

Power Density Evaluation Report

FCC ID : A4RGUL82
Equipment : Phone
Model Name : GUL82
Applicant : Google LLC
1600 Amphitheatre Parkway,
Mountain View, California, 94043 USA
Standard : FCC 47 CFR Part 2 (2.1093)

The product was received on Dec.12, 2024 and testing was started from Dec. 28, 2024 and completed on Feb. 03, 2025. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR part2.1093 and has been pass the FCC requirement.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Laboratory, the test report shall not be reproduced except in full.

Cona Huang

Approved by: Cona Huang / Deputy Manager

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

Table of Contents

1. Summary.....	4
2. Guidance Applied.....	4
3. Equipment Under Test (EUT) Information.....	5
3.1 General Information	5
4. RF Exposure Limits.....	6
4.1 Uncontrolled Environment.....	6
4.2 Controlled Environment.....	6
5. System Description and Setup	7
5.1 Test Site Location.....	7
5.2 EUmmWave Probe / E-Field 5G Probe	8
5.3 Data Acquisition Electronics (DAE)	9
5.4 Scan configuration	9
6. Test Equipment List	9
7. System Verification Source.....	10
8. Power Density System Verification	11
9. System Verification Results	11
9.1 Computation of the Electric Field Polarization Ellipse	12
9.2 Total Field and Power Flux Density Reconstruction	12
9.3 Test Positions	13
10. RF Exposure Evaluation Results	13
11. 5G NR + LTE + WLAN + BT Sim-Tx analysis.....	15
12. Standalone and Simultaneous-Tx combination.....	16
12.1 Simultaneous transmission analysis for WiFi/BT + 5G NR.....	18
13. Uncertainty Assessment	21
14. References.....	22

Appendix A. Plots of System Performance Check

Appendix B. Plots of Power Density Measurement

Appendix C. DASY Calibration Certificate

Appendix D. Setup Photo

History of this test report

1. Summary

The maximum measured average power density found during testing for Google LLC, Phone, are as follows.

Standalone transmission				Max Ratio of simultaneous transmission analysis
RF Transmitter	Measured PD (mW/cm ²)	Reported PD (mW/cm ²)		
5G FR2	n258	0.489	0.75	0.864
	n260	0.360	0.75	
	n261	0.431	0.75	
Result		PASS		

This device is compliance with human exposure to RF radiation limit (1.0 mW/cm²) specified in FCC 47 CFR part1.1310

Reviewed by: Jason Wang

Report Producer: Daisy Chen

2. Guidance Applied

The Power Density testing specification, method, and procedure for this device is in accordance with the following standards.

- FCC 47 CFR Part 2.1093
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- TCBC workshop notes
- IEC TR 63170

3. Equipment Under Test (EUT) Information

3.1 General Information

Product Feature & Specification	
Equipment Name	Phone
Model Name	GUL82
FCC ID	A4RGUL82
S / N	4B191FDCQ000GZ
Frequency Band	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 17: 704 MHz ~ 716 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 30: 2305 MHz ~ 2315 MHz LTE Band 38: 2570 MHz ~ 2620 MHz LTE Band 41: 2496 MHz ~ 2690 MHz LTE Band 48: 3550 MHz ~ 3700 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 71: 663 MHz ~ 698 MHz 5G NR n2 : 1850 MHz ~ 1910 MHz 5G NR n5 : 824 MHz ~ 849 MHz 5G NR n7 : 2500 MHz ~ 2570 MHz 5G NR n12 : 699 MHz ~ 716 MHz 5G NR n14 : 788 MHz ~ 798 MHz 5G NR n25 : 1850 MHz ~ 1915 MHz 5G NR n26 : 814 MHz ~ 849 MHz 5G NR n30 : 2305 MHz ~ 2315 MHz 5G NR n38 : 2570 MHz ~ 2620 MHz 5G NR n41 : 2496 MHz ~ 2690 MHz 5G NR n48 : 3550 MHz ~ 3700 MHz 5G NR n66 : 1710 MHz ~ 1780 MHz 5G NR n70 : 1695 MHz ~ 1710 MHz 5G NR n71 : 663 MHz ~ 698 MHz 5G NR n77: 3700 MHz ~ 3980 MHz, 3450MHz ~ 3550MHz 5G NR n78: 3700 MHz ~ 3800 MHz, 3450MHz ~ 3550MHz 5G NR n258 : 24.25 GHz~24.45 GHz, 24.75GHz ~25.25GHz 5G NR n260 : 37 GHz~40 GHz 5G NR n261 : 27.5 GHz~28.35 GHz NTN NB IoT B23: 2000 MHz ~2020 MHz NTN NB IoT B255: 1626.5 MHz ~ 1660.5 MHz WLAN 2.4 GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5.2 GHz Band: 5150 MHz ~ 5250 MHz WLAN 5.3 GHz Band: 5250 MHz ~ 5350 MHz WLAN 5.6 GHz Band: 5470 MHz ~ 5725 MHz WLAN 5.8 GHz Band: 5725 MHz ~ 5850 MHz WLAN 5.9 GHz Band: 5850 MHz ~ 5895 MHz WLAN 6E: 5925 MHz ~ 6425 MHz, 6425 MHz~6525 MHz, 6525 MHz~6875 MHz, 6875 MHz~7125 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz NFC: 13.56 MHz WPC: 110 kHz ~ 148.5 kHz(Rx) UWB: 6489.6 MHz, 7987.2 MHz Thread: 2405 MHz ~ 2480 MHz
Mode	GSM/GPRS/EGPRS UMTS: RMC/AMR 12.2Kbps, HSDPA, HSUPA LTE: QPSK, 16QAM, 64QAM, 256QAM NTN: BPSK, QPSK 5G NR: DFT-s-OFDM/CP-OFDM, Pi/2 BPSK/QPSK/16QAM/64QAM/256QAM WLAN: 802.11a/b/g/n/ac/ax/be HT20/HT40/VHT20/VHT40/VHT80/VHT160/HE20/HE40/HE80/HE160/EHT20/EHT80/EHT160 Bluetooth BR/EDR/LE/CS NFC: ASK WPC: ASK UWB: BPM-BPSK/HPSK Thread: QPSK

4. RF Exposure Limits

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure above 6GHz to radio frequency (RF) radiation as specified in §1.1310.

General Population Basic restriction for power density for frequencies between 1.5GHz and 100 GHz is $1.0 \text{ mW/cm}^2 = 10 \text{ W/m}^2$

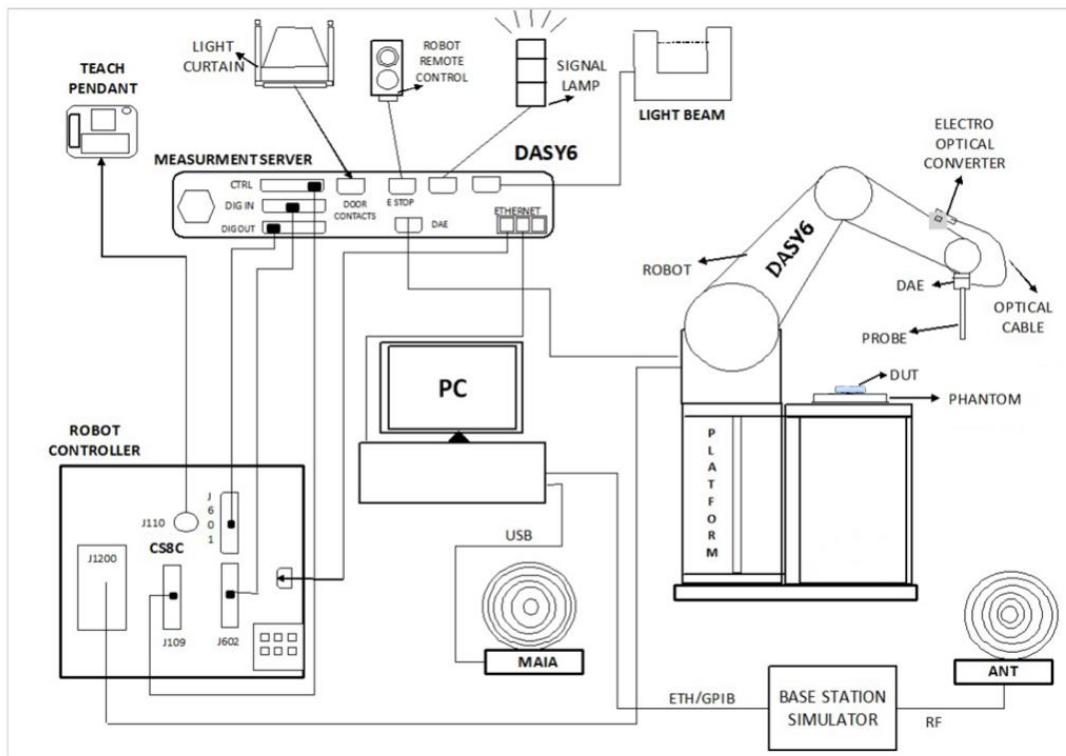

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f ²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

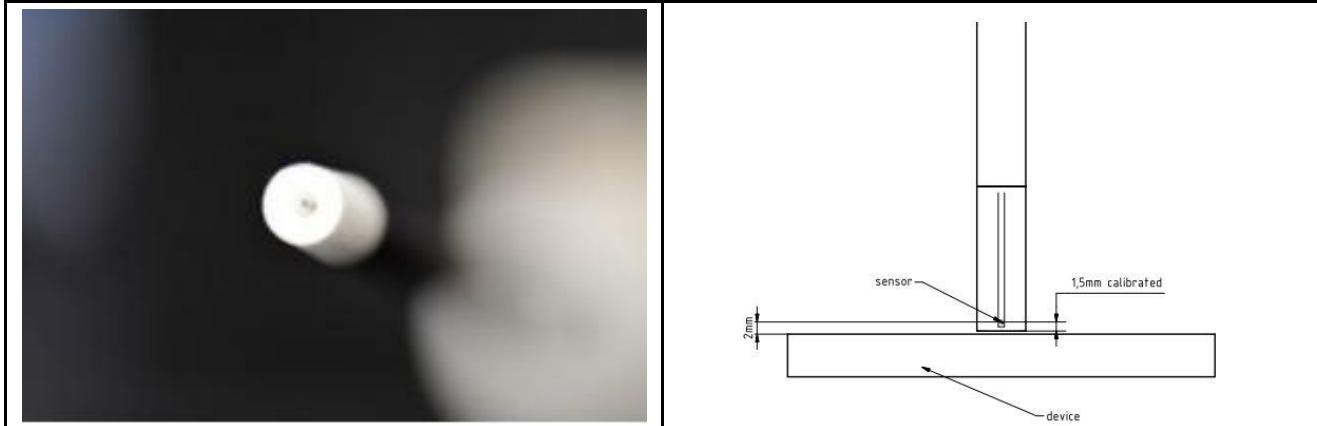
Table 1

5. System Description and Setup

The system to be used for the near field power density measurement

- SPEAG DASY6 system
- SPEAG cDASY6 5G module software
- EUmmWVx probe
- 5G Phantom cover

5.1 Test Site Location


Sportun Lab and below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3786) and the FCC designation No. TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.

Test Site	SPORTON INTERNATIONAL INC. Wensan Laboratory TW3786
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, CHINESE TAIPEI
Test Site No.	SAR17-HY

5.2 EUmmWave Probe / E-Field 5G Probe

The probe design allows measurements at distances as small as 2 mm from the sensors to the surface of the device under test (DUT). The typical sensor to probe tip distance is 1.5 mm.

Frequency	750 MHz – 110 GHz
Probe Overall Length	320 mm
Probe Body Diameter	8.0 mm
Tip Length	23.0 mm
Tip Diameter	8.0 mm
Probe's two dipoles length	0.9 mm – Diode loaded
Dynamic Range	< 20 V/m - 10000 V/m with PRE-10 (min < 50 V/m - 3000 V/m)
Position Precision	< 0.2 mm
Distance between diode sensors and probe's tip	1.5 mm
Minimum Mechanical separation between probe tip and a Surface	0.5 mm
Applications	E-field measurements of 5G devices and other mm-wave transmitters operating above 10GHz in < 2 mm distance from device (free-space) Power density, H-field and far-field analysis using total field reconstruction.
Compatibility	cDASY6 + 5G-Module SW1.0 and higher

5.3 Data Acquisition Electronics (DAE)

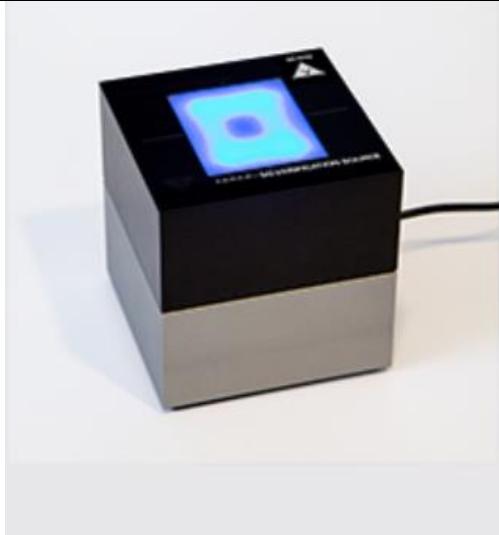
The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 M Ω ; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

5.4 Scan configuration

Fine-resolution scans on 2 different planes are performed to reconstruct the E- and H-fields as well as the power density; the z-distance between the 2 planes is set to $\lambda/4$.

The (x, y) grid step is also set $\lambda/4$, the grid extent is set to sufficiently large to identify the field pattern and the peak.

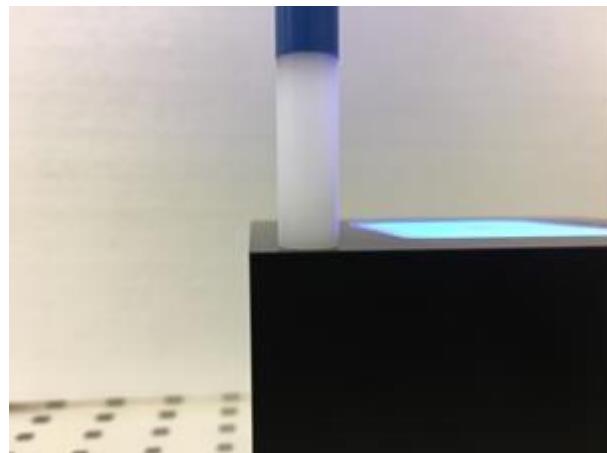
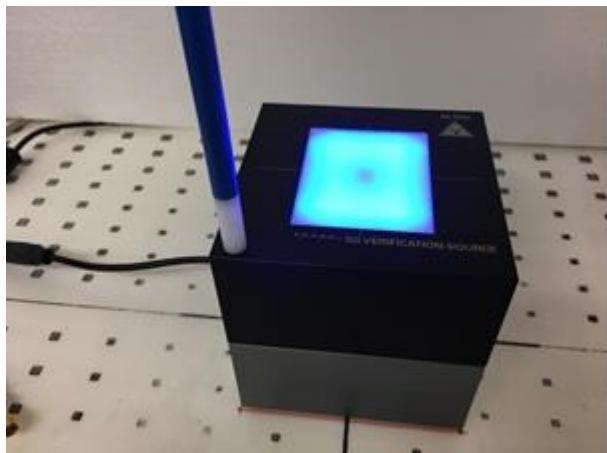

6. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
SPEAG	5G Verification Source	30GHz	1007	Nov. 12, 2024	Nov. 11, 2025
SPEAG	EUmmWV Probe Tip Protection	EUmmWV4	9441	Nov. 13, 2024	Nov. 12, 2025
SPEAG	Data Acquisition Electronics	DAE4	661	May. 16, 2024	May. 15, 2025
TESTO	Hygro meter	608-H1	45196600	Oct. 28, 2024	Oct. 27, 2025
Custom Microwave	Standard Horn antenna	M15RH	V91113-A	NCR	NCR

7. System Verification Source

The System Verification sources at 30 GHz and above comprise horn-antennas and very stable signal generators.

Model	Ka-band horn antenna
Calibrated frequency:	30 GHz at 10mm from the case surface
Frequency accuracy	± 100 MHz
E-field polarization	linear
Harmonics	-20 dBc
Total radiated power	14 dBm
Power stability	0.05 dB
Power consumption	5 W
Size	100 x 100 x 100 mm
Weight	1 kg



8. Power Density System Verification

The system performance check verifies that the system operates within its specifications.

The EUT is replaced by a calibrated source, the same spatial resolution, measurement region and the test separation used in the calibration was applied to system check. Through visual inspection into the measured power density distribution, both spatially (shape) and numerically (level) have no noticeable difference. The measured results should be within 0.66dB of the calibrated targets.

Frequency [GHz]	Grid step	Grid extent X/Y [mm]	Measurement points
10	0.25 ($\frac{\lambda}{4}$)	120/120	16 × 16
30	0.25 ($\frac{\lambda}{4}$)	60/60	24 × 24
60	0.25 ($\frac{\lambda}{4}$)	32.5/32.5	26 × 26
90	0.25 ($\frac{\lambda}{4}$)	30/30	36 × 36

Settings for measurement of verification sources

Verification Setup photo

9. System Verification Results

Frequency (GHz)	5G Verification Source	Probe S/N	DAE S/N	Distance (mm)	Measured psPD _{tot} 4 cm ² (W/m ²)	Targeted psPD _{tot} 4 cm ² (W/m ²)	Deviation (dB)	Test Site	Date
30G	30GHz_1007	9441	661	5.5	41.2	42	-0.08	SAR17	2024/12/28
30G	30GHz_1007	9441	661	5.5	40.9	42	-0.12	SAR17	2025/1/10
30G	30GHz_1007	9441	661	5.5	40.5	42	-0.16	SAR17	2025/1/17
30G	30GHz_1007	9441	661	5.5	40.8	42	-0.13	SAR17	2025/1/24
30G	30GHz_1007	9441	661	5.5	41.4	42	-0.06	SAR17	2025/2/3

Remark:

1. The mmWave System check is also required before each series of continuous measurement and, as applicable, repeated at least weekly

9.1 Computation of the Electric Field Polarization Ellipse

For the numerical description of an arbitrarily oriented ellipse in three-dimensional space, five parameters are needed: the semi-major axis (a), the semi-minor axis (b), two angles describing the orientation of the normal vector of the ellipse (ϕ, θ), and one angle describing the tilt of the semi-major axis (ψ). For the two extreme cases, i.e., circular and linear polarizations, three parameters only (a, ϕ and θ) are sufficient for the description of the incident field.

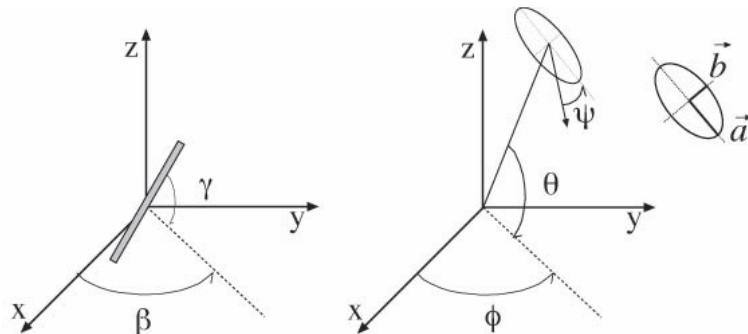


Illustration of the angles used for the numerical description of the sensor and the orientation of an ellipse in 3-D space.

For the reconstruction of the ellipse parameters from measured data, the problem can be reformulated as a nonlinear search problem. The semi-major and semi-minor axes of an elliptical field can be expressed as functions of the three angles (ϕ, θ and ψ). The parameters can be uniquely determined towards minimizing the error based on least-squares for the given set of angles and the measured data. In this way, the number of free parameters is reduced from five to three, which means that at least three sensor readings are necessary to gain sufficient information for the reconstruction of the ellipse parameters. However, to suppress the noise and increase the reconstruction accuracy, it is desirable that the system of equations be over determined. The solution to use a probe consisting of two sensors angled by r_1 and r_2 toward the probe axis and to perform measurements at three angular positions of the probe, i.e., at β_1, β_2 and β_3 , results in over-determinations by a factor of two. If there is a need for more information or increased accuracy, more rotation angles can be added. The reconstruction of the ellipse parameters can be separated into linear and non-linear parts that are best solved by the Givens algorithm combined with a downhill simplex algorithm. To minimize the mutual coupling, sensor angles are set with a shift of 90 degree ($r_2 = r_1 + 90$ degree), and to simplify, the first rotation angle of the probe (β_1) can be set to 0 degree.

9.2 Total Field and Power Flux Density Reconstruction

Computation of the power density in general requires knowledge of the electric and magnetic field amplitudes and phases in the plane of incidence. Reconstruction of these quantities from pseudo-vector E-field measurements is feasible, as they are constrained by Maxwell's equations. SPEAG have developed a reconstruction approach based on the Gerchberg-Saxton algorithm, which benefits from the availability of the E-field polarization ellipse information obtained with the EUmmWV2 probe.

The average of the reconstructed power density is evaluated over a circular area in each measurement plane. Two average power density values can be computed, the average total power density and the average incident power density, and the average total power density is used to determine compliance.

- $|Re\{S\}|$ is the total Poynting vector
- $n \cdot Re\{S\}$ is the normal Poynting vector

The software post-processing reports to values, "S avg tot" and "S avg inc". "S avg tot" represents average total power density (all three xyz components included), and "S avg inc" represents average normal power density. The average total power density "S avg tot" is reported to determine the device compliance.

9.3 Test Positions

Band	Antenna Module	Measurement Plane					
		S1 (Front)	S2 (Back)	S3 (Right)	S4 (Left)	S5 (Top)	S6 (Bottom)
5G NR Band 258/260/261	Plane B sub-module	v	v	x	v	v	x

From the Part 0 and simulation report, beam IDs with highest PD and corresponding Plimit were selected to be tested for each antenna module and for each frequency band.

10. RF Exposure Evaluation Results

1. The PD test was performed of a 2mm separation between sensor and EUT surface (the probe tip is 0.5mm to the EUT surface).
2. This device is enabled with Samsung S.LSI TAS feature, S.LSI TAS will manage and ensure LTE and 5G simultaneous transmission is compliant. The validation of the time-averaging algorithm and compliance under the Tx varying transmission scenario for WWAN technologies are reported in Part 2 report.
3. Plimit parameter for 5G mmW NR radio was calculated in RF Exposure Part 0 test report.
4. TAS algorithm makes use of the target power per slot in determining consumed RF Exposure ratio. The EIRP control can maintain the required amount of power for either CW tone or actual waveform to ensure the accuracy of actual transmit power. Plimit derived from CW tone signals can be confirmed to apply irrespective of the waveform, therefore the device was configured to transmit CW wave signal for testing by factory test mode.
5. Run PD test, from the beam ID with the highest simulated for selected side at middle channel
 - a. Horizontal polarization (H-only), CW tone signal.
 - b. Vertical polarization (V-only), CW tone signal.
 - c. Horizontal + Vertical polarization (H+V) , CW tone signal
 - d. If step b to c result > 50% limit, then repeat for 2nd highest beam ID. If 2nd beam ID result is also > 50% limit, then repeat for 3rd beam ID
 - e. For Maximum among 2)-3), test low and high channel
 - f. For Maximum among 2)-4), test other sides, which is within 2.5 cm from the mmwave antenna module
 - g. Apply the ratio from simulation to scale PD values@2 mm separation distance to PD values@10 mm separation distance.

Repeat steps a)-f) for the rest of the bands and plane
6. It's illustrated in Part 0 report that, for 5G mmW NR since there is total design-related uncertainty arising from TxAGC and device-to-device variation, the worst-case RF exposure should be determined by accounting for this device uncertainty of 2.3 dB, as well as PD design target of 4.42 W/m². Therefore, 5G mmW NR RF exposure for this DUT is evaluated by reported PD calculated as:

$$\text{Reported PD} = \text{PD design target} + 2.3 \text{ dB} = 7.5 \text{ W/m}^2 = 0.75 \text{ mW/cm}^2$$

Test Number	Antenna Module	H	V	Band	Frequency (GHz)	Exposure Surface	Input Power limit	Test Separation (mm)	Modulation	Epeak (V/m)	Hpeak (A/m)	Measured results Savg inc 4cm^2 (W/m2)	Measured results Savg tot 4cm^2 (W/m2)
	Plane B sub-module	4	-	n258	24.75	Back (S2)_Visor	9.5	2mm	CW	60.2	0.174	3.26	3.74
	Plane B sub-module	-	2	n258	24.75	Back (S2)_Visor	9.5	2mm	CW	75.3	0.213	3.77	4.43
1	Plane B sub-module	1	1	n258	24.75	Back (S2)_Visor	9.5	2mm	CW	88.9	0.214	4.18	4.89
	Plane B sub-module	1	1	n258	24.25	Back (S2)_Visor	9.5	2mm	CW	76.5	0.202	3.36	4.44
	Plane B sub-module	1	1	n258	25.25	Back (S2)_Visor	9.5	2mm	CW	75.5	0.193	2.93	3.96
	Plane B sub-module	5	5	n258	24.75	Front (S1)	9.5	2mm	CW	25.7	0.061	0.214	0.306
	Plane B sub-module	5	5	n258	24.75	Left (S3)	9.5	2mm	CW	36.2	0.101	2.01	2.53
	Plane B sub-module	2	2	n258	24.75	Top (S5)	9.5	2mm	CW	67.4	0.203	4.12	4.37
	Plane B sub-module	3	-	n260	38.5	Back (S2)_Visor	11.12	2mm	CW	44.3	0.118	1.72	1.92
	Plane B sub-module	-	3	n260	38.5	Back (S2)_Visor	11.12	2mm	CW	48.7	0.151	1.71	1.96
	Plane B sub-module	3	3	n260	38.5	Back (S2)_Visor	11.12	2mm	CW	53.7	0.146	2.8	3.47
2	Plane B sub-module	3	3	n260	37	Back (S2)_Visor	11.12	2mm	CW	55.9	0.156	3.08	3.60
	Plane B sub-module	0	0	n260	40	Back (S2)_Visor	11.12	2mm	CW	54.7	0.168	2.13	2.48
	Plane B sub-module	6	6	n260	37	Front (S1)	11.12	2mm	CW	13.9	0.04	0.146	0.168
	Plane B sub-module	6	6	n260	37	Left (S3)	11.12	2mm	CW	28.3	0.076	0.778	0.955
	Plane B sub-module	3	3	n260	37	Top (S5)	11.12	2mm	CW	46.6	0.132	1.95	2.72
	Plane B sub-module	4	-	n261	27.925	Back (S2)_Visor	10.35	2mm	CW	47.5	0.12	1.88	2.18
	Plane B sub-module	-	3	n261	27.925	Back (S2)_Visor	10.35	2mm	CW	45.2	0.129	1.87	2.14
	Plane B sub-module	4	4	n261	27.925	Back (S2)_Visor	10.35	2mm	CW	51.2	0.14	2.91	3.39
	Plane B sub-module	5	5	n261	27.5	Back (S2)_Visor	10.35	2mm	CW	47.7	0.137	1.69	2.18
3	Plane B sub-module	4	4	n261	28.35	Back (S2)_Visor	10.35	2mm	CW	60	0.178	3.93	4.31
	Plane B sub-module	1	1	n261	28.35	Front (S1)	10.35	2mm	CW	16	0.047	0.223	0.304
	Plane B sub-module	5	5	n261	28.35	Left (S3)	10.35	2mm	CW	24.7	0.066	0.835	1.01
	Plane B sub-module	4	4	n261	28.35	Top (S5)	10.35	2mm	CW	49.9	0.123	1.68	2.27

11. 5G NR + LTE + WLAN + BT Sim-Tx analysis

In 5G NR + LTE + WLAN + BT simultaneous transmission, 5G NR FR2 and LTE/FR1 transmission are managed and controlled by Samsung S.LSI TAS feature, while the RF exposure from WLAN and BT radios is managed using legacy approach, i.e., through a fixed power back-off if needed.

TAS managed and controlled for Multi-RATs (5GNR + LTE)

The power ratio factors are g_1 and g_2 for LTE/FR1 and FR2 respectively. The main purpose of these power ratio factors is to split the available SAR budget among different RATs, so $g_1 + g_2 \leq 1$. The value of g_1 is computed based on the need of the LTE/FR1 anchor and can be changed if the anchor changes its power request. Based on the SAR Budget portion allocated to the anchor, the value of g_2 will be computed. At steady state (where all RATs are being on for a while), the allocated power ratio factors will guarantee that the total exposure ratio never exceeds the highest exposure of either one.

The reported time-averaged PD is applicable for the worst-surface of the device, and for other surfaces the reported PD is determined as below

1. Calculate ratio of simulated PD for desired surface to simulated PD of worst surface for a given beam
2. Repeat 1 to obtain ratios for all supported beams, and determine maximum ratio
3. Repeat 1~2 to obtain the corresponding worst-case PD for other surfaces which are needed for TER analysis.

- *For body-worn and hotspot scenario, if SAR was measured at 15mm and 10mm, respectively, then the worst-case PD at 10mm separation distance should be determined per surface as*
 - *10mm_worst-case_PD = PD_ratio_10mm_to_2mm * reported time-averaged PD*

12. Standalone and Simultaneous-Tx combination

Exposure Condition	Tx mode	Capable TX Configurations	WWAN Power	WiFi Power	BT Power	Thread Power
Head	WWAN standalone	WWAN	Index 2			
	WiFi standalone	WiFi 2.4G SISO		Index 1		
		WiFi 2.4G MIMO/CDD				
		WiFi 5G MIMO				
		WiFi 6E MIMO				
		WiFi 2.4G SISO + WiFi 5G MIMO				
		WiFi 2.4G MIMO + WiFi 5G MIMO				
		WiFi 2.4G SISO + WiFi 6E MIMO				
		WiFi 2.4G MIMO + WiFi 6E MIMO				
	BT standalone	Bluetooth SISO or MIMO			Index 1	
	Thread standalone	Thread				Index 1
	WiFi +BT	WiFi 5G MIMO + Bluetooth SISO or MIMO		Index 1	Index 1	
		WiFi 6E MIMO + Bluetooth SISO or MIMO				
	WiFi +Thread	WiFi 5G MIMO + Thread		Index 1		Index 1
		WiFi 6E MIMO + Thread				
	WWAN + WiFi	WWAN + WiFi 2.4G SISO	Index 3	Index 2		
		WWAN + WiFi 2.4G MIMO/CDD				
		WWAN + WiFi 5G MIMO				
		WWAN + WiFi 6E MIMO				
		WWAN + WiFi 2.4G SISO + WiFi 5G MIMO				
		WWAN + WiFi 2.4G MIMO + WiFi 5G MIMO				
		WWAN + WiFi 2.4G SISO + WiFi 6E MIMO				
		WWAN + WiFi 2.4G MIMO + WiFi 6E MIMO				
	WWAN + BT	WWAN + Bluetooth SISO or MIMO			Index 1	
	WWAN + Thread	WWAN + Thread				Index 1
	WWAN + WiFi +BT	WWAN + WiFi 5G MIMO + Bluetooth SISO or MIMO		Index 2	BT Index 1	
		WWAN + WiFi 6E MIMO + Bluetooth SISO or MIMO				
	WWAN + WiFi +Thread	WWAN + WiFi 5E MIMO + Thread				Index 1
		WWAN + WiFi 6E MIMO + Thread				

Exposure Condition	Tx mode	Capable TX Configurations	WWAN Power	WiFi Power	BT Power	Thread Power
Body	WWAN standalone	WWAN	Index 5			
	WiFi standalone	WiFi 2.4G SISO	WIFI Index 3			
		WiFi 2.4G MIMO/CDD				
		WiFi 5G MIMO				
		WiFi 6E MIMO				
		WiFi 2.4G SISO + WiFi 5G MIMO				
		WiFi 2.4G MIMO + WiFi 5G MIMO				
		WiFi 2.4G SISO + WiFi 6E MIMO				
		WiFi 2.4G MIMO + WiFi 6E MIMO				
	BT standalone	Bluetooth SISO or MIMO			Index 0	
	Thread standalone	Thread				Index 0
	WiFi +BT	WiFi 5G MIMO + Bluetooth SISO or MIMO	Index 3	Index 2		
		WiFi 6E MIMO + Bluetooth SISO or MIMO				
	WiFi +Thread	WiFi 5G MIMO + Thread	Index 3			
		WiFi 6E MIMO + Thread				Index 2
	WWAN + WiFi	WWAN + WiFi 2.4G SISO	Index 6 / Index 4	Index 4		
		WWAN + WiFi 2.4G MIMO/CDD				
		WWAN + WiFi 5G MIMO				
		WWAN + WiFi 6E MIMO				
		WWAN + WiFi 2.4G SISO + WiFi 5G MIMO				
		WWAN + WiFi 2.4G MIMO + WiFi 5G MIMO				
		WWAN + WiFi 2.4G SISO + WiFi 6E MIMO				
		WWAN + WiFi 2.4G MIMO + WiFi 6E MIMO				
	WWAN + BT	WWAN + Bluetooth SISO or MIMO	Index 6 / Index 4	Index 4	Index 2	
	WWAN + Thread	WWAN + Thread				Index 2
	WWAN + WiFi +BT	WWAN + WiFi 5G MIMO + Bluetooth SISO or MIMO	Index 6 / Index 4	Index 4	Index 2	
		WWAN + WiFi 6E MIMO + Bluetooth SISO or MIMO				
	WWAN + WiFi +Thread	WWAN + WiFi 5G MIMO + Thread	Index 6 / Index 4	Index 4		
		WWAN + WiFi 6E MIMO + Thread				Index 2

General Note:

1. The FR2 plimit is fixed regardless of use cases.
2. The WLAN and Bluetooth SAR test results referenced from the Part1 SAR Report No. FA4N0918C and using for Sim-Tx analysis with FR2.
3. The Sim-Tx configuration combination include in operation description will be match the title in the below Sum-Tx evaluation table
4. For LTE+5GNR+WiFi+BT, due to the TAS control, simultaneous transmission compliance can be assessed on LTE+WiFi/BT and 5GNR +WiFi/BT, and the validation of the time-averaging algorithm and compliance under the Tx varying transmission scenario for WWAN technologies are reported in Part 2 report. For 5GNR FR2 with WiFi, total exposure ratio is calculated as below formula, LTE/FR1 + WIFI simultaneous transmission analysis referring from the report of FCC ID: A4RGUL82 (Sporton SAR Report No. FA4N0918C).

The $[\sum \text{ of (the highest measured or estimated SAR for each standalone antenna configuration adjusted for maximum tune-up tolerance) / 1.6 W/kg}] + [\sum \text{ of MPE ratios}] \leq 1.0$.

12.1 Simultaneous transmission analysis for WiFi/BT + 5G NR

*Ratio is highest ratio of (PD on desired exposure plane) / (PD on worst-surface) out of all beams and out of all channels illustrated in Power Density Simulation Report.

NR Band	Antenna Module	Exposure condition	Surface	Evaluation	Ratio*	PD_Design Target +Total uncertainty	PD_Design Target +Total uncertainty)*Ratio
				Distance			
				(mm)		(W/m^2)	
n258	Plane B sub-module	Extremity	Front Surface	2 mm	0.044	7.50	0.33
			Back Surface	2 mm	1.000	7.50	7.50
			Left Edge	2 mm	0.274	7.50	2.05
			Right Edge	2 mm		Excluded	
			Top Edge	2 mm	0.400	7.50	3.00
			Bottom Edge	2 mm		Excluded	
			Front Surface	2 mm	0.054	7.50	0.41
n260	Plane B sub-module	Extremity	Back Surface	2 mm	1.000	7.50	7.50
			Left Edge	2 mm	0.194	7.50	1.45
			Right Edge	2 mm		Excluded	
			Top Edge	2 mm	0.472	7.50	3.54
			Bottom Edge	2 mm		Excluded	
			Front Surface	2 mm	0.049	7.50	0.36
			Back Surface	2 mm	1.000	7.50	7.50
n261	Plane B sub-module	Extremity	Left Edge	2 mm	0.279	7.50	2.10
			Right Edge	2 mm		Excluded	
			Top Edge	2 mm	0.591	7.50	4.43
			Bottom Edge	2 mm		Excluded	

NR Band	Antenna Module	Exposure condition	Surface	Evaluation	Ratio*	PD_Design Target +Total uncertainty	PD_Design Target +Total uncertainty)*Ratio
				Distance			
				(mm)		(W/m^2)	
n258	Plane B sub-module	Head	Front Surface	2 mm	0.044	7.50	0.33
n260	Plane B sub-module		Front Surface	2 mm	0.054	7.50	0.41
n261	Plane B sub-module		Front Surface	2 mm	0.049	7.50	0.36

NR Band	Antenna Module	Exposure condition	Surface	Evaluation	Ratio*	PD_Design Target +Total uncertainty	PD_Design Target +Total uncertainty)*Ratio
				Distance			
				(mm)		(W/m^2)	
n258	Plane B sub-module	Body Worn/Hotspot	worst-surface	10 mm	0.494	7.50	3.70
n260	Plane B sub-module		worst-surface	10 mm	0.672	7.50	5.04
n261	Plane B sub-module		worst-surface	10 mm	0.579	7.50	4.34

<Head Exposure Condition>**<5GNR FR2, WLAN Index 2, BT Index 1, Thread Index 1>**

NR Band	Exposure Position	2	3	4	5	6	7	8	9	10	Reported SAR/1.6 + PD/10 Summation						
		WLAN 2.4GHz Ant 3	WLAN 2.4GHz Ant 4	WLAN 2.4GHz Ant 3+4	WLAN 5/6GHz Ant 3+4	Bluetooth Ant 3	Bluetooth Ant 4	Bluetooth Ant 3+4	Thread Ant 3	PD	2+5+10 Summed	3+5+10 Summed	4+5+10 Summed	5+6+10 Summed	5+7+10 Summed	5+8+10 Summed	5+9+10 Summed
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	4cm^2 (W/m^2)							
n258	Right Cheek	0.204	0.031	0.158	0.220	0.203	0.056	0.208	0.216	0.33	0.298	0.190	0.269	0.298	0.206	0.301	0.306
	Right Tilted	0.041	0.035	0.085	0.113	0.034	0.062	0.107	0.046	0.33	0.129	0.126	0.157	0.125	0.143	0.171	0.133
	Left Cheek	0.069	0.148	0.131	0.219	0.064	0.219	0.197	0.109	0.33	0.213	0.263	0.252	0.210	0.307	0.293	0.238
	Left Tilted	0.017	0.083	0.077	0.144	0.023	0.110	0.105	0.109	0.33	0.134	0.175	0.171	0.138	0.192	0.189	0.191
n260	Right Cheek	0.204	0.031	0.158	0.220	0.203	0.056	0.208	0.216	0.41	0.306	0.197	0.277	0.305	0.213	0.308	0.313
	Right Tilted	0.041	0.035	0.085	0.113	0.034	0.062	0.107	0.046	0.41	0.137	0.133	0.164	0.132	0.150	0.178	0.140
	Left Cheek	0.069	0.148	0.131	0.219	0.064	0.219	0.197	0.109	0.41	0.221	0.270	0.259	0.217	0.314	0.301	0.246
	Left Tilted	0.017	0.083	0.077	0.144	0.023	0.110	0.105	0.109	0.41	0.141	0.182	0.179	0.145	0.199	0.196	0.199
n261	Right Cheek	0.204	0.031	0.158	0.220	0.203	0.056	0.208	0.216	0.36	0.301	0.193	0.273	0.301	0.209	0.304	0.309
	Right Tilted	0.041	0.035	0.085	0.113	0.034	0.062	0.107	0.046	0.36	0.133	0.129	0.160	0.128	0.146	0.174	0.136
	Left Cheek	0.069	0.148	0.131	0.219	0.064	0.219	0.197	0.109	0.36	0.216	0.266	0.255	0.213	0.310	0.296	0.241
	Left Tilted	0.017	0.083	0.077	0.144	0.023	0.110	0.105	0.109	0.36	0.137	0.178	0.175	0.141	0.195	0.192	0.195

<Hotspot Exposure Condition>**<5GNR FR2, WLAN index 7, BT Index 2, Thread Index 2>**

NR Band	Exposure Position	2	3	4	5	6	7	8	9	10	Reported SAR/1.6 + PD/10 Summation						
		WLAN 2.4GHz Ant 3	WLAN 2.4GHz Ant 4	WLAN 2.4GHz Ant 3+4	WLAN 5/6GHz Ant 3+4	Bluetooth Ant 3	Bluetooth Ant 4	Bluetooth Ant 3+4	Thread Ant 3	PD	2+5+10 Summed	3+5+10 Summed	4+5+10 Summed	5+6+10 Summed	5+7+10 Summed	5+8+10 Summed	5+9+10 Summed
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	4cm^2 (W/m^2)							
n258	Front	0.099	0.044	0.101	0.234	0.126	0.200	0.104	0.119	3.70	0.579	0.544	0.580	0.595	0.642	0.582	0.591
	Back	0.123	0.051	0.092	0.253	0.173	0.204	0.119	0.144	3.70	0.605	0.560	0.586	0.637	0.656	0.603	0.619
	Left side	0.200	0.001	0.189	0.220	0.215	0.011	0.208	0.214	3.70	0.633	0.509	0.626	0.642	0.515	0.638	0.642
	Right side	0.005	0.078	0.070	0.163	0.006	0.253	0.113	0.001	3.70	0.475	0.521	0.516	0.476	0.630	0.543	0.473
	Top side	0.020	0.022	0.043	0.149	0.020	0.049	0.055	0.019	3.70	0.476	0.477	0.490	0.476	0.494	0.498	0.475
	Bottom side	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	3.70	0.372	0.372	0.372	0.372	0.372	0.372	0.372
n260	Front	0.099	0.044	0.101	0.234	0.126	0.200	0.104	0.119	5.04	0.712	0.678	0.713	0.729	0.775	0.715	0.725
	Back	0.123	0.051	0.092	0.253	0.173	0.204	0.119	0.144	5.04	0.739	0.694	0.720	0.770	0.790	0.737	0.752
	Left side	0.200	0.001	0.189	0.220	0.215	0.011	0.208	0.214	5.04	0.767	0.642	0.760	0.776	0.648	0.772	0.775
	Right side	0.005	0.078	0.070	0.163	0.006	0.253	0.113	0.001	5.04	0.609	0.655	0.650	0.610	0.764	0.677	0.607
	Top side	0.020	0.022	0.043	0.149	0.020	0.049	0.055	0.019	5.04	0.610	0.611	0.624	0.610	0.628	0.632	0.609
	Bottom side	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	5.04	0.505	0.505	0.505	0.505	0.505	0.505	0.505
n261	Front	0.099	0.044	0.101	0.234	0.126	0.200	0.104	0.119	4.34	0.642	0.608	0.643	0.659	0.705	0.645	0.655
	Back	0.123	0.051	0.092	0.253	0.173	0.204	0.119	0.144	4.34	0.669	0.624	0.650	0.700	0.720	0.666	0.682
	Left side	0.200	0.001	0.189	0.220	0.215	0.011	0.208	0.214	4.34	0.696	0.572	0.690	0.706	0.578	0.701	0.705
	Right side	0.005	0.078	0.070	0.163	0.006	0.253	0.113	0.001	4.34	0.539	0.585	0.580	0.540	0.694	0.606	0.536
	Top side	0.020	0.022	0.043	0.149	0.020	0.049	0.055	0.019	4.34	0.540	0.541	0.554	0.540	0.558	0.561	0.539
	Bottom side	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	4.34	0.435	0.435	0.435	0.435	0.435	0.435	0.435

<Body-Worn Exposure Condition>**<5GNR FR2, WLAN index 7, BT Index 2, Thread Index 2>**

NR Band	Exposure Position	2	3	4	5	6	7	8	9	10	Reported SAR/1.6 + PD/10 Summation						
		WLAN 2.4GHz Ant 3	WLAN 2.4GHz Ant 4	WLAN 2.4GHz Ant 3+4	WLAN 5/6GHz Ant 3+4	Bluetooth Ant 3	Bluetooth Ant 4	Bluetooth Ant 3+4	Thread Ant 3	PD	2+5+10 Summed	2+5+10 Summed	2+5+10 Summed	2+5+10 Summed	2+5+10 Summed	2+5+10 Summed	
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	4cm^2 (W/m^2)							
n258	Front	0.099	0.044	0.101	0.272	0.126	0.200	0.105	0.119	3.70	0.602	0.568	0.604	0.619	0.665	0.606	0.615
	Back	0.123	0.051	0.092	0.290	0.173	0.204	0.119	0.144	3.70	0.629	0.584	0.609	0.660	0.679	0.626	0.642
n260	Front	0.099	0.044	0.101	0.272	0.126	0.200	0.105	0.119	5.04	0.736	0.702	0.737	0.753	0.799	0.740	0.748
	Back	0.123	0.051	0.092	0.290	0.173	0.204	0.119	0.144	5.04	0.762	0.717	0.743	0.793	0.813	0.760	0.775
n261	Front	0.099	0.044	0.101	0.272	0.126	0.200	0.105	0.119	4.34	0.666	0.631	0.667	0.683	0.729	0.670	0.678
	Back	0.123	0.051	0.092	0.290	0.173	0.204	0.119	0.144	4.34	0.692	0.647	0.673	0.723	0.743	0.690	0.705

<Product Specific Exposure Condition>**General Note:**

1. Since the 2.4GHz WLAN and Bluetooth SAR was not perform, due to the Hotspot SAR is less than 1.2W/kg.

<5GNR FR2, WLAN index 4, NFC>

NR Band	Exposure Position	2	3	4	Reported SAR/4 + PD/10 Summation		
		WLAN5/6GHz Ant 3+4	NFC	PD	2+3+4 Summed		
		10g SAR (W/kg)	10g SAR (W/kg)	4cm^2 (W/m^2)			
n258	Front	1.665	0.001	0.33		0.450	
	Back	0.441	0.014	7.50		0.864	
	Left Edge	0.936	0.001	2.05		0.440	
	Right Edge	0.711	0.001			0.178	
	Top Edge	0.558	0.001	3.00		0.439	
	Bottom Edge	0.001	0.001			0.001	
n260	Front	1.665	0.001	0.41		0.457	
	Back	0.441	0.014	7.50		0.864	
	Left side	0.936	0.001	1.45		0.380	
	Right side	0.711	0.001			0.178	
	Top side	0.558	0.001	3.54		0.494	
	Bottom side	0.001	0.001			0.001	
n261	Front	1.665	0.001	0.36		0.453	
	Back	0.441	0.014	7.50		0.864	
	Left side	0.936	0.001	2.10		0.444	
	Right side	0.711	0.001			0.178	
	Top side	0.558	0.001	4.43		0.583	
	Bottom side	0.001	0.001			0.001	

Test Engineer : Kevin, Randy and Charles

13. Uncertainty Assessment

The budget is valid for evaluation distances $> \lambda/2\pi$. For specific tests and configurations, the Uncertainty could be considerably smaller.

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

cDASY6 Module mmWave Uncertainty Budget Evaluation Distances to the Antennas $> \lambda/2\pi$					
Error Description	Uncertainty Value (\pm dB)	Probability	Divisor	(Ci)	Standard Uncertainty (\pm dB)
Uncertainty terms dependent on the measurement system					
Probe Calibration	0.49	N	1	1	0.49
Probe correction	0.00	R	1.732	1	0.00
Frequency response (BW \leq 1 GHz)	0.20	R	1.732	1	0.12
Sensor cross coupling	0.00	R	1.732	1	0.00
Isotropy	0.50	R	1.732	1	0.29
Linearity	0.20	R	1.732	1	0.12
Probe scattering	0.00	R	1.732	1	0.00
Probe positioning offset	0.30	R	1.732	1	0.17
Probe positioning repeatability	0.04	R	1.732	1	0.02
Sensor mechanical offset	0.00	R	1.732	1	0.00
Probe spatial resolution	0.00	R	1.732	1	0.00
Field impedance dependence	0.00	R	1.732	1	0.00
Amplitude and phase drift	0.00	R	1.732	1	0.00
Amplitude and phase noise	0.04	R	1.732	1	0.02
Measurement area truncation	0.00	R	1.732	1	0.00
Data acquisition	0.03	N	1	1	0.03
Sampling	0.00	R	1.732	1	0.00
Field reconstruction	0.60	R	1.732	1	0.35
Forward transformation	0.00	R	1.732	1	0.00
Power density scaling	0.00	R	1.732	1	0.00
Spatial averaging	0.10	R	1.732	1	0.06
System detection limit	0.04	R	1.732	1	0.02
Uncertainty terms dependent on the DUT and environmental factors					
Probe coupling with DUT	0.00	R	1.732	1	0.0
Modulation response	0.40	R	1.732	1	0.2
Integration time	0.00	R	1.732	1	0.0
Response time	0.00	R	1.732	1	0.0
Device holder influence	0.10	R	1.732	1	0.1
DUT alignment	0.00	R	1.732	1	0.0
RF ambient conditions	0.04	R	1.732	1	0.0
Ambient reflections	0.04	R	1.732	1	0.0
Immunity / secondary reception	0.00	R	1.732	1	0.0
Drift of the DUT		R	1.732	1	
Combined Std. Uncertainty					0.76 dB
Expanded STD Uncertainty (95%)					1.52 dB

14. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [3] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [4] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.