

: 1 of 22

Page Number

FCC RADIO TEST REPORT

FCC ID : A4RG4QUR

Equipment : Phone

Model Name : G4QUR

Applicant : Google

: Google LLC

1600 Amphitheatre Parkway, Mountain View, CA, 94043 USA

Standard: FCC 47 CFR Part 2, 96

The product was received on Dec. 09, 2024 and testing was performed from Jan. 07, 2025 to Mar. 07, 2025. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

TEL: 886-3-327-3456

Louis Wu

Sporton International Inc. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	story o	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	
	1.2	Modification of EUT	
	1.3	Testing Location	
	1.4	Applied Standards	
2	Test	Configuration of Equipment Under Test	7
	2.1	Test Mode	
	2.2	Connection Diagram of Test System	
	2.3	Support Unit used in test configuration	
	2.4	Measurement Results Explanation Example	
	2.5	Frequency List of Low/Middle/High Channels	
3	Cond	ducted Test Items	10
	3.1	Measuring Instruments	10
	3.2	Conducted Output Power	
	3.3	Peak-to-Average Ratio	
	3.4	EIRP	
	3.5	Occupied Bandwidth	
	3.6	Conducted Band Edge	
	3.7	Conducted Spurious Emission	
	3.8	Frequency Stability	
4	Radi	ated Test Items	
	4.1	Measuring Instruments	
	4.2	Test Setup	
	4.3	Test Result of Radiated Test	
	4.4	Radiated Spurious Emission	
5	List	of Measuring Equipment	21
6	Meas	surement Uncertainty	22
Аp	pendi	x A. Test Results of Conducted Test	
Аp	pendi	x B. Test Results of Radiated Test	
Αn	pendi	x C. Test Setup Photographs	

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FGLTE96 Version 2.4

Page Number : 2 of 22

Issue Date : Apr. 10, 2025

Report No.: FG4N0917D

Report Version : 01

History of this test report

Report No.: FG4N0917D

Report No.	Version	Description	Issue Date
FG4N0917D	01	Initial issue of report	Apr. 10, 2025

TEL: 886-3-327-3456 Page Number : 3 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

Summary of Test Result

Report No.: FG4N0917D

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.2	§2.1046	Conducted Output Power	Reporting only	-
3.3	§96.41	Peak-to-Average Ratio	Pass	-
3.4	§96.41	Effective Isotropic Radiated Power	Pass	-
3.5	§2.1049 §96.41	Occupied Bandwidth	Reporting only	-
3.6 §2.1051 Conducted Bar		Conducted Band Edge Measurement	Pass	-
3.7		Conducted Spurious Emission	Pass	-
3.8	§2.1055	Frequency Stability for Temperature & Voltage	Pass	-
4.4	§2.1051 §96.41	Radiated Spurious Emission	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who
 shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken
 into account.
- The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: William Chen Report Producer: Ming Chen

TEL: 886-3-327-3456 Page Number : 4 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

Report No.: FG4N0917D

General Specs

GSM/WCDMA/LTE/5G NR/NTN, Bluetooth, BLE, BLE channel sounding, Thread, Wi-Fi 802.11be, NFC, WPC Rx, UWB and GNSS Rx.

Antenna Type

WWAN:

<Ant. 6>: ILA Antenna <Ant. 7>: IFA Antenna

Remark: The above EUT's information was declared by manufacturer. Please refer to Disclaimer in report summary.

TDD band Power Class				
	PC3	PC2		
B48	V	-		

	Antenna information						
Band	Ant6	Ant7	Main Ant. #	Sub Ant. #			
B48	2.1	2.0	6	7			

Remark:

- 1. For Test Items, Main Ant. means Tx0 and Sub Ant. means Tx1.
- 2. After preliminary scan, the main antenna Ant6 is selected as the worst mode to be reported for conducted test in the test report.

EUT Information List				
S/N	Performed Test Item			
4B161FDCH00043	Conducted Measurement EIRP			
4C311FDCH000HL	Radiated Spurious Emission			

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
Test Site No.	TH03-HY
Test Engineer	Wei Shun Hung
Temperature (°C)	22.4~22.9
Relative Humidity (%)	53.1~55.7

Report No.: FG4N0917D

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
rest site No.	03CH21-HY (TAF Code: 3786)
Test Engineer	Fred Tseng, Ray Lung and Sky Chang
Temperature (°C)	18~26
Relative Humidity (%)	50~70
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory.

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW3786

1.4 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 940660 D01 Part 96 CBRS Eqpt v03
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-3456 Page Number : 6 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

2 Test Configuration of Equipment Under Test

2.1 Test Mode

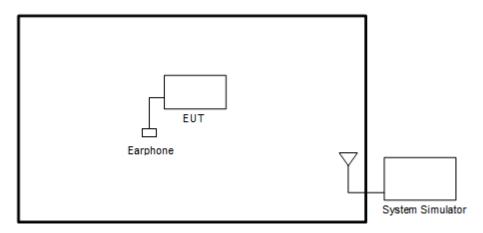
Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

Report No.: FG4N0917D

For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and accessory (Adapter or Earphone) and adjusting the measurement antenna orientation, following C63.26 exploratory test procedures and find X Plane with Earphone as worst plane.

Modulation Type	Modulation
Α	QPSK
В	16QAM
С	64QAM
D	256QAM

Test Item	Modulation Type	Bandwidth	RB Size	Channel
Conducted Power	A, B, C, D	All	1, Half, Full	L, M, H
EIRP	A, B, C, D	All	1, Half, Full	L, M, H
PAR	A, B, C, D	20 MHz or less	Full	M
Bandwidth	A, B, C, D	All	Full	M
ACLR, Mask	A, B, C, D	Minimum	1RB	L, M, H
(Part 96)	Д, В, О, В	All	Full	∟, 101, 11
CSE	Α	Minimum	1RB	L, M, H
Frequency Stability	А	10 MHz or less (other)	Full	M
RSE	А	10 MHz or less (other)	1RB	L, M, H


Remark:

- Evaluated all the transmitter signal and reporting worst-case configuration among all modulation types.
- 2. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst-case emissions are reported.
- 3. During the RSE preliminary test, the standalone mode and charging modes (Adapter mode and WPC Rx mode) were verified. It is determined that the adapter mode is the worst case for the official test.
- 4. All the radiated test cases were performed with Adapter 1 and USB Cable 1.

TEL: 886-3-327-3456 Page Number : 7 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

2.2 Connection Diagram of Test System

<EUT with Earphone >

Report No.: FG4N0917D

2.3 Support Unit used in test configuration

Item	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8821C	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	Anritsu	MT8000A	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Example:

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

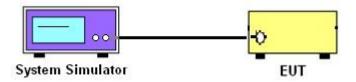
TEL: 886-3-327-3456 Page Number : 8 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

2.5 Frequency List of Low/Middle/High Channels

LTE Band 48 Channel and Frequency List						
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest		
20	Channel	55340	55990	56640		
20	Frequency	3560.0	3625.0	3690.0		
15	Channel	55315	55990	56665		
15	Frequency	3557.5	3625.0	3692.5		
10	Channel	55290	55990	56690		
10	Frequency	3555.0	3625.0	3695.0		
5	Channel	55265	55990	56715		
5	Frequency	3552.5	3625.0	3697.5		

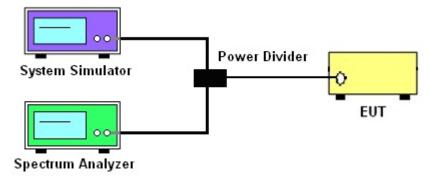
Report No.: FG4N0917D

TEL: 886-3-327-3456 Page Number : 9 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

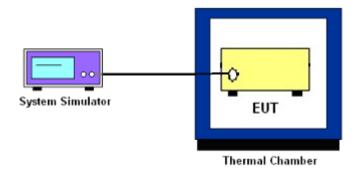

3 Conducted Test Items

3.1 Measuring Instruments

See list of measuring instruments of this test report.


3.1.1 Test Setup

3.1.2 Conducted Output Power



Report No.: FG4N0917D

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 10 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

3.2 Conducted Output Power

3.2.1 Description of the Conducted Output Power Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Report No.: FG4N0917D

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

TEL: 886-3-327-3456 Page Number : 11 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Report No.: FG4N0917D

3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio

TEL: 886-3-327-3456 Page Number : 12 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

3.4 EIRP

3.4.1 Description of the EIRP Measurement

The EIRP of mobile transmitters must not exceed 23 dBm /10 megahertz for LTE Band 48.

Report No.: FG4N0917D

The testing follows ANSI C63.26-2015 Section 5.2.5.5

According to KDB 412172 D01 Power Approach,

EIRP = PT + GT - LC, where

PT = transmitter output power in dBm

GT = gain of the transmitting antenna in dBi

LC = signal attenuation in the connecting cable between the transmitter and antenna in dB

Device	Maximum EIRP (dBm/10 MHz)	Maximum PSD (dBm/MHz)
End User Device	23	n/a

Remark: Total channel power is complied with EIRP limit 23dBm/10MHz.

3.4.2 Test Procedures

The testing follows procedure in Section 5.2 of ANSI C63.26-2015 and KDB 940660 D01 Part 96 CBRS Eqpt v03 Section 3.2(b)(2)

Determine the EIRP by adding the effective antenna gain to the measured average conducted power level.

TEL: 886-3-327-3456 Page Number : 13 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

3.5 Occupied Bandwidth

3.5.1 Description of Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

Report No.: FG4N0917D

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.5.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.
 The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace.
 (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "–X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

TEL: 886-3-327-3456 Page Number : 14 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

3.6 Conducted Band Edge

3.6.1 Description of Conducted Band Edge Measurement

The conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

Report No.: FG4N0917D

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used
- 5. Set spectrum analyzer with RMS detector.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

For Adjacent Channel Leakage Ratio (ACLR) measurement,

- The Adjacent Channel Leakage Ratio (ACLR) is the ratio of the average power in the assigned aggregated channel bandwidth to the average power over the equivalent adjacent channel bandwidth.
- 2. The option ACLR of spectrum analyzer is used and measures the ACLR ratio by setting equivalent channel bandwidth.
- 3. The measured ACLR ratio shall be at least 30 dB.

TEL: 886-3-327-3456 Page Number : 15 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

3.7 Conducted Spurious Emission

3.7.1 Description of Conducted Spurious Emission Measurement

96.41 (e)(2)

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

3.7.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.

Report No.: FG4N0917D

- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is -40dBm/MHz.

TEL: 886-3-327-3456 Page Number : 16 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

3.8 Frequency Stability

3.8.1 Description of Frequency Stability Measurement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block.

Report No.: FG4N0917D

3.8.2 Test Procedures for Temperature Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

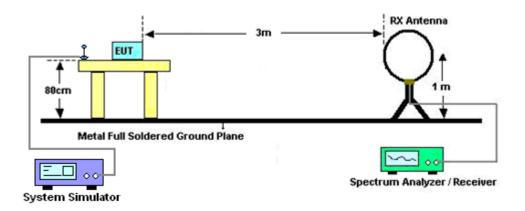
- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.8.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

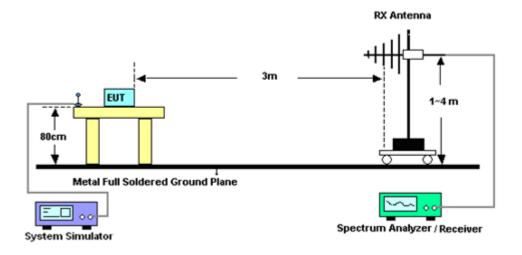
- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

TEL: 886-3-327-3456 Page Number : 17 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

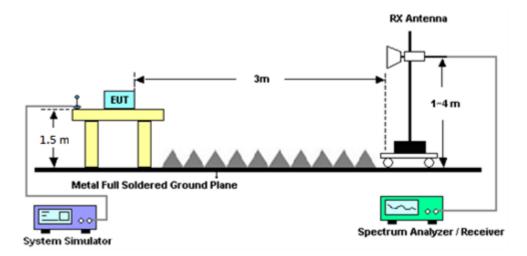

4 Radiated Test Items

4.1 Measuring Instruments

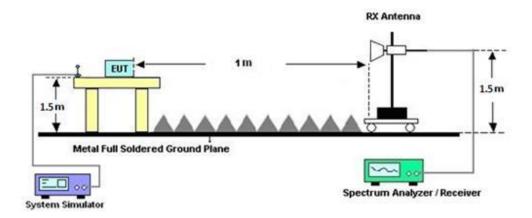
See list of measuring instruments of this test report.


4.2 Test Setup

For radiated emissions below 30MHz


Report No.: FG4N0917D

For radiated emissions from 30MHz to 1GHz


TEL: 886-3-327-3456 Page Number : 18 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

For radiated emissions from 1GHz to 18GHz

Report No.: FG4N0917D

For radiated emissions above 18GHz

4.3 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

TEL: 886-3-327-3456 Page Number : 19 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

4.4 Radiated Spurious Emission

4.4.1 Description of Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI C63.26-2015.

Report No.: FG4N0917D

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least -40dBm / MHz.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI C63.26-2015 section 5.5.4 Radiated measurement using the field strength method.

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- To convert spectrum reading E(dBuV/m) to EIRP(dBm)
 EIRP(dBm) = Level (dBuV/m) + 20log(d) -104.77, where d is the distance at which filed strength limit is specified in the rules.
- 7. Field Strength Level (dBm) = Spectrum Reading (dBm) + Antenna Factor + Cable Loss + Read Level Preamp Factor.
- 8. ERP (dBm) = EIRP (dBm) 2.15
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

TEL: 886-3-327-3456 Page Number : 20 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

5 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristic	Calibration	Test Date	Due Date	Domark
Instrument	brand Name	Woder No.	Serial No.	S	Date	Test Date	Due Date	Remark
Radio Communicatio n Analyzer	Anritsu	MT8821C	6262025353	LTE FDD/TDD LTE-2CC DLCA/ULCA	Oct. 01, 2024	Jan. 07, 2025~ Mar. 07, 2025	Sep. 01, 2025	Conducted (TH03-HY)
Thermal Chamber	ESPEC	SH-641	92013720	-40°C ~90°C	Sep. 06, 2024	Jan. 07, 2025~ Mar. 07, 2025	Sep. 05, 2025	Conducted (TH03-HY)
DC Power Supply	GW Instek	GPP-2323	GES906037	0V~64V;0A~6A	Nov. 27, 2024	Jan. 07, 2025~ Mar. 07, 2025	Nov. 26, 2025	Conducted (TH03-HY)
Coupler+10dB + RFcable	Warison + WoKen + E-Instument	20dB 25W SMA Directional Coupler+ 10dB 18GHz_5W+S FL405_1.5M	#A+#1+#1+#7	1-18GHz	Jan. 03, 2025	Jan. 07, 2025~ Mar. 07, 2025	Jan. 02, 2026	Conducted (TH03-HY)
Power divider	Anritsu	K241C	2143398	9KHz~40GHz	Jun. 13, 2024	Jan. 07, 2025~ Mar. 07, 2025	Jun. 12, 2025	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101905	10Hz~40GHz	Jul. 11, 2024	Jan. 07, 2025~ Mar. 07, 2025	Jul. 10, 2025	Conducted (TH03-HY)
Software	Sporton	LTE Conducted Test Tools	N/A	Conducted Test Item	N/A	Jan. 07, 2025~ Mar. 07, 2025	N/A	Conducted (TH03-HY)
Hygrometer	TECPEL	DTM-303B	TP210073	-10 ~ 50°C / 20 ~ 95%RH	Jun. 05, 2024	Jan. 07, 2025~ Mar. 07, 2025	Jun. 04, 2025	Conducted (TH03-HY)
LOOP Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Aug. 29, 2024	Jan. 17, 2025~ Feb. 21, 2025	Aug. 28, 2025	Radiation (03CH21-HY)
Bilog Antenna	TESEQ & WOKEN	CBL 6111D & 00800N1D01N -06	41912 & 05	30MHz~1GHz	Feb. 04, 2024	Jan. 17, 2025~ Feb. 21, 2025	Feb. 03, 2025	Radiation (03CH21-HY)
Double Ridged Guide Horn Antenna	RFSPIN	DRH18-E	LE2C03A18E N	1GHz~18GHz	Jul. 11, 2024	Jan. 17, 2025~ Feb. 21, 2025	Jul. 10, 2025	Radiation (03CH21-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1224	18GHz~40GHz	Jun. 24, 2024	Jan. 17, 2025~ Feb. 21, 2025	Jun. 23, 2025	Radiation (03CH21-HY)
Amplifier	SONOMA	310N	421580	30MHz~1GHz	Jul. 14, 2024	Jan. 17, 2025~ Feb. 21, 2025	Jul. 13, 2025	Radiation (03CH21-HY)
Amplifier	EMEC	EM01G18GA	060876	1GHz~18GHz	Sep. 27, 2024	Jan. 17, 2025~ Feb. 21, 2025	Sep. 26, 2025	Radiation (03CH21-HY)
Preamplifier	EMEC	EM18G40G	060873	18GHz~40GHz	Sep. 02, 2024	Jan. 17, 2025~ Feb. 21, 2025	Sep. 01, 2025	Radiation (03CH21-HY)
Spectrum Analyzer	Keysight	N9010B	MY62170358	10Hz~44GHz	Sep. 06, 2024	Jan. 17, 2025~ Feb. 21, 2025	Sep. 05, 2025	Radiation (03CH21-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9kHz~30MHz	Mar. 06, 2024	Jan. 17, 2025~ Feb. 21, 2025	Mar. 05, 2025	Radiation (03CH21-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804397/2,804 612/2,803954/ 2	30MHz~40GHz	Aug. 12, 2024	Jan. 17, 2025~ Feb. 21, 2025	Aug. 11, 2025	Radiation (03CH21-HY)
Hygrometer	TECPEL	DTM-303A	TP211568	N/A	Oct. 21, 2024	Jan. 17, 2025~ Feb. 21, 2025	Oct. 20, 2025	Radiation (03CH21-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Jan. 17, 2025~ Feb. 21, 2025	N/A	Radiation (03CH21-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Jan. 17, 2025~ Feb. 21, 2025	N/A	Radiation (03CH21-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Jan. 17, 2025~ Feb. 21, 2025	N/A	Radiation (03CH21-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Jan. 17, 2025~ Feb. 21, 2025	N/A	Radiation (03CH21-HY)

Report No. : FG4N0917D

TEL: 886-3-327-3456 Page Number : 21 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

6 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	6.60 dB
Confidence of 95% (U = 2Uc(y))	6.60 UB

Report No.: FG4N0917D

<u>Uncertainty of Radiated Emission Measurement (1 GHz ~ 6 GHz)</u>

Measuring Uncertainty for a Level of	E 00 AD
Confidence of 95% (U = 2Uc(y))	5.00 dB

Uncertainty of Radiated Emission Measurement (6 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	4.70 JD
Confidence of 95% (U = 2Uc(y))	4.70 dB

<u>Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)</u>

Measuring Uncertainty for a Level of	5.30 dB
Confidence of 95% (U = 2Uc(y))	0.00 dB

TEL: 886-3-327-3456 Page Number : 22 of 22 FAX: 886-3-328-4978 Issue Date : Apr. 10, 2025

Appendix A. Test Results of Conducted Test

Conducted Output Power(Average power & ERP/EIRP)

Report No. : FG4N0917D

<Tx0>

	Part 96 L	TE Band 4	18 Maximu	ım Averag	e Power [d	Bm] (GT -	LC = 2.3 dB)	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)
20	1	0		19.91	19.97	20.03		
20	1	49		19.77	19.78	19.84		
20	1	99		19.91	19.69	19.68		
20	50	0	QPSK	20.00	19.93	19.96	22.33	0.1710
20	50	24		19.99	19.87	19.87		
20	50	50		19.98	19.81	19.81		
20	100	0		19.87	19.85	19.86		
20	1	0		19.97	19.99	20.03		
20	1	49		19.93	19.91	19.92		
20	1	99		19.82	19.78	19.76		
20	50	0	16-QAM	19.93	19.93	19.97	22.33	0.1710
20	50	24		19.90	19.88	19.90		
20	50	50		19.84	19.82	19.81		
20	100	0		19.87	19.95	19.87		
20	1	0		19.71	19.85	19.75		
20	1	49		19.72	19.88	19.72		
20	1	99		19.56	19.63	19.49		
20	50	0	64-QAM	19.92	20.02	19.94	22.32	0.1706
20	50	24		19.89	19.86	19.88		
20	50	50		19.88	19.81	19.82		
20	100	0		19.87	19.86	19.87		
20	1	0		18.76	18.76	18.76		
20	1	49		18.62	18.80	18.60		
20	1	99		18.72	18.67	18.66		
20	50	0	256-QAM	18.75	18.74	18.62	21.10	0.1288
20	50	24		18.64	18.67	18.63		
20	50	50		18.80	18.69	18.80		
20	100	0		18.71	18.65	18.68		
Limit	EIRP	< 23dBm/10	OMHz		Result			iss

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

	Part 96 I	TE Band 4	18 Maximu	ım Averag	e Power [d	IBm] (GT -	LC = 2.3 dB))
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)
15	1	0		19.76	19.64	19.66		
15	1	37		19.63	19.59	19.59]	
15	1	74		19.64	19.49	19.49		
15	36	0	QPSK	19.74	19.64	19.64	22.06	0.1607
15	36	20		19.58	19.57	19.58]	
15	36	39		19.57	19.56	19.52		
15	75	0		19.59	19.59	19.57		
15	1	0		19.70	19.69	19.71		
15	1	37		19.83	19.81	19.82		
15	1	74		19.58	19.52	19.54		
15	36	0	16-QAM	19.62	19.58	19.61	22.13	0.1633
15	36	20		19.56	19.55	19.57]	
15	36	39		19.56	19.51	19.53		
15	75	0		19.59	19.58	19.59		
15	1	0		19.44	19.43	19.45		
15	1	37		19.38	19.38	19.39		
15	1	74		19.29	19.29	19.28		
15	36	0	64-QAM	19.63	19.61	19.64	21.94	0.1563
15	36	20		19.58	19.58	19.59		
15	36	39		19.54	19.53	19.52]	
15	75	0		19.59	19.57	19.58		
15	1	0		18.74	18.77	18.64		
15	1	37		18.62	18.62	18.76		
15	1	74		18.67	18.62	18.80		
15	36	0	256-QAM	18.71	18.78	18.69	21.10	0.1288
15	36	20		18.63	18.71	18.71		
15	36	39		18.68	18.73	18.68		
15	75	0		18.76	18.70	18.66		
Limit	Limit EIRP < 23dBm/10MHz		Result			Pa	iss	

	Part 96 L	TE Band 4	18 Maximu	ım Averag	e Power [d	IBm] (GT -	LC = 2.3 dB)	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)
10	1	0		19.63	19.68	19.65		
10	1	25		19.53	19.54	19.45		
10	1	49		19.59	19.62	19.47		
10	25	0	QPSK	19.69	19.69	19.60	21.99	0.1581
10	25	12		19.54	19.69	19.58		
10	25	25		19.54	19.57	19.57		
10	50	0		19.56	19.60	19.61		
10	1	0		19.66	19.69	19.70		
10	1	25		19.55	19.58	19.58		
10	1	49		19.55	19.56	19.55		
10	25	0	16-QAM	19.60	19.62	19.59	22.00	0.1585
10	25	12		19.57	19.58	19.58		
10	25	25		19.53	19.57	19.54]	
10	50	0		19.58	19.61	19.58		
10	1	0		19.33	19.36	19.39		
10	1	25		19.26	19.29	19.30]	
10	1	49		19.25	19.25	19.27		
10	25	0	64-QAM	19.62	19.65	19.65	21.95	0.1567
10	25	12		19.58	19.61	19.61		
10	25	25		19.57	19.58	19.59		
10	50	0		19.56	19.60	19.59]	
10	1	0		18.73	18.68	18.70		
10	1	25		18.76	18.75	18.71]	
10	1	49		18.60	18.61	18.72		
10	25	0	256-QAM	18.60	18.71	18.79	21.10	0.1288
10	25	12		18.71	18.70	18.69		
10	25	25		18.78	18.77	18.80		
10	50	0		18.67	18.61	18.79		
Limit	EIRP	< 23dBm/1	OMHz		Result	-	Pa	ISS

	Part 96 L	TE Band 4	18 Maximu	ım Averag	e Power [d	Bm] (GT -	LC = 2.3 dB))
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)
5	1	0		19.62	19.54	19.67		
5	1	12		19.50	19.50	19.56]	
5	1	24		19.45	19.50	19.57		
5	12	0	QPSK	19.53	19.59	19.68	21.98	0.1578
5	12	7		19.48	19.57	19.53]	
5	12	13		19.51	19.56	19.54		
5	25	0		19.51	19.58	19.59		
5	1	0		19.51	19.59	19.58		
5	1	12		19.74	19.81	19.81		
5	1	24		19.52	19.58	19.58		
5	12	0	16-QAM	19.51	19.57	19.54	22.11	0.1626
5	12	7		19.51	19.55	19.53		
5	12	13		19.51	19.55	19.51		
5	25	0		19.53	19.61	19.59		
5	1	0		19.34	19.37	19.39		
5	1	12		19.34	19.40	19.35		
5	1	24		19.31	19.38	19.32		
5	12	0	64-QAM	19.55	19.61	19.59	21.93	0.1560
5	12	7		19.52	19.55	19.57		
5	12	13		19.53	19.58	19.53		
5	25	0		19.54	19.63	19.59		
5	1	0		18.69	18.77	18.65		
5	1	12		18.66	18.66	18.75		
5	1	24		18.62	18.70	18.74]	
5	12	0	256-QAM	18.64	18.67	18.71	21.08	0.1282
5	12	7		18.78	18.61	18.68		
5	12	13		18.75	18.72	18.62		
5	25	0		18.71	18.64	18.64		
Limit	t EIRP < 23dBm/10MHz			Result		Pa	ISS	

RTON LAB. FCC RADIO TEST REPORT

Report No. : FG4N0917D

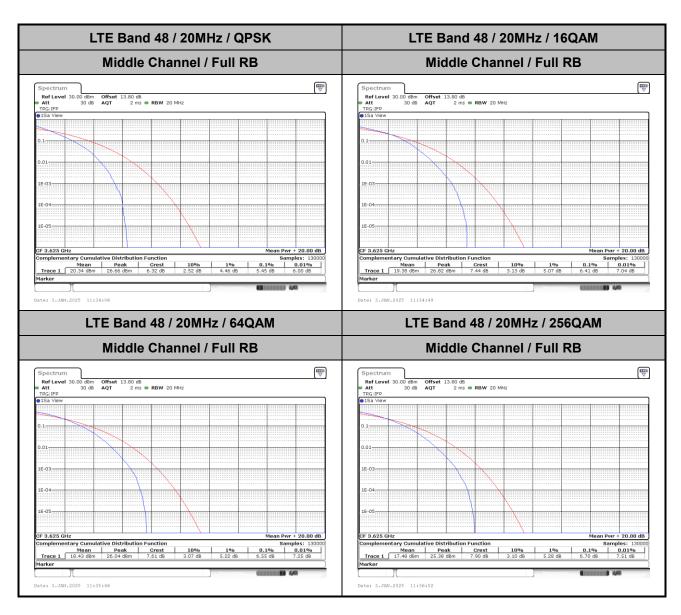
<Tx1>

<1x1>	Dowt OC I	TE Dand 4	10 Maxim	.m. A., a. r. a.	o Dower Id	IDm1/CT	TC = 30 4D/	
							LC = 2.9 dB)	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)
20	1	0		19.61	19.66	19.68		
20	1	49		19.51	19.55	19.67		
20	1	99		19.46	19.41	19.49		
20	50	0	QPSK	19.64	19.62	19.61	22.58	0.1811
20	50	24		19.60	19.56	19.57		
20	50	50		19.55	19.52	19.51		
20	100	0		19.56	19.56	19.59		
20	1	0		19.68	19.70	19.75		
20	1	49		19.60	19.59	19.59		
20	1	99		19.51	19.48	19.46		
20	50	0	16-QAM	19.64	19.64	19.64	22.65	0.1841
20	50	24		19.60	19.60	19.58		
20	50	50		19.57	19.54	19.50		
20	100	0		19.59	19.57	19.56		
20	1	0		19.42	19.44	19.46		
20	1	49		19.39	19.36	19.32]	
20	1	99		19.25	19.22	19.19]	
20	50	0	64-QAM	19.60	19.73	19.64	22.63	0.1832
20	50	24		19.57	19.60	19.57]	
20	50	50		19.54	19.51	19.51]	
20	100	0		19.56	19.54	19.56		
20	1	0		18.45	18.43	18.41		
20	1	49		18.45	18.31	18.32		
20	1	99		18.26	18.34	18.42	1	
20	50	0	256-QAM	18.44	18.60	18.42	21.50	0.1413
20	50	24		18.57	18.52	18.45]	
20	50	50		18.51	18.40	18.45	1	
20	100	0		18.56	18.53	18.55]	
Limit	EIRP	< 23dBm/10	OMHz		Result		Pa	ISS

Total EIRP power is less than partial EIRP limit 23 dBm/10MHz.

	Part 96 I	TE Band 4	18 Maximu	ım Averag	e Power [d	Bm] (GT -	LC = 2.9 dB)	
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)
15	1	0		19.51	19.48	19.40		
15	1	37		19.36	19.32	19.43]	
15	1	74		19.38	19.24	19.21		
15	36	0	QPSK	19.52	19.40	19.37	22.42	0.1746
15	36	20		19.36	19.33	19.30]	
15	36	39		19.29	19.29	19.27		
15	75	0		19.34	19.34	19.30		
15	1	0		19.43	19.41	19.44		
15	1	37		19.52	19.51	19.52		
15	1	74		19.33	19.28	19.29		
15	36	0	16-QAM	19.35	19.33	19.32	22.42	0.1746
15	36	20		19.32	19.29	19.26]	
15	36	39		19.30	19.24	19.22		
15	75	0		19.35	19.31	19.30		
15	1	0		19.16	19.17	19.19		
15	1	37		19.11	19.08	19.06		
15	1	74		19.07	19.02	18.99		
15	36	0	64-QAM	19.38	19.37	19.38	22.28	0.1690
15	36	20		19.34	19.32	19.32		
15	36	39		19.32	19.28	19.25		
15	75	0		19.32	19.30	19.30		
15	1	0		18.34	18.40	18.33		
15	1	37		18.35	18.40	18.41		
15	1	74		18.40	18.40	18.26]	
15	36	0	256-QAM	18.49	18.56	18.42	21.50	0.1413
15	36	20		18.43	18.47	18.40]	
15	36	39		18.60	18.47	18.47]	
15	75	0		18.45	18.60	18.53		
Limit	Limit EIRP < 23dBm/10MHz		OMHz	Result			Pa	ISS

	Part 96 L	TE Band 4	18 Maximu	e Power [d	Bm] (GT -	LC = 2.9 dB))		
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)	
10	1	0		19.39	19.40	19.40			
10	1	25		19.32	19.29	19.30	1		
10	1	49		19.35	19.35	19.25	22.31	0.1702	
10	25	0	QPSK	19.41	19.37	19.37			
10	25	12		19.31	19.31	19.29]		
10	25	25		19.31	19.30	19.30]		
10	50	0		19.39	19.32	19.30			
10	1	0		19.57	19.43	19.41			
10	1	25		19.45	19.33	19.32			
10	1	49		19.31	19.29	19.27	22.47	0.1766	
10	25	0	16-QAM	19.34	19.37	19.36			
10	25	12		19.30	19.32	19.30			
10	25	25		19.31	19.31	19.28	1		
10	50	0		19.33	19.35	19.32			
10	1	0		19.10	19.14	19.12			
10	1	25		19.07	19.07	19.07			
10	1	49		19.01	19.03	19.00	22.30		
10	25	0	64-QAM	19.37	19.40	19.38		0.1698	
10	25	12		19.35	19.36	19.35			
10	25	25		19.32	19.35	19.33			
10	50	0		19.33	19.35	19.33			
10	1	0		18.40	18.35	18.36			
10	1	25		18.32	18.38	18.43			
10	1	49		18.27	18.41	18.41			
10	25	0	256-QAM	18.46	18.42	18.58	21.48	0.1406	
10	25	12		18.44	18.58	18.52			
10	25	25		18.50	18.47	18.53			
10	50	0		18.45	18.55	18.42			
Limit	EIRP	< 23dBm/10	OMHz		Result		ISS		

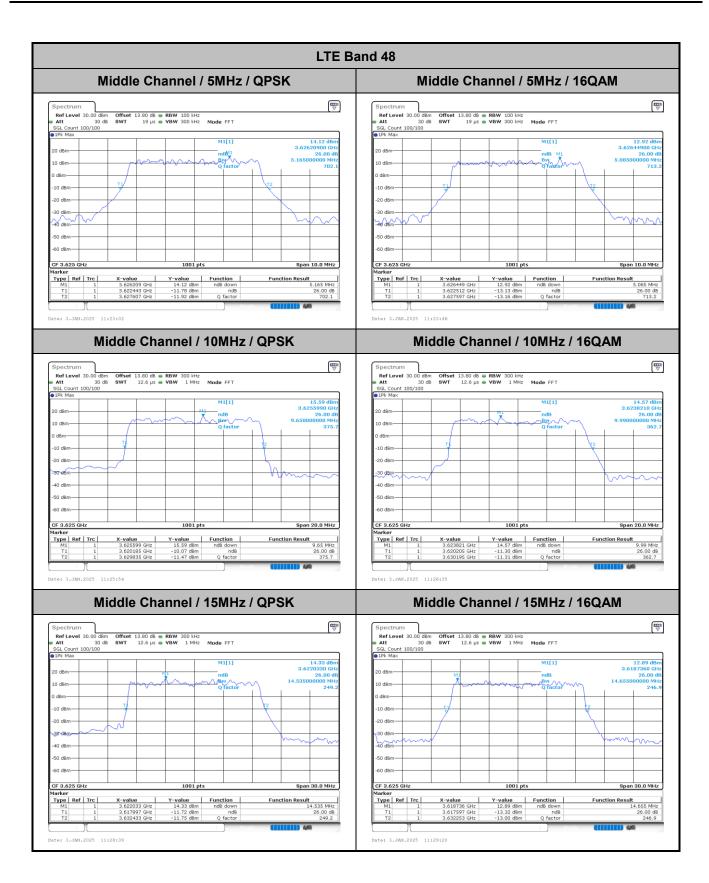

	Part 96 LTE Band 48 Maximum Average Power [dBm] (GT - LC = 2.9 dB)											
BW [MHz]	RB Size	RB Offset	Mod	Lowest	Middle	Highest	EIRP (dBm)	EIRP (W)				
5	1	0		19.26	19.43	19.37						
5	1	12		19.36	19.32	19.24]					
5	1	24		19.21	19.25	19.26	22.34	0.1714				
5	12	0	QPSK	19.41	19.35	19.32						
5	12	7		19.44	19.30	19.21]					
5	12	13		19.35	19.31	19.24]					
5	25	0		19.32	19.33	19.27						
5	1	0		19.19	19.33	19.28						
5	1	12		19.45	19.53	19.49	22.43	0.1750				
5	1	24		19.30	19.33	19.29						
5	12	0	16-QAM	19.30	19.31	19.27						
5	12	7		19.27	19.29	19.23]					
5	12	13		19.28	19.26	19.23						
5	25	0		19.32	19.34	19.28						
5	1	0		19.08	19.13	19.09						
5	1	12		19.03	19.09	19.08]					
5	1	24		19.08	19.08	19.05	22.33	0.1710				
5	12	0	64-QAM	19.30	19.32	19.30						
5	12	7		19.43	19.32	19.27						
5	12	13		19.41	19.30	19.27]					
5	25	0		19.43	19.35	19.33						
5	1	0		18.33	18.37	18.39						
5	1	12		18.33	18.34	18.40]					
5	1	24	256-QAM	18.45	18.43	18.40]					
5	12	0		18.57	18.40	18.49	21.49	0.1409				
5	12	7		18.47	18.45	18.50						
5	12	13		18.56	18.49	18.59]					
5	25	0		18.47	18.57	18.45						
Limit	EIRP	< 23dBm/10	OMHz		Result		Pa	ISS				

LTE Band 48

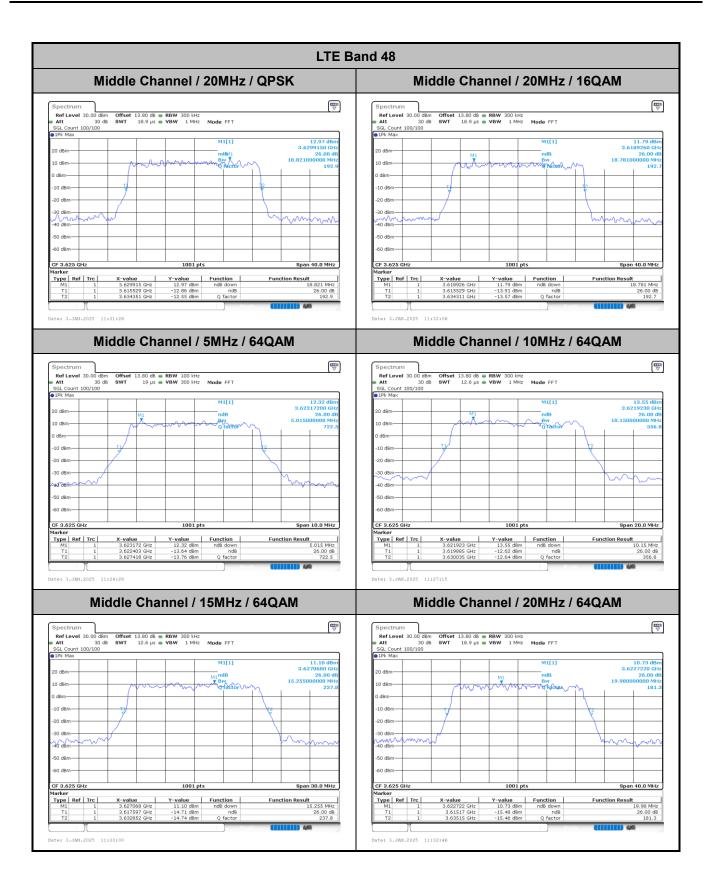
Peak-to-Average Ratio

Mode						
Mod.	Mod. QPSK		64QAM	256QAM	Limit: 13dB	
RB Size	Full RB	Full RB	Full RB	Full RB	Result	
Middle CH	5.45	6.41	6.55	6.70	PASS	

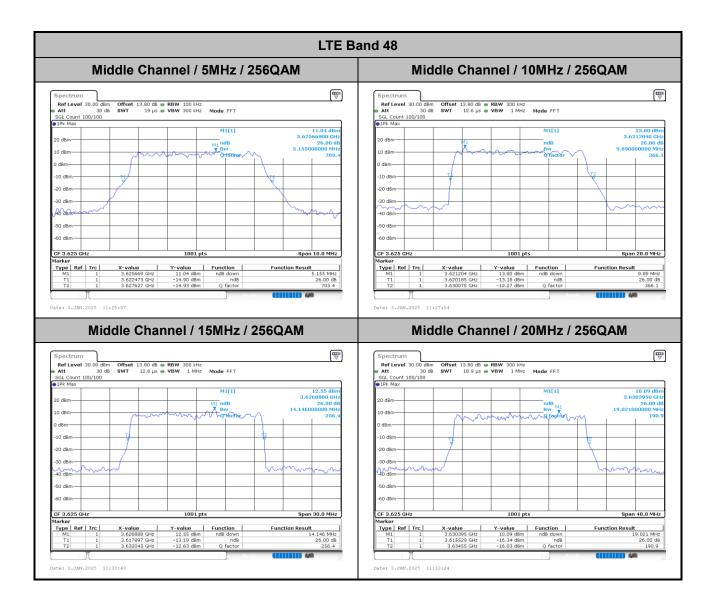
Report No.: FG4N0917D


TEL: 886-3-327-3456 Page NumACLRr : A2-1 of 62

26dB Bandwidth


Mode	LTE Band 48 : 26dB BW(MHz)												
BW	1.4MHz		3N	lHz	5N	lHz	10MHz		15N	MHz 20		MHz	
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	
Middle CH	-	-	-	-	5.16	5.08	9.65	9.99	14.53	14.65	18.82	18.78	
Mode		LTE Band 48 : 26dB BW(MHz)											
BW	1.4	ИHz	3N	lHz	5N	lHz	10	ИHz	15MHz		20MHz		
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	
Middle CH	-	-		-	5.01	5.15	10.15	9.89	15.25	14.14	19.98	19.02	

Report No.: FG4N0917D


TEL: 886-3-327-3456 Page NumACLRr : A2-2 of 62

TEL: 886-3-327-3456 Page NumACLRr : A2-3 of 62

TEL: 886-3-327-3456 Page NumACLRr : A2-4 of 62

TEL: 886-3-327-3456 Page NumACLRr : A2-5 of 62

Occupied Bandwidth

Mode	LTE Band 48 : 99%OBW(MHz)											
BW	1.4MHz		3N	lHz	5MHz 10MHz		15MHz		20MHz			
Mod.	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM	QPSK	16QAM
Middle CH	-	-	-	-	4.47	4.52	9.02	8.98	13.46	13.42	17.79	17.93
Mode					LTE Ba	and 48 :	99%OBV	V(MHz)				
BW	1.4	ИНz	3N	lHz	5N	1Hz	101	ЛHz	15MHz		20MHz	
Mod.	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM	64QAM	256QAM
Middle CH	-	-	1	-	4.50	4.48	9.04	8.98	13.44	13.42	17.88	17.94

Report No.: FG4N0917D

TEL: 886-3-327-3456 Page NumACLRr : A2-6 of 62

LTE Band 48 Middle Channel / 5MHz / QPSK Middle Channel / 5MHz / 16QAM Ref Level 30.00 dBm Offset 13.80 dB • RBW 100 kHz

Ref Level 30.00 dBm Offset 19.80 dB • RBW 100 kHz

Act 19 µs • VBW 300 kHz Mode FFT 19 µs • VBW 300 kHz Mode F 14.05 dBn 3.625939900 ° 4.4705° 13.83 dBn 3.624463100 GH 4.520547945 MH M1[1] M1[1] 10 dBmdBm--20 dBm--30 dBm 30 dBm 40 dBm CF 3.625 GHz Span 10.0 MHz
 Marker
 Trpe
 Ref
 Trc
 X-value
 Y-value
 Function
 Function Result

 M1
 1
 3.6259399 GHz
 14.05 dbm
 Tell Control of the control of Function Result 4.470552945 MHz 3.62272123 GHz 13.83 dBm Occ Bw 3.62724178 GHz 6.25 dBm 4.520547945 MHz Middle Channel / 10MHz / QPSK Middle Channel / 10MHz / 16QAM Ref Level 30.00 dBm Offset 13.80 dB RBW 300 kHz Att 30 dB SWT 12.7 µs VBW 1 MHz Mode FFT SGL Count 100/100 16.45 dBn 3.62154430 GH 9.0230976 15.12 dBn 3.62667780 GHz 8.987101290 MHz 20 dBm--10 dBm--20 dBm--30 dBm--40 dBm--50 dBm -50 dBm-
 X-value
 Y-value
 Function

 3.6215443 GHz
 16.45 dBm
 3.62052245 GHz

 3.62052245 GHz
 8.98 dBm
 Occ Bw

 3.62954555 GHz
 10.27 dBm

 Marker
 Trype
 Ref
 Trc
 X-value
 Y-value
 Function

 M1
 1
 3.6265778 GHz
 15.12 dbm
 15.12 dbm

 T1
 1
 3.62050245 GHz
 8.47 dbm
 Occ 8w

 T2
 1
 3.62946955 GHz
 7.88 dbm
 7.88 dbm
 Type Ref Trc 9.02309769 MHz 8.98710129 MHz Date: 3.JAN.2025 11:14:26 Date: 3.JAN.2025 11:15:07 Middle Channel / 15MHz / QPSK Middle Channel / 15MHz / 16QAM 13.78 dBi 3.61924360 GF 13.465653435 MF 10 dBm--20 dBm--40 dBm--60 dBm--60 dBm-

Report No.: FG4N0917D

TEL: 886-3-327-3456 Page NumACLRr : A2-7 of 62

Function Result

13.465653435 MHz

ija

CF 3.625 GH

Date: 3.JAN.2025 11:18:03

 X-value
 Y-value
 Function

 3.6191326 GHz
 13.35 dBm
 3.61831967 GHz
 7.27 dBm

 3.61831967 GHz
 7.27 dBm
 Occ Bw

 3.63174333 GHz
 8.26 dBm
 Occ Bw

Function Result

13.423657634 MHz

FAX: 886-3-328-4978

Date: 3.JAN.2025 11:17:21

GF 3.625 GHz
Marker
Type | Ref | Trc |

 X-value
 Y-value
 Function

 3.6192436 GHz
 13.78 dBm
 ...

 3.6182767 GHz
 7.71 dBm
 Occ Bw

 3.63174333 GHz
 8.56 dBm
 ...

LTE Band 48 Middle Channel / 20MHz / QPSK Middle Channel / 20MHz / 16QAM Ref Level 3.0.0 dBm Offset 13.80 dB • RBW 300 kHz
Ref Level 3.0.0 dBm Offset 19.80 dB • RBW 300 kHz
Akt 19 μs • VBW 1 MHz Mode FFT
SGL Count 100/100
JPK Max 11.86 dBn 3.63073940 GH 17.934206579 MH M1[1] M1[1] 10 dBmdBm--20 dBm-10 dBm mymm 40 dBm CF 3.625 GHz Span 40.0 MHz
 Marker
 Trpe
 Ref
 Trc
 X-value
 Y-value
 Function
 Function Result

 M1
 1
 3.6281837 GHz
 12.54 dbm
 Texture
 12.54 dbm
 Texture
 Texture
 Texture
 13.6281839 GHz
 6.43 dbm
 Occ Bw
 17.794200

 T2
 1
 3.63939111 GHz
 6.82 dbm
 Occ Bw
 17.794200
 Function Result 17.794220578 MHz 3.6160409 GHz 8.16 dBm Occ Bw 3.6339751 GHz 7.99 dBm 17.934206579 MHz Date: 3.JAN.2025 11:20:54 Middle Channel / 5MHz / 64QAM Middle Channel / 10MHz / 64QAM Ref Level 30.00 dBm Offset 13.80 dB RBW 300 kHz Att 30 dB SWT 12.7 µs VBW 1 MHz Mode FFT SGL Count 100/100 11.62 dBr 3.625487000 GH 4.502549745 MH 20 dBm--10 dBm--20 dBm--30 dBm $\sim \Delta$ 40 dBm-50 dBm -50 dBm-
 X-value
 Y-value
 Function

 3.625487 GHz
 11.62 dBm

 3.62274423 GHz
 6.69 dBm
 Occ Bw

 3.627244676 GHz
 5.49 dBm

 Marker
 Trype
 Ref
 Trc
 X-value
 Y-value
 Function

 M1
 1
 3.6274758 GHz
 13.59 dbm
 13.59 dbm
 Occ 8w

 T1
 1
 3.62052045 GHz
 7.59 dbm
 Occ 8w

 T2
 1
 3.62956554 GHz
 7.30 dbm
 Occ 8w
 4.502549745 MHz 9.04509549 MHz Date: 3.JAN.2025 11:12:59 Date: 3.JAN.2025 11:15:49 Middle Channel / 20MHz / 64QAM Middle Channel / 15MHz / 64QAM 20 dBm-10 dBmdBm--20 dBm -20 dBm 40 dBm ~~~ mmm ~~~~ -60 dBm--60 dBm-CF 3.625 GH CF 3.625 GHz Span 40.0 MHz Type Ref Trc
 X-value
 Y-value
 Function

 3.6271688 GHz
 11.79 dBm
 3.61830467 GHz

 5.61830467 GHz
 6.20 dBm
 Occ BW

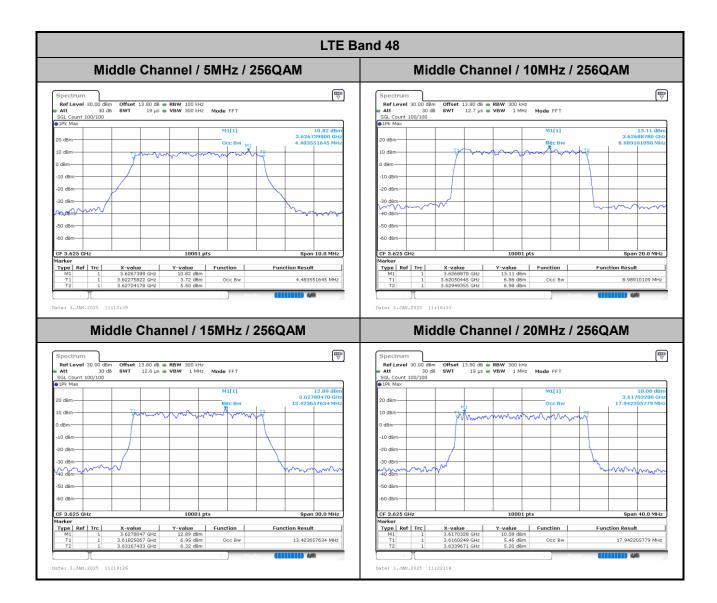
 3.63174633 GHz
 6.68 dBm

 X-value
 Y-value
 Function

 3.6229002 GHz
 10.53 dBm
 3.61607289 GHz

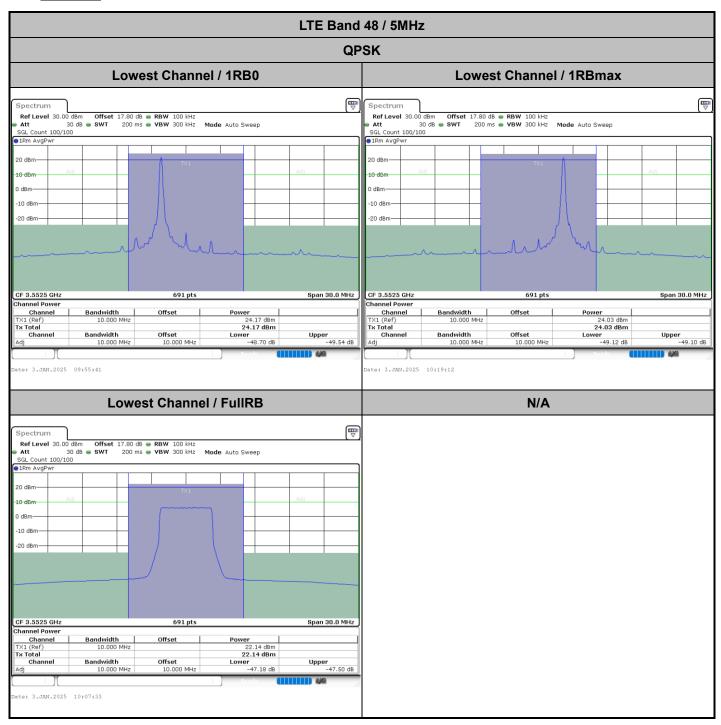
 3.61607289 GHz
 5.89 dBm
 Occ Bw

 3.639551 GHz
 5.66 dBm
 Function Result Function Result 13.441655834 MHz 17.882211779 MHz ija

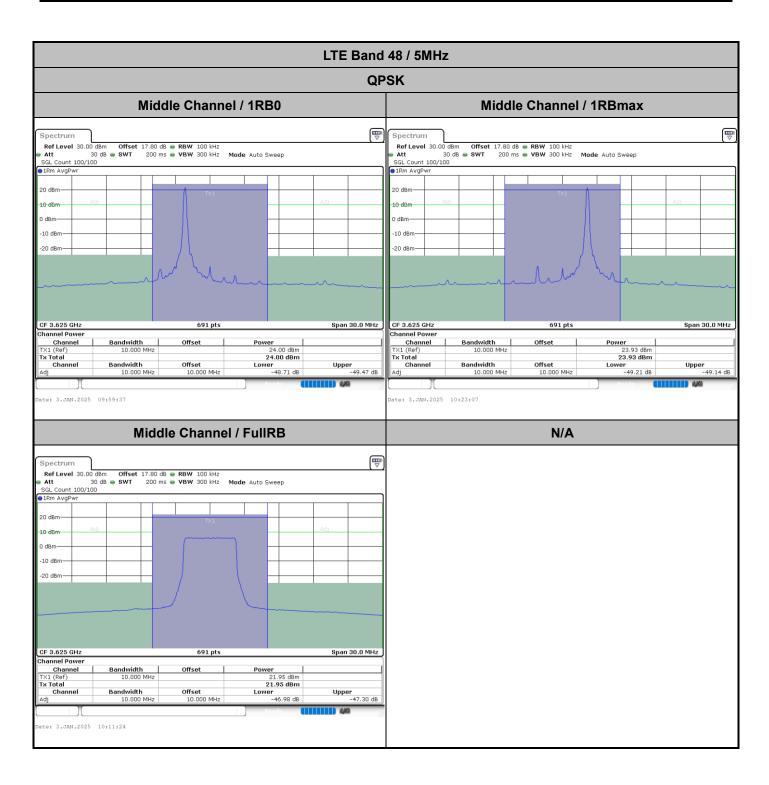

Report No.: FG4N0917D

TEL: 886-3-327-3456 Page NumACLRr : A2-8 of 62

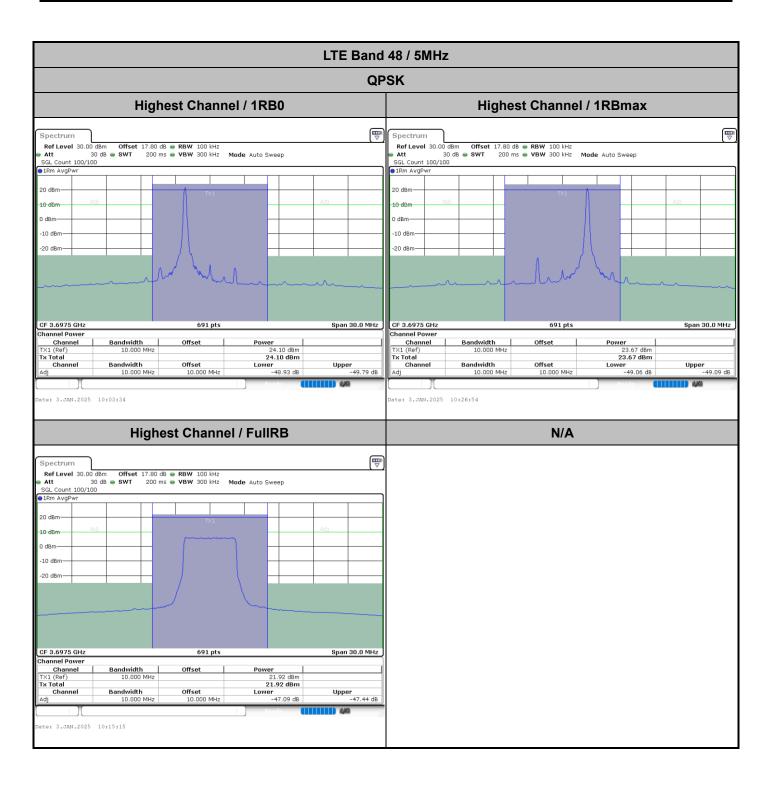
Date: 3.JAN.2025 11:21:36

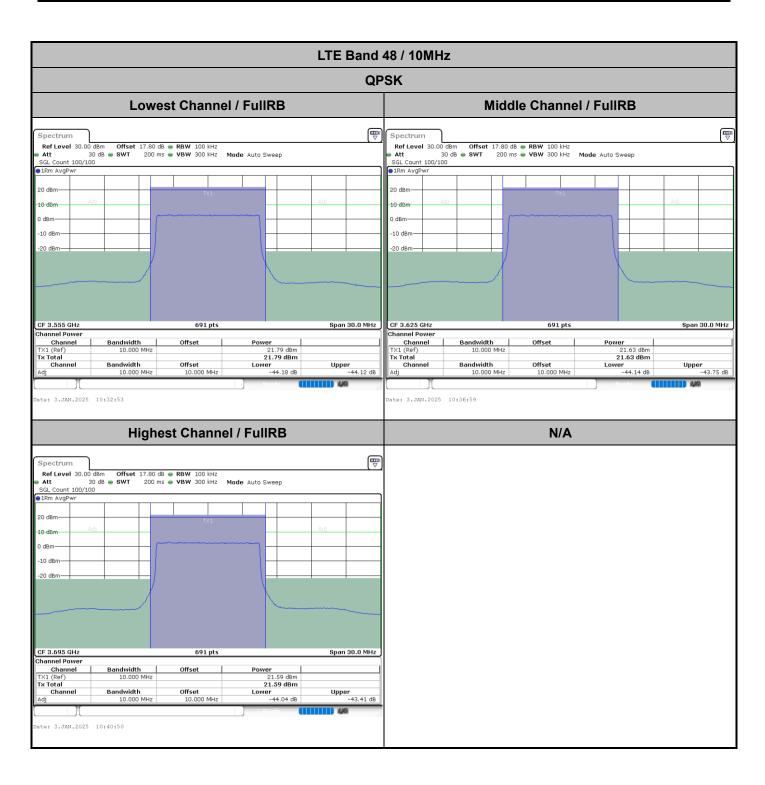

FAX: 886-3-328-4978

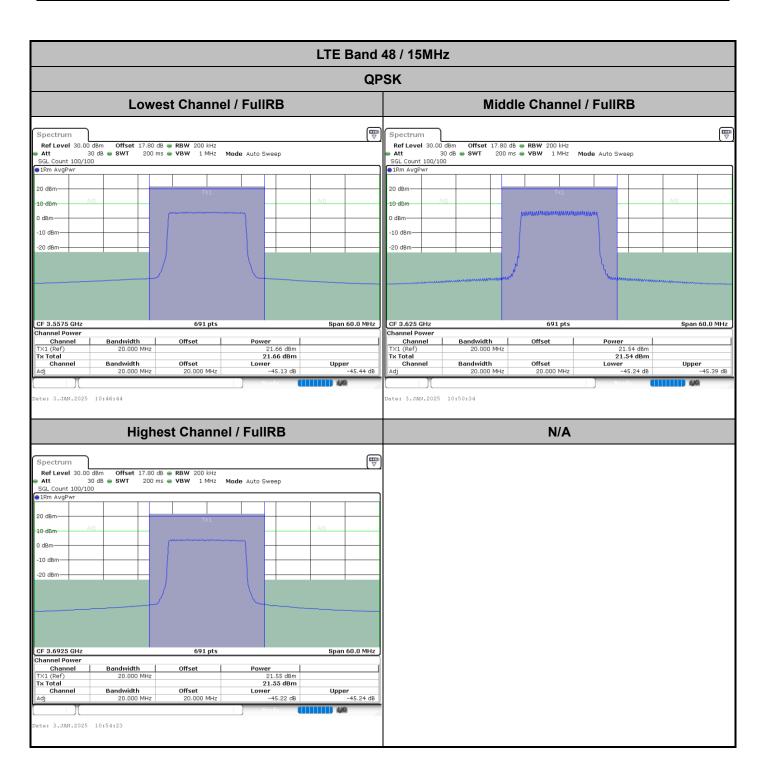
Date: 3.JAN.2025 11:18:44

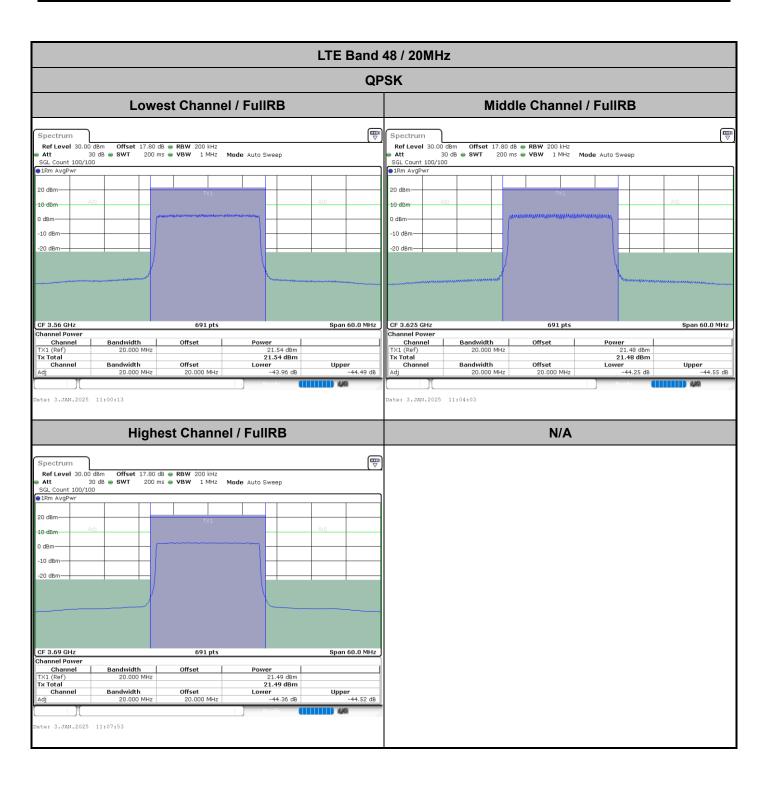


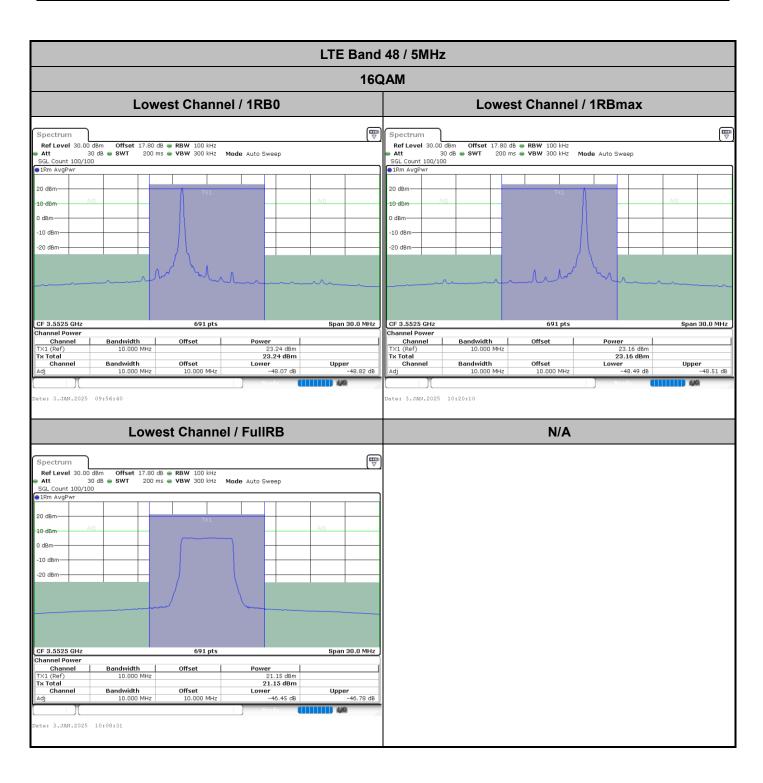
TEL: 886-3-327-3456 Page NumACLRr : A2-9 of 62

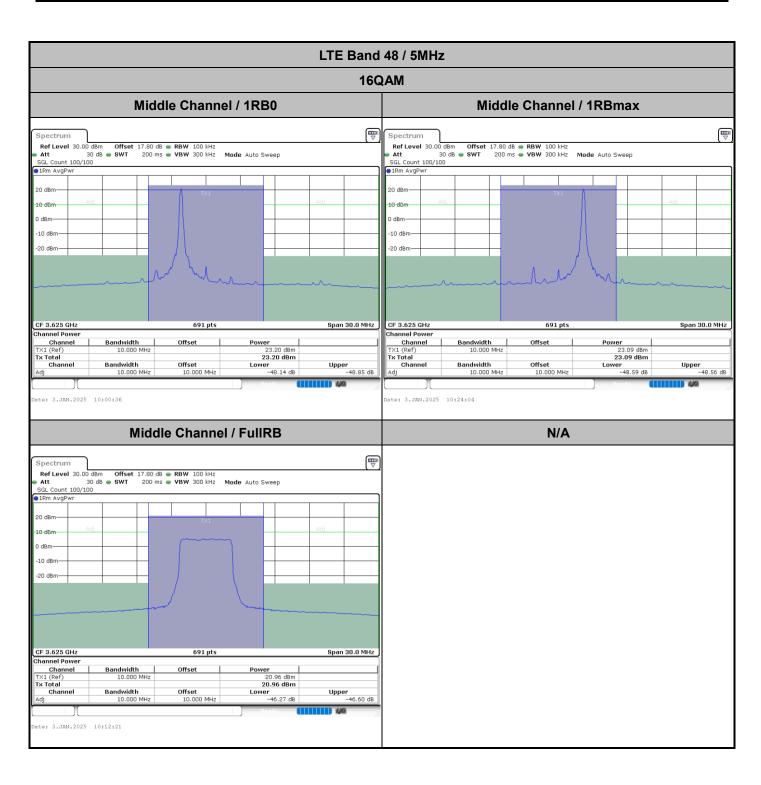


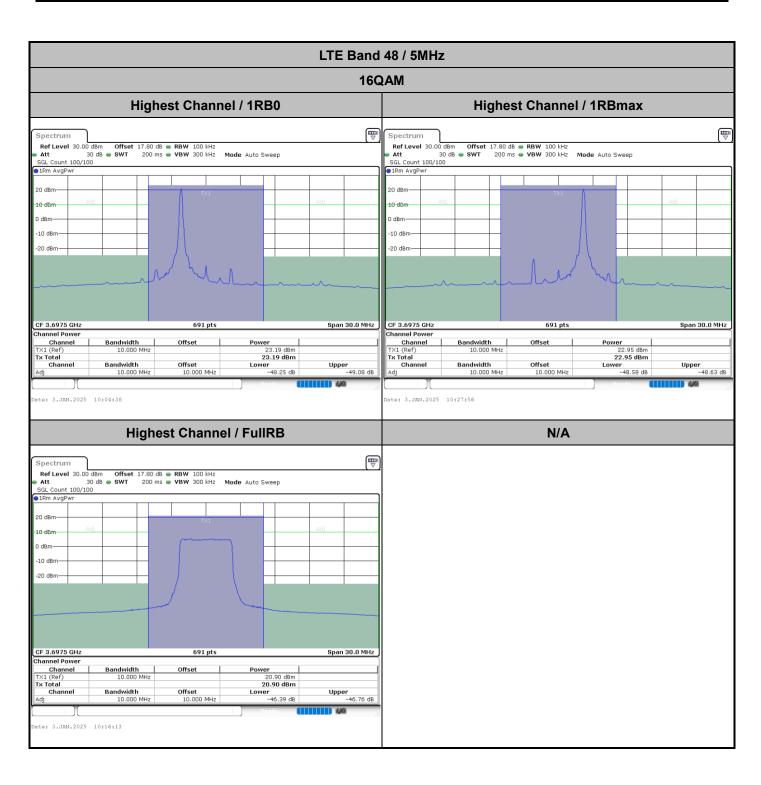

TEL: 886-3-327-3456 Page NumACLRr : A2-10 of 62

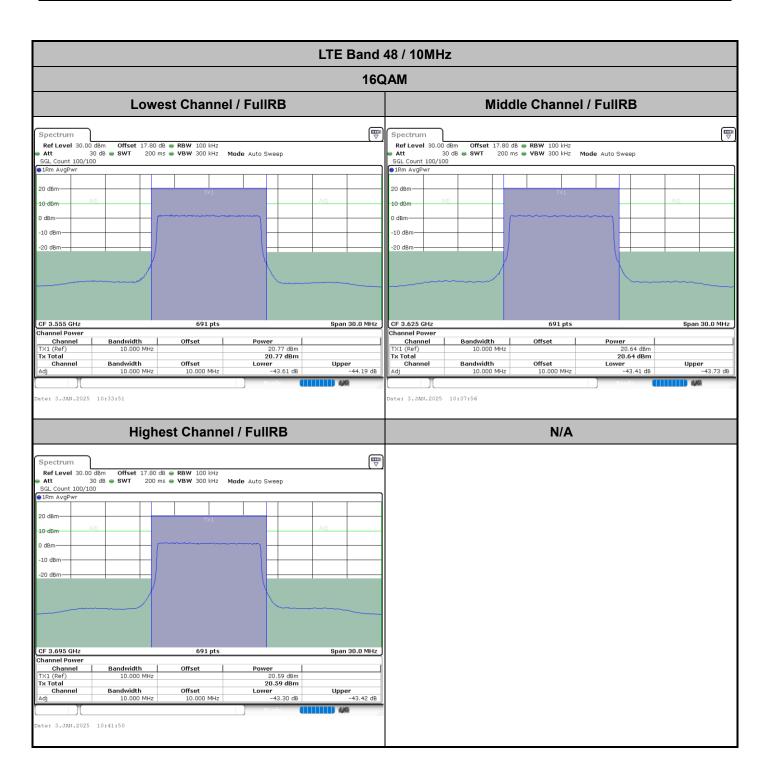

TEL: 886-3-327-3456 Page NumACLRr : A2-11 of 62

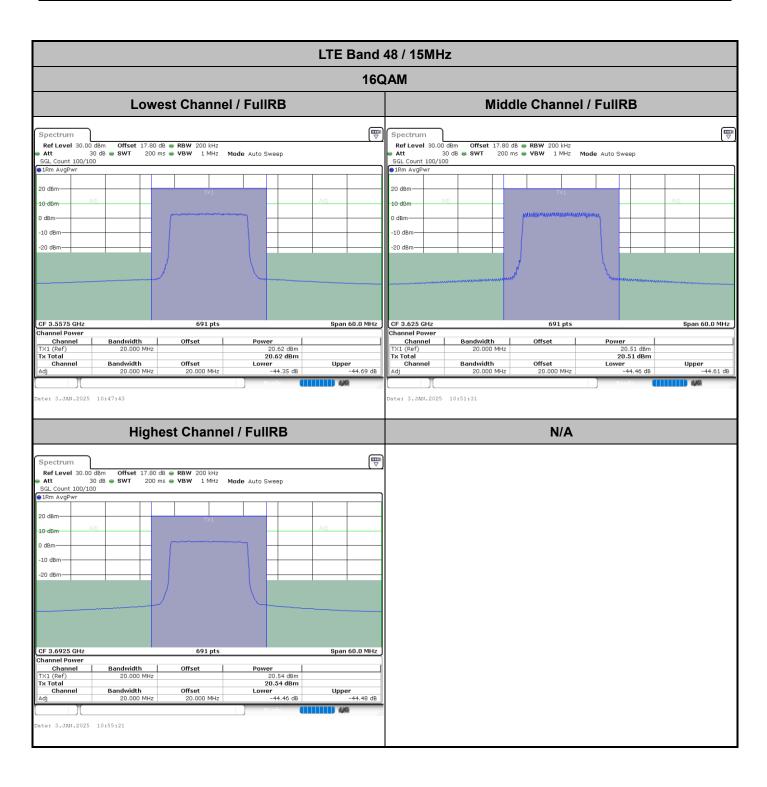

TEL: 886-3-327-3456 Page NumACLRr : A2-12 of 62

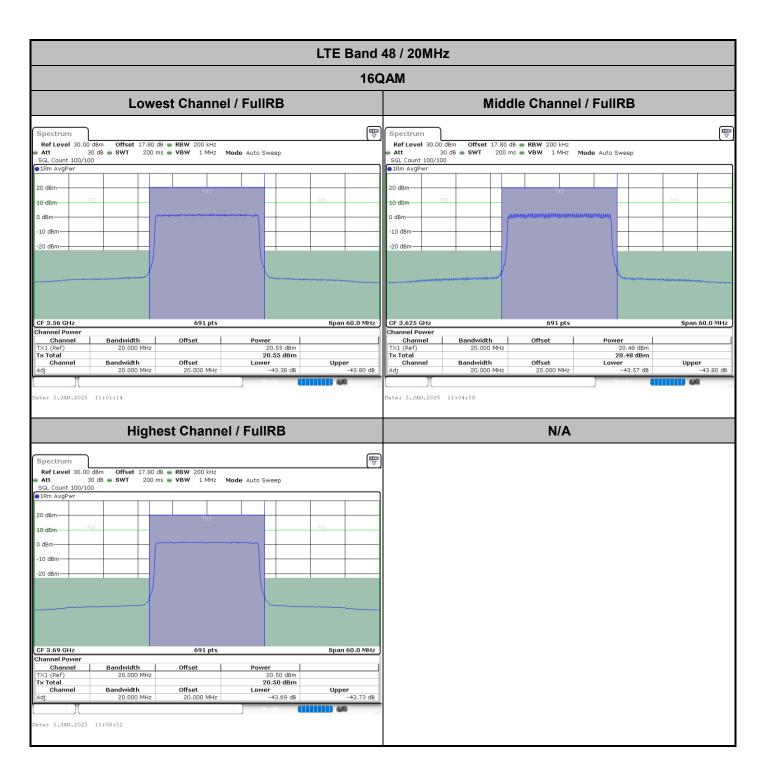

TEL: 886-3-327-3456 Page NumACLRr : A2-13 of 62

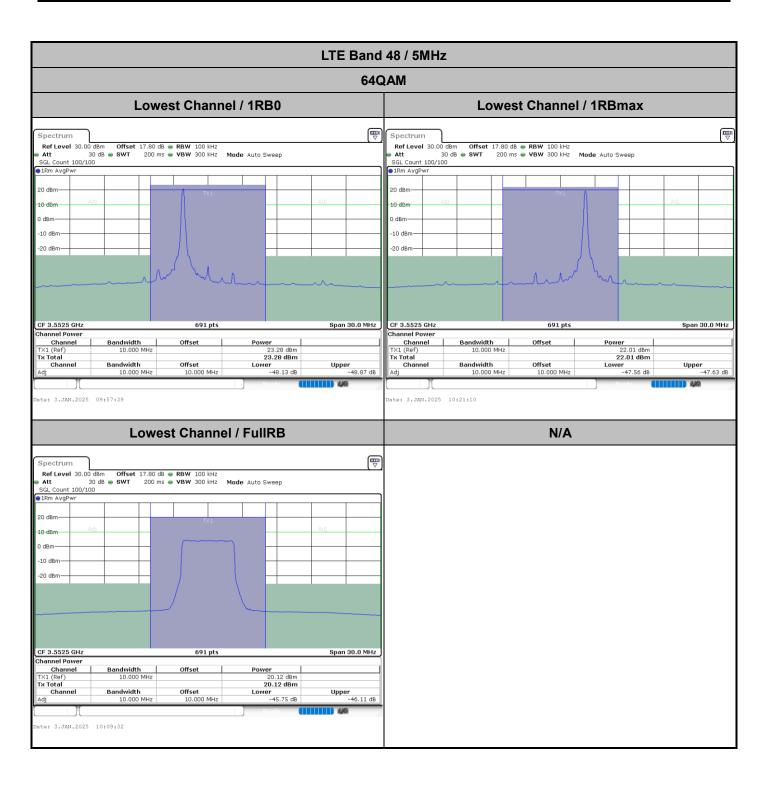

TEL: 886-3-327-3456 Page NumACLRr : A2-14 of 62

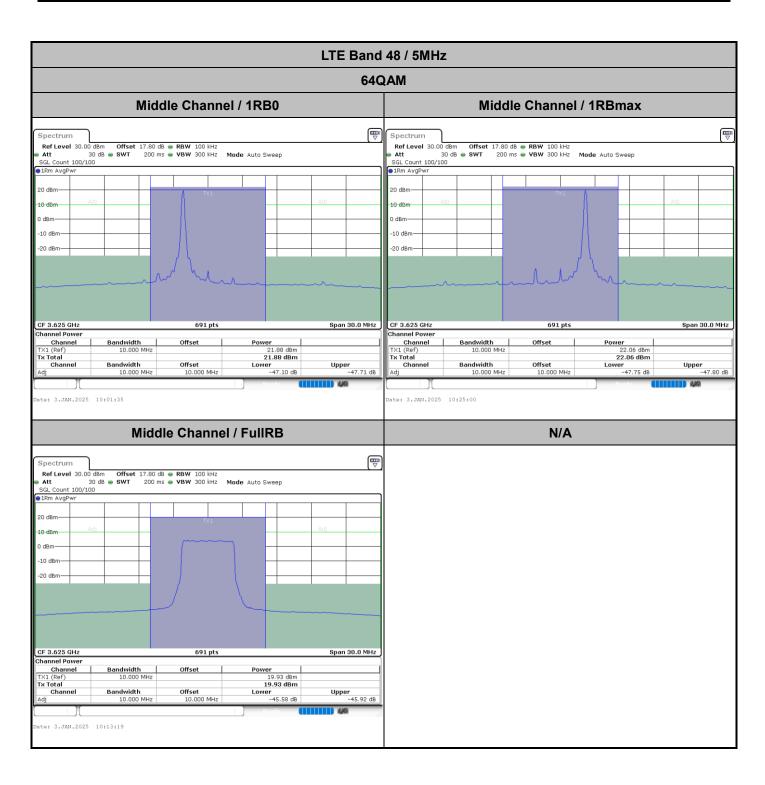

TEL: 886-3-327-3456 Page NumACLRr : A2-15 of 62

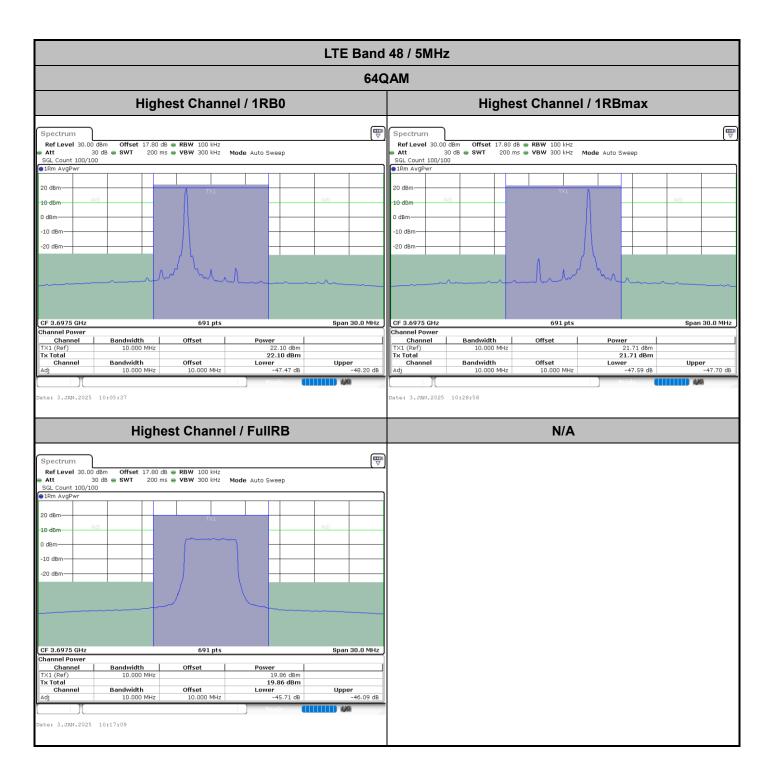

TEL: 886-3-327-3456 Page NumACLRr : A2-16 of 62


TEL: 886-3-327-3456 Page NumACLRr : A2-17 of 62

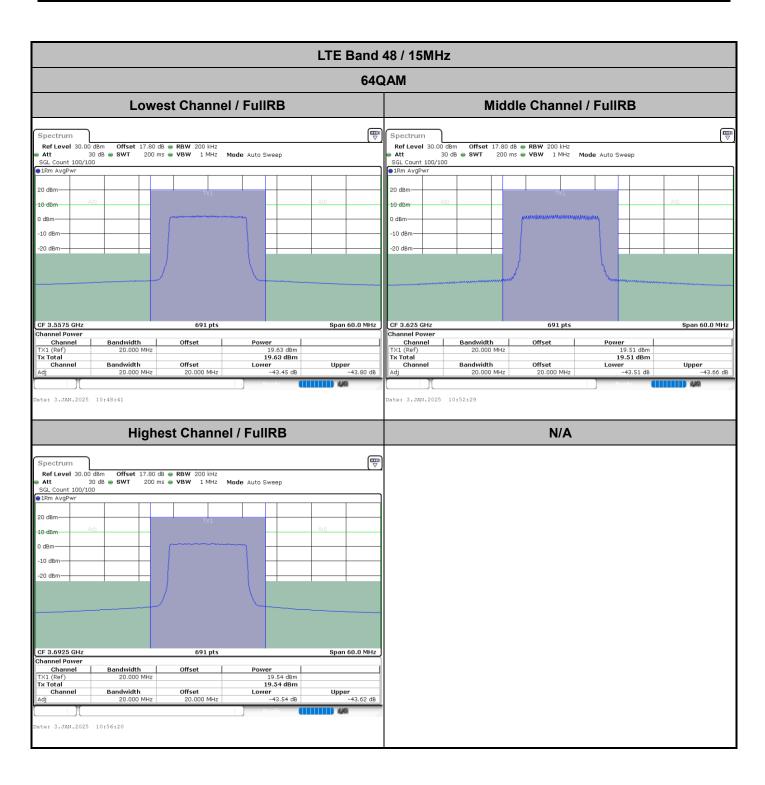

TEL: 886-3-327-3456 Page NumACLRr : A2-18 of 62

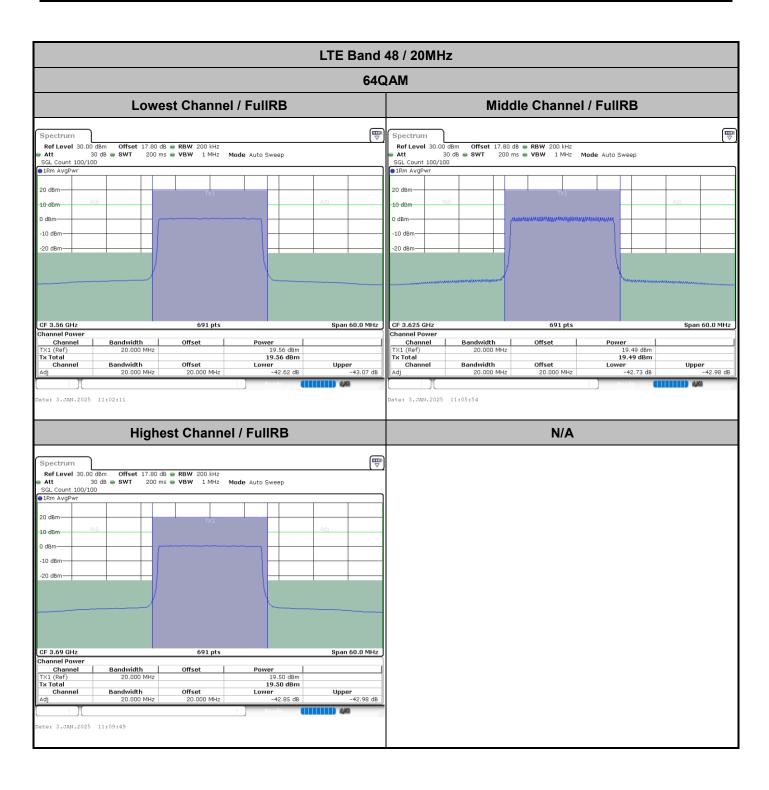

TEL: 886-3-327-3456 Page NumACLRr : A2-19 of 62


TEL: 886-3-327-3456 Page NumACLRr : A2-20 of 62


TEL: 886-3-327-3456 Page NumACLRr : A2-21 of 62


TEL: 886-3-327-3456 Page NumACLRr : A2-22 of 62


TEL: 886-3-327-3456 Page NumACLRr : A2-23 of 62


TEL: 886-3-327-3456 Page NumACLRr : A2-24 of 62

TEL: 886-3-327-3456 Page NumACLRr : A2-25 of 62

TEL: 886-3-327-3456 Page NumACLRr : A2-26 of 62

TEL: 886-3-327-3456 Page NumACLRr : A2-27 of 62