HEARING AID COMPATIBILITY RF EMISSIONS TEST REPORT

FCC ID : A4RGUL82

Equipment : Phone Model Name : GUL82

Google LLC

Applicant: 1600 Amphitheatre Parkway,

Mountain View, CA, 94043 USA

Standard : FCC 47 CFR §20.19 ANSI C63.19-2019

The product was received on Nov. 28, 2024 and testing was started from Feb. 18, 2025 and completed on Feb. 18, 2025. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in ANSI C63.19-2019 / 47 CFR Part 20.19 and has been pass the FCC requirement.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Laboratory, the test report shall not be reproduced except in full.

Approved by: Cona Huang / Deputy Manager

Qua Grange

lac-MRA

Report No.: HA4N0918A

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

Form version: 231017 Page: 1 of 23

Issued Date: May 12, 2025

Table of Contents

Report No.: HA4N0918A

1.	General Information	4
2.	Testing Location	5
3.	Applied Standards	5
	Air Interfaces	
	WD Emission Requirements	
6.	System Description and Operation	9
	RF Emissions Test Procedure	
8.	Test Equipment List	14
	System Validation	
10.	Modulation Interference Factor	16
11.	Evaluation of WD RF interference potential	18
	11.1 Evaluation RFAIL	21
12.	Uncertainty Assessment	22
	References	

Appendix A. Plots of System Performance Check Appendix B. Plots of RF Emission Measurement Appendix C. DASY Calibration Certificate Appendix D. Test Setup Photos

Appendix E. UID specifications for HAC RFE

Appendix F. Declaration – MIF for HAC RF Interference Evaluation

Appendix G. MIF Measurement

Issued Date: May 12, 2025

History of this test report

Report No.	Version	Description	Issued Date
HA4N0918A	Rev. 01	Initial issue of report	Mar. 27, 2025
HA4N0918A	Rev. 02	Update section 11	Apr. 24, 2025
HA4N0918A	Rev. 03	Update section 11	May 06, 2025
HA4N0918A	Rev. 04	Update section 11	May 09, 2025
HA4N0918A	Rev. 05	Update section 11	May 12, 2025

Form version: 231017 Page: 3 of 23

Issued Date: May 12, 2025

1. General Information

Applicant Name	Google LLC
Equipment Name	Phone
Model Name	GUL82
FCC ID	A4RGUL82
SN	4B191FDCQ000LF
Frequency Band	## GSM#50: 2842 MHz ~ 1909.8 MHz ## GSM#50: 2842 MHz ~ 1909.8 MHz ## GSM#50: 2842 MHz ~ 1909.8 MHz ## WCDMA Band II: 1850 MHz ~ 1910 MHz ## WCDMA Band II: 1850 MHz ~ 1910 MHz ## WCDMA Band IV: 2710 MHz ~ 1910 MHz ## WCDMA Band V: 284 MHz ~ 849 MHz ## LTE Band 2: 1850 MHz ~ 1910 MHz ## LTE Band 2: 1850 MHz ~ 1910 MHz ## LTE Band 17: 2500 MHz ~ 2570 MHz ## LTE Band 17: 2500 MHz ~ 2570 MHz ## LTE Band 17: 750 MHz ~ 2776 MHz ## LTE Band 17: 770 MHz ~ 716 MHz ## LTE Band 17: 770 MHz ~ 716 MHz ## LTE Band 17: 770 MHz ~ 1915 MHz ## LTE Band 17: 704 MHz ~ 1915 MHz ## LTE Band 28: 814 MHz ~ 849 MHz ## LTE Band 28: 814 MHz ~ 849 MHz ## LTE Band 28: 814 MHz ~ 2780 MHz ## LTE Band 28: 814 MHz ~ 2780 MHz ## LTE Band 30: 2305 MHz ~ 2315 MHz ## LTE Band 30: 2305 MHz ~ 2315 MHz ## LTE Band 48: 8550 MHz ~ 1910 MHz ## LTE Band 48: 3550 MHz ~ 1960 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 48: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 1970 MHz ## LTE Band 49: 3550 MHz ~ 3570 MHz ## LTE Band 49: 3550 MHz ~ 3570 MHz ## LTE Band 49: 3550 MHz ~ 3570 MHz ## LTE Band 49: 3550 MHz ~ 3570 MHz ## LTE Band 49: 3550 MHz ~ 3570 MHz ## LTE Band 49: 3570 MHz ## LTE Band
Mode	UMTS: RMC/AMR 12.2Kbps, HSDPA, HSUPA LTE: QPSK, 16QAM, 64QAM, 256QAM NTN: BPSK, QPSK 5G NR: DFT-s-OFDM/CP-OFDM, Pi/2 BPSK/QPSK/16QAM/64QAM/256QAM WLAN: 802.11a/b/g/n/ac/ax/be HT20/HT40/VHT20/VHT80/VHT160/HE20/HE40/HE80/HE160/EHT20/EHT40/EHT80/EHT160 Bluetooth BR/EDR/LE/CS NFC: ASK WPC: ASK UWB: BPM-BPSK/HPSK

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Carlie Tsai</u>

Form version: 231017 Page: 4 of 23

Issued Date: May 12, 2025

2. Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3786) and the FCC designation No. TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.

Testing Laboratory				
Test Site SPORTON INTERNATIONAL INC.				
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan TEL:+886-3-327-0838 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.: SAR015-HY			

3. Applied Standards

- FCC CFR47 Part 20.19
- ANSI C63.19-2019
- FCC KDB 285076 D01 HAC Guidance v06r04
- FCC KDB 285076 D03 HAC FAQ v01r07

Form version: 231017 Page: 5 of 23

Issued Date: May 12, 2025

4. Air Interfaces

Air Interface	Band MHz	Туре	C63.19 Tested	Simultaneous Transmitter	Name of Voice Service	Power State for HAC Compliance
	GSM850	VO			CMRS Voice	
GSM	GSM1900	VO	No ⁽¹⁾	WLAN, BT, Thread	CIVILO VOICE	Head
23	EDGE850	VD	110		Google Meet	riodd
	EDGE1900	,,,			Coogle Woot	
	Band 2					
UMTS	Band 4	VO	No ⁽¹⁾	WLAN, BT, Thread	CMRS Voice	Pmax
	Band 5					
	HSPA	VD			Google Meet	
	Band 2					
	Band 4					
	Band 5					
	Band 7					
	Band 12					
	Band 13					
	Band 14					
LTE	Band 17	VD	No ⁽¹⁾	5G NR, WLAN, BT, Thread	VoLTE /	Pmax
	Band 25		110	oo m, wext, et al., modd	Google Meet	THICK
	Band 26					
	Band 30					
	Band 38					
	Band 41					
	Band 48 Band 66					
	Band 71					
	n2					
	n5					
	n7					
	n12					
	n14					
	n25					
	n26					
	n30	VD			VoNR /	Pmax
	n38				Google Meet	- Hax
5G NR	n41		No ^(1,2)	LTE, WLAN, BT, Thread		
	n48					
	n66					
	n70					
	n71					
	n77					
	n258					
	n260	VD			Google Meet	NA
	n261					

Form version: 231017 Page: 6 of 23

Issued Date : May 12, 2025

	2450			GSM, WCDMA, LTE, 5G NR, 5G/6GHz WLAN		
	5200			VoWiFi		
	5300	VD		GSM, WCDMA, LTE, 5G NR, 2.4G WLAN, BT, Thread	1	Pmax
	5500				Google Meet	
Wi-Fi	5800 / 5900		Yes ^(1,2)			
	U-NII 5			GSM, WCDMA, LTE, 5G NR, 2.4G WLAN, BT, Thread	VoWiFi	
	U-NII 6	VD				Pmax
	U-NII 7	۷D			Google Meet	
	U-NII 8					
NTN	B23	DT	No	NA	NA	NA
INTIN	B255	Di	NO	INA	INA	NA
BT / Thread	2450	DT	No	GSM, WCDMA, LTE, 5G NR, 5G/6GHz WLAN	NA	NA
UWB	6500/8000	DT	No	WWAN, WLAN, BT, Thread, NFC	NA	NA
NFC	13.56	DT	No	WWAN, WLAN, BT, Thread, UWB	NA	NA

Type Transport:

VO= Voice only

DT= Digital Transport only (no voice)

VD= CMRS and IP Voice Service over Digital Transport

Remark:

- The air interface max power plus MIF is complies with ANSI C63.19-2019 Table 4.1 RF_{AIPL}
- The FR2 and WiFi 6E are currently outside the scope of ANSI C63.19 and FCC HAC regulations therefore they were not evaluated.
- The UNII-5 was evaluated for operations which are entirely below 6 GHz, above 6 GHz were not evaluated due outside of the current scope of ANSI 3.
- C63.19 and FCC HAC regulations.

 Because features of Google Meet allow the option of voice-only communications, Meet has been tested for HAC/T-Coil compatibility to ensure the best 4. user experience.
- 5. The product UMTS/LTE/NR/WiFi support TAS feature, therefore UMTS/LTE/NR/WiFi HAC were tested at Pmax level. The GSM set to highest device transmit power in a held to the ear mode.
- Pmax is the maximum output power for the handset for the indicated air interface.
- Head refers to the handset's maximum RF power possible for all user conditions during held-to-ear scenarios.

Form version: 231017 Page: 7 of 23

Issued Date: May 12, 2025

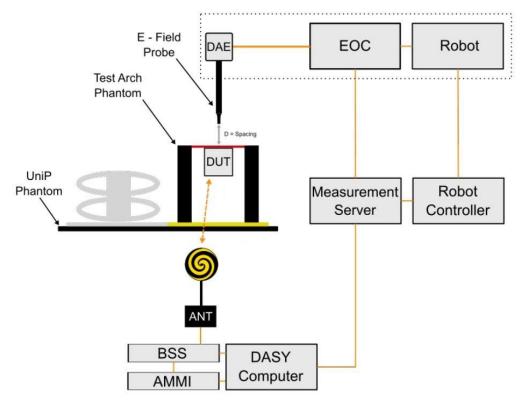
5. WD Emission Requirements

The WD's conducted power must be at or below either the stated RFAIPL (Table 4.1) or the stated peak power level (Table 4.2), or the average near-field emissions over the measurement area must be at or below the stated RFAIL (Table 4.3), or the stated peak field strength (Table 4.4). The WD may demonstrate compliance by meeting any of these four requirements, but it must do so in each of its operating bands at its established worst-case normal speech-mode operating condition.

Table 4.1 - Wireless device RF audio interference power level				
Frequency range RF _{AIPL}				
(MHz)	(dBm)			
< 960	29			
960 - 2000	26			
> 2000	25			

Table 4.2 - Wireless device RF peak power level				
Frequency range RF _{Peak Power} (MHz) (dBm)				
< 960	35			
960 - 2000	32			
> 2000	31			

Table 4.3 - Wireless device RF audio interference level				
Frequency range RF _{AIL}				
(MHz) [dB(V/m)]				
< 960	39			
960 - 2000	36			
> 2000	35			


Table 4.4 - Wireless device RF peak near-field level Frequency range RF _{Peak} (MHz) [dB(V/m)]				
960 - 2000	42			
> 2000	41			

Form version: 231017 Page: 8 of 23

Issued Date: May 12, 2025

6. System Description and Operation

<System Components>

Remark:

A typical al DASY system for HAC measurements consists of

- · 6-axis robotic arm (Staubli TX2-60L/ TX2-90XL) for positioning the probe
- · Mounting Platform for keeping the phantoms at a field location relative to the robot
- Measurement Server for handling all time-critical tasks, such as measurement data acquisition and supervision of safety features
- EOC (Electrical to Optical Converter) for converting the optical signal from the Data Acquisition Electronics (DAE) to electrical before being transmitted to the measurement server
- · LB (Light Beam unit) for probe alignment (measurement of the exact probe length and eccentricity)
- · Test Arch for Device Under Test (DUT) testing
- DAE that reads the probe voltages and transmits them to the DASY PC. It is also used to detect probe touch and collision signals
- Device Holder for positioning the DUT beneath the phantom
- ANT (wideband Antenna) for broadcasting the downlink signals emitted by base station simulators (BSS) to the WD
- Operator PC for running the DASY software to define/execute the measurements.

The following components are needed for RFail measurements only:

- · Modulation Interference Factor (MIF)
- Isotropic E-field, free-space probe (e.g., EF3DVx)
- Radiofrequency (RF) emission calibration dipoles for system check / validation purposes.

Form version: 231017 Page: 9 of 23

Issued Date: May 12, 2025

<EF3DV3 E-Field Probe Specification>

Construction	One dipole parallel, two dipoles normal to probe axis		
	Interleaved sensors Built-in shielding against static charges		
	PEEK enclosure material		
Calibration	In air from 30 MHz to 6.0 GHz		
	(absolute accuracy ±5.1%, k=2)		
Frequency	30 MHz – 6 GHz		
	Linearity: ±0.2 dB (100 MHz – 3 GHz)		
Directivity	± 0.2 dB in air (rotation around probe axis)		
	± 0.4 dB in air (rotation normal to probe axis)		
Dynamic Range	2 – >1000 V/m		
Linearity	± 0.2 dB		
Dimensions	Overall length: 337 mm (tip: 20 mm)		
	Tip diameter: 3.9 mm (body: 12 mm)		
	Distance from probe tip to dipole centers: 1.5 mm		
	Sensor displacement to probe's calibration point: <0.7		
	mm		

Voltage to E-field Conversion

The measured voltage is first linearized to a quantity proportional to the square of the E-field using the (a, b, c, d) set of parameters specific to the communication system and sensor:

$$V_{compi} = U_i + U_i^2 \cdot \frac{10\frac{d}{10}}{dcp_i}$$

where

 V_{compi} = compensated signal of channel i (μ V) (i = x, y, z)

 U_i = input signal of channel i (μ V) (i = x, y, z)

d = PMR factor d (dB) (Probe parameter)

 dcp_i = diode compression point of channel i (μ V) (Probe parameter, i = x, y, z)

$$V_{compi^{dB}\!\sqrt{\mu V}} = 10 + log_{10} (V_{compi})$$

$$corr_i = a_i \cdot e - \left(\frac{V_{compi}{}^{dB}\!\!\sqrt{_{\mu V}}^{}^{-b_i}}{C_i} \right)^2$$

where

coor_i = correction factor of channel i (dB) (i = x, y, z)

 $V_{compi\ dB}\sqrt{\mu V} = compensated\ voltage\ of\ channel\ i\ (dB\sqrt{\mu V})\ (i=x,\,y,\,z)$

 $a_i = PMR$ factor a of channel i (dB) (Probe parameter, i = x,y,z)

 $b_i = PMR$ factor b of channel i (dB $\sqrt{\mu}V$) (Probe parameter, i = x,y,z)

 c_i = PMR factor c of channel i (Probe parameter, i = x,y,z)

The voltage $V_{idB}\sqrt{\ }_{\mu V}$ is the linearized voltage in $dB\sqrt{\ }\mu V$:

$$V_{i \frac{dB_{\sqrt{\mu V}}}{dB_{\sqrt{\mu V}}}} = V_{compi \frac{dB_{\sqrt{\mu V}}}{dB_{\sqrt{\mu V}}}} - corr_i$$

where

 $V_{i dB}\sqrt{\mu V} = linearized voltage of channel i (dB\sqrt{\mu V}) (i = x,y,z)$

 $V_{\text{compi dB}}\sqrt{\mu V} = \text{compensated voltage of channel i } (dB\sqrt{\mu V}) (i = x,y,z)$

 $Corr_i = correction factor of channel i (dB) (i = x,y,z)$

Form version: 231017 Page: 10 of 23

Issued Date: May 12, 2025

Finally, the linearized voltage is converted in μV :

$$V_i = 10 rac{V_{i\,dB_{\sqrt{\mu V}}}}{10}$$

where V_i = linearized voltage of channel i (μ V) (i = x,y,z)

 $V_{i dB}\sqrt{\mu V} = \text{linearized voltage of channel i } (dB\sqrt{\mu V} (i = x,y,z))$

The E-field data for each channel are calculated using the linearized voltage:

$$\text{E-field Probes}: E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

where V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity $(\mu V/(V/m)^2)$ of channel i (i = x, y, z)

ConvF = sensitivity enhancement in solution $E_i = electric$ field strength of channel i in V/m

The RMS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

Averaged E-field Calculation

The averaged E-field is defined by

$$E_{avg} = \frac{1}{n} \cdot \sum_{i=1}^{n} E_i$$

where n = the number of measurement grid point

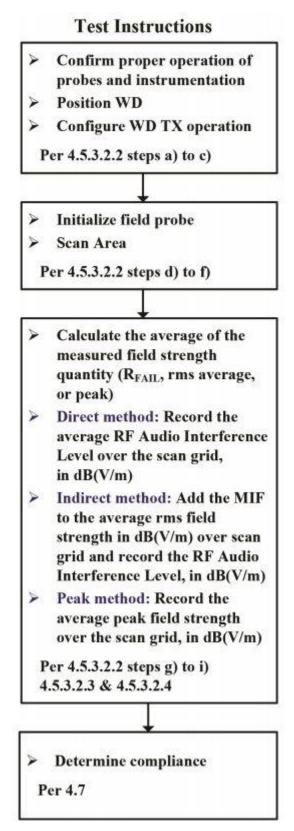
E_i = the E-field measured at point i

RFail Calculation

The RFail is finally computed with

$$RFail[dB(V/m)] = 20 \cdot \log_{10}(E_{avg}) + MIF$$

where RFail = the Radio Frequency Audio Interference Level in dB(V/m)


E_{avg} = the averaged E-field in (V/m) calculated

MIF = the Modulation Interference Factor in dB.

Form version: 231017 Page: 11 of 23

Issued Date: May 12, 2025

7. RF Emissions Test Procedure

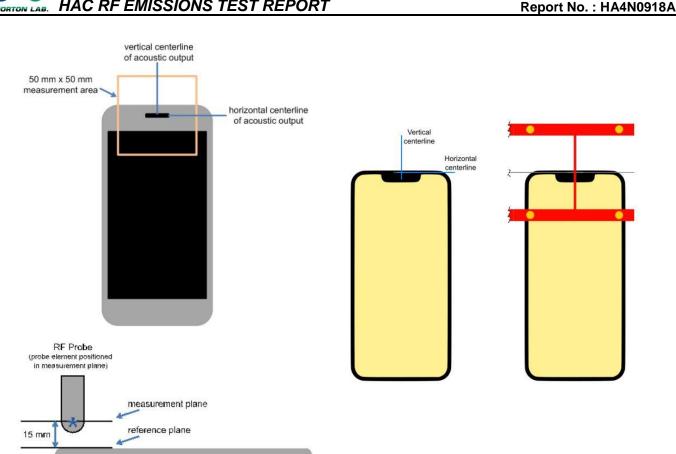

Report No.: HA4N0918A

Figure of WD near-field emission scan flowchart according to ANSI C63.19:2019

Form version: 231017 Page : 12 of 23

Issued Date : May 12, 2025

HAC RF EMISSIONS TEST REPORT

The references and reference plane that shall be used in the WD emissions measurement

Device Under Test Positioning under the Test Arch

Test procedure: Indirect measurement—preferred

- a. The measurement procedure using a probe and instrumentation chain with a response of <10 kHz (see ANSI C63.19-2019 section4.5.1) is identical to the direct measurement method of ANSI C63.19-2019 section4.5.3.2.2: however, because of the bandwidth limitations, it cannot include the direct use of the spectral and temporal weighting functions. The output of such measurement systems must be readings of steady state rms field strength in dB(V/m).
- The RF audio interference level in dB(V/m) is obtained by adding the Modulation Interference Factor (in decibels) to the average steady state rms field strength reading over the measurement area, in dB(V/m), from Step c). Use this result to determine the WD's compliance per ANSI C63.19-2019 section4.7.
- Scan the entire 50 mm by 50 mm measurement area in equally spaced step sizes and record the reading at each measurement point. The step size shall meet the specification for step size in ANSI C63.19:2019 section 4.5.3.
- d. Calculate the average of the measurements taken in Step c
- Convert the average value found in Step d) to RF audio interference level, in volts per meter, by taking the square root of the reading and then dividing it by the measurement system transfer function, as established in ANSI C63.19:2019 section4.5.3.2.1 pre-test procedure. Convert the result to dB(V/m) by taking the base-10 logarithm and multiplying it by 20. Expressed as a formula

RF audio interference level in db(V/M) 20 * log(R_{ave} 1/2 / TF) where

Rave is the average reading

- Compare this RF audio interference level to the limits in ANSI C63.19:2019 section4.7 and record the result
- Per ANSI C63.19-2019 section4.6, WDs capable of operating multiple transmitters shall be subject to emissions requirements for all such transmitters expected to be operated when the WD is in voice mode operation positioned at a user's ear. Each qualified transmitter is tested individually using the method of Clause 4. Other WD transmitters shall be temporarily disabled or reduced in power level such that their average antenna input power is at least 6 dB lower than the average antenna input power of the transmitter under test. The transmitter under test is set to the fixed and repeatable combination of power and modulation characteristic that is representative of the worst case (highest interference potential) likely to be encountered while the WD is experiencing normal voice mode operation. The limiting measurement for device qualification is the highest RF audio interference potential measured for any of the WD transmitters. If the highest interference measurement is from a transmitter that is not required for normal voice mode operation, a secondary rating may be given that applies when that transmitter is disabled

Form version: 231017 Page: 13 of 23

Issued Date: May 12, 2025

8. Test Equipment List

Manufacturer	Name of Equipment	Towns (Mandal	Serial Number	Calibration	
Manufacturer		Type/Model		Last Cal.	Due Date
SPEAG	2450MHz Calibration Dipole	CD2450V3	1186	Jan. 21, 2025	Jan. 20, 2026
SPEAG	Data Acquisition Electronics	DAE4	376	Sep. 16, 2024	Sep. 15, 2025
SPEAG	Isotropic E-Field Probe	EF3DV3	4047	Dec. 03, 2024	Dec. 02, 2025
Testo	Hygro meter	608-H1	45196600	Oct. 28, 2024	Oct. 27, 2025
R&S	Wideband Radio Communication Tester	CMW500	115793	Dec. 12, 2024	Dec. 11, 2025
SPEAG	Test Arch Phantom	N/A	N/A	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Anritsu	Signal Generator	MG3710A	6201502524	Sep. 24, 2024	Sep. 23, 2025
Anritsu	Power Meter	ML2495A	1419002	Aug. 13, 2024	Aug. 12, 2025
Anritsu	Power Sensor	MA2411B	1911176	Aug. 13, 2024	Aug. 12, 2025
ATM	Dual Directional Coupler	C122H-10	P610410z-02	NCR	NCR
Woken	Attenuator	WK0602-XX	N/A	NCR	NCR
Anritsu	Spectrum Analyzer	N9010A	MY53470118	Aug. 09, 2024	Aug. 08, 2025
Mini-Circuits	Power Amplifier	ZVE-8G+	D120604	Oct. 16, 2024	Oct. 15, 2025
Mini-Circuits	Power Amplifier	ZHL-42W+	715701915	May. 17, 2024	May. 16, 2025

Page: 14 of 23 Form version: 231017

Issued Date: May 12, 2025

Note:
1. NCR: "No-Calibration Required"

9. System Validation

Obtaining accurate measurements and relevant quantities in Module HAC depends on the proper functioning of many components and the correct parameter settings. Faulty results due to drift, failures, or incorrect parameters might not be recognized, as the differences might not be obvious in the measurements.

SPEAG DASY incorporates a system check, also called system verification procedure, to test for the proper functioning of the system based on the tests described in ANSI C63.19-2019: the RF interference potential test setup is verified with RF Emission Calibration Dipoles.

<Test Setup>

- 1. Set the RF signal generator for either CW. Set its output power so the peak power applied to the antenna is equal to that recorded for the real or emulated signal using the WD modulation format
- 2. Average input power P = 100 mW (20 dBm) after adjustment for return loss. An input power that generates field levels similar to those from the WD or other suitable level may also be used
- 3. The test fixture should meet the two-wavelength separation criterion
- The probe-to-dipole separation, which is measured from closest surface of the dipole to the center point of the probe sensor element, should be 15 mm

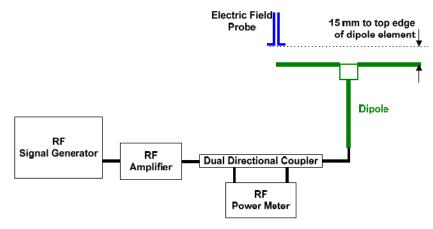


Figure of Setup Diagram

<Validation Procedure>

Place a dipole antenna meeting the requirements given in ANSI C63.19: 2019 D.11 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical and magnetic output. Position the E-field probe so that:

- a. The probe and its cable are parallel to the coaxial feed of the dipole antenna
- b. The probe cable and the coaxial feed of the dipole antenna approach the measurement area from opposite directions; and
- c. The center point of the probe element(s) is 15 mm from the closest surface of the dipole elements

Scan the length of the dipole with the E-field probe and record the two maximum values found near the dipole ends. Average the two readings and compare the reading to expected value in the calibration certificate or expected value in this standard.

Frequency (MHz)	Input Power (dBm)	Target Value (V/m)	Measured E-Field (V/m)	Deviation (%)	Date
2450	20	87.10	89.2	2.41	Feb. 18, 2025

Form version: 231017 Page : 15 of 23

Issued Date: May 12, 2025

10. Modulation Interference Factor

For any specific fixed and repeatable modulated signal, a Modulation Interference Factor (MIF, expressed in decibels) may be developed that relates its interference potential to its steady state rms signal level or average power level. This factor is a function only of the audio frequency amplitude modulation characteristics of the signal and is the same for field strength or conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF.

MIF may be determined using a radiated RF field, a conducted RF signal, or, in a preliminary stage, a mathematical analysis of a modeled RF signal.

- a. Verify the slope accuracy and dynamic range capability over the desired operating frequency band of a fast probe or sensor, square-law detector, as specified in ANSI C63.19: 2019 D.3, and weighting system as specified in ANSI C63.19: 2019 D.4 and ANSI C63.19: 2019 D.5. For the probe and instrumentation included in the measurement of MIF, additional calibration and application of calibration factors are not required.
- b. Using RF illumination, or conducted coupling, apply the specific modulated signal in question to the measurement system at a level within its confirmed operating dynamic range
- c. Measure the steady-state rms level at the output of the fast probe or sensor
- d. Measure the steady-state average level at the weighting output
- e. Without changing the square-law detector or weighting system, and using RF illumination, or conducted coupling, substitute for the specific modulated signal a 1 kHz, 80% amplitude modulated carrier at the same frequency and adjust its strength until the level at the weighting output equals the Step d) measurement
- f. Without changing the carrier level from Step e), remove the 1 kHz modulation and again measure the steady-state rms level indicated at the output of the fast probe or sensor.
- g. The MIF for the specific modulation characteristic is given by the ratio of the Step f) measurement to the Step c) measurement, expressed in decibels (20*log(step6/step3)

In practice, Step e) and Step f) need not be repeated for each MIF determination if the relationship between the two measurements has been pre-established for the measurement system over the operating frequency and dynamic ranges. In such cases, only the modulation characteristic being tested needs to be available during WD testing Since indirect measurement procedure was using for RF audio interference power level evaluation, the MIF values applied in this test report were provided by the HAC equipment provider of SPEAG, and the worst values for all air interface are listed below to be determine the Wireless device RF audio interference power level.

Form version: 231017 Page : 16 of 23

Issued Date: May 12, 2025

UID	Communication System Name	MIF(dB)
10021	GSM-FDD(TDMA,GMSK)	3.63
10023	GPRS-FDD (TDMA, GMSK, TN 0)	3.8
10024	GPRS-FDD (TDMA, GMSK, TN 0-1)	1.15
10027	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	-0.67
10028	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	-2.05
10025	EDGE-FDD (TDMA, 8PSK, TN 0)	3.75
10026	EDGE-FDD (TDMA, 8PSK, TN 0-1)	1.23
10029	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	-0.52
10058	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	-1.82
10460	UMTS-FDD(WCDMA, AMR)	-25.43
10225	UMTS-FDD (HSPA+)	-20.39
10170	LTE-FDD(SC-FDMA,1RB,20MHz,16-QAM)	-9.76
10173	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	-1.44
10769	5G NR 100% duty (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	-12.08
10973	5G NR 40% duty ((DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	-1.64
10061	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	-2.02
10077	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	0.12
10427	IEEE 802.11n (HT Greeneld, 150 Mbps, 64-QAM)	-13.44
10069	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	-3.15
10616	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	-5.57
10671	IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)	-5.58
11026	IEEE 802.11be (320MHz, MCS0, 99pc duty cycle)	-28.73
*NA	5G NR 25% PC1.5(DFT-s-OFDM, 1 RB, 100MHz,BPSK, 30kHz)	-0.78
*NA	5G NR 25% PC1.5(DFT-s-OFDM, 50% RB, 100MHz,BPSK, 30kHz)	-0.82
*NA	5G NR 25% PC1.5(DFT-s-OFDM, 1 RB, 100MHz,QPSK, 30kHz)	-0.96
*NA	5G NR 25% PC1.5(CP-OFDM, 1 RB, 100MHz,QPSK, 30kHz)	-1.56

5G NR 25% PC1.5(CP-OFDM, 50% RB, 100MHz,QPSK, 30kHz)

5G NR 25% PC1.5(DFT-s-OFDM, 1 RB, 10MHz,BPSK, 30kHz)

5G NR 25% PC1.5(DFT-s-OFDM, 50% RB, 10MHz,BPSK, 30kHz)

5G NR 25% PC1.5(DFT-s-OFDM, 1 RB, 10MHz,QPSK, 30kHz)

5G NR 25% PC1.5(CP-OFDM, 1 RB, 10MHz,QPSK, 30kHz)

5G NR 25% PC1.5(CP-OFDM, 50% RB, 10MHz,QPSK, 30kHz)

Remark

*NA

*NA

*NA

*NA

*NA

*NA

Refer to appendix E for RFE UID specifications summary provided by SPEAG

Form version: 231017 Page : 17 of 23

Issued Date: May 12, 2025

Report No.: HA4N0918A

-1.72

-0.83

-0.85

-0.99

-1.61

-1.76

^{*}Refer to appendix G for MIF measurements conducted by test lab for 5G NR TDD power class 1.5.

11. Evaluation of WD RF interference potential

General Note:

- 1. The following table is according to ANSI C63.19:2019 section 4.4 indirect measurement procedure to evaluation max average conducted power from each air interface plus MIF to evaluate whether it complies with ANSI C63.19-2019 Table 4.1 RF_{AIPL}, compliance with table 4.1 means compliance with WD emission requirements.
- 2. Since the device support TAS feature for UMTS, LTE, FR1 and WiFi thus HAC RF was evaluated at Pmax Average Power level to complies with ANSI C63.19-2019 Table 4.1 RF_{AIPL}.
- 3. The Head Average Power level for GSM operation was used to complies with ANSI C63.19-2019 Table 4.1 RFAIRI
- 4. If there some air interface were not meet ANSI C63.19-2019 table 4.1 requirement, these air interfaces were further evaluation ANSI C63.19-2019 Table 4.3 RF_{AIL} requirement. And the RF_{AIL} evaluation result refer to section 11.1

<WWAN operation>

<www.an operation=""></www.an>		An	t 0				
Air Interface	Max Burst Antenna Input Power (dBm)	Duty Cycle (%)	Max Average Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RF _{AIPL}
GSM850	31.50	12.5	22.50	3.63	26.13	29	Pass
GPRS850 - 1TX	33.50	12.5	24.50	3.8	28.3	29	Pass
GPRS850 - 2TX	32.50	25	26.50	1.15	27.65	29	Pass
GPRS850 - 3TX	31.50	37.5	27.24	-0.67	26.57	29	Pass
GPRS850 - 4TX	30.50	50	27.50	-2.05	25.45	29	Pass
EDGE850 - 1TX	27.50	12.5	18.50	3.75	22.25	29	Pass
EDGE850 - 2TX	26.50	25	20.50	1.23	21.73	29	Pass
EDGE850 - 3TX	25.50	37.5	21.24	-0.52	20.72	29	Pass
EDGE850 - 4TX	24.50	50	21.50	-1.82	19.68	29	Pass
GSM1900	30.20	12.5	21.20	3.63	24.83	26	Pass
GPRS1900 - 1TX	30.20	12.5	21.20	3.8	25	26	Pass
GPRS1900 - 2TX	28.70	25	22.70	1.15	23.85	26	Pass
GPRS1900 - 3TX	28.20	37.5	23.94	-0.67	23.27	26	Pass
GPRS1900 - 4TX	27.20	50	24.20	-2.05	22.15	26	Pass
EDGE1900 - 1TX	26.20	12.5	17.20	3.75	20.95	26	Pass
EDGE1900 - 2TX	25.20	25	19.20	1.23	20.43	26	Pass
EDGE1900 - 3TX	24.20	37.5	19.94	-0.52	19.42	26	Pass
EDGE1900 - 4TX	23.20	50	20.20	-1.82	18.38	26	Pass
WCDMA	25.00	100	25.00	-25.43	-0.43	26	Pass
WCDMA - HSPA	25.00	100	25.00	-20.39	4.61	26	Pass
LTE - FDD	25.00	100	25.00	-9.76	15.24	25	Pass
LTE – TDD_PC3/PC2	27.10	63.3	25.10	-1.44	23.66	25	Pass
5G FR1 - FDD_PC3	25.00	100	25.00	-12.08	12.92	25	Pass
5G NR - TDD_PC2	27.10	50	24.10	-1.64	22.46	25	Pass
5G FR1 - TDD_PC1.5 UL MIMO	27.10	25	21.10	-0.78	20.32	25	Pass

Form version: 231017 Page : 18 of 23

Issued Date: May 12, 2025

Report No.: HA4N0918A

		An	t 1				
Air Interface	Max Burst Antenna Input Power (dBm)	Duty Cycle (%)	Max Average Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RF _{AIPL}
GSM850	31.20	12.5	22.20	3.63	25.83	29	Pass
GPRS850 - 1TX	32.50	12.5	23.50	3.8	27.3	29	Pass
GPRS850 - 2TX	29.50	25	23.50	1.15	24.65	29	Pass
GPRS850 - 3TX	27.70	37.5	23.44	-0.67	22.77	29	Pass
GPRS850 - 4TX	26.50	50	23.50	-2.05	21.45	29	Pass
EDGE850 - 1TX	27.20	12.5	18.20	3.75	21.95	29	Pass
EDGE850 - 2TX	26.20	25	20.20	1.23	21.43	29	Pass
EDGE850 - 3TX	25.20	37.5	20.94	-0.52	20.42	29	Pass
EDGE850 - 4TX	24.20	50	21.20	-1.82	19.38	29	Pass
WCDMA	24.70	100	24.70	-25.43	-0.73	26	Pass
WCDMA - HSPA	24.70	100	24.70	-20.39	4.31	26	Pass
LTE - FDD	25.00	100	25.00	-9.76	15.24	25	Pass
5G FR1 - FDD_PC3	25.00	100	25.00	-12.08	12.92	25	Pass
5G NR - TDD_PC2	27.20	50	24.20	-1.64	22.56	25	Pass
5G FR1 - TDD_PC1.5 UL MIMO	26.90	25	20.90	-0.78	20.12	25	Pass

		An	t 2				
Air Interface	Max Burst Antenna Input Power (dBm)	Duty Cycle (%)	Max Average Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RF _{AIPL}
GSM1900	30.50	12.5	21.50	3.63	25.13	26	Pass
GPRS1900 - 1TX	30.50	12.5	21.50	3.8	25.3	26	Pass
GPRS1900 - 2TX	29.00	25	23.00	1.15	24.15	26	Pass
GPRS1900 - 3TX	28.50	37.5	24.24	-0.67	23.57	26	Pass
GPRS1900 - 4TX	27.50	50	24.50	-2.05	22.45	26	Pass
EDGE1900 - 1TX	26.50	12.5	17.50	3.75	21.25	26	Pass
EDGE1900 - 2TX	25.50	25	19.50	1.23	20.73	26	Pass
EDGE1900 - 3TX	24.50	37.5	20.24	-0.52	19.72	26	Pass
EDGE1900 - 4TX	23.50	50	20.50	-1.82	18.68	26	Pass
WCDMA	25.00	100	25.00	-25.43	-0.43	26	Pass
WCDMA - HSPA	25.00	100	25.00	-20.39	4.61	26	Pass
LTE - FDD	25.00	100	25.00	-9.76	15.24	25	Pass
LTE – TDD_PC3/PC2	26.90	63.3	24.90	-1.44	23.46	25	Pass
5G FR1 - FDD_PC3	25.00	100	25.00	-12.08	12.92	25	Pass
5G NR - TDD_PC2	26.90	50	23.90	-1.64	22.26	25	Pass
5G FR1 - TDD_PC1.5 UL MIMO	26.90	25	20.90	-0.78	20.12	25	Pass

Form version: 231017 Page: 19 of 23

Issued Date : May 12, 2025

Ant 5									
Air Interface	Max Burst Antenna Input Power (dBm)	Duty Cycle (%)	Max Average Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RF _{AIPL}		
LTE - FDD	24.50	100	24.50	-9.76	14.74	25	Pass		
5G FR1 - FDD_PC3	24.50	100	25.00	-12.08	12.92	25	Pass		
5G NR - TDD_PC2	27.20	50	24.20	-1.64	22.56	25	Pass		
5G FR1 - TDD_PC1.5 UL MIMO	26.90	25	20.90	-0.78	20.12	25	Pass		

Ant 6									
Air Interface	Max Burst Antenna Input Power (dBm)	Cycle	Max Average Antenna Input Power (dBm)	Worst Case	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RF _{AIPL}		
LTE – TDD_PC3/PC2	25.00	63.3	21.40	-1.44	19.96	25	Pass		
5G NR - TDD_PC2	27.10	50	24.10	-1.64	22.46	25	Pass		
5G FR1 - TDD_PC1.5 UL MIMO	26.60	25	20.60	-0.78	19.82	25	Pass		

Ant 7									
Air Interface	Max Burst Antenna Input Power (dBm)	Duty Cycle (%)	Max Average Antenna Input Power (dBm)	Worst Case	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RFAIPL		
LTE – TDD_PC3/PC2	22.20	63.3	18.60	-1.44	17.16	25	Pass		
5G NR - TDD_PC2	26.70	50	23.70	-1.64	22.06	25	Pass		
5G FR1 - TDD_PC1.5 UL MIMO	26.00	25	20.00	-0.78	19.22	25	Pass		

Ant 0+1								
Air Interface	Max Burst Antenna Input Power (dBm)	Duty Cycle (%)	Max Average Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RF _{AIPL}	
5G FR1 - TDD_PC1.5 UL MIMO	30.01	25	24.01	-0.78	23.23	25	Pass	

Note: The above UL MIMO power is a conservative, linear sum of the worst-case max allowed powers among PC1.5 MIMO antennas.

<WLAN operation> <SISO 2.4GHz>

Ant 3										
Air Interface	Max Burst Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RFAIPL					
802.11b	22.50	-2.02	20.48	25	Pass					

Ant 4									
Air Interface	Max Burst Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RFAIPL				
802.11b	22.50	-2.02	20.48	25	Pass				

<MIMO 2.4GHz>

Ant 3+4										
Air Interface	Max Burst Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RF _{AIPL}					
802.11b	25.50	-2.02	23.48	25	Pass					
802.11g	25.00	0.12	25.12	25	Testing					
802.11n-HT20	24.00	-13.44	10.56	25	Pass					
802.11ac-VHT20	24.00	-5.57	18.43	25	Pass					
802.11ax-HE20	24.00	-5.58	18.42	25	Pass					
802.11be-EHT20	24.00	-28.73	-4.73	25	Pass					

Form version: 231017 Page: 20 of 23

Issued Date: May 12, 2025

Report No.: HA4N0918A

<MIMO 5/6GHz>

Ant 3+4 Max Burst Wasse Coop					
Air Interface	Max Burst Antenna Input Power (dBm)	Worst Case MIF (dB)	RF _{AIPL} (dBm)	RF _{AIPL} Limit (dBm)	RF _{AIPL}
802.11a	24.00	-3.15	20.85	25	Pass
802.11n-HT20	24.00	-13.44	10.56	25	Pass
802.11n-HT40	23.00	-13.44	9.56	25	Pass
802.11ac-VHT20	24.00	-5.57	18.43	25	Pass
802.11ac-VHT40	23.00	-5.57	17.43	25	Pass
802.11ac-VHT80	23.00	-5.57	17.43	25	Pass
802.11ac-VHT160	19.50	-5.57	13.93	25	Pass
802.11ax-HE20	24.00	-5.58	18.42	25	Pass
802.11ax-HE40	23.00	-5.58	17.42	25	Pass
802.11ax-HE80	23.00	-5.58	17.42	25	Pass
802.11ax-HE160	19.50	-5.58	13.92	25	Pass
802.11be-EHT20	24.00	-28.73	-4.73	25	Pass
802.11be-EHT40	23.00	-28.73	-5.73	25	Pass
802.11be-EHT80	23.00	-28.73	-5.73	25	Pass
802.11be-EHT160	19.50	-28.73	-9.23	25	Pass

11.1 Evaluation RFAIL

General Note:

- 1. The HAC measurement system applies MIF value onto the measured RMS E-field, which is indirect method in ANSI C63.19-2019 version, and reports the RF audio interference level.
- 2. Phone Condition: Mute on; Backlight off; Max Volume

Plot No.	Air Interface	Radio Configuration	Channel	Transmit Ant.	Average Antenna Input Power (dBm)	MIF	RF _{AIL} (dBV/m)
1	WLAN2.4GHz	802.11g 6Mbps	6	Ant 3+4	24.07	0.12	28.04

Test Engineer : Sam Lin

Form version: 231017 Page : 21 of 23

Issued Date: May 12, 2025

12. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed below Table...

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (E)	Standard Uncertainty (E)
Measurement System					
Probe Calibration	5.1	Normal	1	1	± 5.1 %
Axial Isotropy	4.7	Rectangular	√3	1	± 2.7 %
Sensor Displacement	16.5	Rectangular	√3	1	± 9.5 %
Boundary Effects	2.4	Rectangular	√3	1	± 1.4 %
Phantom Boundary Effects	7.2	Rectangular	√3	1	± 4.1 %
Linearity	4.7	Rectangular	√3	1	± 2.7 %
Scaling with PMR Calibration	10.0	Rectangular	√3	1	± 5.77 %
System Detection Limit	1.0	Rectangular	√3	1	± 0.6 %
Readout Electronics	0.3	Normal	1	1	± 0.3 %
Response Time	0.8	Rectangular	√3	1	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	± 1.5 %
RF Ambient Conditions	3.0	Rectangular	√3	1	± 1.7 %
RF Reflections	12.0	Rectangular	√3	1	± 6.9 %
Probe Positioner	1.2	Rectangular	√3	1	± 0.7 %
Probe Positioning	4.7	Rectangular	√3	1	± 2.7 %
Extrap. and Interpolation	1.0	Rectangular	√3	1	± 0.6 %
Test Sample Related					
Device Positioning Vertical	4.7	Rectangular	√3	1	± 2.7 %
Device Positioning Lateral	1.0	Rectangular	√3	1	± 0.6 %
Device Holder and Phantom	2.4	Rectangular	√3	1	± 1.4 %
Power Drift	5.0	Rectangular	√3	1	± 2.9 %
Phantom and Setup Related					
Phantom Thickness	2.4	Rectangular	√3	1	± 1.4 %
Combined Standard Uncertainty					± 16.30 %
Coverage Factor for 95 %					K = 2
	± 16.30 %				
	K = 2				
	Expanded STD U	ncertainty			± 32.6 %

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification

Uncertainty Budget of HAC free field assessment

Form version: 231017 Page: 22 of 23

Issued Date: May 12, 2025

13. References

- [1] ANSI C63.19:2019, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", Aug. 2019.
- [2] FCC KDB 285076 D01v06r04, "Equipment Authorization Guidance for Hearing Aid Compatibility", Sep. 2023.
- [3] FCC KDB 285076 D03v01r07, "Hearing aid compatibility frequently asked questions", Dec. 2024
- [4] SPEAG DASY System Handbook

Form version: 231017 Page : 23 of 23

Issued Date: May 12, 2025