

Radio Test Report

FCC Part 90
(919.75 MHz to 927.25 MHz)

Model: 100-0004-05

COMPANY: NextNav
484 Oakmead Pkwy
Sunnyvale, CA 94085

TEST SITE(S): Elliott Laboratories
41039 Boyce Road.
Fremont, CA. 94538-2435

REPORT DATE: January 13, 2012

FINAL TEST DATES: November 29 and December 5, 2011

TOTAL NUMBER OF PAGES: 32

PROGRAM MGR /
TECHNICAL REVIEWER:

David W. Bare
Chief Engineer

QUALITY ASSURANCE DELEGATE /
FINAL REPORT PREPARER:

David Guidotti
Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-		First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE.....	4
OBJECTIVE.....	5
STATEMENT OF COMPLIANCE.....	5
DEVIATIONS FROM THE STANDARDS.....	5
TEST RESULTS.....	6
FCC PART 90.....	6
EXTREME CONDITIONS	6
MEASUREMENT UNCERTAINTIES.....	7
EQUIPMENT UNDER TEST (EUT) DETAILS.....	8
GENERAL.....	8
OTHER EUT DETAILS	8
ENCLOSURE.....	8
MODIFICATIONS.....	8
SUPPORT EQUIPMENT.....	8
EUT INTERFACE PORTS	9
EUT OPERATION	9
TESTING	10
GENERAL INFORMATION.....	10
RF PORT MEASUREMENT PROCEDURES	11
OUTPUT POWER.....	11
BANDWIDTH MEASUREMENTS	12
CONDUCTED SPURIOUS EMISSIONS.....	12
TRANSMITTER MASK MEASUREMENTS.....	12
FREQUENCY STABILITY	12
RADIATED EMISSIONS MEASUREMENTS.....	13
INSTRUMENTATION	14
FILTERS/ATTENUATORS	14
ANTENNAS.....	14
ANTENNA MAST AND EQUIPMENT TURNTABLE.....	14
SAMPLE CALCULATIONS	15
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	15
SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH	15
SAMPLE CALCULATIONS -RADIATED POWER	16
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	17
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	18
APPENDIX B TEST DATA	19
END OF REPORT	32

SCOPE

Tests have been performed on the NextNav model 100-0004-05, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 90 (Private Land Mobile Radio Service) Subpart M

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003
ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the NextNav model 100-0004-05 and therefore apply only to the tested sample. The sample was selected and prepared by Arun Narayan of NextNav.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of NextNav model 100-0004-05 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS**FCC Part 90**

FCC	Description	Measured	Limit	Result
Transmitter Modulation, output power and other characteristics				
§2.1033 (c) (5) § 90.35	Frequency range(s)	923.500 – 926.227	902 – 928 MHz	Pass
§2.1033 (c) (6) §2.1033 (c) (7) §2.1046 § 90.205	EIRP / ERP	26.3 W ERP	30 Watts ERP (44.8 dBm)	Pass
§2.1033 (c) (4) §2.1047 § 90.207	Emission types	G1D	-	-
§2.1033 (c) (4) §2.1047 § 90.210	Emission mask	Within Mask	Within Mask	Pass
§2.1049 § 90.209	Occupied Bandwidth	1.597 - 6.99 MHz	8 MHz	Pass
Transmitter spurious emissions				
§2.1051 §2.1057	At the antenna terminals	-29.9 dBm	66dBc (-25dBm for 41 dBm output)	Pass
§2.1053 §2.1057	Cabinet Radiation	-46.0 dBm	-25.0 dBm	Pass
Receiver spurious emissions				
15.109	Field strength	46.9 dBuV/m	See limit table on page 17	Pass
Other details				
§2.1055 § 90.213	Frequency stability	0.4 ppm	2.5 ppm	
§2.1093	RF Exposure	Determined at installation	-	-
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	28VDC, 10amps, max 280 Watts	-	-
-	Antenna Gain	Maximum 8 dBi	-	-
Notes				

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30°C to +50°C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7×10^{-7}
RF power, conducted	dBm	25 to 7,000 MHz	± 0.52 dB
Conducted emission of transmitter	dBm	25 to 40,000 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 40,000 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dB μ V/m	25 to 1,000 MHz 1 to 40 GHz	± 3.6 dB ± 6.0 dB

EQUIPMENT UNDER TEST (EUT) DETAILS**GENERAL**

The NextNav model 100-0004-05 is a dedicated terrestrial navigation network transmitter that is designed to provide location services where traditional GPS receivers do not work. Since the EUT would be placed at a cell tower location during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120 Volts, 60 Hz, 5 Amps.

The sample was received on November 29, 2011 and tested on November 29 and December 5, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
NextNav, LLC	100-0004-05	Terrestrial Navigation Network Transmitter	TGRBX-11110005	A4P-100-0004-05

OTHER EUT DETAILS

The EUT antenna is provided at the installation site. The combination of antenna gain and cable loss will not exceed 2.8 dBd or 5 dBi (8dBi max antenna gain and 3 dB maximum cable loss). This is adjusted as stated in the installation setup manuals not to exceed 30W EIRP.

ENCLOSURE

The EUT enclosure is primarily constructed of steel. It measures approximately 66 cm wide by 51.5 cm deep by 76 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No local support equipment was used during testing.

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Latitude E6420	Laptop	BSTQ2R1	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port		Description	Cable(s)		Length(m)
From	To		Shielded/Unshielded		
SBC	Computer	Cat 5	Unshielded		30
WTH	Weather station	Multiwire	Shielded		30
GPS	GPS Antenna	Coax	Shielded		30
Antenna	Main Antenna	Coax	Shielded		varies
Raven 1	Cellular Antenna	Coax	Shielded		5
Raven 2	Cellular Antenna	Coax	Shielded		1.5
AC Power	AC Mains	Three wire	Unshielded		2

Note: The RJ11 port was not connected during testing. This port is not connected internally to anything and thus is not supported. The SBC RJ45 port was not connected during testing. It is a service port and would not normally be connected.

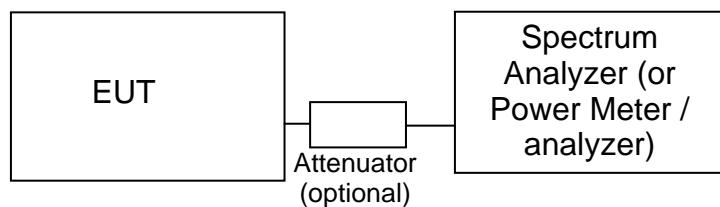
EUT OPERATION

During emissions testing the EUT was set to transmit on either the high channel or in dual band (low and high channel together).

TESTING**GENERAL INFORMATION**

Antenna port measurements were taken at the Elliott Laboratories test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of *ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz* and *CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances*. They are on file with the FCC and industry Canada.


Site	Registration Numbers		Location
	FCC	Canada	
Chamber 4	211948	IC 2845B-4	41039 Boyce Road Fremont, CA 94538-2435

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tuned to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal, sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angle with the highest level of emissions.

SAMPLE CALCULATIONS**SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS**

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_f - S = M$$

where:

R_f = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is used when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20 * \text{LOG10} (D_m/D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40 * \text{LOG10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_f + F_d$$

and

$$M = R_c - L_s$$

where:

R_f = Receiver Reading in dBuV/m

F_d = Distance Factor in dB

R_c = Corrected Reading in dBuV/m

L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30} P G}{d}$$

where:

- E = Field Strength in V/m
- P = Power in Watts
- G = Gain of isotropic antenna (numeric gain) = 1
- D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_S - (E_S - E_{EUT})$$

and

$$P_S = G + P_{in}$$

where:

- P_S = effective isotropic radiated power of the substitution antenna (dBm)
- P_{in} = power input to the substitution antenna (dBm)
- G = gain of the substitution antenna (dBi)
- E_S = field strength the substitution antenna (dBm) at eirp P_S
- E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data**Radio Antenna Port (Power and Spurious Emissions), 29-Nov-11**

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Cal Due</u>
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	1/26/2012
Bird	Attenuator, 300 Watt, 30 dB, DC- 1 GHz	300-A-FFN-30	1829	3/7/2012

Radiated Emissions, 30 - 10,000 MHz, 29-Nov-11

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Cal Due</u>
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/2/2011
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/17/2012
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012

Radiated Emissions, 30 - 2,000 MHz, 05-Dec-11

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	4/13/2012
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1632	4/29/2012
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non- Program	8563E	284	1/13/2012

Appendix B Test Data

T83331 Pages 20 - 31

EMC Test Data

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
		Account Manager:	Christine Krebill
Contact:	Arun Narayan	Project Manager:	David Bare
Emissions Standard(s):	FCC Part 90, 15	Class:	A
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

NextNav, LLC

Model

100-0004-05

Date of Last Test: 12/1/2011

Radio Test Data

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

FCC Part 90

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

Ambient Conditions: Temperature: 18 °C
Rel. Humidity: 34 %

Summary of Results

Run #			Test Performed	Limit	Pass / Fail	Result / Margin
1			Output Power	30 Watts ERP (44.8 dBm)	Pass	26.3 W ERP
2			Spectral Mask	Within mask	Pass	Within Mask
3			99% or Occupied Bandwidth	-	-	6.988 MHz
4			Spurious Emissions (conducted)	66dBc (-25dBm for 41 dBm output)	Pass	-29.9 dBm
5			Spurious emissions (radiated)	-25dBm	Pass	>20dB Margin
6			Frequency Stability	2.5ppm	Pass	-0.4ppm

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Radio Test Data

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

Run #1: Output Power

Date: 11/29/2011

Engineer: David Bare

Location: Fremont EMC Lab #4

Cable Loss: 0.6 dB

Attenuator: 28.6 dB

Total Loss: 29.2 dB

Cable ID(s): EL 327, EL328

Attenuator IDs: 1829

Atten. Setting ²	Frequency (MHz)	Output Power		Antenna Gain (dBi)	Result	ERP		Dual band Single channel
		(dBm) ¹	mW			dBm	W	
10	923.500	41.0	12473.8	5.0	Pass	43.8	23.8	
6	926.227	41.4	13803.8	5.0	Pass	44.2	26.3	

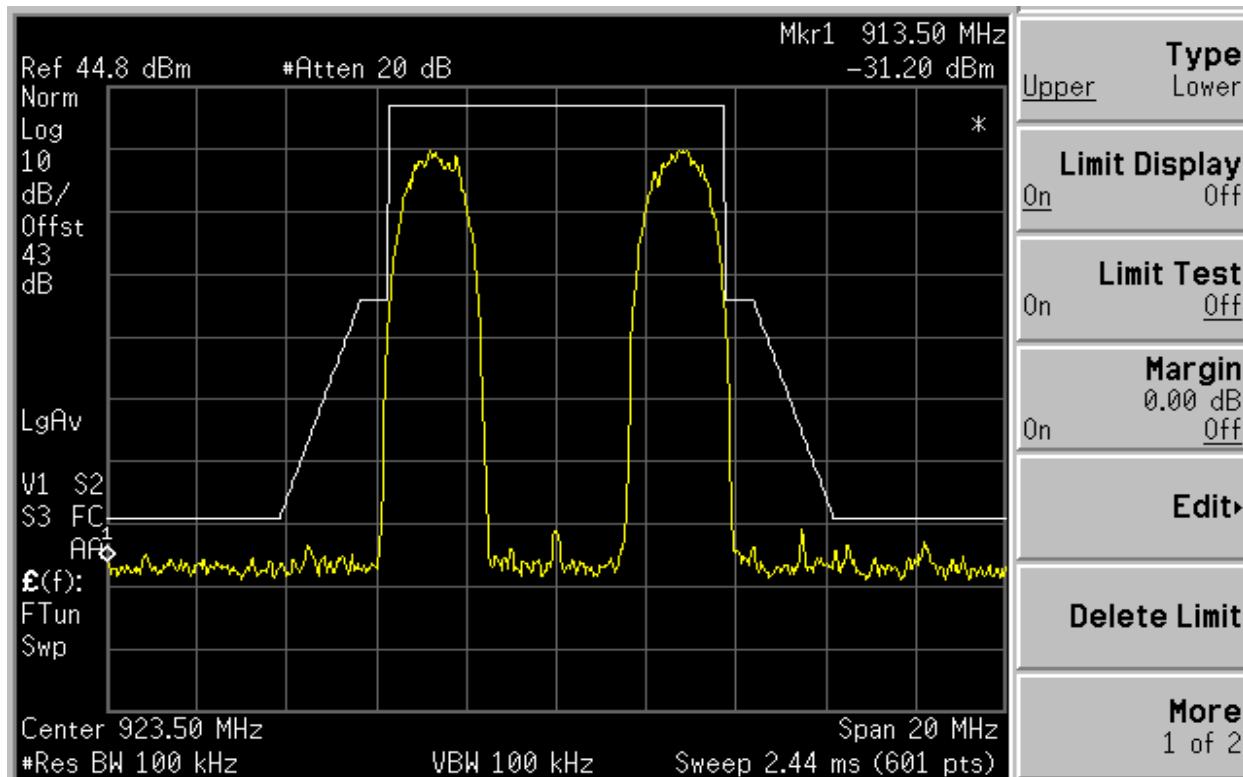
Note 1: Output power measured using a spectrum analyzer (see plots below) with RBW=8MHz, VB=50 MHz, PK detector

Note 2: Attenuator setting - the software attenuation setting used during testing, included for reference only.

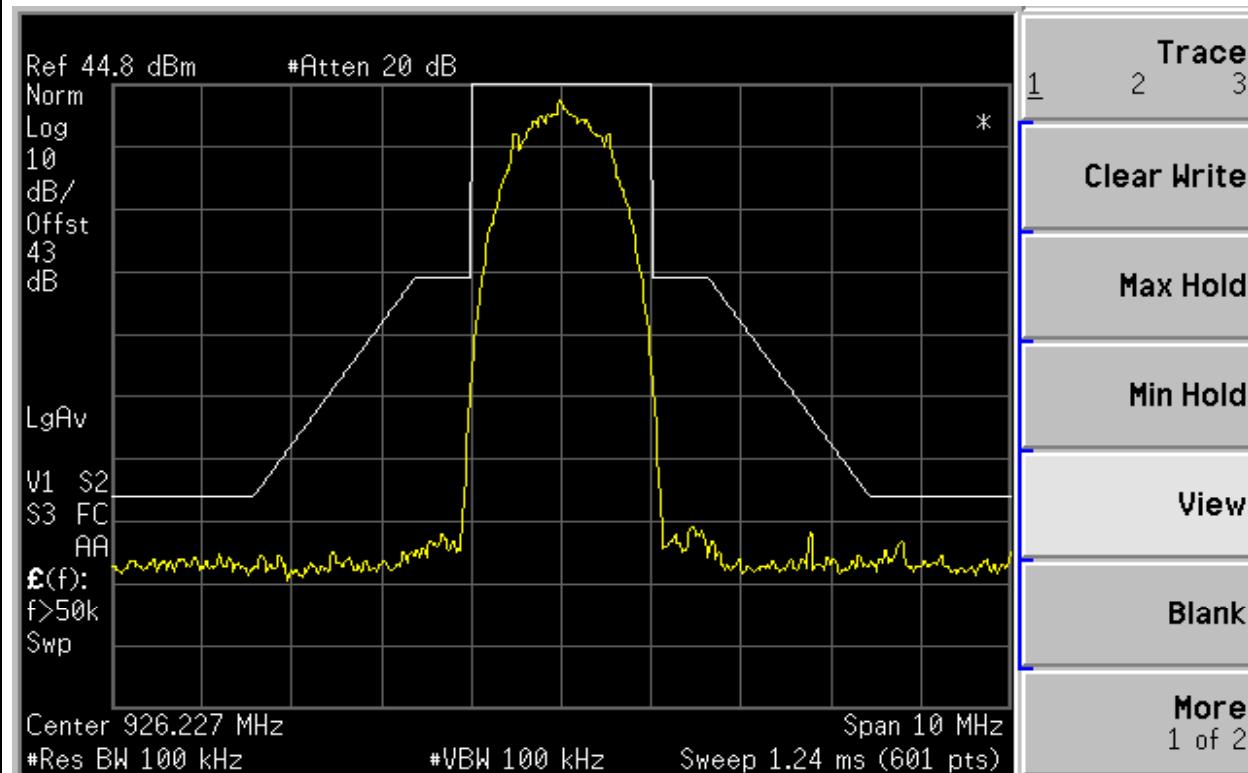
Note 3: EUT will either use both bands or just the high band. It will not use just the low band.

Note 4: Higher gain antennas may be used with attendant power reduction at the time of installation.

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
		Account Manager:	Christine Krebill
Contact:	Arun Narayan		
Standard:	FCC Part 90, 15	Class:	N/A


Run #2: Spectral Mask, FCC Part 90 Mask K(1)

Date: 11/29/2011


Engineer: David Bare

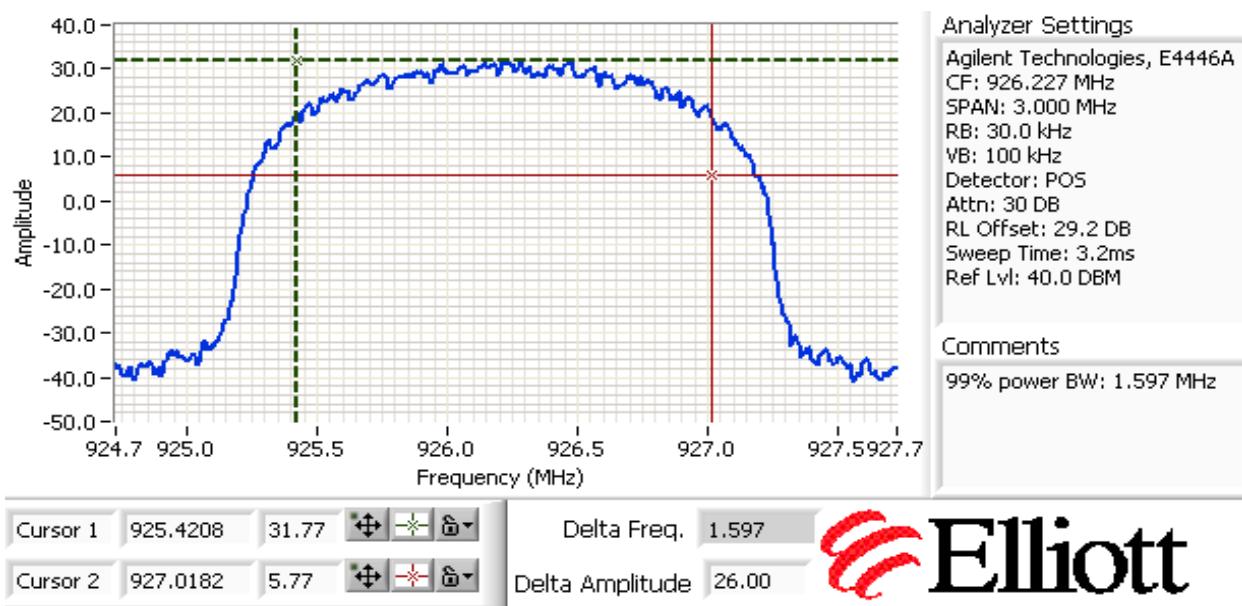
Location: Fremont EMC Lab #4

Note 1: Top of the mask was set to total peak power from Run #1.

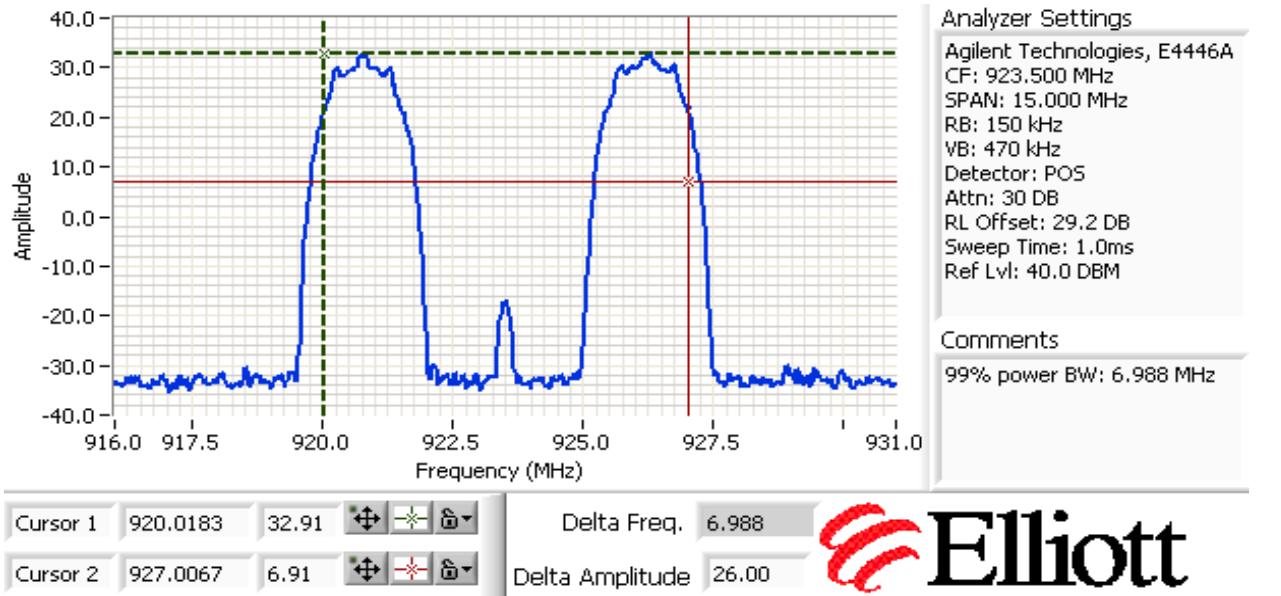
Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

Run #3: Signal Bandwidth


Date: 11/29/2011

Engineer: David Bare


Location: Fremont EMC Lab #4

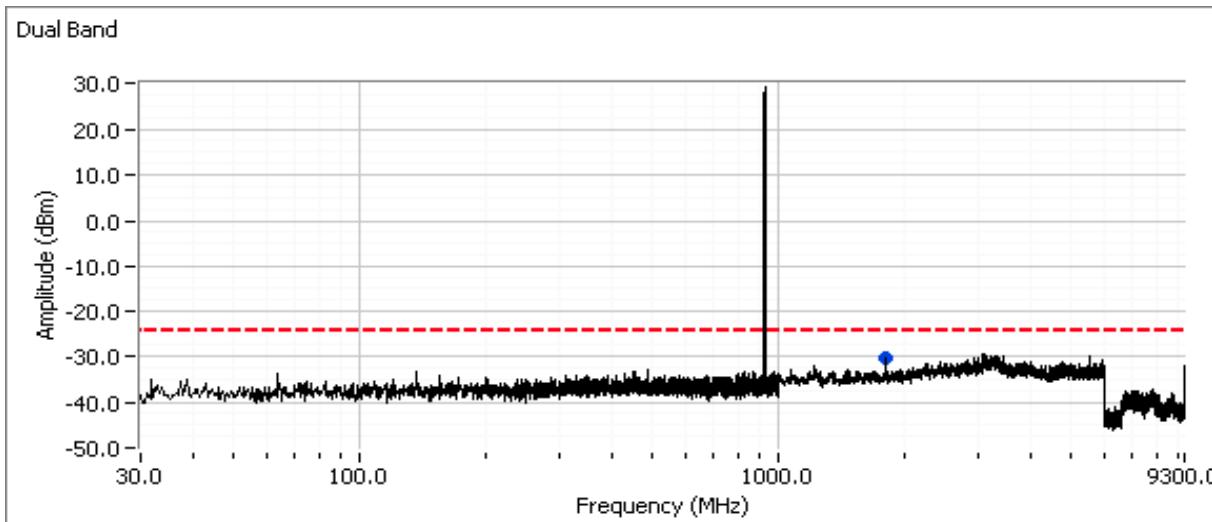
Power Setting	Frequency (MHz)	Resolution Bandwidth	Bandwidth (MHz) 99%	
10	923.500	150 kHz	6.988	Dual band
6	926.227	30 kHz	1.597	Single channel

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

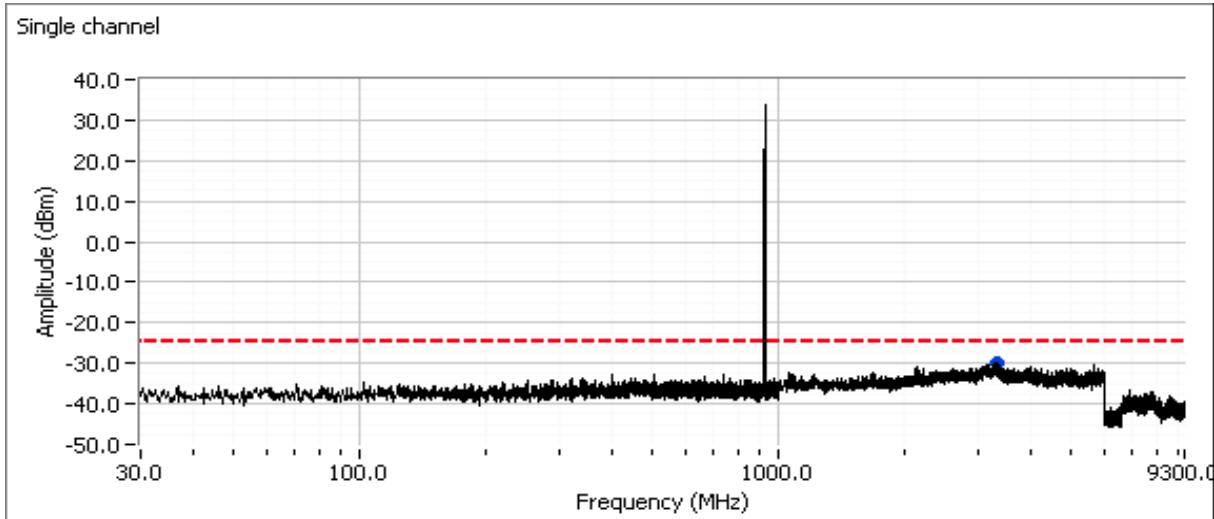
Run #4: Out of Band Spurious Emissions, Conducted


Date: 11/29/2011

Engineer: David Bare

Location: Fremont EMC Lab #4

Frequency (MHz)	Limit	Result	
1794.30	-25.0	-30.6	dual band
3307.44	-24.6	-29.9	single channel


The limit is taken from FCC Part 90 Mask K(1)

Plots for dual band, atten setting(s) = 10

Note 1: Attenuation from 6-9.3 GHz set 10 dB lower than from 30 MHz to 6 GHz.

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

Plots for single channel, atten setting(s) = 6

Note 1: Attenuation from 6-9.3 GHz set 10 dB lower than from 30 MHz to 6 GHz.

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

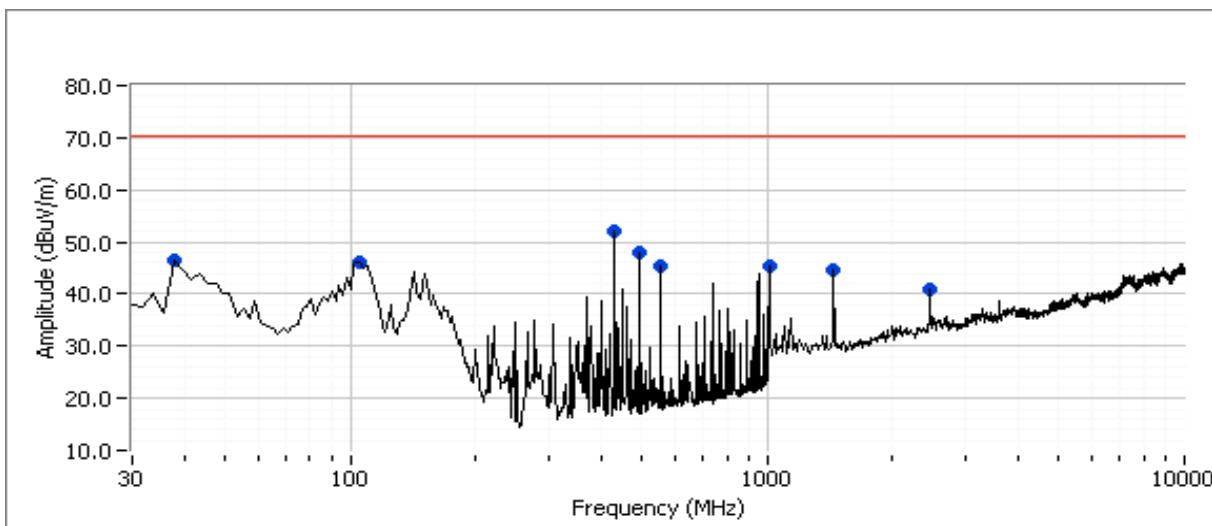
Run #5: Out of Band Spurious Emissions, Radiated

Date: 11/29/11

Engineer: M. Birgani

Location: FT Chamber #4

Conducted limit (dBm): -25.0 Based on 30W ERP level.


Approximate field strength limit @ 3m: 70.3

The limit is taken from FCC Part 90 Mask K

Frequency	Level	Pol	FCC 90		Detector	Azimuth	Height	Comments	Channel
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
430.441	52.1	V	70.2	-18.1	Peak	31	1.0		
492.645	47.9	V	70.2	-22.3	Peak	23	1.0		
37.776	46.4	V	70.2	-23.8	Peak	273	1.0		
105.812	46.3	V	70.2	-23.9	Peak	27	1.0		
552.906	45.3	H	70.2	-24.9	Peak	33	2.5		
1009.170	45.2	V	70.2	-25.0	Peak	51	1.3		
1440.000	44.8	V	70.2	-25.4	Peak	59	1.0		
2448.330	40.8	V	70.2	-29.4	Peak	86	1.9		

Note 1: The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free space propagation equation: $E = \sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.

Note 2: Measurements are made with the antenna port terminated.

Power setting = 10

Radio Test Data

Client:	NextNav, LLC					Job Number:	J83266		
Model:	100-0004-05					T-Log Number:	T83331		
Contact:	Arun Narayan					Account Manager:	Christine Krebill		
Standard:	FCC Part 90, 15					Class:	N/A		
Frequency	Level	Pol	FCC 90		Detector	Azimuth	Height	Comments	Channel
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
430.441	52.1	V	70.2	-18.1	Peak	31	1.0		
Substitution measurements									
Vertical									
Frequency	Substitution measurements			Site Factor ⁴	EUT measurements			erp Limit	erp Limit
MHz	Pin ¹	Gain ²	FS ³		FS ⁵	eirp (dBm)	erp (dBm)	dBm	dBm
430.441	0.0	6.0	101.9	95.9	52.1	-43.8	-46.0		-25.0
Note 1:	Pin is the input power (dBm) to the substitution antenna								
Note 2:	Gain is the gain (dBi) for the substitution antenna.								
Note 3:	FS is the field strength (dB μ V/m) measured from the substitution antenna.								
Note 4:	Site Factor - this is the site factor to convert from a field strength in dB μ V/m to an eirp in dBm.								
Note 5:	EUT field strength as measured during initial run.								

Radio Test Data

Client:	NextNav, LLC	Job Number:	J83266
Model:	100-0004-05	T-Log Number:	T83331
Contact:	Arun Narayan	Account Manager:	Christine Krebill
Standard:	FCC Part 90, 15	Class:	N/A

Run #6: Frequency Stability

Date: 11/30/2011 Engineer: J. Caizzi / R. Varelas Location: NW #3

Nominal Frequency: 926.227 MHz Limit is 2.5 ppm

Frequency Stability Over Temperature

The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature.

Temperature (Celsius)	Frequency Measured (MHz)	Drift	
		(Hz)	(ppm)
-30	926.226850	-150	-0.2
-20	926.226830	-170	-0.2
-10	926.226830	-170	-0.2
0	926.226800	-200	-0.2
10	926.226780	-220	-0.2
20	926.226730	-270	-0.3
30	926.226700	-300	-0.3
40	926.226680	-320	-0.3
50	926.226680	-320	-0.3
Worst case:		-320	-0.3

Frequency Stability Over Input Voltage

Nominal Voltage is 120Vac.

Voltage (AC)	Frequency Measured (MHz)	Drift	
		(Hz)	(ppm)
102	926.226650	-350	-0.4
138	926.226650	-350	-0.4
Worst case:		-350	-0.4

Note 1: Maximum drift of fundamental frequency before it shut down at 41 Vac.

End of Report

This page is intentionally blank and
marks the last page of this test report.