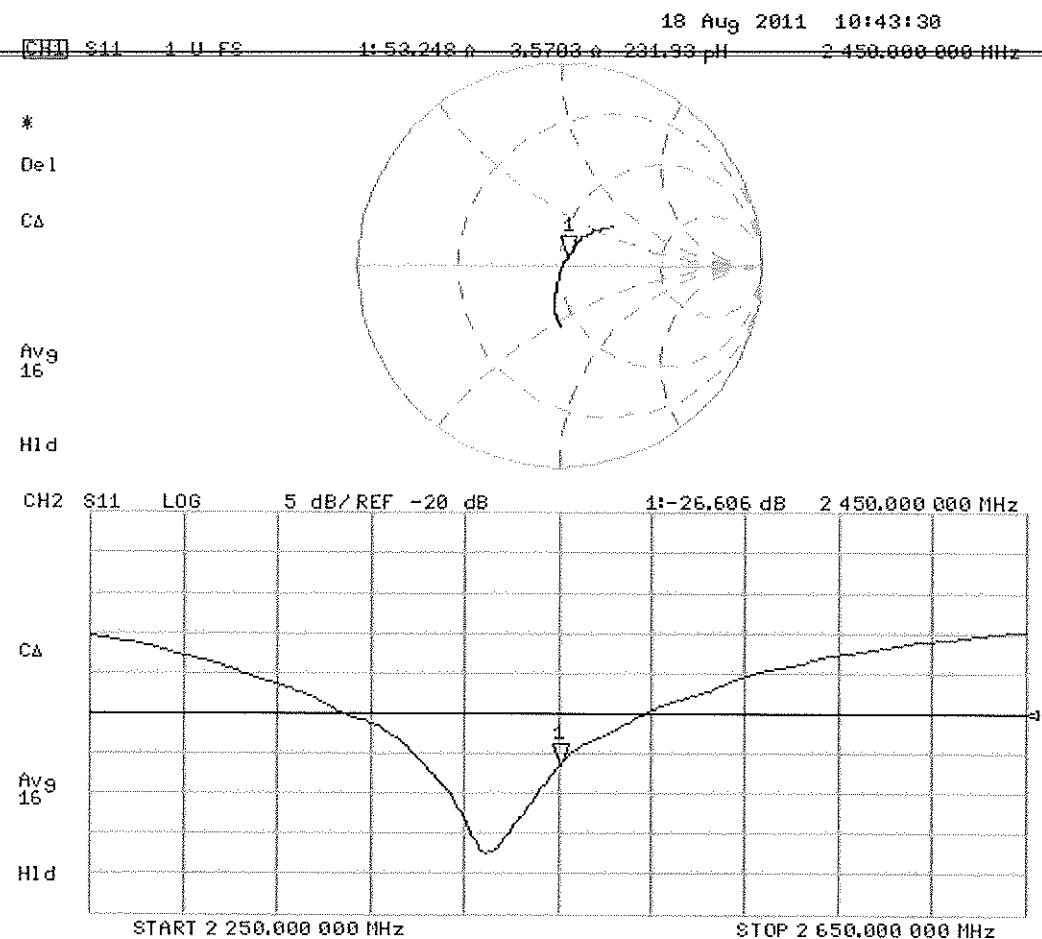
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid:  $dx=5$  mm,  $dy=5$  mm,  $dz=5$  mm

Reference Value = 101.4 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 28.234 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.35 mW/g

Maximum value of SAR (measured) = 17.657 mW/g



## Impedance Measurement Plot for Head TSL



# DASY5 Validation Report for Body TSL

Date: 19.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719**

Communication System: CW; Frequency: 2450 MHz

Medium parameters used:  $f = 2450$  MHz;  $\sigma = 2.02$  mho/m;  $\epsilon_r = 51.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

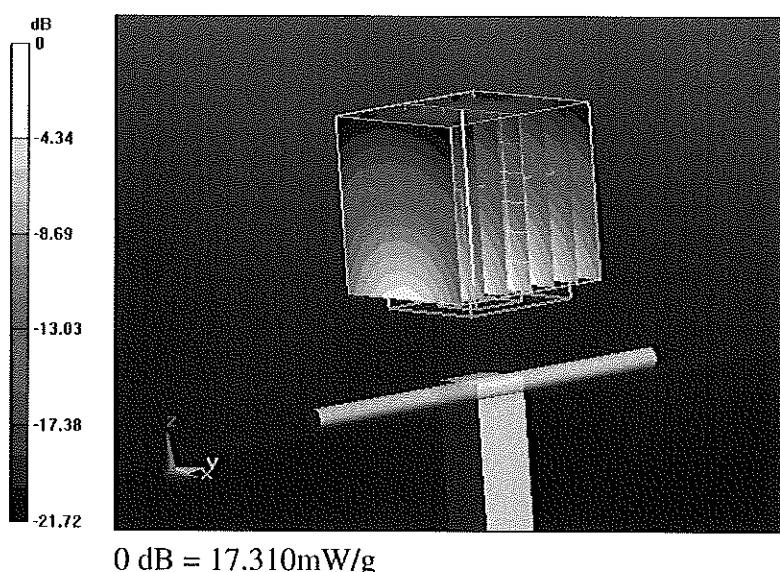
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

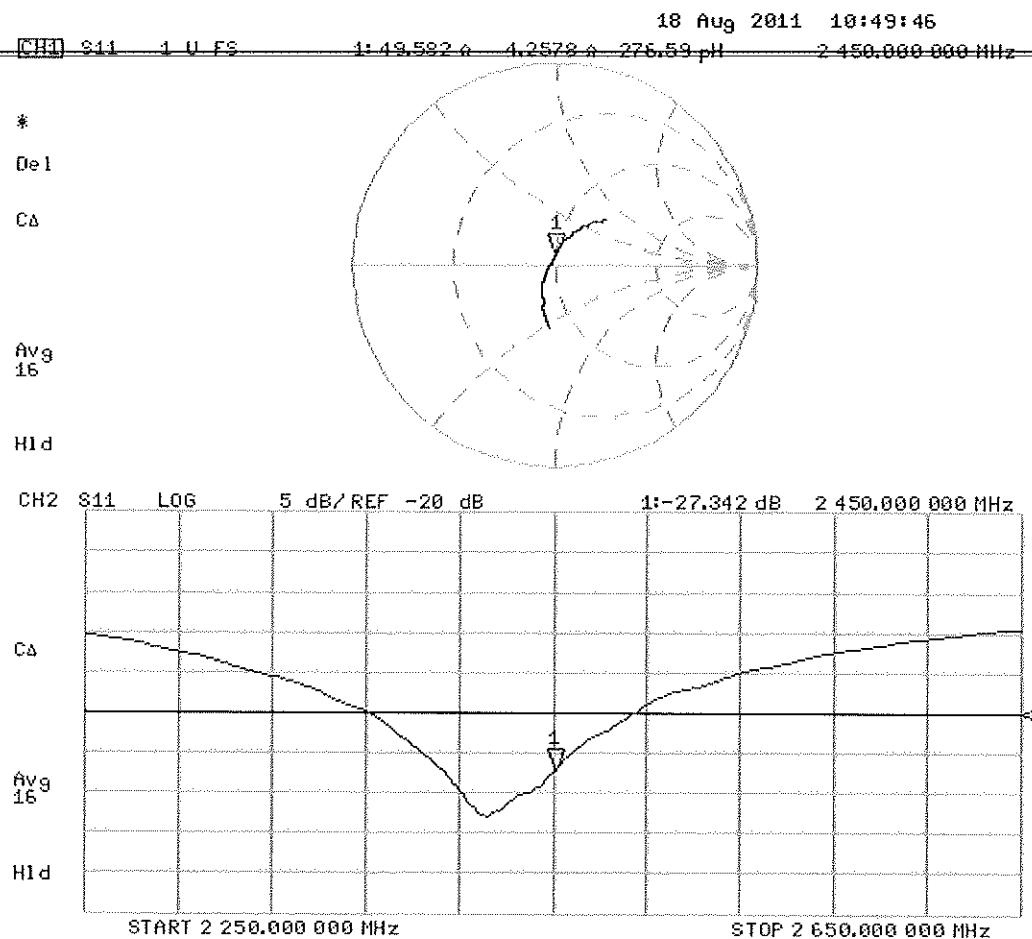
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.948 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 26.876 W/kg

**SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.07 mW/g**

Maximum value of SAR (measured) = 17.309 mW/g



## Impedance Measurement Plot for Body TSL





Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA  
 Multilateral Agreement for the recognition of calibration certificates

Client **PC Test**

Certificate No: **D835V2-4d026\_Aug11**

## CALIBRATION CERTIFICATE

Object **D835V2 - SN: 4d026**

Calibration procedure(s) **QA CAL-05.v8**  
**Calibration procedure for dipole validation kits above 700 MHz**

Calibration date: **August 15, 2011**

*✓OK  
9/6/11*

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature  $(22 \pm 3)^\circ\text{C}$  and humidity  $< 70\%$ .

### Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 06-Oct-10 (No. 217-01266)         | Oct-11                 |
| Power sensor HP 8481A       | US37292783         | 06-Oct-10 (No. 217-01266)         | Oct-11                 |
| Reference 20 dB Attenuator  | SN: S5086 (20b)    | 29-Mar-11 (No. 217-01367)         | Apr-12                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371)         | Apr-12                 |
| Reference Probe ES3DV3      | SN: 3205           | 29-Apr-11 (No. ES3-3205_Apr11)    | Apr-12                 |
| DAE4                        | SN: 601            | 04-Jul-11 (No. DAE4-601_Jul11)    | Jul-12                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-09) | In house check: Oct-11 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 |

Calibrated by: **Name: Claudio Leubler** **Function: Laboratory Technician**

Approved by: **Name: Katja Pokovic** **Function: Technical Manager**

Issued: August 15, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA  
Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

|       |                                |
|-------|--------------------------------|
| TS    | tissue simulating liquid       |
| ConvF | sensitivity in TS / NORM x,y,z |
| N/A   | not applicable or not measured |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

- d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

## Measurement Conditions

DASY system configuration, as far as not given on page 1.

|                              |                        |             |
|------------------------------|------------------------|-------------|
| DASY Version                 | DASY5                  | V52.6.2     |
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 835 MHz $\pm$ 1 MHz    |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature         | Permittivity   | Conductivity         |
|-----------------------------------------|---------------------|----------------|----------------------|
| Nominal Head TSL parameters             | 22.0 °C             | 41.5           | 0.90 mho/m           |
| Measured Head TSL parameters            | (22.0 $\pm$ 0.2) °C | 41.1 $\pm$ 6 % | 0.89 mho/m $\pm$ 6 % |
| Head TSL temperature change during test | < 0.5 °C            | ----           | ----                 |

## SAR result with Head TSL

|                                                       |                    |                                |
|-------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                                |
| SAR measured                                          | 250 mW input power | 2.35 mW / g                    |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.46 mW / g $\pm$ 17.0 % (k=2) |

|                                                         |                    |                                |
|---------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                                |
| SAR measured                                            | 250 mW input power | 1.54 mW / g                    |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.19 mW / g $\pm$ 16.5 % (k=2) |

## Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature         | Permittivity   | Conductivity         |
|-----------------------------------------|---------------------|----------------|----------------------|
| Nominal Body TSL parameters             | 22.0 °C             | 55.2           | 0.97 mho/m           |
| Measured Body TSL parameters            | (22.0 $\pm$ 0.2) °C | 53.4 $\pm$ 6 % | 0.99 mho/m $\pm$ 6 % |
| Body TSL temperature change during test | < 0.5 °C            | ----           | ----                 |

## SAR result with Body TSL

|                                                       |                    |                                |
|-------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                                |
| SAR measured                                          | 250 mW input power | 2.47 mW / g                    |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 9.66 mW / g $\pm$ 17.0 % (k=2) |

|                                                         |                    |                                |
|---------------------------------------------------------|--------------------|--------------------------------|
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                                |
| SAR measured                                            | 250 mW input power | 1.63 mW / g                    |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.42 mW / g $\pm$ 16.5 % (k=2) |

## Appendix

### Antenna Parameters with Head TSL

|                                      |                               |
|--------------------------------------|-------------------------------|
| Impedance, transformed to feed point | 53.4 $\Omega$ - 3.1 $j\Omega$ |
| Return Loss                          | - 27.0 dB                     |

### Antenna Parameters with Body TSL

|                                      |                               |
|--------------------------------------|-------------------------------|
| Impedance, transformed to feed point | 49.3 $\Omega$ - 5.4 $j\Omega$ |
| Return Loss                          | - 25.3 dB                     |

### General Antenna Parameters and Design

|                                  |          |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.389 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

|                 |                   |
|-----------------|-------------------|
| Manufactured by | SPEAG             |
| Manufactured on | December 17, 2004 |

# DASY5 Validation Report for Head TSL

Date: 15.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d026**

Communication System: CW; Frequency: 835 MHz

Medium parameters used:  $f = 835$  MHz;  $\sigma = 0.89$  mho/m;  $\epsilon_r = 41.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

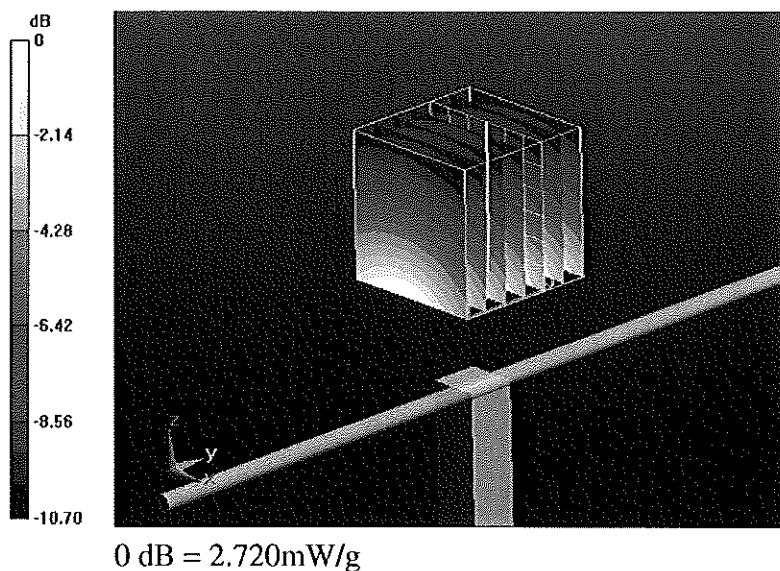
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

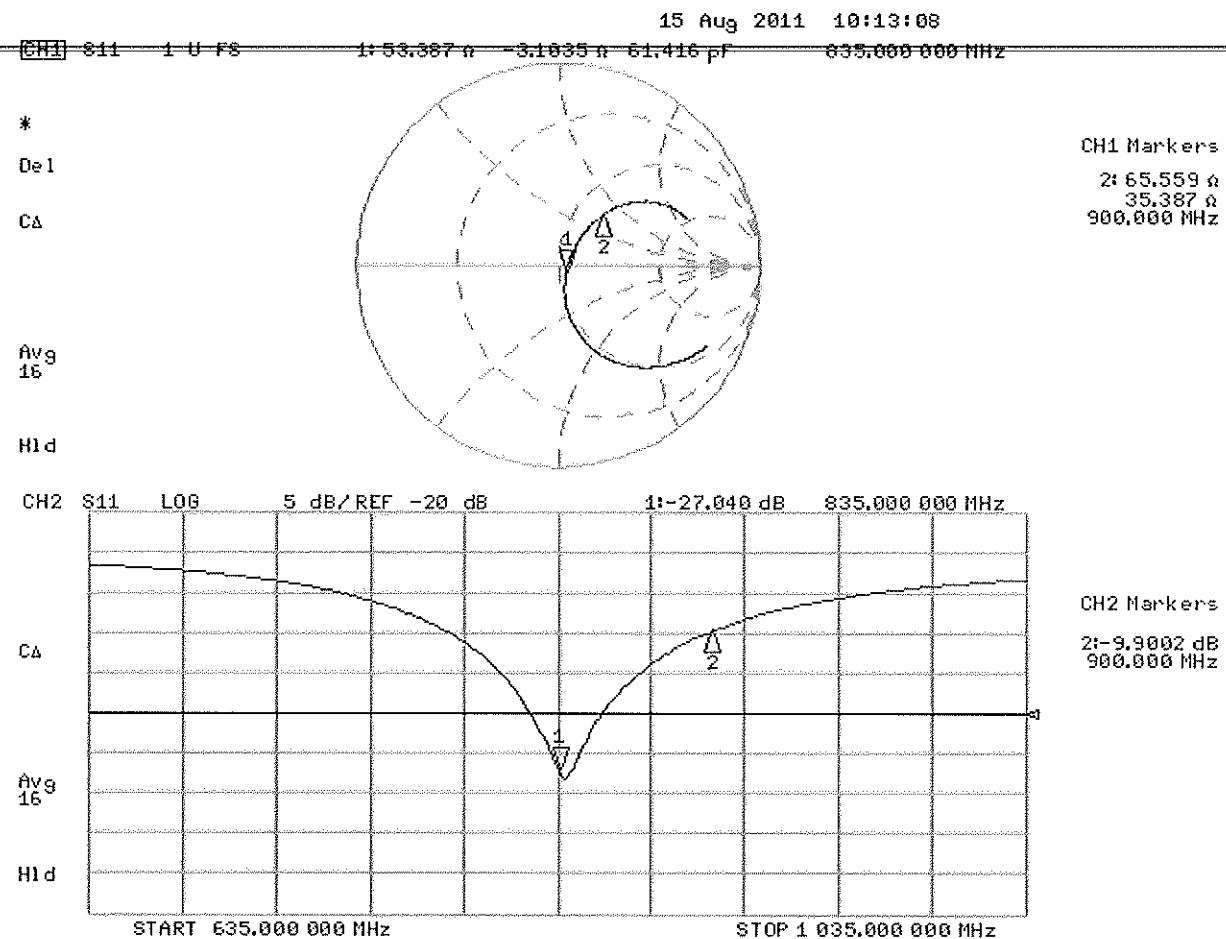
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.042 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 3.480 W/kg

**SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g**

Maximum value of SAR (measured) = 2.719 mW/g



## Impedance Measurement Plot for Head TSL



# DASY5 Validation Report for Body TSL

Date: 15.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

~~DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d026~~

Communication System: CW; Frequency: 835 MHz

Medium parameters used:  $f = 835$  MHz;  $\sigma = 0.99$  mho/m;  $\epsilon_r = 53.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

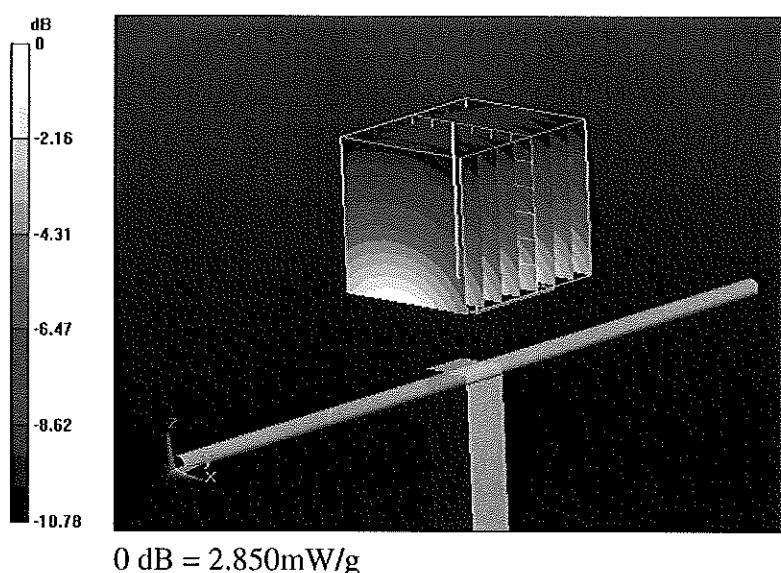
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

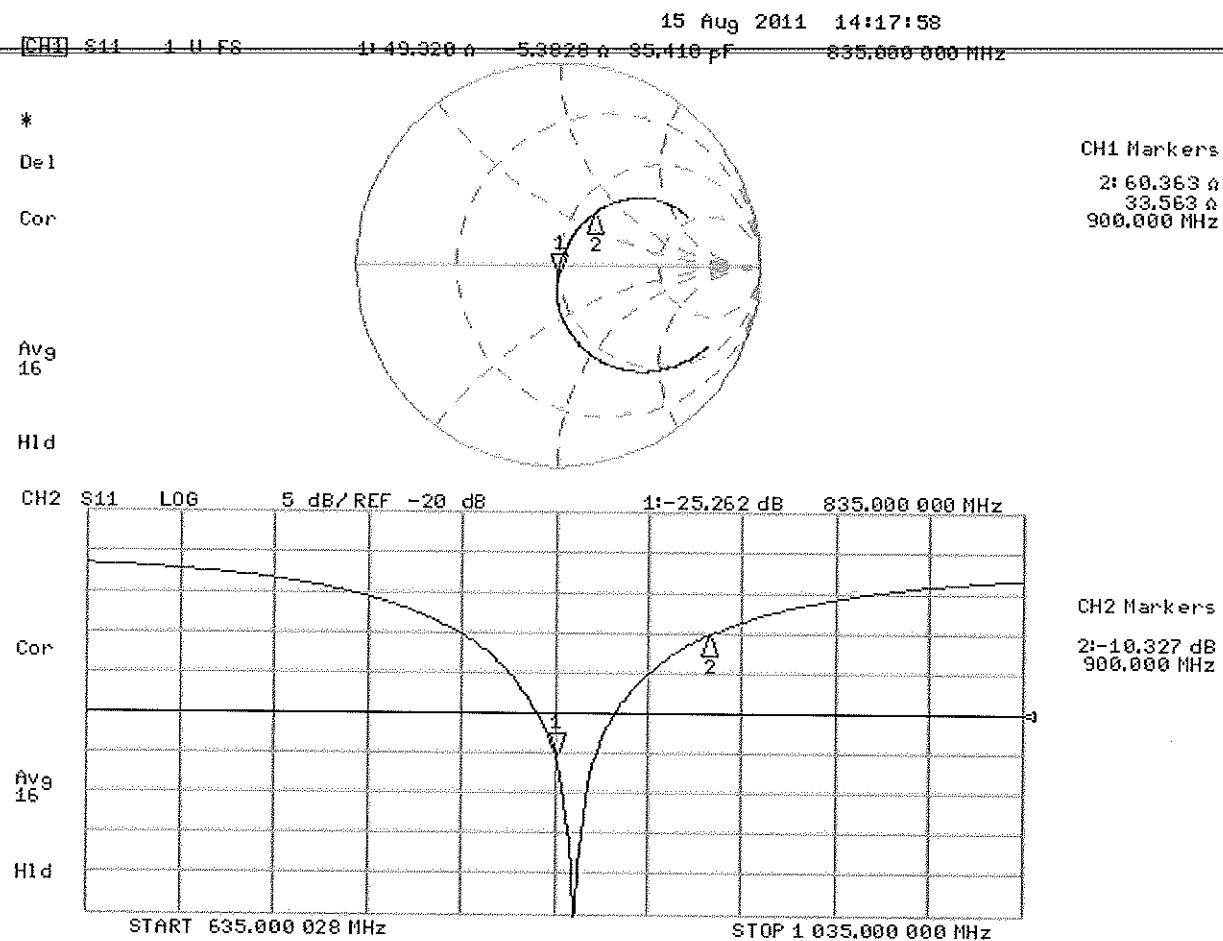
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.889 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 3.598 W/kg

**SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.63 mW/g**

Maximum value of SAR (measured) = 2.854 mW/g



## Impedance Measurement Plot for Body TSL

