

## TEST REPORT

**Report No.: HK12050617-1(R1)**

**Allied Hill Enterprise Ltd.**

Application  
For  
Certification

(Original Grant)

**(FCC ID: A5W20120111BB001R)**

Transceiver

**Supersede Report No. HK12050617-1 Dated 24 May 2012**

Prepared and Checked by:

Approved by:

Signed On File

Kung Wing Cheong, Steven  
Engineer

Lau Chin Yu, Benny  
Lead Engineer  
Date: May 30, 2012

- The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.
- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

# INTERTEK TESTING SERVICES

---

## GENERAL INFORMATION

**Allied Hill Enterprise Ltd.  
BRAND NAME: Bandit Buster, MODEL: N/A**

**FCC ID: A5W20120111BB001R**

|                           |                                                                                         |
|---------------------------|-----------------------------------------------------------------------------------------|
| Grantee:                  | Allied Hill Enterprise Ltd.                                                             |
| Grantee Address:          | Suite 507, Tower 1 Silvercord,<br>30 Canton Raod, Tsim Sha Tsui,<br>Kowloon, Hong Kong. |
| Contact Person:           | Mr. Alex Leung                                                                          |
| Tel:                      | (852) 2368 5328                                                                         |
| Fax:                      | (852) 2722 5923                                                                         |
| e-mail:                   | N/A                                                                                     |
| Manufacturer:             | N/A                                                                                     |
| Manufacturer Address:     | N/A                                                                                     |
| Brand Name:               | Bandit Buster                                                                           |
| Model:                    | N/A                                                                                     |
| Type of EUT:              | Transciever                                                                             |
| Description of EUT:       | Security and surveillance system                                                        |
| Serial Number:            | N/A                                                                                     |
| FCC ID :                  | A5W20120111BB001R                                                                       |
| Date of Sample Submitted: | May 10, 2012                                                                            |
| Date of Test:             | May 11, 2012                                                                            |
| Report No.:               | HK12050617-1(R1)                                                                        |
| Report Date:              | May 30, 2012                                                                            |
| Environmental Conditions: | Temperature: +10 to 40°C<br>Humidity: 10 to 90%                                         |

# INTERTEK TESTING SERVICES

---

## SUMMARY OF TEST RESULT

**Allied Hill Enterprise Ltd.**  
**BRAND NAME: Bandit Buster, MODEL: N/A**

**FCC ID: A5W20120111BB001R**

| TEST SPECIFICATION                                           | REFERENCE                     | RESULTS |
|--------------------------------------------------------------|-------------------------------|---------|
| Maximum Peak Output Power                                    | 15.247(b), (c) / RSS-210 A8.4 | N/A     |
| Hopping Channel Carrier Frequencies Separation               | 15.247(e) / RSS-210 A8.1      | N/A     |
| 20dB Bandwidth of the Hopping Channel                        | 15.247(a) / RSS-210 A8.1      | N/A     |
| Number of Hopping Frequencies                                | 15.247(e) / RSS-210 A8.1      | N/A     |
| Average Time of Occupancy of Hopping Frequency               | 15.247(e) / RSS-210 A8.1      | N/A     |
| Antennae Conducted Spurious Emissions                        | 15.247(d) / RSS-210 A8.5      | N/A     |
| Radiated Spurious Emissions                                  | 15.247(d) / RSS-210 A8.5      | N/A     |
| RF Exposure Compliance                                       | 15.247(i) / RSS-Gen 5.5       | N/A     |
| Transmitter Power Line Conducted Emissions                   | 15.207 / RSS-Gen 7.2.2        | N/A     |
| Transmitter Field Strength                                   | 15.227 / RSS-310 3.8          | N/A     |
| Transmitter Field Strength                                   | 15.229 / RSS-210 A2.7         | N/A     |
| Transmitter Field Strength, Bandwidth and Timing Requirement | 15.231(a) / RSS-210 A1.1.1    | N/A     |
| Transmitter Field Strength, Bandwidth and Timing Requirement | 15.231(e) / RSS-210 A1.1.5    | N/A     |
| Transmitter Field Strength and Bandwidth Requirement         | 15.239 / RSS-210 A2.8         | N/A     |
| Transmitter Field Strength and Bandwidth Requirement         | 15.249 / RSS-210 A2.9         | Pass    |
| Transmitter Field Strength and Bandwidth Requirement         | 15.235 / RSS-310 3.9          | N/A     |
| Receiver / Digital Device Radiated Emissions                 | 15.109 / ICES-003             | N/A     |
| Digital Device Conducted Emissions                           | 15.107 / ICES-003             | N/A     |

Note: 1. The EUT uses a permanently attached antenna which, in accordance to section 15.203, is considered sufficient to comply with the provisions of this section.  
2. Pursuant to FCC part 15 Section 15.215(c), the 20 dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered.

# INTERTEK TESTING SERVICES

---

---

## Table of Contents

|            |                                             |    |
|------------|---------------------------------------------|----|
| <b>1.0</b> | <b><u>General Description</u></b>           | 1  |
| 1.1        | Product Description                         | 1  |
| 1.2        | Related Submittal(s) Grants                 | 1  |
| 1.3        | Test Methodology                            | 1  |
| 1.4        | Test Facility                               | 2  |
| <b>2.0</b> | <b><u>System Test Configuration</u></b>     | 2  |
| 2.1        | Justification                               | 2  |
| 2.2        | EUT Exercising Software                     | 2  |
| 2.3        | Special Accessories                         | 2  |
| 2.4        | Equipment Modification                      | 2  |
| 2.5        | Measurement Uncertainty                     | 3  |
| 2.6        | Support Equipment List and Description      | 3  |
| <b>3.0</b> | <b><u>Emission Results</u></b>              | 3  |
| 3.1        | Field Strength Calculation                  | 3  |
| 3.2        | Radiated Emission Configuration Photograph  | 4  |
| 3.3        | Radiated Emission Data                      | 4  |
| 3.4        | Conducted Emission Configuration Photograph | 4  |
| 3.5        | Conducted Emission Data                     | 4  |
| <b>4.0</b> | <b><u>Equipment Photographs</u></b>         | 8  |
| <b>5.0</b> | <b><u>Product Labelling</u></b>             | 8  |
| <b>6.0</b> | <b><u>Technical Specifications</u></b>      | 8  |
| <b>7.0</b> | <b><u>Instruction Manual</u></b>            | 8  |
| <b>8.0</b> | <b><u>Miscellaneous Information</u></b>     | 8  |
| 8.1        | Measured Bandwidth                          | 9  |
| 8.2        | Discussion of Pulse Desensitization         | 10 |
| 8.3        | Calculation of Average Factor               | 10 |
| 8.4        | Emissions Test Procedures                   | 11 |
| <b>9.0</b> | <b><u>Equipment List</u></b>                | 13 |

# INTERTEK TESTING SERVICES

---

## 1.0 General Description

### 1.1 Product Description

The equipment under test (EUT) is a 2.4GHz RF transceiver for receiver part of alarm system. The EUT is powered by 4.5V(3 x 1.5V AA battery) or A.C. adaptor. The EUT has an ON/OFF switch, Alarm/Vib/Alarm+vib switch, RESET button, headphone jack and A.C. jack. When the EUT is switched on, the EUT will search for the relative transceiver. After the EUT has found the relative transceiver, the EUT can operate with relative transceiver. When the EUT receive a signal from the relative transceiver, it will generate alarm sound and the motor will vibrate. Also, it has a speaker to receive voice from the relative transceiver.

Antenna Type : Internal, Integral

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

### 1.2 Related Submittal(s) Grants

The Verification procedure of AC portion for this transceiver is being processed as the same time of this application.

The Certification procedure of transceiver for this transceiver (with FCC ID: A5W20120111BB001T) is being processed as the same time of this application.

The receiver for this transmitter is exempted from the Part 15 technical rules per 15.101(b).

### 1.3 Test Methodology

Both AC mains line-conducted (Conduct) and Radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). All radiated measurements were performed in an Open Area Test Site. Preliminary scans were performed in the Open Area Test Site only to determine worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **“Justification Section”** of this Application.

## INTERTEK TESTING SERVICES

---

### 1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been placed on file with the FCC.

### 2.0 System Test Configuration

#### 2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2003).

The EUT was powered by 3 x 1.5V AA batteries, AC adaptor during test.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The rear of unit shall be flushed with the rear of the table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the wooden turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

#### 2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it transmits the RF signal continuously.

#### 2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

#### 2.4 Equipment Modification

Any modifications installed previous to testing by Allied Hill Enterprise Ltd. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services Hong Kong Ltd.

## INTERTEK TESTING SERVICES

---

### 2.5 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

### 2.6 Support Equipment List and Description

1 x 1.23m long cable with earphone (provided by Intertek)

## 3.0 Emission Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

### 3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - AG - AV$$

where      FS = Field Strength in dB $\mu$ V/m

RA = Receiver Amplitude (including preamplifier) in dB $\mu$ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

$$FS = RR + LF$$

where      FS = Field Strength in dB $\mu$ V/m

RR = RA - AG - AV in dB $\mu$ V

LF = CF + AF in dB

## INTERTEK TESTING SERVICES

---

### 3.1 Field Strength Calculation (cont'd)

Assume a receiver reading of 52.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}/\text{m}$$

$$AF = 7.4 \text{ dB}$$

$$RR = 18.0 \text{ dB}\mu\text{V}$$

$$CF = 1.6 \text{ dB}$$

$$LF = 9.0 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$AV = 5.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 18 + 9 = 27 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(27 \text{ dB}\mu\text{V}/\text{m})/20] = 22.4 \mu\text{V}/\text{m}$$

### 3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at 2441.000 & 2479.000 MHz

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

### 3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgment: Passed by 1.0 dB

### 3.4 Conducted Emission Configuration Photograph

Worst Case Line Conducted Configuration at 348 kHz.

For electronic filing, the worst case line-conducted configuration photographs are saved with filename: conducted photos.pdf.

### 3.5 Conducted Emission Data

For electronic filing, the graph and data table of conducted emission is saved with filename: conducted.pdf.

Judgment: Passed by 19.45 dB

# INTERTEK TESTING SERVICES

Applicant: Allied Hill Enterprise Ltd.

Date of Test: May 11, 2012

Model: N/A

Mode: TX

Table 1

## Radiated Emissions

| Polarization | Frequency (MHz) | Reading (dB $\mu$ V) | Pre-Amp Gain (dB) | Antenna Factor (dB) | Net at 3m - Peak (dB $\mu$ V/m) | Average Factor (dB) | Calculated at 3m (dB $\mu$ V/m) | Average Limit at 3m (dB $\mu$ V/m) | Margin (dB) |
|--------------|-----------------|----------------------|-------------------|---------------------|---------------------------------|---------------------|---------------------------------|------------------------------------|-------------|
| H            | 2404.000        | 114.6                | 33                | 29.4                | 111.0                           | 29.4                | 81.6                            | 94.0                               | -12.4       |
| H            | 4808.000        | 61.3                 | 33                | 34.9                | 63.2                            | 29.4                | 33.8                            | 54.0                               | -20.2       |
| H            | 7212.000        | 56.1                 | 33                | 37.9                | 61.0                            | 29.4                | 31.6                            | 54.0                               | -22.4       |
| H            | 9616.000        | 43.4                 | 33                | 40.4                | 50.8                            | 29.4                | 21.4                            | 54.0                               | -32.6       |
| H            | 12020.000       | 45.0                 | 33                | 40.5                | 52.5                            | 29.4                | 23.1                            | 54.0                               | -30.9       |
| H            | 14424.000       | 46.3                 | 33                | 40.0                | 53.3                            | 29.4                | 23.9                            | 54.0                               | -30.1       |

| Polarization | Frequency (MHz) | Reading (dB $\mu$ V) | Pre-Amp Gain (dB) | Antenna Factor (dB) | Net at 3m - Peak (dB $\mu$ V/m) | Peak Limit at 3m (dB $\mu$ V/m) | Margin (dB) |
|--------------|-----------------|----------------------|-------------------|---------------------|---------------------------------|---------------------------------|-------------|
| H            | 2404.000        | 114.6                | 33                | 29.4                | 111.0                           | 114.0                           | -3.0        |
| H            | 4808.000        | 61.3                 | 33                | 34.9                | 63.2                            | 74.0                            | -10.8       |
| H            | 7212.000        | 56.1                 | 33                | 37.9                | 61.0                            | 74.0                            | -13.0       |
| H            | 9616.000        | 43.4                 | 33                | 40.4                | 50.8                            | 74.0                            | -23.2       |
| H            | 12020.000       | 45.0                 | 33                | 40.5                | 52.5                            | 74.0                            | -21.5       |
| H            | 14424.000       | 46.3                 | 33                | 40.0                | 53.3                            | 74.0                            | -20.7       |

NOTES: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative sign in the column shows value below limit.
4. Horn antenna is used for the emissions over 1000MHz.

# INTERTEK TESTING SERVICES

Applicant: Allied Hill Enterprise Ltd.

Date of Test: May 11, 2012

Model: N/A

Mode: TX

Table 2

## Radiated Emissions

| Polarization | Frequency (MHz) | Reading (dB $\mu$ V) | Pre-Amp Gain (dB) | Antenna Factor (dB) | Net at 3m - Peak (dB $\mu$ V/m) | Average Factor (dB) | Calculated at 3m (dB $\mu$ V/m) | Average Limit at 3m (dB $\mu$ V/m) | Margin (dB) |
|--------------|-----------------|----------------------|-------------------|---------------------|---------------------------------|---------------------|---------------------------------|------------------------------------|-------------|
| H            | 2441.000        | 116.6                | 33                | 29.4                | 113.0                           | 29.4                | 83.6                            | 94.0                               | -10.4       |
| H            | 4882.000        | 61.8                 | 33                | 34.9                | 63.7                            | 29.4                | 34.3                            | 54.0                               | -19.7       |
| H            | 7323.000        | 57.6                 | 33                | 37.9                | 62.5                            | 29.4                | 33.1                            | 54.0                               | -20.9       |
| H            | 9764.000        | 43.6                 | 33                | 40.4                | 51.0                            | 29.4                | 21.6                            | 54.0                               | -32.4       |
| H            | 12205.000       | 45.3                 | 33                | 40.5                | 52.8                            | 29.4                | 23.4                            | 54.0                               | -30.6       |
| H            | 14646.000       | 48.5                 | 33                | 38.4                | 53.9                            | 29.4                | 24.5                            | 54.0                               | -29.5       |

| Polarization | Frequency (MHz) | Reading (dB $\mu$ V) | Pre-Amp Gain (dB) | Antenna Factor (dB) | Net at 3m - Peak (dB $\mu$ V/m) | Peak Limit at 3m (dB $\mu$ V/m) | Margin (dB) |
|--------------|-----------------|----------------------|-------------------|---------------------|---------------------------------|---------------------------------|-------------|
| H            | 2441.000        | 116.6                | 33                | 29.4                | 113.0                           | 114.0                           | -1.0        |
| H            | 4882.000        | 61.8                 | 33                | 34.9                | 63.7                            | 74.0                            | -10.3       |
| H            | 7323.000        | 57.6                 | 33                | 37.9                | 62.5                            | 74.0                            | -11.5       |
| H            | 9764.000        | 43.6                 | 33                | 40.4                | 51.0                            | 74.0                            | -23.0       |
| H            | 12205.000       | 45.3                 | 33                | 40.5                | 52.8                            | 74.0                            | -21.2       |
| H            | 14646.000       | 48.5                 | 33                | 38.4                | 53.9                            | 74.0                            | -20.1       |

NOTES: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative sign in the column shows value below limit.
4. Horn antenna is used for the emissions over 1000MHz.

# INTERTEK TESTING SERVICES

Applicant: Allied Hill Enterprise Ltd.

Date of Test: May 11, 2012

Model: N/A

Mode: TX

Table 3

## Radiated Emissions

| Polarization | Frequency (MHz) | Reading (dB $\mu$ V) | Pre-Amp Gain (dB) | Antenna Factor (dB) | Net at 3m - Peak (dB $\mu$ V/m) | Average Factor (dB) | Calculated at 3m (dB $\mu$ V/m) | Average Limit at 3m (dB $\mu$ V/m) | Margin (dB) |
|--------------|-----------------|----------------------|-------------------|---------------------|---------------------------------|---------------------|---------------------------------|------------------------------------|-------------|
| H            | 2479.000        | 116.6                | 33                | 29.4                | 113.0                           | 29.4                | 83.6                            | 94.0                               | -10.4       |
| H            | 4958.000        | 63.3                 | 33                | 34.9                | 65.2                            | 29.4                | 35.8                            | 54.0                               | -18.2       |
| H            | 7437.000        | 58.1                 | 33                | 37.9                | 63.0                            | 29.4                | 33.6                            | 54.0                               | -20.4       |
| H            | 9916.000        | 44.0                 | 33                | 40.4                | 51.4                            | 29.4                | 22.0                            | 54.0                               | -32.0       |
| H            | 12395.000       | 45.3                 | 33                | 40.5                | 52.8                            | 29.4                | 23.4                            | 54.0                               | -30.6       |
| H            | 14874.000       | 48.5                 | 33                | 38.4                | 53.9                            | 29.4                | 24.5                            | 54.0                               | -29.5       |

| Polarization | Frequency (MHz) | Reading (dB $\mu$ V) | Pre-Amp Gain (dB) | Antenna Factor (dB) | Net at 3m - Peak (dB $\mu$ V/m) | Peak Limit at 3m (dB $\mu$ V/m) | Margin (dB) |
|--------------|-----------------|----------------------|-------------------|---------------------|---------------------------------|---------------------------------|-------------|
| H            | 2479.000        | 116.6                | 33                | 29.4                | 113.0                           | 114.0                           | -1.0        |
| H            | 4958.000        | 63.3                 | 33                | 34.9                | 65.2                            | 74.0                            | -8.8        |
| H            | 7437.000        | 58.1                 | 33                | 37.9                | 63.0                            | 74.0                            | -11.0       |
| H            | 9916.000        | 44.0                 | 33                | 40.4                | 51.4                            | 74.0                            | -22.6       |
| H            | 12395.000       | 45.3                 | 33                | 40.5                | 52.8                            | 74.0                            | -21.2       |
| H            | 14874.000       | 48.5                 | 33                | 38.4                | 53.9                            | 74.0                            | -20.1       |

NOTES: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative sign in the column shows value below limit.
4. Horn antenna is used for the emissions over 1000MHz.

## INTERTEK TESTING SERVICES

---

### 4.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.pdf and internal photos.pdf.

### 5.0 Product Labelling

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

### 6.0 Technical Specifications

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

### 7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

### 8.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandwidth, the test procedure and calculation of factors such as pulse desensitization and averaging factor.

## INTERTEK TESTING SERVICES

---

### 8.1 Measured Bandwidth

From the following plots, they show that the fundamental emissions are confined in the specified band (2400MHz to 2483.5MHz). In case of the fundamental emissions are within two standard bandwidths from the bandedge, the delta measurement technique is used for determining bandedge compliance. Standard bandwidth is the bandwidth specified by ANSI C63.4 (2003) for frequency being measured.

Emissions radiated outside of the specified frequency bands, except harmonics, are attenuated by 50dB below the level of the fundamental or to the general radiated emissions limits in Section 15.209, whichever is the lesser attenuation, which meet the requirement of part 15.249(d).

#### Peak Measurement

Bandedge compliance is determined by applying marker-delta method, i.e. (Bandedge Plot).

#### Lower bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

$$\begin{aligned} &= 111.00 \text{ dB}\mu\text{V/m} - 41.43 \text{ dB} \\ &= 69.57 \text{ dB}\mu\text{V/m} \end{aligned}$$

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

$$\begin{aligned} &= 81.60 \text{ dB}\mu\text{V/m} - 41.43 \text{ dB} \\ &= 40.17 \text{ dB}\mu\text{V/m} \end{aligned}$$

#### Upper bandedge

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the plot

$$\begin{aligned} &= 113.00 \text{ dB}\mu\text{V/m} - 45.59 \text{ dB} \\ &= 67.41 \text{ dB}\mu\text{V/m} \end{aligned}$$

Average Resultant field strength = Fundamental emissions (average value) – delta from the plot

$$\begin{aligned} &= 83.60 \text{ dB}\mu\text{V/m} - 45.59 \text{ dB} \\ &= 38.01 \text{ dB}\mu\text{V/m} \end{aligned}$$

## INTERTEK TESTING SERVICES

---

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74 dB $\mu$ V/m (Peak Limit) and 54 dB $\mu$ V/m (Average Limit).

### 8.2 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period (Teff) is approximately 170 $\mu$ s for a digital “1” bit which illustrated on technical specification, with a resolution bandwidth (3dB) of 100kHz, so the pulse desensitivity factor is 0dB.

### 8.3 Calculation of Average Factor

Averaging factor in dB =  $20 \log_{10} (\text{duty cycle})$

The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.

A plot of the worst-case duty cycle as detected in this manner are saved with filename: af.pdf

The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 100ms  
Effective period of the cycle = 170 $\mu$ s x 20

$$DC = 3.4 / 100$$

Therefore, the averaging factor is found by  $20 \log_{10} 0.034 = 29.4$  dB

## INTERTEK TESTING SERVICES

---

### 8.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2003.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.3.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz.

## INTERTEK TESTING SERVICES

---

---

### 8.4 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 2003.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

## INTERTEK TESTING SERVICES

---

### 9.0 Equipment List

#### 1) Radiated Emissions Test

|                      |                   |                      |                   |
|----------------------|-------------------|----------------------|-------------------|
| Equipment            | EMI Test Receiver | Log Periodic Antenna | Biconical Antenna |
| Registration No.     | EW-2500           | EW-0446              | EW-2512           |
| Manufacturer         | ROHDE & SCHWARZ   | EMCO                 | EMCO              |
| Model No.            | ESCI              | 3146                 | 3104C             |
| Calibration Date     | February 24, 2011 | October 31, 2011     | November 15, 2011 |
| Calibration Due Date | February 24, 2013 | April 30, 2013       | May 15, 2013      |

|                      |                            |                            |                    |
|----------------------|----------------------------|----------------------------|--------------------|
| Equipment            | 14m Double Shield RF Cable | 14m Double Shield RF Cable | Spectrum Analyzer  |
| Registration No.     | EW-2528                    | EW-2375                    | EW-2188            |
| Manufacturer         | RADIALL                    | RADIALL                    | AGILENTTECH        |
| Model No.            | nm / br5d / sma 14m        | n m/br56/bnc m 14m         | E4407B             |
| Calibration Date     | November 29, 2011          | September 9, 2011          | September 26, 2011 |
| Calibration Due Date | December 14, 2012          | September 12, 2012         | September 26, 2012 |

|                      |                             |                             |
|----------------------|-----------------------------|-----------------------------|
| Equipment            | Double Ridged Guide Antenna | 14m RF High Frequency Cable |
| Registration No.     | EW-1133                     | EW-2552                     |
| Manufacturer         | EMCO                        | RADIALL                     |
| Model No.            | 3115                        | SHF5M sma m - sma m ra      |
| Calibration Date     | March 2, 2011               | August 17, 2011             |
| Calibration Due Date | September 2, 2012           | September 03, 2012          |

|                      |                      |                         |
|----------------------|----------------------|-------------------------|
| Equipment            | RF Amplifiers        | High Pass Filter        |
| Registration No.     | EW-1779              | EW-1835                 |
| Manufacturer         | MITEQ                | KLMICROWAVE             |
| Model No.            | AMF-4D-001120-34-13P | 11SH10-3000/T12000-0/OP |
| Calibration Date     | August 4, 2011       | November 2, 2011        |
| Calibration Due Date | August 1, 2012       | November 8, 2012        |

#### 2) Conducted Emissions Test

|                      |                   |                          |                                |
|----------------------|-------------------|--------------------------|--------------------------------|
| Equipment            | EMI Test Receiver | Artificial Mains Network | RF Cable 80cm (RG142)          |
| Registration No.     | EW-2500           | EW-2501                  | EW-2452                        |
| Manufacturer         | ROHDE & SCHWARZ   | ROHDE & SCHWARZ          | RADIALL                        |
| Model No.            | ESCI              | ENV-216                  | bnc m st / 142 / bnc m st 80cm |
| Calibration Date     | February 24, 2011 | Mar 30, 2011             | June 20, 2011                  |
| Calibration Due Date | February 24, 2013 | Jun 29, 2012             | June 20, 2012                  |