FCC 47 CFR PART 15 SUBPART C

Report No.: C130904Z04-RP1

for

2.4GHz Transreciver

Model: EWI Module

Brand: EWI

Test Report Number: C130904Z04-RP1 Issued for

Eco Power Design LLC 830 Stewart Drive, Sunnyvale, CA 94085, USA

Issued by:

Compliance Certification Services (Shenzhen) Inc.

No.10-1, Mingkeda Logistics Park, No.18 Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

> TEL: 86-755-28055000 FAX: 86-755-28055221

Issued Date: October 21, 2013

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

FCC ID: A5ZECOEWI Page 1 / 42

Report No.: C130904Z04-RP1

Revision History

Rev.	Issue No.	Revisions	Effect Page	Revised By
00	C130904Z04-RP1	Initial Issue	ALL	Sabrina Wang

FCC ID: A5ZECOEWI Page 2 / 42

Report No.: C130904Z04-RP1

TABLE OF CONTENTS

1 TEST CERTIFICATION	
2 TEST RESULT SUMMARY	
3 EUT DESCRIPTION	
4 TEST METHODOLOGY	
4.1. DESCRIPTION OF TEST MODES	
5 SETUP OF EQUIPMENT UNDER TEST	
5.1. DESCRIPTION OF SUPPORT UNITS	
5.2. CONFIGURATION OF SYSTEM UNDER TEST	8
6 FACILITIES AND ACCREDITATIONS	9
6.1. FACILITIES	9
6.2. ACCREDITATIONS	9
6.3. MEASUREMENT UNCERTAINTY	
7 FCC PART 15.247 REQUIREMENTS	11
7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT	11
7.2. SPURIOUS EMISSIONS MEASUREMENT	15
7.3. 6dB BANDWIDTH MEASUREMENT	28
7.4. PEAK OUTPUT POWER	31
7.5. BAND EDGES MEASUREMENT	33
7.6. PEAK POWER SPECTRAL DENSITY MEASUREMENT	39

Report No.: C130904Z04-RP1

EST CERTIFICATION

Product	2.4GHz Transreciver
Model	EWI Module
Brand	EWI
Tested	September 4~October 17, 2013
Applicant	Eco Power Design LLC 830 Stewart Drive, Sunnyvale, CA 94085, USA
Manufacturer	Eco Power Design LLC 830 Stewart Drive, Sunnyvale, CA 94085, USA

APPLICABLE STANDARDS							
Standard	Test Type	Standard	Test Type				
15.207(a)	Power Line Conducted Emissions	15.247(d) 15.209(a)	Spurious EmissionsConducted MeasurementRadiated Emissions				
15.247(a)(2)	6dB Bandwidth Measurement	15.247(b)(3) 15.247(b)(4)	Peak Power Measurement				
15.247(d)	Band Edges Measurement	15.247(e)	Peak Power Spectral Density				

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Tom Gan

Supervisor of EMC Dept.

Compliance Certification Service Inc.

Reviewed by:

Ruby Zhang

Supervisor of Report Dept.

Compliance Certification Service Inc.

Report No.: C130904Z04-RP1

2 TEST RESULT SUMMARY

APPLICABLE STANDARDS							
Standard	Test Type	Result	Remark				
15.247(a)(2)	6dB Bandwidth Measurement	Pass	Meet the requirement of limit.				
15.247(b)(3) 15.247(b)(4)	Peak Power Measurement	Pass	Meet the requirement of limit.				
15.247(d)	Band Edges Measurement	Pass	Meet the requirement of limit.				
15.247(e)	Peak Power Spectral Density	Pass	Meet the requirement of limit.				
15.247(d) 15.209(a)	Spurious EmissionsConducted MeasurementRadiated Emissions	Pass	Meet the requirement of limit.				
15.207(a)	Power line Conducted Emissions	N/A	Not applicable since the EUT supplied by the battery.				

Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

FCC ID: A5ZECOEWI Page 5 / 42

Report No.: C130904Z04-RP1

3 EUT DESCRIPTION

Product	2.4GHz Transreciver
Model	EWI Module
Brand	EWI
Model Discrepancy	N/A
Identify Number	C130904Z04-RP1
Received Date	September 4, 2013
Power Supply	Powered by the 3.3Vdc power
Frequency Range	2405-2475 MHz
Modulation Technique	DSSS
Number of Channels	15 Channels
Antenna Specification	Monopole Antenna with 0.5dBi gain(MAX)
Temperature Range	-40°C ~ +85°C

Note: 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

FCC ID: A5ZECOEWI Page 6 / 42

^{2.} This submittal(s) (test report) is intended for <u>FCC ID: A5ZECOEWI filling</u> to comply with Section 15.207, 15.209 and 15.249 of the FCC Part 15, Subpart C Rules.

Report No.: C130904Z04-RP1

4 TEST METHODOLOGY

4.1. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Test Item	Test mode	Worse mode
Conducted Emission	Mode 1: TX	
Radiated Emission	Mode 1: TX	\boxtimes

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only, and power line conducted emission below 30MHz, which worst case was in normal link mode.

FCC ID: A5ZECOEWI Page 7 / 42

5 SETUP OF EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: C130904Z04-RP1

No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1	Notebook	2672	992F2VG	N/A	IBM	Unshielded 1.50m	Unshielded 1.80m

Note:

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

FCC ID: A5ZECOEWI Page 8 / 42

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.10-1, Mingkeda Logistics Park, No.18 Huanguan South Rd., Guan Lan Town, Baoa Shenzhen, China n District,

Report No.: C130904Z04-RP1

The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA A2LA China CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA FCC

Japan VCCI(C-3478, R-3135, T-652, G-624)

Canada INDUSTRY CANADA

Taiwan BSMI

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

FCC ID: A5ZECOEWI Page 9 / 42

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Report No.: C130904Z04-RP1

Parameter	Uncertainty
Radiated Emission, 30 to 200 MHz Test Site : 966(2)	+/-3.6880dB
Radiated Emission, 200 to 1000 MHz Test Site: 966(2)	+/-3.6695dB
Radiated Emission, 1 to 8 GHz	+/-5.1782dB
Radiated Emission, 8 to 18 GHz	+/-5.2173dB
Conducted Emissions	+/-3.6836dB
Band Width	178kHz
Peak Output Power MU	+/-1.906dB
Band Edge MU	+/-0.182dB
Channel Separation MU	416.178Hz
Duty Cycle MU	0.054ms
Frequency Stability MU	226Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

FCC ID: A5ZECOEWI Page 10 / 42

7 FCC PART 15.247 REQUIREMENTS

7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT

7.1.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Report No.: C130904Z04-RP1

Frequency Range		nits pV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

Conducted Emission Test Site								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	03/09/2013	03/08/2014			
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	04/20/2013	04/19/2014			
LISN	EMCO	3825/2	8901-1459	03/09/2013	03/08/2014			
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	03/04/2013	03/03/2014			
Test S/W	FARAD		EZ-EMC/ CCS-3A	1-CE				

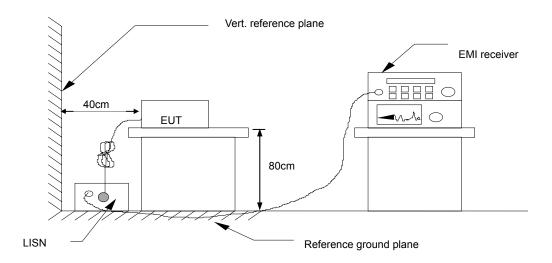
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

FCC ID: A5ZECOEWI Page 11 / 42

Report No.: C130904Z04-RP1

7.1.3. TEST PROCEDURES (please refer to measurement standard)


- The EUT and Support equipment, if needed, was placed on a non-conducted table, which is 0.8m above the ground plane and 0.4m away from the conducted wall.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane. All support equipment power received from a second LISN. The two LISN provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The frequency range from 150 kHz to 30 MHz was searched. The test data of the worst-case condition(s) was recorded. Emission levels under limit 20dB were not recorded.

FCC ID: A5ZECOEWI Page 12 / 42

Report No.: C130904Z04-RP1

7.1.4. TEST SETUP

 For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.1.5. DATA SAMPLE

Frequency (MHz)		Average Reading (dBuV)		QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Margin	Remark (Pass/Fail)
X.XXXX	34.99	19.33	10.15	45.14	29.48	65.99	56.00	-20.85	-26.52	Pass

Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

Limit = Limit stated in standard Margin = Result (dBuV) – Limit (dBuV)

FCC ID: A5ZECOEWI Page 13 / 42

7.1.6. TEST RESULTS

Operation Mode: TX Test Date: October 15, 2013

Report No.: C130904Z04-RP1

Temperature: 22°C Humidity: 45% RH

Tested by: Sunday Hu

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Line (L1/L2)
0.1500	48.40	26.38	9.58	57.98	35.96	65.99	56.00	-8.01	-20.04	L1
1.9620	38.90	24.45	9.73	48.63	34.18	56.00	46.00	-7.37	-11.82	L1
10.7420	26.71	11.24	9.88	36.59	21.12	60.00	50.00	-23.41	-28.88	L1
17.2860	31.98	16.25	9.87	41.85	26.12	60.00	50.00	-18.15	-23.88	L1
21.8060	32.40	20.85	9.85	42.25	30.70	60.00	50.00	-17.75	-19.30	L1
26.8260	32.80	23.51	9.93	42.73	33.44	60.00	50.00	-17.27	-16.56	L1
0.1500	47.93	22.84	9.78	57.71	32.62	65.99	56.00	-8.28	-23.38	L2
1.3460	35.77	20.10	9.79	45.56	29.89	56.00	46.00	-10.44	-16.11	L2
1.9980	37.12	21.94	9.73	46.85	31.67	56.00	46.00	-9.15	-14.33	L2
11.1899	28.45	12.33	9.83	38.28	22.16	60.00	50.00	-21.72	-27.84	L2
18.2300	32.12	15.63	9.72	41.84	25.35	60.00	50.00	-18.16	-24.65	L2
27.2300	33.02	22.98	9.83	42.85	32.81	60.00	50.00	-17.15	-17.19	L2

Note:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Peak detector, Quasi-peak detector and average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit.
- 4. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 5. L1= Line One (Live Line)/ L2= Line Two (Neutral Line)

FCC ID: A5ZECOEWI Page 14 / 42

Report No.: C130904Z04-RP1

7.2. SPURIOUS EMISSIONS MEASUREMENT

7.2.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

7.2.2. TEST INSTRUMENTS

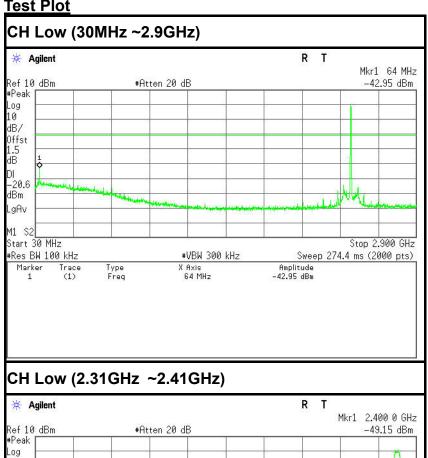
Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

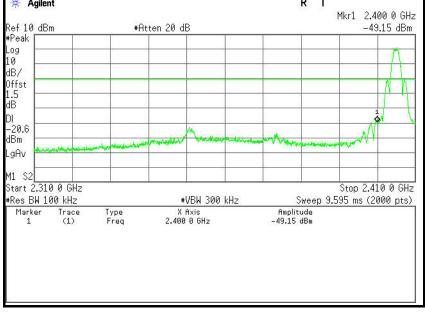
7.2.3. TEST PROCEDURE (please refer to measurement standard)

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Measurements are made over the 30MHz to 26.5GHz range with the transmitter set to the lowest, middle, and highest channels.

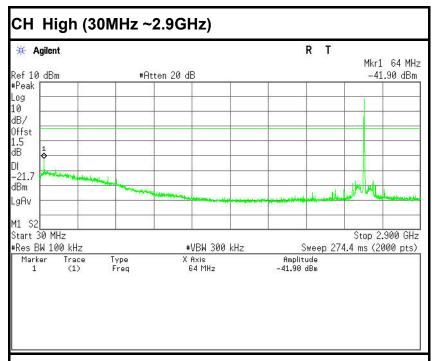

FCC ID: A5ZECOEWI Page 15 / 42



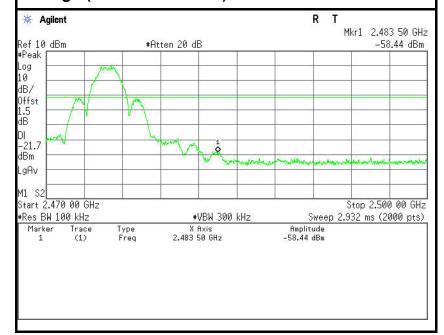
Report No.: C130904Z04-RP1

7.2.4. TEST RESULTS

FCC ID: A5ZECOEWI Page 16 / 42



Report No.: C130904Z04-RP1



FCC ID: A5ZECOEWI Page 17 / 42

CH High (2.47GHz ~2.5GHz)

FCC ID: A5ZECOEWI Page 18 / 42

Report No.: C130904Z04-RP1

7.2.4.1. LIMITS OF RADIATED EMISSIONS MEASUREMENT

According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

1. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

FCC ID: A5ZECOEWI Page 19 / 42

7.2.4.2. TEST INSTRUMENTS

	Radiated Emission Test Site 966 (2)										
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration						
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014						
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	03/09/2013	03/08/2014						
Amplifier	MITEQ	AM-1604-3000	1123808	03/18/2013	03/18/2014						
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2013	03/18/2014						
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	06/21/2013	06/21/2014						
Bilog Antenna	SCHAFFNER	CBL6143	5082	03/02/2013	03/01/2014						
Horn Antenna	SCHWARZBECK	BBHA9120	D286	03/02/2013	03/01/2014						
Loop Antenna	A、R、A	PLA-1030/B	1029	03/19/2013	03/18/2014						
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R						
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R						
Controller	СТ	N/A	N/A	N.C.R	N.C.R						
Temp. / Humidity Meter	Anymetre	JR913	N/A	03/04/2013	03/03/2014						
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R						
Test S/W	FARAD	LZ-RF / CCS-SZ-3A2									

Report No.: C130904Z04-RP1

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The FCC Site Registration number is 101879.
- 3. N.C.R = No Calibration Required.

7.2.4.3. TEST PROCEDURE (please refer to measurement standard)

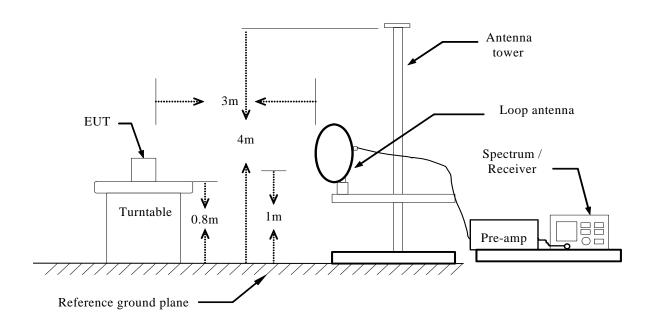
- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

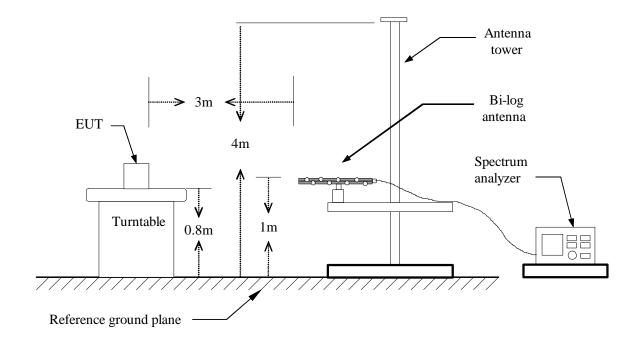
Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK: RBW=VBW=1MHz / 3 MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 7. Repeat above procedures until the measurements for all frequencies are complete.

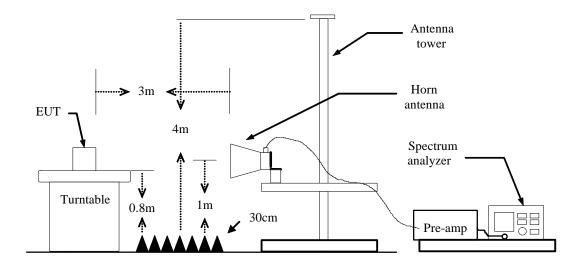

FCC ID: A5ZECOEWI Page 20 / 42


Report No.: C130904Z04-RP1

7.2.4.4. TEST SETUP

Below 30MHz

Below 1 GHz



FCC ID: A5ZECOEWI Page 21 / 42

Report No.: C130904Z04-RP1

Above 1 GHz

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

FCC ID: A5ZECOEWI Page 22 / 42

Report No.: C130904Z04-RP1

7.2.4.5. DATA SAMPLE

Below 1GHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
XXX.XXXX	53.41	-18.63	34.78	43.50	-8.72	V	QP

Frequency (MHz) = Emission frequency in MHz

Reading (dBuV) = Uncorrected Analyzer / Receiver reading
Correct Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain
Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

Q.P. = Quasi-peak Reading

Above 1GHz

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
XXXX.XXXX	62.09	-11.42	50.67	74.00	-23.33	V	Peak
XXXX.XXXX	49.78	-11.42	38.36	54.00	-15.64	V	AVG

Frequency (MHz) = Emission frequency in MHz

Reading (dBuV) = Uncorrected Analyzer / Receiver reading Correction Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

Peak = Peak Reading AVG = Average Reading

Calculation Formula

Margin (dB) = Result (dBuV/m) – Limits (dBuV/m) Result (dBuV/m) = Reading (dBuV) + Correction Factor

FCC ID: A5ZECOEWI Page 23 / 42

Report No.: C130904Z04-RP1

7.2.4.6. TEST RESULTS

Below 1GHz

Operation Mode: TX Test Date: October 15, 2013

Temperature: 24°C **Humidity:** 52% RH **Polarity:** Ver. / Hor. Tested by: Sunday Hu

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
36.7900	44.83	-9.46	35.37	40.00	-4.63	V	QP
137.6700	40.70	-3.08	37.62	43.50	-5.88	V	QP
408.3000	40.20	-7.33	32.87	46.00	-13.13	V	QP
600.3600	37.30	-5.32	31.98	46.00	-14.02	V	QP
667.2900	33.73	-1.72	32.01	46.00	-13.99	V	QP
833.1600	32.12	1.80	33.92	46.00	-12.08	V	QP
34.8500	47.44	-13.44	34.00	40.00	-6.00	Н	QP
143.4900	49.61	-13.50	36.11	43.50	-7.39	Н	QP
239.5200	34.38	-0.70	33.68	46.00	-12.32	Н	QP
393.7500	46.59	-3.55	43.04	46.00	-2.96	Н	QP
600.3600	37.53	-1.70	35.83	46.00	-10.17	Н	QP
664.3800	35.72	-1.98	33.74	46.00	-12.26	Н	QP

^{**}Remark: No emission found between lowest internal used/generated frequency to 30MHz.

Notes:

- 1. Radiated emissions measured in frequency range from 9kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. The IF bandwidth of Receiver between 30MHz to 1GHz was 120kHz.

4. Frequency (MHz). = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Receiver reading

Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Limit ($dB\mu V/m$) = Limit stated in standard

Margin (dB) = Measured (dB μ V/m) – Limits (dB μ V/m)

Antenna Pol e(H/V) = Current carrying line of reading

FCC ID: A5ZECOEWI Page 24 / 42

Report No.: C130904Z04-RP1

Above 1 GHz

Operation Mode: TX / CH Low Test Date: October 15, 2013

Temperature: 24°C Humidity: 52% RH Polarity: Ver. / Hor. Tested by: Sunday Hu

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1345.0000	52.21	-8.08	44.13	74.00	-29.87	V	Peak
3775.0000	46.86	-2.55	44.31	74.00	-29.69	V	Peak
4810.0000	51.10	0.46	51.56	74.00	-22.44	V	Peak
5575.0000	45.95	1.88	47.83	74.00	-26.17	V	Peak
6535.0000	44.78	4.64	49.42	74.00	-24.58	V	Peak
7210.0000	56.60	7.38	63.98	74.00	-10.02	V	Peak
7210.0000	44.27	7.38	51.65	54.00	-2.35	V	AVG
1315.0000	50.17	-8.21	41.96	74.00	-32.04	Н	Peak
1495.0000	50.28	-8.23	42.05	74.00	-31.95	Н	Peak
3775.0000	45.78	-2.55	43.23	74.00	-30.77	Н	Peak
4810.0000	47.89	0.46	48.35	74.00	-25.65	Н	Peak
5845.0000	45.44	2.85	48.29	74.00	-25.71	Н	Peak
7210.0000	47.30	7.38	54.68	74.00	-19.32	Н	Peak
7210.0000	35.23	7.38	42.61	54.00	-11.39	Н	AVG

REMARKS:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

FCC ID: A5ZECOEWI Page 25 / 42

Operation Mode: TX / CH Mid Test Date: October 15, 2013

Report No.: C130904Z04-RP1

Temperature: 24°C Humidity: 52% RH Polarity: Ver. / Hor. Tested by: Sunday Hu

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1240.0000	51.82	-8.55	43.27	74.00	-30.73	V	Peak
1465.0000	52.46	-8.11	44.35	74.00	-29.65	V	Peak
3925.0000	45.20	-2.51	42.69	74.00	-31.31	V	Peak
4885.0000	51.71	0.80	52.51	74.00	-21.49	V	Peak
4885.0000	49.01	0.80	49.81	54.00	-4.19	V	AVG
6280.0000	43.37	3.92	47.29	74.00	-26.71	V	Peak
7315.0000	55.64	7.49	63.13	74.00	-10.87	V	Peak
7315.0000	43.33	7.49	50.82	54.00	-3.18	V	AVG
1225.0000	50.38	-8.62	41.76	74.00	-32.24	Н	Peak
3205.0000	46.17	-4.09	42.08	74.00	-31.92	Н	Peak
3910.0000	45.40	-2.51	42.89	74.00	-31.11	Н	Peak
4885.0000	46.71	0.80	47.51	74.00	-26.49	Н	Peak
6190.0000	44.56	3.65	48.21	74.00	-25.79	Н	Peak
7315.0000	46.14	7.49	53.63	74.00	-20.37	Н	Peak
7315.0000	36.30	7.49	43.79	54.00	-10.21	Н	AVG

REMARKS:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

FCC ID: A5ZECOEWI Page 26 / 42

Report No.: C130904Z04-RP1

Operation Mode: TX / CH High **Test Date:** October 15, 2013

Temperature: 24°C Humidity: 52% RH Polarity: Ver. / Hor. Tested by: Sunday Hu

Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
51.69	-8.55	43.14	74.00	-30.86	V	Peak
51.95	-8.11	43.84	74.00	-30.16	V	Peak
46.54	-4.10	42.44	74.00	-31.56	V	Peak
46.30	-1.43	44.87	74.00	-29.13	V	Peak
52.36	1.07	53.43	74.00	-20.57	V	Peak
49.78	1.07	50.85	54.00	-3.15	V	AVG
55.44	7.60	63.04	74.00	-10.96	V	Peak
42.75	7.60	50.35	54.00	-3.65	V	AVG
48.48	-7.94	40.54	74.00	-33.46	Н	Peak
45.92	-2.46	43.46	74.00	-30.54	Н	Peak
46.17	1.07	47.24	74.00	-26.76	Н	Peak
45.09	1.63	46.72	74.00	-27.28	Н	Peak
45.32	4.76	50.08	74.00	-23.92	Н	Peak
48.11	7.60	55.71	74.00	-18.29	Н	Peak
34.96	7.60	42.56	54.00	-11.44	Н	AVG
	(dBuV) 51.69 51.95 46.54 46.30 52.36 49.78 55.44 42.75 48.48 45.92 46.17 45.09 45.32 48.11	Reading (dBuV) Factor (dB/m) 51.69 -8.55 51.95 -8.11 46.54 -4.10 46.30 -1.43 52.36 1.07 49.78 1.07 55.44 7.60 42.75 7.60 48.48 -7.94 45.92 -2.46 46.17 1.07 45.09 1.63 45.32 4.76 48.11 7.60	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 51.69 -8.55 43.14 51.95 -8.11 43.84 46.54 -4.10 42.44 46.30 -1.43 44.87 52.36 1.07 53.43 49.78 1.07 50.85 55.44 7.60 63.04 42.75 7.60 50.35 48.48 -7.94 40.54 45.92 -2.46 43.46 46.17 1.07 47.24 45.09 1.63 46.72 45.32 4.76 50.08 48.11 7.60 55.71	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 51.69 -8.55 43.14 74.00 51.95 -8.11 43.84 74.00 46.54 -4.10 42.44 74.00 46.30 -1.43 44.87 74.00 52.36 1.07 53.43 74.00 49.78 1.07 50.85 54.00 55.44 7.60 63.04 74.00 42.75 7.60 50.35 54.00 48.48 -7.94 40.54 74.00 45.92 -2.46 43.46 74.00 45.09 1.63 46.72 74.00 45.32 4.76 50.08 74.00 48.11 7.60 55.71 74.00	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) 51.69 -8.55 43.14 74.00 -30.86 51.95 -8.11 43.84 74.00 -30.16 46.54 -4.10 42.44 74.00 -31.56 46.30 -1.43 44.87 74.00 -29.13 52.36 1.07 53.43 74.00 -20.57 49.78 1.07 50.85 54.00 -3.15 55.44 7.60 63.04 74.00 -10.96 42.75 7.60 50.35 54.00 -3.65 48.48 -7.94 40.54 74.00 -33.46 45.92 -2.46 43.46 74.00 -30.54 46.17 1.07 47.24 74.00 -26.76 45.09 1.63 46.72 74.00 -27.28 45.32 4.76 50.08 74.00 -23.92 48.11 7.60 55.71 74.00 -18.29 <td>Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Pole (V/H) 51.69 -8.55 43.14 74.00 -30.86 V 51.95 -8.11 43.84 74.00 -30.16 V 46.54 -4.10 42.44 74.00 -31.56 V 46.30 -1.43 44.87 74.00 -29.13 V 52.36 1.07 53.43 74.00 -20.57 V 49.78 1.07 50.85 54.00 -3.15 V 55.44 7.60 63.04 74.00 -10.96 V 42.75 7.60 50.35 54.00 -3.65 V 48.48 -7.94 40.54 74.00 -33.46 H 45.92 -2.46 43.46 74.00 -30.54 H 45.09 1.63 46.72 74.00 -26.76 H 45.32 4.76 50.08 74.00 -23.92 H</td>	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Pole (V/H) 51.69 -8.55 43.14 74.00 -30.86 V 51.95 -8.11 43.84 74.00 -30.16 V 46.54 -4.10 42.44 74.00 -31.56 V 46.30 -1.43 44.87 74.00 -29.13 V 52.36 1.07 53.43 74.00 -20.57 V 49.78 1.07 50.85 54.00 -3.15 V 55.44 7.60 63.04 74.00 -10.96 V 42.75 7.60 50.35 54.00 -3.65 V 48.48 -7.94 40.54 74.00 -33.46 H 45.92 -2.46 43.46 74.00 -30.54 H 45.09 1.63 46.72 74.00 -26.76 H 45.32 4.76 50.08 74.00 -23.92 H

REMARKS:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

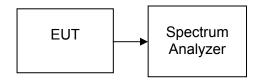
FCC ID: A5ZECOEWI Page 27 / 42

Report No.: C130904Z04-RP1

7.3. 6dB BANDWIDTH MEASUREMENT

7.3.1. LIMITS

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.


7.3.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

7.3.3. TEST PROCEDURES (please refer to measurement standard)

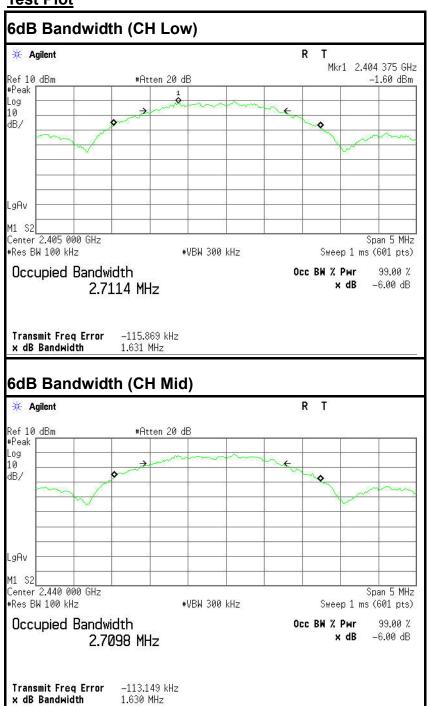
- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Span = 5MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

7.3.4. TEST SETUP

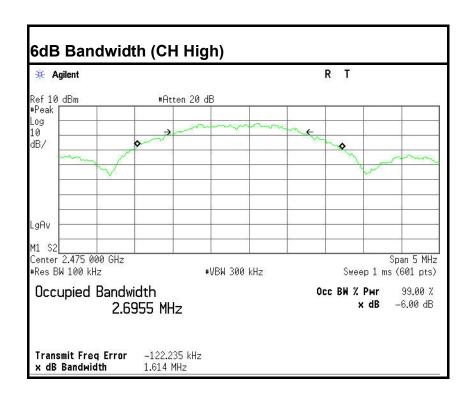
7.3.5. TEST RESULTS

No non-compliance noted

Test Data


Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2405	1631.000		PASS
Mid	2440	1630.000	>500	PASS
High	2475	1614.000		PASS

FCC ID: A5ZECOEWI Page 28 / 42


Report No.: C130904Z04-RP1

Test Plot

Report No.: C130904Z04-RP1

FCC ID: A5ZECOEWI Page 30 / 42

7.4. PEAK OUTPUT POWER

7.4.1. LIMITS

The maximum peak output power of the intentional radiator shall not exceed the following:

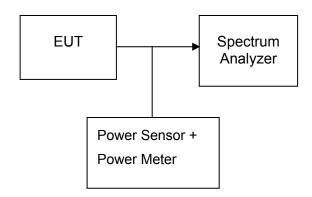
Report No.: C130904Z04-RP1

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.4.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial	Last	Due
Name of Equipment	Manufacturer	Model	Number	Calibration	Calibration
Power Meter	Anritsu	ML2495A	1204003	03/09/2013	03/08/2014
Power Sensor	Anritsu	MA2411B	1126150	03/09/2013	03/08/2014
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

7.4.3. TEST PROCEDURES (please refer to measurement standard)


- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz.
- 3. Set VBW ≥ 3 MHz.
- 4. Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode.
- 5. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run".
- 6. Trace average 100 traces in power averaging mode.
- 7. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.

FCC ID: A5ZECOEWI Page 31 / 42

Report No.: C130904Z04-RP1

7.4.4. TEST SETUP

7.4.5. TEST RESULTS

No non-compliance noted

Test Data

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2405	4.70	0.00295		PASS
Mid	2440	4.50	0.00282	1	PASS
High	2475	4.30	0.00269		PASS

FCC ID: A5ZECOEWI Page 32 / 42

7.5. BAND EDGES MEASUREMENT

7.5.1. LIMITS

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Report No.: C130904Z04-RP1

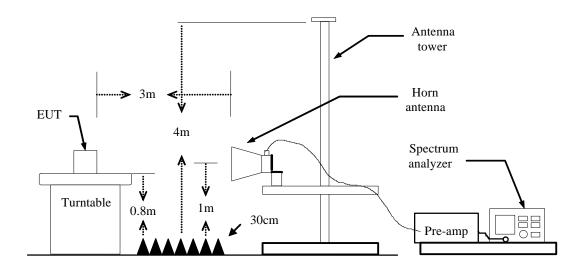
7.5.2. TEST INSTRUMENTS

	Radiated Emission Test Site 966 (2)									
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration					
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014					
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	03/09/2013	03/08/2014					
Amplifier	MITEQ	AM-1604-3000	1123808	03/18/2013	03/18/2014					
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2013	03/18/2014					
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	06/21/2013	06/21/2014					
Bilog Antenna	SCHAFFNER	CBL6143	5082	03/02/2013	03/01/2014					
Horn Antenna	SCHWARZBECK	BBHA9120	D286	03/02/2013	03/01/2014					
Loop Antenna	A、R、A	PLA-1030/B	1029	03/19/2013	03/18/2014					
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R					
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R					
Controller	СТ	N/A	N/A	N.C.R	N.C.R					
Temp. / Humidity Meter	Anymetre	JR913	N/A	03/04/2013	03/03/2014					
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R					
Test S/W	FARAD	LZ-RF / CCS-SZ-3A2								

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The FCC Site Registration number is 101879.
- 3. N.C.R = No Calibration Required.

FCC ID: A5ZECOEWI Page 33 / 42


7.5.3. TEST PROCEDURES (please refer to measurement standard)

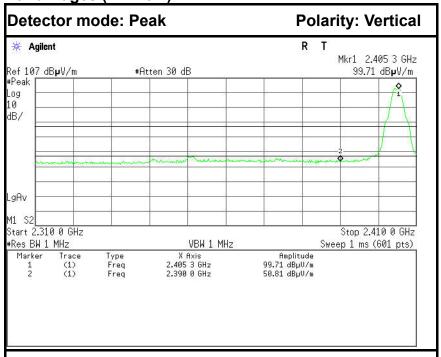
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

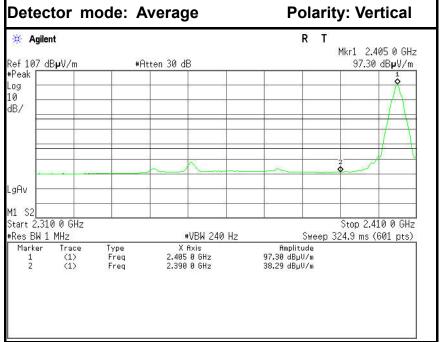
Report No.: C130904Z04-RP1

- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=240Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are

7.5.4. TEST SETUP

FCC ID: A5ZECOEWI Page 34 / 42

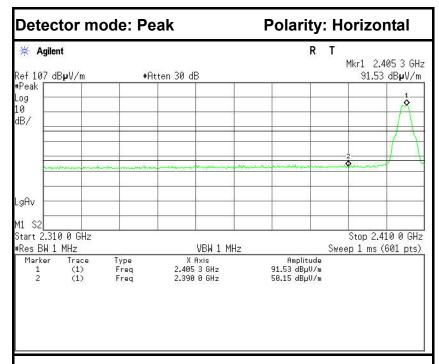



Report No.: C130904Z04-RP1

7.5.5. TEST RESULTS

Test Plot

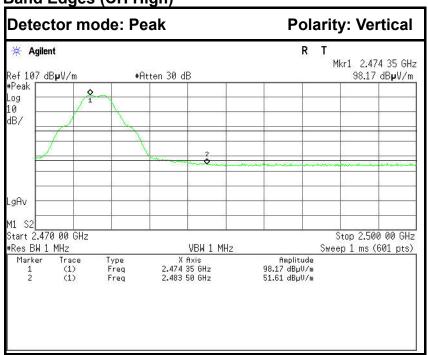
Band Edges (CH Low)



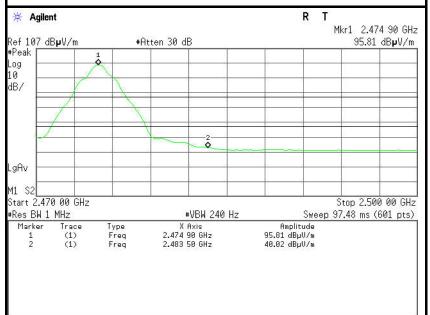
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (d BuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	44.21	-6.60	50.81	74.00	-23.19	Peak	Vertical
2	2390.0000	31.69	-6.60	38.29	54.00	-15.71	Average	Vertical

FCC ID: A5ZECOEWI Page 35 / 42

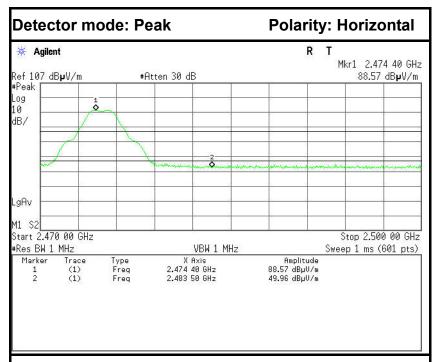
Report No.: C130904Z04-RP1

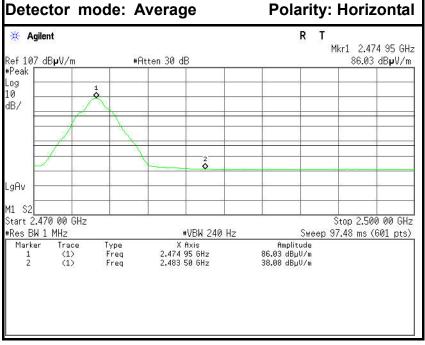

Detector	mode: A	Polarity:	Polarity: Horizontal			
≭ Agilent Ref 107 dB µ V/m	#A	tten 30 dB	R T	Mkr1 2.404 8 GHz 88.55 dB p V/m		
#Peak						
Log 10				1		
dB/				1		
	1					
				 		
				2		
	* * *		ID-ST PRO MAN			
LgAv -				S 1 6		
M1 S2		+ +	 			
Start 2.310 0 GH	z			Stop 2.410 0 GHz		
#Res BW 1 MHz	鬲	#VBW 240 Hz	Sweep	324.9 ms (601 pts)		
Marker Trac 1 (1) 2 (1)	e Type Freq Freq	X Axis 2.404 8 GHz 2.390 0 GHz	Amplitude 88.55 dBµV/m 37.54 dBµV/m			
				3		

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (d BuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	43.55	-6.60	50.15	74.00	-23.85	Peak	Horizontal
2	2390.0000	30.94	-6.60	37.54	54.00	-16.46	Average	Horizontal


FCC ID: A5ZECOEWI Page 36 / 42

Report No.: C130904Z04-RP1


Detector mode: Average Polarity: Vertical



No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (d BuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	45.37	-6.24	51.61	74.00	-22.39	Peak	Vertical
2	2483.5000	33.78	-6.24	40.02	54.00	-13.98	Average	Vertical

FCC ID: A5ZECOEWI Page 37 / 42

Report No.: C130904Z04-RP1

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (d BuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	43.72	-6.24	49.96	74.00	-24.04	Peak	Horizontal
2	2483.5000	31.84	-6.24	38.08	54.00	-15.92	Average	Horizontal

FCC ID: A5ZECOEWI Page 38 / 42

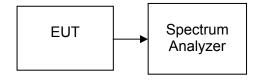
Report No.: C130904Z04-RP1

7.6. PEAK POWER SPECTRAL DENSITY MEASUREMENT

7.6.1. LIMITS

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.


7.6.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

7.6.3. TEST PROCEDURES (please refer to measurement standard)

- Place the EUT on the table and set it in transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 5MHz, Sweep=527.2s
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.6.4. TEST SETUP

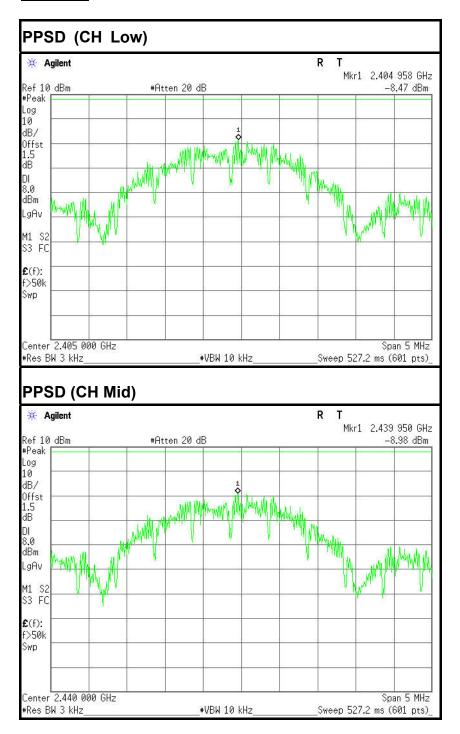
FCC ID: A5ZECOEWI Page 39 / 42

Report No.: C130904Z04-RP1

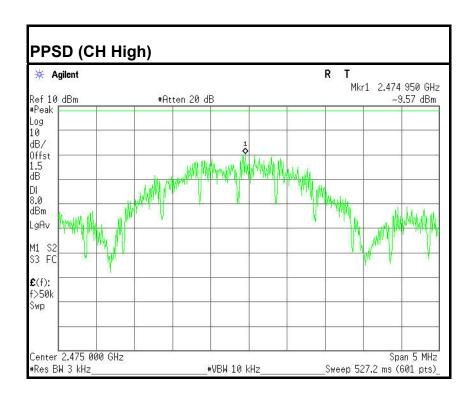
7.6.5. TEST RESULTS

No non-compliance noted

Test Data


Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2405	-8.47		PASS
Mid	2440	-8.98	8.00	PASS
High	2475	-9.57		PASS

FCC ID: A5ZECOEWI Page 40 / 42


Report No.: C130904Z04-RP1

Test Plot

FCC ID: A5ZECOEWI Page 41 / 42

Report No.: C130904Z04-RP1

