

## FCC TEST REPORT

**Test report No.:** EMC- FCC- R0055  
**FCC ID:** A39RI-ACC-ADR2-10  
**Type of equipment:** USB RFID Reader  
**Basic Model:** RI-ACC-ADR2-10  
**Varient Model:** -  
**Applicant:** THUBAN Co., Ltd.  
**FCC Rule Part(s):** FCC Part 15 Subpart C 2008  
Section 15.209  
**Frequency Range:** 135 kHz  
**Test result:** Complied

The above equipment was tested by EMC compliance Testing Laboratory for compliance with the requirements of FCC Rules and Regulations.

The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

**Date of test: October 17, 2011 ~ October 28 , 2011**

**Issued date: October 28 , 2011**



**Tested by:**  
SON, MIN GI



**Approved by:**  
KIM, CHANG MIN

## [ Contents ]

|                                                   |           |
|---------------------------------------------------|-----------|
| <b>1. Client information .....</b>                | <b>3</b>  |
| <b>2. Laboratory information.....</b>             | <b>4</b>  |
| <b>3. Description of E.U.T.....</b>               | <b>5</b>  |
| 3.1 Basic description.....                        | 5         |
| 3.2 General description.....                      | 5         |
| 3.3 Test frequency.....                           | 6         |
| <b>4. Summary of test results.....</b>            | <b>7</b>  |
| 4.1 Standards & results.....                      | 7         |
| 4.2 Uncertainty .....                             | 7         |
| <b>5. Test results.....</b>                       | <b>8</b>  |
| 5.1 Antenna Requirement .....                     | 8         |
| 5.2 Field Strength of Fundamental Emissions ..... | 9         |
| 5.3 Radiated Emissions.....                       | 12        |
| 5.4 Conducted Emission- N/A.....                  | 15        |
| 5.5 20dB bandwidth.....                           | 16        |
| <b>6. Test equipment used for test .....</b>      | <b>17</b> |

**Appendix 1 Test setup photos**

**Appendix 2 External photos of EUT**

**Appendix 3 Internal photos of EUT**

**Appendix 4 Block diagram**

**Appendix 5 Schematics**

**Appendix 6 User manual**

**Appendix 7 Part list**

**Appendix 8 Layout diagram**

## 1. Client information

**Applicant :** THUBAN Co., Ltd.  
**Address :** C-4F, 459-21, Gasan-dong, Gumchun-gu, Seoul, Korea  
**Telephone number :** +82-2-852-4800  
**Faxsimile number :** +82-2-852-9001  
**Contact person :** Sunny Ha/ sunny@ethuban.com

**Manufacturer:** THUBAN Co., Ltd.  
**Address :** C-4F, 459-21, Gasan-dong, Gumchun-gu, Seoul, Korea

## 2. Laboratory information

### Address

EMC Compliance Ltd.  
480-5 Shin-dong, Yeongtong-gu, Suwon-city, Gyunggi-do, 443-390, Korea  
Telephone Number: 82 31 336 9919 Facsimile Number: 82 31 336 4767

### Certificate

CBTL Testing Laboratory, KOLAS NO.: 231  
FCC Filing No.: 508785  
VCCI Registration No.: C-1713, R-1606, T-258

### SITE MAP



### 3. Description of E.U.T.

#### 3.1 Basic description

|                                 |                                                    |
|---------------------------------|----------------------------------------------------|
| <b>Applicant :</b>              | THUBAN Co., Ltd.                                   |
| <b>Address of Applicant:</b>    | C-4F, 459-21, Gasan-dong, Gumchun-gu, Seoul, Korea |
| <b>Manufacturer:</b>            | THUBAN Co., Ltd.                                   |
| <b>Address of Manufacturer:</b> | C-4F, 459-21, Gasan-dong, Gumchun-gu, Seoul, Korea |
| <b>Type of equipment:</b>       | USB RFID Reader                                    |
| <b>Basic Model:</b>             | RI-ACC-ADR2-10                                     |
| <b>Varient model:</b>           | -                                                  |
| <b>Serial number:</b>           | Engineering Sample                                 |

#### 3.2 General description

|                              |                                                  |
|------------------------------|--------------------------------------------------|
| <b>Frequency</b>             | 135 kHz                                          |
| <b>Type of Modulation</b>    | PSK                                              |
| <b>Number of Channels</b>    | 1 channel                                        |
| <b>Type of Antenna</b>       | Integral (Loop coil antenna)                     |
| <b>Power supply</b>          | DC 9 V                                           |
| <b>Extreme Power supply</b>  | Lower voltage: DC 8.1 V, Upper voltage: DC 9.9 V |
| <b>Operating temperature</b> | -20 °C ~ 50 °C                                   |
| <b>Operating Humidity</b>    | 10% to 90% relative humidity non-condensing      |
| <b>Dimension</b>             | 90 mm X 55 mm X 50 mm (WxHxD)                    |

### 3.3 Test frequency

|                         | <b>Frequency</b> |
|-------------------------|------------------|
| <b>Low frequency</b>    | -                |
| <b>Middle frequency</b> | <b>135 kHz</b>   |
| <b>High frequency</b>   | -                |

## 4. Summary of test results

### 4.1 Standards & results

| Rule Reference | Parameter                     | Report Section | Test Result |
|----------------|-------------------------------|----------------|-------------|
| 15.203         | Antenna Requirement           | 5.1            | C           |
| 15.209         | Field Strength of Fundamental | 5.2            | C           |
| 15.209         | Radiated Emissions            | 5.3            | C           |
| 15.207         | Conducted Emissions           | 5.4            | N/A*        |
| N/A            | 20dB bandwidth                | 5.5            | C           |

Note: C=complies  
NC= Not complies  
NT=Not tested  
NA=Not Applicable

\*The test is not applicable since the EUT is not the device that is designed to be connected to the public utility(AC) power line.

### 4.2 Uncertainty

| Measurement Item      | Combined Standard Uncertainty $U_c$ | Expanded Uncertainty $U = KU_c (K = 2)$ |
|-----------------------|-------------------------------------|-----------------------------------------|
| Conducted RF power    | $\pm 0.272$ dB                      | $\pm 0.544$ dB                          |
| Radiated disturbance  | $\pm 1.943$ dB                      | $\pm 3.886$ dB                          |
| Conducted disturbance | $\pm 1.265$ dB                      | $\pm 2.53$ dB                           |

## 5. Test results

### 5.1 Antenna Requirement

#### 5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### 5.1.2 Result

-Complied

The transmitter has an integral Loop coil antenna.

## 5.2 Field Strength of Fundamental Emissions

### 5.2.1 Regulation

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

| Frequency (MHz) | Field strength ( $\mu$ V/m @ 3m) | Distance(m) |
|-----------------|----------------------------------|-------------|
| 0.009-0.490     | 2400/F(kHz)                      | 300         |
| 0.490-1.705     | 24000/F(kHz)                     | 30          |
| 1.705-30        | 30                               | 30          |
| 30-88           | 100**                            | 3           |
| 88-216          | 150**                            | 3           |
| 216-960         | 200**                            | 3           |
| Above 960       | 500                              | 3           |

\*\*Except as provided in paragraph(g).fundamental emissions from intentional radiators operating under the section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz or 470-806MHz. however. Operation within these frequency bands is permitted under other sections of this part. e.g., Section 15.231 and 15.241.

\*\*Limit :  $2400/135=17.78\mu$ V/m @ 300m

Distance Correction Factor =  $40\log(\text{test distance} / \text{specific distance})$

## 5.2.2 Measurement Procedure

Test Procedure The Radiated Electric Field Strength intensity has been measured on semi anechoic chamber with a ground plane and at a distance of 3m.

Frequency : From 9kHz to 30MHz at distance 3m The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

Frequency : From 30MHz to 1GHz at distance 3m The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ( 15.209(d))

| Freq'         | 9-90kHz | 90-110kHz | 110-490kHz | 490kHz-30MHz | 30MHz-1GHz |
|---------------|---------|-----------|------------|--------------|------------|
| Detector type | AV      | QP        | AV         | QP           | QP         |
| IF bandwidth  | 200Hz   | 200Hz     | 9kHz       | 9kHz         | 120kHz     |

\* Part 15 Section 15.31 (f)(2) (9kHz-30MHz)

[Limit at 3m]=[Limit at 300m]-40 x log(3[m]/300[m])

[Limit at 3m]=[Limit at 30m]-40 x log (3[m]/30[m])

### 5.2.3 Test Result

-Complied

Measurement Distance: 3m

| Frequency<br>[MHz] | Receiver<br>Bandwidth<br>[kHz] | Reading<br>[dB(μV)] | Pol.<br>[V/H] | Factor<br>[dB] | Limit<br>[dB(μV/m)] | Result<br>[dB(μV/m)] | Margin<br>[dB] |
|--------------------|--------------------------------|---------------------|---------------|----------------|---------------------|----------------------|----------------|
| <b>AV DATA.</b>    |                                |                     |               |                |                     |                      |                |
| 0.135              | 0.2                            | 105.63              | V             | -22.3          | 104.99              | 83.33                | 21.66          |
|                    |                                |                     |               |                |                     |                      |                |

\*worstcase vertical

[Limit at 3m]=[Limit at 300m]-40 x log(3[m]/300[m])  
Limit : 2400/135-40 x log(3[m]/300[m])=24.99+80=104.99

**Margin (dB) = Limit – Actual**

**[Result = Reading – Amp Gain + Attenuator + AF + CL]**

1. H = Horizontal, V = Vertical Polarization

2. ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

\* The spurious emission at the frequency does not fall in the restricted bands.

\*\* The measured result is within the test standard limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95 % level of confidence. However, the result indicates that compliance is more probable than non-compliance.

NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

## 5.3 Radiated Emissions

### 5.3.1 Regulation

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

| Frequency (MHz) | Field strength ( $\mu$ V/m @ 3m) | Distance(m) |
|-----------------|----------------------------------|-------------|
| 0.009-0.490     | 2400/F(kHz)                      | 300         |
| 0.490-1.705     | 24000/F(kHz)                     | 30          |
| 1.705-30        | 30                               | 30          |
| 30-88           | 100**                            | 3           |
| 88-216          | 150**                            | 3           |
| 216-960         | 200**                            | 3           |
| Above 960       | 500                              | 3           |

\*\*Except as provided in paragraph(g).fundamental emissions from intentional radiators operating under the section shall not be located in the frequency bands 54-72MHz. 76-88MHz. 174-216MHz or 470-806MHz. however. Operation within these frequency bands is permitted under other sections of this part. e.g., Section 15.231 and 15.241.

\*\*Limit :  $2400/135=17.78\mu$ V/m @ 300m

Distance Correction Factor =  $40\log(\text{test distance} / \text{specific distance})$

### 5.3.2 Measurement Procedure

The spurious emissions from the EuT will be measured on an open area test site in the frequency range of 9 kHz to 30 MHz using a tuned receiver and a shielded loop antenna.

The antenna was positioned 3, 10 or 30 meters horizontally from the EuT.

Measurements have been made in all three orthogonal axes and the shielded loop antenna was rotated to locate the maximum of the emissions.

In the case where larger measuring distances are required the results will extrapolated based on the values measured on the closer distances according to Section 15.31 (f) (2) [2].

The final measurement will be performed with an EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209 (d) [2].

The final level, expressed in dB $\mu$ V/m, is arrived at by taking the reading from the EMI receiver (Level dB $\mu$ V) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has to be compared with the relevant FCC limit. The resolution bandwidth during the measurement is as follows:

9 kHz – 150 kHz: ResBW: 200 Hz

150 kHz – 30 MHz: ResBW: 9 kHz

### 5.3.3 Test Result

-Complied

Measurement Distance: 3m  
-Below 30MHz

| Frequency<br>[MHz] | Receiver<br>Bandwidth<br>[kHz] | Reading<br>[dB(μV)] | Pol.<br>[V/H] | Factor<br>[dB] | Limit<br>[dB(μV/m)] | Result<br>[dB(μV/m)] | Margin<br>[dB] |
|--------------------|--------------------------------|---------------------|---------------|----------------|---------------------|----------------------|----------------|
| <b>QP DATA.</b>    |                                |                     |               |                |                     |                      |                |
| 12.823             | 9                              | 67.1                | V             | -21.8          | 69.5                | 45.3                 | 24.2           |
| 19.841             | 9                              | 58.7                | V             | -22.5          | 69.5                | 36.2                 | 33.3           |
| 29.695             | 9                              | 63.0                | V             | -24.4          | 69.5                | 38.6                 | 30.9           |

-Above 30MHz

| Frequency<br>[MHz] | Receiver<br>Bandwidth<br>[kHz] | Reading<br>[dB(μV)] | Pol.<br>[V/H] | Factor<br>[dB] | Limit<br>[dB(μV/m)] | Result<br>[dB(μV/m)] | Margin<br>[dB] |
|--------------------|--------------------------------|---------------------|---------------|----------------|---------------------|----------------------|----------------|
| <b>QP DATA.</b>    |                                |                     |               |                |                     |                      |                |
| 44.682             | 120                            | 46.5                | V             | -14.4          | 40.0                | 32.1                 | 7.9            |
| 138.625            | 120                            | 40.5                | V             | -14.6          | 43.5                | 25.9                 | 17.6           |

**Margin (dB) = Limit – Actual**

**[Resultl = Reading – Amp Gain + Attenuator + AF + CL]**

1. H = Horizontal, V = Vertical Polarization

2. ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

\* The spurious emission at the frequency does not fall in the restricted bands.

\*\* The measured result is within the test standard limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95 % level of confidence. However, the result indicates that compliance is more probable than non-compliance.

NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

## 5.4 Conducted Emission- N/A

### 5.4.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu$ H/50 $\Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

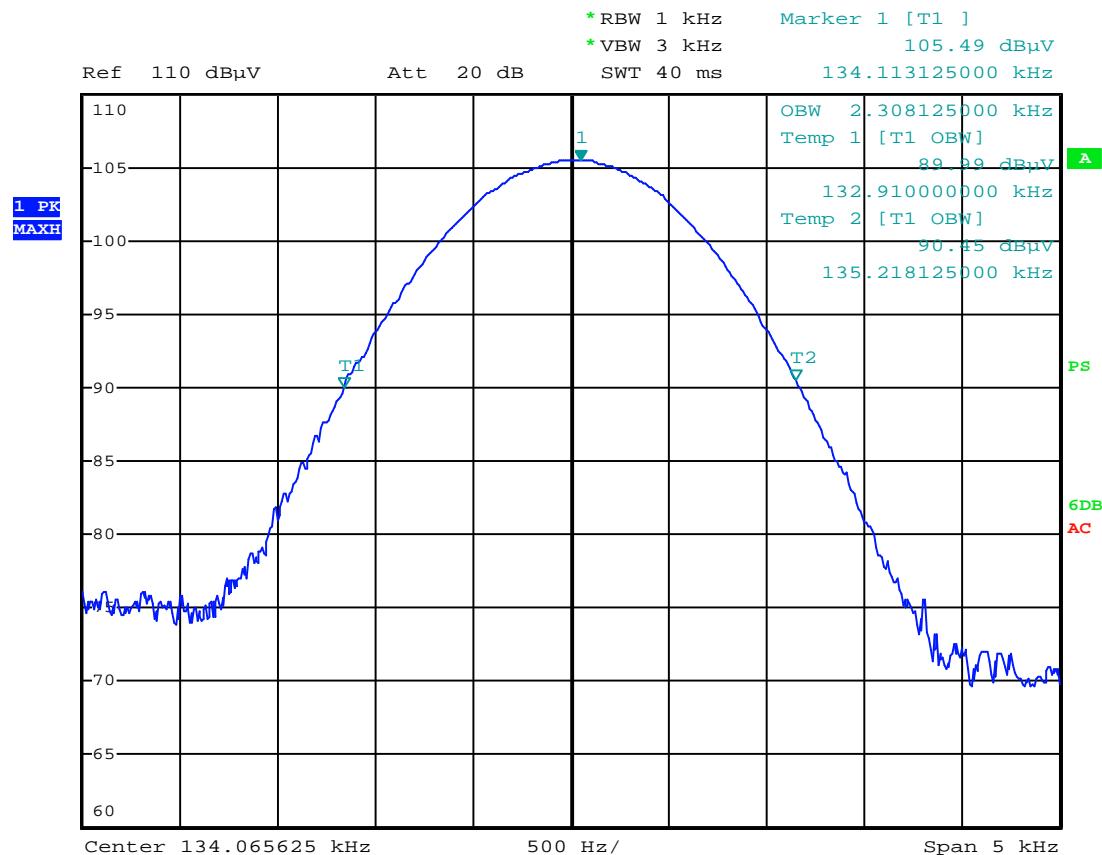
| Frequency of emission (MHz) | Conducted limit (dB $\mu$ V) |            |
|-----------------------------|------------------------------|------------|
|                             | Quasi-peak                   | Average    |
| 0.15 – 0.5                  | 66 to 56 *                   | 56 to 46 * |
| 0.5 – 5                     | 56                           | 46         |
| 5 – 30                      | 60                           | 50         |

\* Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

### 5.4.2 Measurement Procedure

1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
2. Each current-carrying conductor of the EUT power cord was individually connected through a 50 $\Omega$ /50 $\mu$ H LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.


## 5.5 20dB bandwidth

### 5.5.1 Test Procedure

The measurement was performed in the antenna height to gain the maximum of electric field strength.

### 5.5.2 Test Result

-Complied



## 6. Test equipment used for test

|                                     | Description             | Manufacture | Model No. | Serial No. | Next Cal Date. |
|-------------------------------------|-------------------------|-------------|-----------|------------|----------------|
| <input type="checkbox"/>            | Temp & humidity chamber | taekwang    | TK-04     | TK001      | 12.12.10       |
| <input checked="" type="checkbox"/> | Spectrum Analyzer       | Agilent     | E4407B    | US39010142 | 12.10.26       |
| <input checked="" type="checkbox"/> | Signal Generator        | HP          | 83630A    | 3420A00728 | 12.10.26       |
| <input type="checkbox"/>            | Modulation Analyzer     | HP          | 8901B     | 3538A05527 | 12.10.26       |
| <input type="checkbox"/>            | Function Generator      | Agilent     | 33250A    | MY4006432  | 12.02.04       |
| <input type="checkbox"/>            | Audio Analyzer          | HP          | 8903B     | 3729A19213 | 12.10.28       |
| <input type="checkbox"/>            | AC Power Supply         | KIKUSUI     | PCR2000W  | GB001619   | 12.10.25       |
| <input checked="" type="checkbox"/> | DC Power Supply         | Tektronix   | PS2520G   | TW50517    | 12.02.25       |
| <input type="checkbox"/>            | DC Power Supply         | Tektronix   | PS2521G   | TW53135    | 12.10.25       |
| <input type="checkbox"/>            | Dummy Load              | BIRD        | 8141      | 7560       | 12.09.16       |
| <input type="checkbox"/>            | Dummy Load              | BIRD        | 8401-025  | 799        | 12.09.16       |
| <input type="checkbox"/>            | EMI Test Receiver       | R&S         | ESCI      | 100710     | 11.12.01       |
| <input checked="" type="checkbox"/> | EMI Test Receiver       | R&S         | ESCI      | 100001     | 12.07.11       |
| <input type="checkbox"/>            | Attenuator              | HP          | 8494A     | 2631A09825 | 12.10.26       |
| <input type="checkbox"/>            | Attenuator              | HP          | 8496A     | 3308A16640 | 12.10.26       |
| <input type="checkbox"/>            | Attenuator              | R&S         | RBS1000   | D67079     | 12.10.26       |
| <input type="checkbox"/>            | Power sensor            | Agilent     | E9321A    | US40390422 | 12.10.26       |
| <input checked="" type="checkbox"/> | LOOP Antenna            | EMCO        | 6502      | 9205-2745  | 13.05.22       |
| <input checked="" type="checkbox"/> | BILOG Antenna           | Schwarzbeck | VULB 9168 | 375        | 13.09.21       |
| <input type="checkbox"/>            | HORN Antenna            | ETS         | 3115      | 00062589   | 13.10.28       |
| <input type="checkbox"/>            | Power Divider           | Weinschel   | 1580-1    | NX380      | 12.09.14       |