Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω + 6.4 jΩ	
Return Loss	- 23.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
	1.201115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D1900V2-5d093_Mar22 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 25.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d093

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 01.11.2021

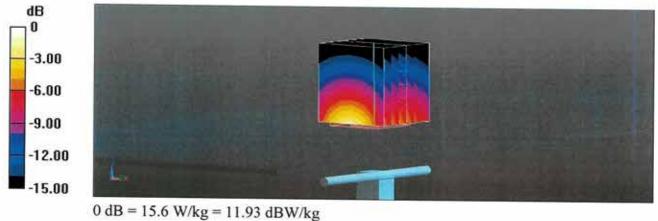
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

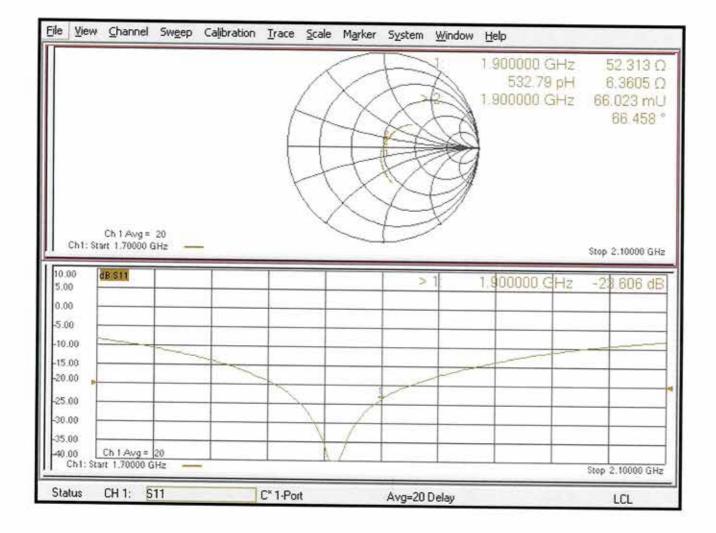
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.9 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10 W/kg; SAR(10 g) = 5.19 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 54.4%

Maximum value of SAR (measured) = 15.6 W/kg

Certificate No: D1900V2-5d093 Mar22 Page 5 of 6

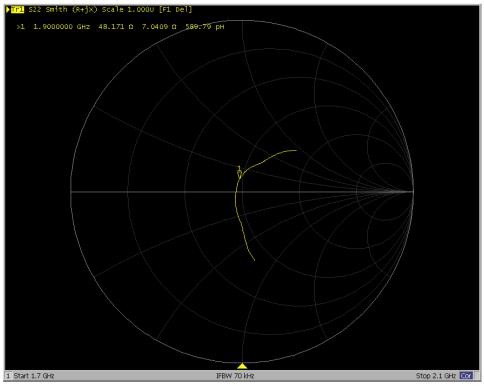
Impedance Measurement Plot for Head TSL

D1900V2, serial no. 5D093 Extended Dipole Calibrations

If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

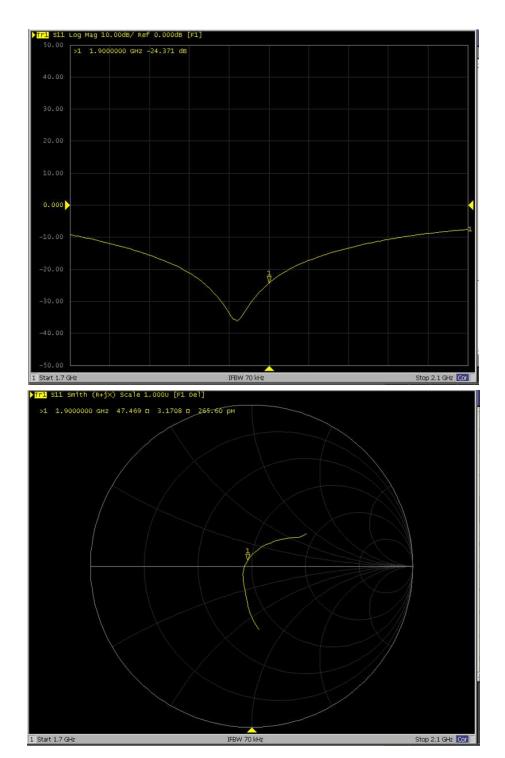
<Justification of the extended calibration>

D 1900 V2 – serial no. 5D093						
		1900MHZ				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
03.25.2022 (Cal. Report)	-23.606		52.313		6.3605	
03.24.2023 (extended)	-23.631	0.11	48.171	-4.142	7.0409	0.6804
03.23.2024 (extended)	-24.371	3.241	47.469	-4.84	3.1708	-3.1897


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

SPORTON INTERNATIONAL INC.

<Dipole Verification Data> - D1900 V2, serial no. 5D093 (Data of Measurement : 03.24.2023) 1900 MHz - Head



SPORTON INTERNATIONAL INC.

<Dipole Verification Data> - D1900 V2, serial no. 5D093 (Data of Measurement : 03.23.2024)
1900 MHz - Head

SPORTON INTERNATIONAL INC.

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Client

Sporton Taoyuan City Certificate No.

D2000V2-1010_Aug24

CALIBRATION CERTIFICATE

Object

D2000V2 - SN: 1010

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

August 16, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836 Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch: SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Calibrated by

Aidonia Georgiadou

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: August 16, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2000V2-1010_Aug24

Page 1 of 6

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2000V2-1010_Aug24 Page 2 of 6

D2000V2 - SN: 1010 August 16, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 5mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	2000MHz ±1MHz	

Head TSL parameters at 2000 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	39.4 ±6%	1.37 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2000 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	5.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ±16.5% (k = 2)

Certificate No: D2000V2-1010_Aug24 Page 3 of 6

D2000V2 - SN: 1010 August 16, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 2000 MHz

Impedance	48.6 Ω – 2.4]Ω
Return Loss	-30.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.186 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	'무섭하다.
Manufactured by	SPEAG

Certificate No: D2000V2-1010_Aug24 Page 4 of 6

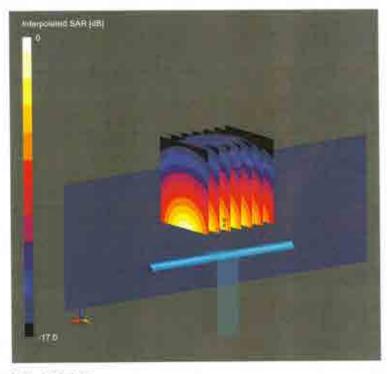
D2000V2 - SN: 1010

August 16, 2024

System Performance Check Report

Dipole	Frequency [MHz]	TSL	Power (dRm)	
D2000V2 - 5N1010	2000	HSL	24	

Exposure Conditions


Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSI: Conductivity [5/m]	TSL Permittivity
Flat	£0		CW, 0	2000, 0	7.73	1.37	39.4

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2024+08-16	EX3DV4 - SN7349, 2024-06-03	DAE4Ip Sn1836, 2024-01-10	

cans Setup		
	Zoom Scari	
Grid Extents (mm)	30 × 30 × 30	
Grid Steps [mm]	5.0 x 5.0 x 1.5	
Sensor Surface (mm)	6.4	
Graded Crid	Yes	
Grading Ratio	1.3	
MAIA	N/A	
Surface Detection	VMS = 6p	
Scan Method	Measured	

	Zoom Scan
Date	2024-08-16
psSAR1g (W/Kg)	10.1
psSAR10g [W/Kg]	5.26
Power Drift [d8]	0.01
Power Scaling	Disabled
Scaling Factor [d8]	
TSI, Correction	Positive / Negative

0 dB = 18.3 W/Kg

August 16, 2024 D2000V2 - SN: 1010

Impedance Measurement Plot for Head TSL

Certificate No: D2000V2-1010_Aug24

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: D2450V2-929 Nov22/2

CALIBRATION CERTIFICATE (Replacement of No: D2450V2-929_Nov22)

Object D2450V2 - SN:929

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date November 21, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	31-Aug-22 (No. DAE4-601_Aug22)	Aug-23
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN; US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Jeton Kastráti	Laboratory Technician	2 Cer
Approved by:	Sven Kühn	Technical Manager	61

issued: January 18, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D2450V2-929_Nov22/2

Page 1 of 7

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Report No.: FA4D1914A

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-929_Nov22/2 Page 2 of 7

Report No.: FA4D1914A

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	The same of the sa
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-929_Nov22/2 Page 3 of 7

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 4.7 jΩ
Return Loss	- 25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
Electrical Delay (one all collon)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

anufactured by	SPEAG

Certificate No: D2450V2-929_Nov22/2 Page 4 of 7

DASY5 Validation Report for Head TSL

Date: 21.11.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:929

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ S/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 31.08.2022

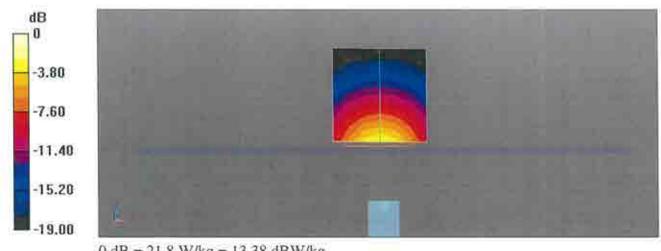
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid; dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.9 V/m; Power Drift = 0.01 dB

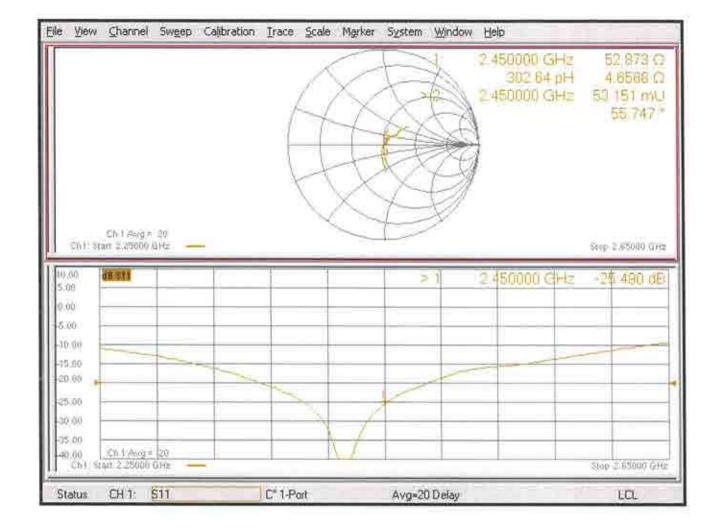

Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.25 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 51.5%

Maximum value of SAR (measured) = 21.8 W/kg



0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: D2450V2-929_Nov22/2

Report No.: FA4D1914A

Impedance Measurement Plot for Head TSL

Report No.: FA4D1914A

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Condition

Phantom	SAM Head Phantom	For usage with cSAR3D V2- R/L	

SAR result with SAM Head (Top \cong C0)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.5 % (k=2)
SAP averaged over 10 cm ³ /10 c) of Head TSI	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	26.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth ≅ F90)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	57.0 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	27.5 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck ≅ H0)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	53.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear ≅ D90)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	34.4 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	17.5 W/kg ± 16.9 % (k=2)

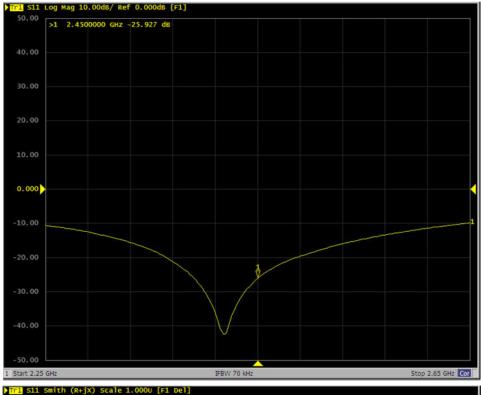
Certificate No: D2450V2-929_Nov22/2

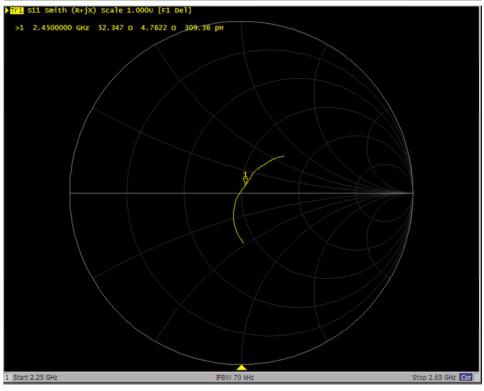
¹ Additional assessments outside the current scope of SCS 0108

D2450V2, serial no. 929 Extended Dipole Calibrations

if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

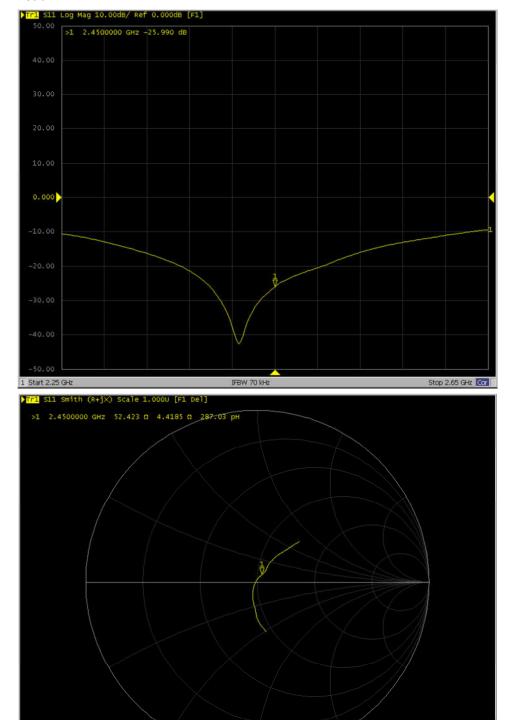
<Justification of the extended calibration>


D 2450 V2 – serial no. 929							
		2450MHZ					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	
11.21.2022 (Cal. Report)	-25.5		52.9		4.7		
11.20.2023 (extended)	-25.9	1.57	52.3	-0.6	4.8	0.1	
11.19.2024 (extended)	-25.99	-1.92%	52.423	-0.477	4.4185	-0.2815	


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

SPORTON INTERNATIONAL INC.

<Dipole Verification Data> - D2450 V2, serial no. 929 (Data of Measurement : 11.20.2023) 2450MHz - Head



SPORTON INTERNATIONAL INC.

<Dipole Verification Data> - D2450 V2, serial no. 929 (Data of Measurement : 11.19.2024) 2450 MHz - Head

IFBW 70 kHz

SPORTON INTERNATIONAL INC.

1 Start 2.25 GHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Stop 2.65 GHz Cor

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Taoyuan City Certificate No.

D2600V2-1008 Aug24

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1008

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

August 15, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Calibrated by

Krešimir Franjić

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: August 16, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1008_Aug24

Page 1 of 6

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x.y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1008_Aug24

dix C Report No.: FA4D1914A

D2600V2 - SN: 1008 August 15, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	2600MHz ±1MHz	

Head TSL parameters at 2600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.3 ±6%	2.00 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	14.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.7 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg ±16.5% (k = 2)

Certificate No: D2600V2-1008_Aug24 Page 3 of 6

Page74/266

D2600V2 - SN: 1008 August 15, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 2600 MHz

Impedance	49.0 Ω – 3.7 jΩ
Return Loss	-28.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

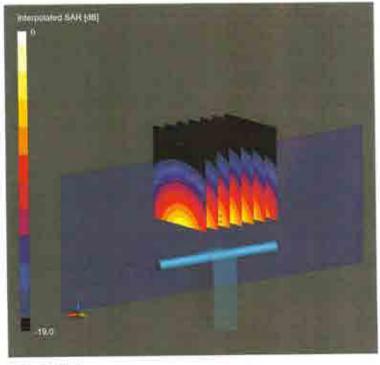
Additional EUT Data

	SSS -
Manufactured by	SPEAG

Certificate No: D2600V2-1008_Aug24 Page 4 of 6

D2600V2 - SN: 1008

August 15, 2024


Positive / Negative

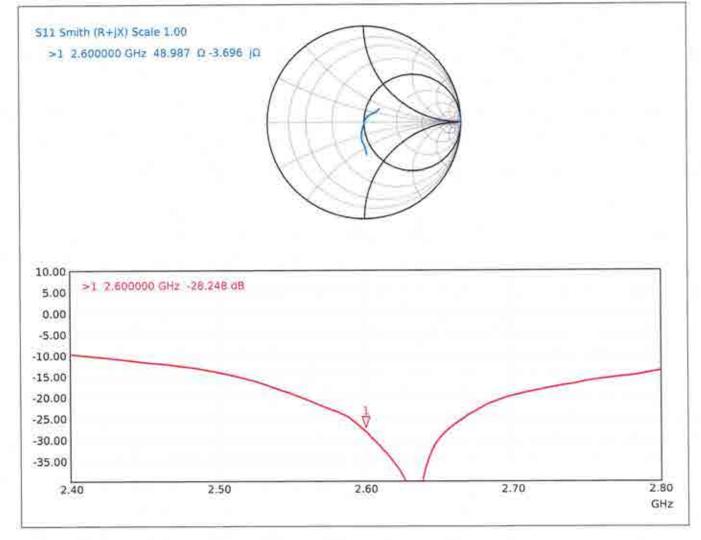
System Performance Check Report

Surface Detection Scan Method

Summary								
Dipole		1	Frequency (Mi	12]	TSL	Power (dBm)		
D2600V2 - 5N1008			2600		HSL	24		
Exposure Condition	is							100.0
Phantom Section, TSL	Test Distance [mm]	Band	Group, UIO	Frequency (MHz)	Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2600.0		7,29	2.00	37/3
Hardware Setup								
Phantom	TSL, Measured	Date		Probe, Calibration C	Date	DAE	Calibration Date	
MFP V8.0 Center	HSL, 7024-08	15		EX30V4 - SN7349.	2024-06-03	DAI	4ip Sn1836, 2024-01-10	
Scans Setup					Measurem	ent Results		
				Zoom Scan				Zoom Scan
Grid Extents [mm]				30 x 30 x 30	Date			2024-08-15
Grid Steps [mm]			5	.0 x 3.0 x 1.5	psSAR1g (W	/kg		14.0
Sensor Surface [mm]	la.		psSAR10g (W/kg)		6:35			
Graded Grid		Yes		Power Drift (d6)		0.00		
Grading Ratio				1.5	Power Scalin	19		Disableo
MAIA				N/A	Scaling Fact	or [d8]		

TSL Correction

VMS + 6p


Measured

0 d8 = 30.2 W/Kg

Report No.: FA4D1914A

D2600V2 - SN: 1008

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1008_Aug24

Report No.: FA4D1914A

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Accreditation No.: SCS 0108

Certificate No: D2600V2-1089 Mar22

CALIBRATION CERTIFICATE

Object

D2600V2 - SN:1089

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

March 24, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Aidonia Georgiadou	Laboratory Technician	New.
Approved her	N 1-10	SCHOOL OF THE SC	X TOWN
Approved by:	Niels Kuster	Quality Manager	1/100

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1089_Mar22

Page 1 of 6

Issued: March 28, 2022

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Report No.: FA4D1914A

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1089_Mar22 Page 2 of 6

Report No.: FA4D1914A

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	Will 1874 W. S. L. C.
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	4. <u>44.22</u>	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1089_Mar22

Report No.: FA4D1914A

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.0 Ω - 5.9 jΩ		
Return Loss	- 24.6 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.146 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
-----------------	-------	--

Certificate No: D2600V2-1089_Mar22

DASY5 Validation Report for Head TSL

Date: 24.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1089

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 37.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 01.11.2021

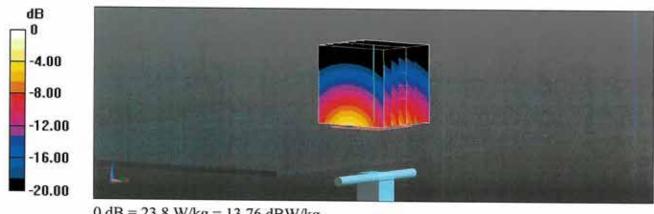
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

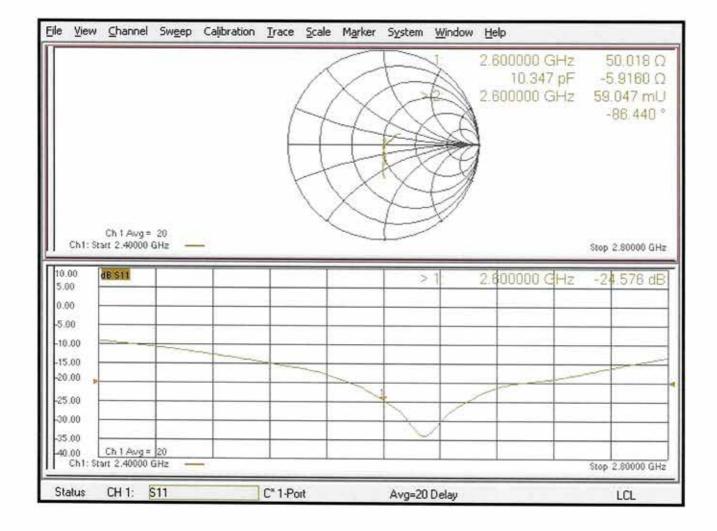
Reference Value = 118.0 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.24 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 49.3%


Maximum value of SAR (measured) = 23.8 W/kg

0 dB = 23.8 W/kg = 13.76 dBW/kg

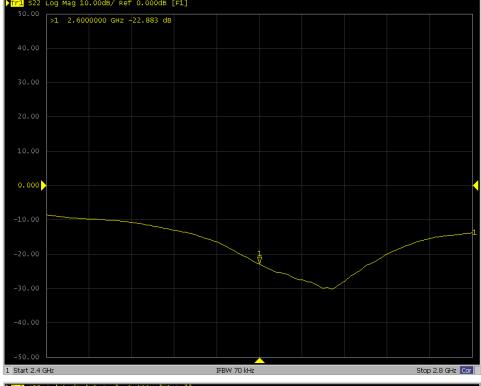
Certificate No: D2600V2-1089_Mar22 Page 5 of 6

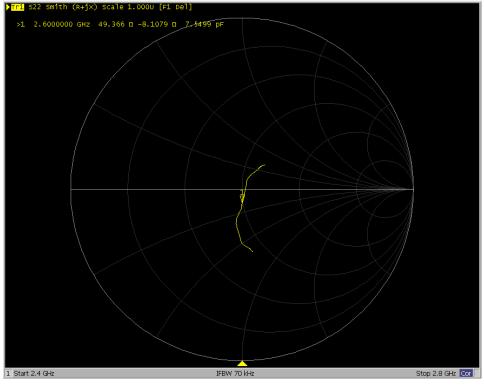
Impedance Measurement Plot for Head TSL

D2600V2, serial no. 1089 Extended Dipole Calibrations

If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

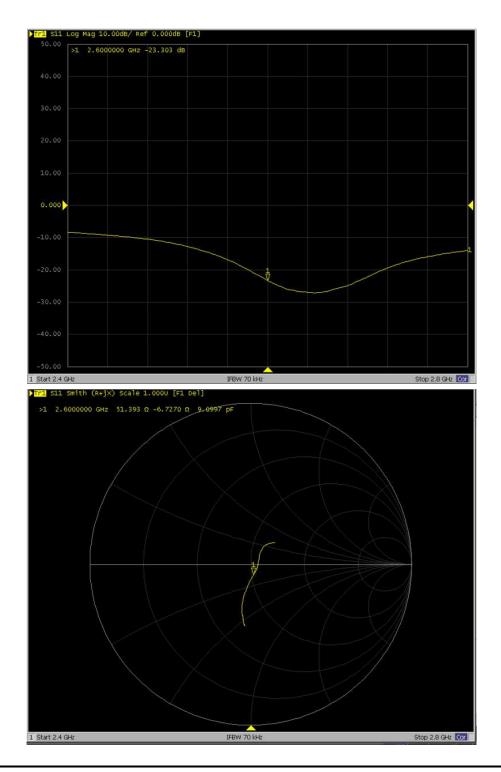
<Justification of the extended calibration>


D 2600 V2 – serial no. 1089						
		2600MHZ				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
03.24.2022 (Cal. Report)	-24.576		50.018		-5.916	
03.23.2023 (extended)	-22.883	6.89	45.128	-4.89	-7.3409	-1.4249
03.22.2024 (extended)	-23.303	5.18	51.393	1.38	-6.727	-0.811


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

SPORTON INTERNATIONAL INC.

<Dipole Verification Data> - D2600 V2, serial no. 1089 (Data of Measurement : 03.23.2023) 2600 MHz - Head



SPORTON INTERNATIONAL INC.

<Dipole Verification Data> - D2600 V2, serial no. 1089 (Data of Measurement : 03.22.2024)
2600 MHz - Head

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Sporton Taoyuan City

Certificate No.

D5GHzV2-1128_Sep24

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1128

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

September 17, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	22-Jul-24 (No. 4030A315008547)	Jul-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch SMA-240522)	May-25

Name Function Signature
Calibrated by Claudio Leubler Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: September 17, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1128_Sep24

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Report No.: FA4D1914A

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- · Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1128_Sep24 Page 2 of 11

dix C Report No.: FA4D1914A

September 17, 2024

Measurement Conditions

D5GHzV2 - SN: 1128

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 4mm$, $dz = 1.4mm$	Graded Ratio = 1.4 mm (Z direction)
Frequency	5200MHz ±1MHz 5250MHz ±1MHz 5600MHz ±1MHz 5800MHz ±1MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	35.4 ±6%	4.49 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	7.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.0 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.6 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1128_Sep24 Page 3 of 11

D5GHzV2 - SN: 1128 September 17, 2024

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	35.4 ±6%	4.53 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	7.75 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.5 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ±19.5% (k = 2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ±0.2)*C	34.7 ±6%	4.90 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1128_Sep24 Page 4 of 11

September 17, 2024 D5GHzV2 - SN: 1128

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	34.5 ±6%	5.11 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	7.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.6 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1128_Sep24 Page 5 of 11

D5GHzV2 - SN: 1128 September 17, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance	48.5 Ω – 6.3 jΩ
Return Loss	-23.7 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance	47.4 Ω – 3.8 jΩ
Return Loss	-26.5 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance	54.2 Ω – 2.7 jΩ
Return Loss	-26.4 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance	50.9 Ω – 4.5 μΩ
Return Loss	-26.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.208 ns
Electrical Delay (one direction)	1.200 (18
II - THE CONTROL OF T	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

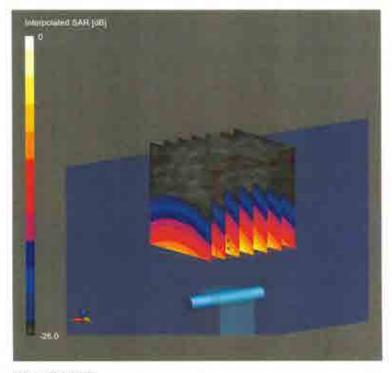
Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1128_Sep24 Page 6 of 11

Report No.: FA4D1914A

D5GHzV2 - SN: 1128 September 17, 2024


System Performance Check Report

Summary

Dipole		Frequency (MI	Hz]	TSL	Pawer (dBm)		
DSGHzVZ - SN1128		5200		HSL	20		
Exposure Condition	15/						
Phantom Section, TSL	Test Distance [mm] Band	Croup, UID	Frequency [MHz],	Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0	5200, 0		5,68	4.49	35.4
Hardware Setup							
Phantom	TSL, Measured Date		Probe, Calibration D	ate	DAE	Calibration Date	
MFP V8.0 Center	HSL, 2024-09-17		EX3DV4 - SN7349.	2024-06-03	DAE	4ip Sn1836, 2024-01-10	
Scans Setup				Measuremer	nt Results		
			Zoom Scan				Zoom Scar
Grid Extents [mm]			22 × 22 × 22	Date			2024-09-17
Crid Stens Immi		4	0×40×14	osSAR1g PW/K	a		7.50

cans Setup	
	Zoom Scan
Grid Extents (mm)	22 × 22 × 22
Grid Steps [mm]	4.0 × 4.5 × 1.4
Sensor Surface (mm)	14
Graded Grid	Yes
Grading Ratio	7.64
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

	Zoom Scan
Date	2024-09-17
psSAR1g (W/Kg)	7.50
psSAR10g [W/Kg]	2.16
Pawer Drift [d8]	0.02
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 29.9 W/Kg

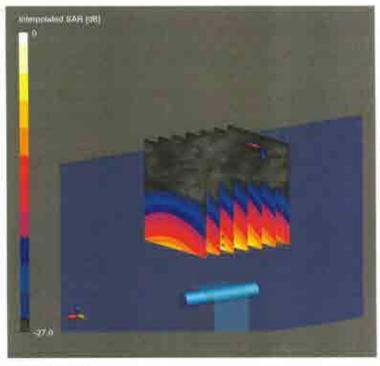
D5GHzV2 - SN: 1128 September 17, 2024

System Performance Check Report

S	u	m	п	ıa	ry

Dipole	Frequency (MHz)	TS4-	Power [d8m]	
DSGHzV2 - SN1128	\$250	HSL	20	

Exposure Conditions


Phantom Section, TSL	Test Distance (mm)	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [5/m]	TSL Permitthrity
Flat	10		CW, 0	5250, 0	5.58:	4.53	35.4

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE Calibration Date	
MFP V8.0 Center	HSL_ 2024-09-17	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	

Scans Setup	
	Zeom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps (mm)	4.0 × 4.5 × 1.4
Sensor Surface (mm)	(64
Graded Grid	Yes
Grading Ratio	(E4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

Measurement Results	
	Zoom Scan
Date	2024-09-17
psSAR1g (W/Kg)	7,75
psSAR10g [W/Kg]	2.22
Power Drift [dR]	+0.05
Power Scaling	Disabled
Scaling Factor (d8)	
TSL Correction	Positive / Negative

0 d8 = 31.3 W/Kg

D5GHzV2 - SN: 1128 September 17, 2024

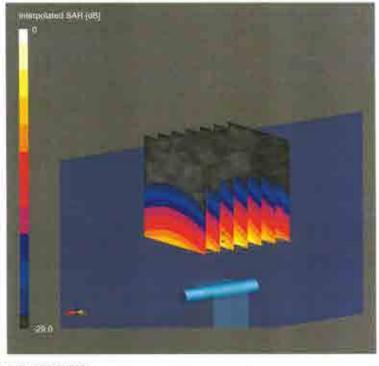
System Performance Check Report

Summary	
	-
Dipple	

Dipole	Frequency (MHz)	TSL	Power [dBm]	
DSGHzVZ - SN1128	5600	HSL	20	

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Sand	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [5/m]	TSL Permittivity
Flat	10		CW. 0	5600, 0	5:03	4.90	34.7


Hardware Setup

Scan Method

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2024-09-17	EX30V4 - SN7349, 2024-06-03	DAE4ip Sn1835, 2024-03-10	

Scans Setup Zoom-Scan 22 x 22 x 22 Grid Extents [mm] 4.0 x 4.0 x 1.4 Grid Steps [mm] Sensor Surface (mm) 1.4 Yes Graded Grid 1.4 Grading Ratio MAIA N/A Surface Detection All points

	Zoom Scan
Date.	2024-09-17
psSAR1g (W/Kg)	8,17
psSAR10g [W/Kg]	2.35
Power Orift [d8]	0.03
Power Scaling	Disabled
Scaling Factor [d8]	
TSI, Correction	Positive / Negative

Measured

0 dB = 35.5 W/Kg

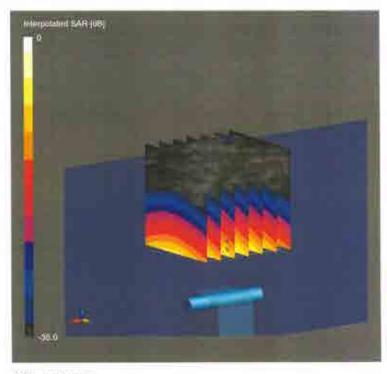
D5GHzV2 - SN: 1128 September 17, 2024

System Performance Check Report

Sι	17	n	n	۱л	n
m.	••	••	•	194	m)

Dipole	Frequency [MHz]	TSL	Power (dlim)	
D5CH2V2 - \$N1128	5800	HSL	20	

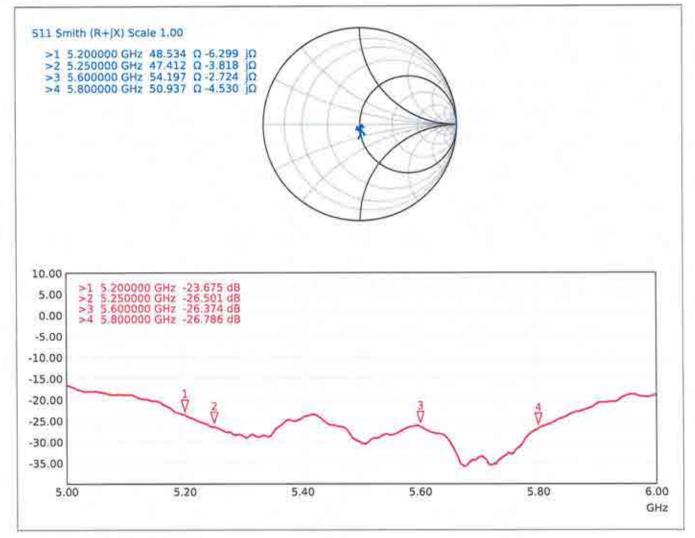
Exposure Conditions


Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [5/m]	TSL Permittivity
Flat.	10		CW, 0-	\$800, 0	5,08	\$,77	34.5

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2024-09-17	EX3DV4 - SN7349, 2024-06-03	DAE4Ip Sn1836, 2024-01-10	

cans Setup	
	Zoom Scan
Grid Extents (mm)	ZZ × ZZ × ZZ
Grid Steps (mm)	4.0 × 4.0 × 1.4
Sensor Surface (mm)	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured


Measurement Results	
	Zoom Scan
Date	2024-09-17
psSAR1g (W/Kg)	7.86
psSAR10g [W/Kg]	2.25
Power Drift (d8)	0.02
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0~dB = 35.6~W/Kg

D5GHzV2 - SN: 1128 September 17, 2024

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1128_Sep24

Report No.: FA4D1914A

Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹

Evaluation Conditions (f=5200 MHz)

|--|

SAR result with SAM Head (Top)

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	83.1 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAN averaged over 10 cm. (10 g) of nead 13L	CONGRECA	

SAR result with SAM Head (Neck)

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	79.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	50.5 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

Certificate No: D5GHzV2-1128_Sep24

Additional assessments outside the current scope of SCS 0108

Report No.: FA4D1914A

Appendix: Transfer Calibration at Four Validation Locations on SAM Head²

Evaluation Conditions (f=5800 MHz)

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
Participated technology	- Variable Control of the Control of	

SAR result with SAM Head (Top)

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	88.3 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	78.8 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	56.1 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR for nominal Head TSL parameters	normalized to 1W	19.0 W/kg ± 19.9 % (k=2)

Additional assessments outside the current scope of SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Report No.: FA4D1914A

Accreditation No.: SCS 0108

Certificate No: DAE4-656 Jan25

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Taoyuan City

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BM - SN: 656

Calibration procedure(s) QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: January 16, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	27-Aug-24 (No:40547)	Aug-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	23-Jan-24 (in house check)	In house check: Jan-25
Calibrator Box V2.1	SE UMS 006 AA 1002	23-Jan-24 (in house check)	In house check: Jan-25

Calibrated by:

Name

Function

Adrian Gehring

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: January 16, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Certificate No: DAE4-656_Jan25

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Report No.: FA4D1914A

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-656_Jan25

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

Low Range: 1LSB =

1LSB = 61nV ,

full range = -100...+300 mV full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

6.1µV,

Calibration Factors	X	Y	Z
High Range	404.126 ± 0.02% (k=2)	404.632 ± 0.02% (k=2)	404.888 ± 0.02% (k=2)
Low Range	3.96393 ± 1.50% (k=2)	3.97937 ± 1.50% (k=2)	3.96554 ± 1,50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	313.5°±1°

Certificate No: DAE4-656_Jan25 Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X +	Input	200035.11	-1.49	-0.00
Channel X +	Input	20007.17	1.45	0.01
Channel X -	Input	-20003.37	3.71	-0.02
Channel Y +	Input	200036.10	0.28	0.00
Channel Y +	Input	20005.29	-0.39	-0.00
Channel Y -	Input	-20006.14	0.96	-0.00
Channel Z +	Input	200036.56	0.62	0.00
Channel Z +	Input	20004.79	-0.83	-0.00
Channel Z - I	Input	-20004.35	2.83	-0.01

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2001.05	0.20	0.01
Channel X + Input	200.76	0.15	0.07
Channel X - Input	-200.06	-0.93	0.47
Channel Y + Input	2000.52	-0.22	-0.01
Channel Y + Input	200.47	-0.06	-0.03
Channel Y - Input	-201.23	-1.99	1.00
Channel Z + Input	2000.54	-0.24	-0.01
Channel Z + Input	199.92	-0.54	-0.27
Channel Z - Input	-200.43	-1.23	0.62

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	2.36	0.40
	- 200	-1.69	-2.76
Channel Y	200	-2.11	-1.60
	- 200	-0.79	+1,11
Channel Z	200	5.31	5.25
	- 200	-6.95	-7.05

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	3	-2.77	-1.03
Channel Y	200	6.54		-0.38
Channel Z	200	7.07	4.51	

Certificate No: DAE4-656_Jan25 Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15632	16022
Channel Y	15860	16318
Channel Z	15659	14898

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.29	0.11	3.04	0.56
Channel Y	-0.26	-1.98	0.88	0.58
Channel Z	0.52	-0.94	1.59	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-656_Jan25 Page 5 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Taoyuan City

Certificate No: DAE4-661_May24

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BJ - SN: 661

Calibration procedure(s)

QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

May 16, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

IÓ #	Cal Date (Certificate No.)	Scheduled Calibration
SN: 0810278	29-Aug-23 (No:37421)	Aug-24
ID#	Check Date (in house)	Scheduled Check
SE UWS 053 AA 1001	23-Jan-24 (in house check)	In house check: Jan-25
SE UMS 006 AA 1002	23-Jan-24 (in house check)	In house check: Jan-25
	SN: 0810278 ID # SE UWS 053 AA 1001	SN: 0810278 29-Aug-23 (No:37421)

Calibrated by:

Name

Function

Dominique Steffen

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: May 16, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data

data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.533 ± 0.02% (k=2)	404.924 ± 0.02% (k=2)	405.301 ± 0.02% (k=2)
Low Range	3.96982 ± 1.50% (k=2)	3.98116 ± 1.50% (k=2)	3.99930 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	207.0°±1°
---	-----------

Certificate No: DAE4-661_May24

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199999,13	3.77	0.00
Channel X + Input	20007.12	4,28	0.02
Channel X - Input	-20001.11	0.29	-0.00
Channel Y + Input	199997.27	2.06	0.00
Channel Y + Input	20005.73	2.79	0.01
Channel Y - Input	-20001.25	0.02	-0.00
Channel Z + Input	199998.39	3.21	0.00
Channel Z + Input	20006.42	3.37	0.02
Channel Z - Input	-20001.53	-0.28	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2002.68	0.79	0.04
Channel X + Input	202.20	0.09	0.04
Channel X - Input	-197.83	-0.14	0.07
Channel Y + Input	2001.79	-0.20	-0.01
Channel Y + Input	200.88	-1.34	-0.66
Channel Y - Input	-198.08	-0.47	0.24
Channel Z + Input	2002.45	0.53	0.03
Channel Z + Input	201.35	-0.74	-0.37
Channel Z - Input	-198.49	-0.80	0,41

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	20.12	18.27
	- 200	-17.56	-19.43
Channel Y	200	-0.13	-0.64
	- 200	-1.43	-1.71
Channel Z	200	10.38	10.23
	- 200	-11.74	-11.94

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	8	0.35	-3.24
Channel Y	200	8.83		1.45
Channel Z	200	8.99	6.67	- E

Report No.: FA4D1914A

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15666	14079
Channel Y	16083	16367
Channel Z	16329	15098

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

nput rowsz	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.51	-0.92	1.74	0.51
Channel Y	-0.32	-2.15	1.06	0.59
Channel Z	-0.38	-1.43	0.73	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Taoyuan City

Certificate No: DAE4-703_Apr24

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

DAE4 - SD 000 D04 BM - SN: 703 Object

QA CAL-06.v30 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

April 22, 2024 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	29-Aug-23 (No:37421)	Aug-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	23-Jan-24 (in house check)	In house check: Jan-25
Calibrator Box V2.1	SE UMS 006 AA 1002	23-Jan-24 (in house check)	In house check: Jan-25

Name

Function

Calibrated by:

Adrian Gehring

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: April 22, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-703_Apr24

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle in

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

1LSB = High Range:

Low Range: 1LSB =

6.1µV 61nV.

full range = -100...+300 mV full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.998 ± 0.02% (k=2)	404.550 ± 0.02% (k=2)	404.973 ± 0.02% (k=2)
Low Range	3.98524 ± 1.50% (k=2)	3.97453 ± 1.50% (k=2)	3.99823 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	238.5 ° ± 1 °
The state of the s	U/046202043 207505

Report No.: FA4D1914A

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199993.45	-0.22	-0.00
Channel X	+ Input	20003.53	1.98	0.01
Channel X	- Input	-19997.89	4.79	-0.02
Channel Y	+ Input	199994.39	0.94	0.00
Channel Y	+ Input	20000.95	-0.52	-0.00
Channel Y	- Input	-20001.40	1.25	-0.01
Channel Z	+ Input	199993.75	0.22	0.00
Channel Z	+ Input	20001.25	-0.34	-0.00
Channel Z	- Input	-20000.96	1.82	-0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000,43	-0.05	-0.00
Channel X + Input	201.33	0.63	0.32
Channel X - Input	-198.69	0.32	-0.16
Channel Y + Input	2000.64	0.28	0.01
Channel Y + Input	200.25	-0.27	-0.14
Channel Y - Input	-199.90	-0.67	0.33
Channel Z + Input	2000.41	-0.08	-0.00
Channel Z + Input	199.54	-1.14	-0.57
Channel Z - Input	-199.26	-0.23	0.12

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	4.08	2.46
	- 200	-1.78	-2.93
Channel Y	200	8.81	8.42
	- 200	-10.66	-10.60
Channel Z	200	-5.71	-5.35
	- 200	3.02	2.89

Channel separation
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	œ	-1.59	-3.56
Channel Y	200	9.44	31	-0.94
Channel Z	200	4.41	7.48	2

Report No.: FA4D1914A

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16066	16526
Channel Y	16147	15339
Channel Z	16147	15542

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.91	0.07	2.20	0.36
Channel Y	-0.32	-1.36	0.71	0.38
Channel Z	-0.42	-1,31	0.58	0.34

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: FA4D1914A

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Taoyuan City

Certificate No: DAE4-1647_Oct24

CALIBRATION CERTIFICATE

DAE4 - SD 000 D04 BO - SN: 1647 Object

QA CAL-06.v30 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: October 15, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	27-Aug-24 (No:40547)	Aug-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	23-Jan-24 (in house check)	In house check: Jan-25
Calibrator Box V2.1	SE UMS 006 AA 1002	23-Jan-24 (in house check)	In house check: Jan-25

Calibrated by:

Name

Function

Laboratory Technician

Approved by:

Sven Kühn

Dominique Steffen

Technical Manager

Issued: October 15, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1647_Oct24

Page 1 of 5

Report No.: FA4D1914A

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquis

data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No.: FA4D1914A

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:

1LSB =

6.1µV,

full range = -100...+300 mV full range = -1.....+3mV

Low Range:

1LSB =

61nV ,

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
De-120-37 Sept. 4. 49 Feb. # 1757 - Spill F. 9	405.036 ± 0.02% (k=2)	405.010 ± 0.02% (k=2)	404.897 ± 0.02% (k=2)
The state of the s	4.01971 ± 1.50% (k=2)	3.98933 ± 1.50% (k=2)	3.99066 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	126.0 ° ± 1 °
---	---------------

Report No.: FA4D1914A

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200036.77	-0.84	-0.00
Channel X + Input	20006.61	0.73	0.00
Channel X - Input	-20005.70	1.51	-0.01
Channel Y + Input	200037,20	0.24	0.00
Channel Y + Input	20004.45	-1.28	-0.01
Channel Y - Input	-20008.76	-1.41	0.01
Channel Z + Input	200034.15	-2.91	-0.00
Channel Z + Input	20004.19	-1.56	-0.01
Channel Z - Input	-20008.29	-0.89	0.00

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2000.63	-0.16	-0.01
Channel X + Input	200.89	0.28	0.14
Channel X - Input	-199.41	-0.28	0.14
Channel Y + Input	2000.74	0.05	0.00
Channel Y + Input	199.85	-0.64	-0.32
Channel Y - Input	-200.29	-0.93	0.46
Channel Z + Input	2000.54	-0.17	-0.01
Channel Z + Input	200.65	0.18	0.09
Channel Z - Input	-200.10	-0.82	0.41

2. Common mode sensitivity

rameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-4.19	-5.23
	- 200	5.91	4.44
Channel Y	200	7.01	7.12
witter most it.	- 200	-9.05	-9.29
Channel Z	200	-9.84	-9.53
	- 200	8.87	9.09

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

, 101 1110	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	9	0.67	-2.53
Channel Y	200	5.44	725	2.56
Channel Z	200	8.53	2.93	

Report No.: FA4D1914A

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16027	16103
Channel Y	15899	15814
Channel Z	15874	14288

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MQ

nput rowsz	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.53	-1.16	1.39	0.39
Channel Y	-0.48	-1.34	0.16	0.29
Channel Z	-0.03	-0.81	0.86	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

iput ricolotario (1)	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: FA4D1914A

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Taoyuan City

Certificate No: DAE4-1694 Nov24

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BO - SN: 1694

QA CAL-06.v30 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: November 19, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	27-Aug-24 (No:40547)	Aug-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	23-Jan-24 (in house check)	In house check: Jan-25
Calibrator Box V2.1	051440 040 44 4000	23-Jan-24 (in house check)	In house check: Jan-25

Name Function Signature

Calibrated by: Adrian Gehring Laboratory Technician

Approved by: Sven Kühn Technical Manager

Issued: November 19, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Certificate No: DAE4-1694_Nov24

Report No.: FA4D1914A

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1694_Nov24

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

Low Range: 1LSB =

1LSB = 61nV

 $\begin{array}{lll} 6.1 \mu V \; , & \quad \text{full range} = & -100...+300 \; \text{mV} \\ 61 \text{nV} \; , & \quad \text{full range} = & -1.....+3 \text{mV} \end{array}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	405.377 ± 0.02% (k=2)	405.056 ± 0.02% (k=2)	405.344 ± 0.02% (k=2)
Low Range	4.00049 ± 1.50% (k=2)	3.99588 ± 1.50% (k=2)	4.01881 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	101.5°±1°
---	-----------

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	200038.51	2.26	0.00
Channel X + Input	20007.21	2.03	0.01
Channel X - Input	-20007,92	-0.13	0.00
Channel Y + Input	200037.54	1.44	0.00
Channel Y + Input	20003.60	-1.43	-0.01
Channel Y - Input	-20008.98	-1.13	0.01
Channel Z + Input	200036.87	0.87	0.00
Channel Z + Input	20003.77	-1,20	-0.01
Channel Z - Input	-20008.69	-0.74	0.00

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2000.25	0.15	0.01
Channel X + Input	199.74	-0.17	-0.08
Channel X - Input	-199.91	-0.05	0.02
Channel Y + Input	1999.99	-0.13	-0.01
Channel Y + Input	199.04	-0.89	-0.44
Channel Y - Input	-201.29	-1.36	0.68
Channel Z + Input	1999.79	-0.21	-0.01
Channel Z + Input	199.55	-0.34	-0.17
Channel Z - Input	-200.30	-0.32	0.16

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-10.56	-12.40
	- 200	14.07	12.32
Channel Y	200	0.16	-0.29
	- 200	-2.28	-2.08
Channel Z	200	0.17	-0.08
	- 200	-0.46	-0.64

Channel separation
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	340	2.73	-1.92
Channel Y	200	8.26		5.14
Channel Z	200	8.66	4.95	-

Certificate No: DAE4-1694_Nov24

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16015	15666
Channel Y	15687	14128
Channel Z	16117	13898

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.98	0.15	1.69	0.29
Channel Y	-0.67	-1.82	0.06	0.29
Channel Z	0.01	-2.80	1.86	0.52

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1694_Nov24 Page 5 of 5

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: DAE4-1776 Feb25

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Taoyuan City

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BP - SN: 1776

Calibration procedure(s) QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: February 12, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	27-Aug-24 (No:40547)	Aug-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	23-Jan-25 (in house check)	In house check: Jan-26
Calibrator Box V2.1	SE UMS 006 AA 1002	23-Jan-25 (in house check)	In house check: Jan-26

Calibrated by: Adrian Gehring

Laboratory Technician

Function

Approved by:

Sven Kühn

Technical Manager

Issued: February 12, 2025

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1776_Feb25

Page 1 of 5

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

1LSB = High Range:

Low Range:

1LSB =

full range = -1.....+3mV

full range = -100...+300 mV

6.1µV, 61nV ,

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.670 ± 0.02% (k=2)	405.556 ± 0.02% (k=2)	405.624 ± 0.02% (k=2)
Low Range	3.99771 ± 1.50% (k=2)	3.97168 ± 1.50% (k=2)	3.96273 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	8.5 ° ± 1 °
---	-------------

Report No.: FA4D1914A

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199995.22	1.18	0.00
Channel X + Input	20002.43	0.22	0.00
Channel X - Input	-19999.84	2.71	-0.01
Channel Y + Input	199995.46	1.25	0.00
Channel Y + Input	20000.46	-1.61	-0.01
Channel Y - Input	-20002.41	0.16	-0,00
Channel Z + Input	199996.62	2.38	0.00
Channel Z + Input	19999.30	-2.69	-0.01
Channel Z - Input	-20003.59	-1.01	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.93	0.12	0.01
Channel X + Input	200.89	-0.08	-0.04
Channel X - Input	-198.20	0.59	-0.30
Channel Y + Input	2000.46	-0.19	-0.01
Channel Y + Input	200.24	-0.46	-0.23
Channel Y - Input	-199.59	-0.67	0.34
Channel Z + Input	2000.48	-0.12	-0.01
Channel Z + Input	199.87	-0.82	-0.41
Channel Z - Input	-200.55	-1.56	0.78

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	22.48	21.52
	- 200	-21.82	-23.17
Channel Y	200	-4.34	-4.75
	- 200	3.95	3.20
Channel Z	200	14.64	14.67
	- 200	-17,70	-17.66

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	2 1	0.85	-3.26
Channel Y	200	4.05	-	2.00
Channel Z	200	7.17	2.68	548

Report No.: FA4D1914A

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15970	14888
Channel Y	16119	16844
Channel Z	16034	13787

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

77.	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.34	-0.50	1.16	0.32
Channel Y	-0.67	-1,43	0.17	0.31
Channel Z	-0.73	-1.74	0.25	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: FA4D1914A

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Tacyuan City

Certificate No: DAE4-1794_Feb24

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BP - SN: 1794

Calibration procedure(s)

QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

February 15, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN; 0810278	29-Aug-23 (No:37421)	Aug-24
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	23-Jan-24 (in house check)	In house check: Jan-25
Calibrator Box V2.1	SE UMS 006 AA 1002	23-Jan-24 (in house check)	In house check: Jan-25

Calibrated by:

Function

Dominique Steffen

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: February 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1794_Feb24

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE dat

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

full range = -100...+300 mV $6.1\mu V$, High Range: 1LSB = full range = -1.....+3mV 61nV, Low Range: 1LSB = DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.425 ± 0.02% (k=2)	404.164 ± 0.02% (k=2)	404.632 ± 0.02% (k=2)
Low Range	3.99412 ± 1.50% (k=2)	3.99313 ± 1.50% (k=2)	3.99420 ± 1.50% (k=2)

Connector Angle

Commenter Amela to be used in DASV system	215.5°±1°
Connector Angle to be used in DASY system	213.3 1

Page 3 of 5 Certificate No: DAE4-1794_Feb24

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199998.62	1.87	0.00
Channel X + Input	20004.95	0.14	0.00
Channel X - Input	-19996.84	2.26	-0.01
Channel Y + Input	199997.84	1.17	0.00
Channel Y + Input	20003.55	-1.32	-0.01
Channel Y - Input	-20000.74	-1.63	0.01
Channel Z + Input	199997.82	0.60	0.00
Channel Z + Input	20003.59	-1.29	-0.01
Channel Z - Input	-20000.04	-0.84	0.00

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2004.14	0.42	0.02
Channel X + Input	204.58	0.50	0.24
Channel X - Input	-195.82	-0.00	0.00
Channel Y + Input	2003.38	-0.44	-0.02
Channel Y + Input	202.88	-1.24	-0.61
Channel Y - Input	-196.87	-1.15	0.59
Channel Z + Input	2004.01	-0.01	-0.00
Channel Z + Input	203.67	-0.60	-0.29
Channel Z - Input	-196.49	-0.80	0.41

Common mode sensitivity
 DASY measurement parameters; Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	6.28	4.72
	- 200	-4.41	-5.79
Channel Y	200	-1.23	-1.36
	- 200	-0.58	-1.23
Channel Z	200	-24.95	-24.54
	- 200	23.83	23.96

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	2	0.38	-2.18
Channel Y	200	3.92	i e	2.54
Channel Z	200	7.77	1.91	22

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16049	14760
Channel Y	16031	13872
Channel Z	16188	15028

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

npot romae	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.65	-0.33	1.40	0.26
Channel Y	-0.63	-1.92	0.45	0.36
Channel Z	-0.17	-1.24	0.59	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1794_Feb24 Page 5 of 5

Report No.: FA4D1914A

Report No.: FA4D1914A

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Taoyuan City Certificate No.

EX-3931_Nov24

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3931

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

November 19, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
OCP DAK-3.5 (weighted)	SN: 1249	23-Sep-24 (OCP-DAK3.5-1249_Sep24)	Sep-25
OCP DAK-12	SN: 1016	24-Sep-24 (OCP-DAK12-1016_Sep24)	Sep-25
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25
DAE4	SN: 660	23-Feb-24 (No. DAE4-660_Feb24)	Feb-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-24)	In house check: Jun-26
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Sep-24)	In house check: Sep-26

Name

Function

Signature

Calibrated by

Joanna Lieshaj

Laboratory Technician

ı.

Approved by

Sven Kühn Technical Manager

Issued: November 19, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-3931_Nov24

Page 1 of 22