

SAR Test Report

Report No.: AGC05041160806FH01

FCC ID A2HCT9223W

Original Equipment APPLICATION PURPOSE

PRODUCT DESIGNATION Tablet

VENTURER, pro12, RCA **BRAND NAME**

CT9223W97, CT9x23Wyyzz, RCT6x23Wyyzz

x & y will be in numeric/alphabet and stands for different **MODEL NAME**

version/design; z will be in numeric/alphabet and stands for

accessory optionally

CLIENT Alco Electronics Ltd.

DATE OF ISSUE Oct. 31,2016

STANDARD(S) IEEE Std. 1528:2013;FCC 47CFR § 2.1093;IEEE/ANSI C95.1:1992

REPORT VERSION

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 2 of 45

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Oct. 31,2016	Valid	Original Report

The results shown the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 3 of 45

	Test Report Certification			
Applicant Name :	Alco Electronics Ltd.			
Applicant Address :	11/F Zung Fu Industrial Building,1067 King's Road, Quarry Bay, H.K			
Manufacturer Name :	Alco Electronics (Dongguan) Limited			
Manufacturer Address :	Gong Ye Xi road, Houjie Technology Industrial Park, Houjie, Dongguan Guangdong, P.R.C. Postal Code: 523960			
Product Designation :	Tablet			
Brand Name :	VENTURER, pro12, RCA			
Model Name :	CT9223W97, CT9x23Wyyzz, RCT6x23Wyyzz x & y will be in numeric/alphabet and stands for different version/design; z will be in numeric/alphabet and stands for accessory optionally			
Different Description	See page 7			
EUT Voltage :	DC3.7V by battery			
Applicable Standard :	IEEE Std. 1528:2013;FCC 47CFR § 2.1093;IEEE/ANSI C95.1:1992			
Test Date :	Sep. 10,2016			
报 想	Attestation of Global Compliance(Shenzhen) Co., Ltd.			
Performed Location	2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen, China			
Report Template	AGCRT-US-2.4G/SAR (2016-01-01)			

	Dolly Wang	
Tested By	A Transfer of the second	£C ****
	Bobby wang(Wang Zhicheng)	Oct. 31,2016
	Anyola li	
Checked By	CC. YOU.	
	Angela Li(Li Jiao)	Oct. 31,2016
	Colon show	
Authorized By	Solya shong	
Authorized By	Solger Zhang(Zhang Hongyi) Authorized Officer	Oct. 31,2016

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

No.16 E

Page 4 of 45

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE DASY5 SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. DASY5 E-FIELD PROBE	9
3.4. ROBOT	10 11 11
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR)	14 16
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	17 18
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR SYSTEM CHECK PROCEDURES	20
7. EUT TEST POSITION	22
7.1. Body Worn Position	
8. SAR EXPOSURE LIMITS	
9. TEST EQUIPMENT LIST	
10. MEASUREMENT UNCERTAINTY	25
11. CONDUCTED POWER MEASUREMENT	
12. TEST RESULTS	
12.1. SAR TEST RESULTS SUMMARY	
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS & EUT PHOTOGRAPHS	
APPENDIX D. CALIBRATION DATA	45

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com. AGC 8

Page 5 of 45

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Francisco Dand		Highest Reported 1g-SAR(W/Kg)	5000
Frequency Band	Body-worn(with 0 mm separation)		
802.11b	# The Com	0.793	20 5
802.11g		0.267	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:1992 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 616217 D04 SAR for laptops and tablets v01r02
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Page 6 of 45

400 089 2118

2. GENERAL INFORMATION

General Information		
Product Designation	Tablet	
Test Model	CT9223W97	
Hardware Version	CT9223W97, RCT6223W97, CT9223W87, RCT6223W87	
Software Version	N/A	
Device Category	Portable	
RF Exposure Environment	Uncontrolled	
Antenna Type	Internal, Integral	
WIFI	CO CO CO	
WIFI Specification	☐802.11ac ☐802.11b ☐802.11g ☐802.11n(20) ☐802.11n(40)	
Operation Frequency	2412~2462MHz	
Modulation	11b: DQPSK, DBPSK, DSSS, CCK; 11g\n: BPSK, QPSK, 16QAM, 64QAM, OFDM	
Maximum Output Power	11b: 16.78dBm,11g: 18.98dBm,11n(20): 18.88dBm,11n(40): 12.08dBm	
Antenna Gain	0dBi	
Bluetooth	C C C C C C C C C C C C C C C C C C C	
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0+HS □V4.0 □V4.1	
Operation Frequency	2402~2480MHz	
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK	
Maximum Output Power	-4.60dBm	
Antenna Gain	0dBi	
Accessories	C C C C	
Battery	Brand name: PowTech Model No.: PT2890128-2P Voltage and Capacitance: 3.7 V & 7500mAh	
Brand name: ACT, Dokocom Adapter Model No. : APS-L012050200W-G , STC-U100502000-Z , STC-C0502500-Z Input: AC 100-240V, 50/60Hz, 0.45A Output: DC 5V, 2.0A		
Note: The sample used	for testing is end product.	
Product	Type ☐ Identical Prototype	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

> E-mail: agc@agc-cert.com Tel: +86-755 2908 1955 Fax: +86-755 2600 8484

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

confirmed at http://www.agc-cert.com.

Page 7 of 45

13 Apr 2016

To whom it may concern,

Multiple Models Confirmation Letter

I, the undersigned, hereby confirm that the family models are listed in the following table.

These models are identical as follows:

•	Electronics/electrical designs, including software & firmware
~	Construction design/Physical design/Enclosure
•	DCB layout

CB lavout

(Others, please specify)

The only differences between these models are the follows for marketing purpose:

,		
- > -	Color Cosmetic details Trade name Model Number (Others, please specify)	
Suffi	ffix ("") represents Color code Packing configuration	

For the product subject to authorization under FCC Declaration of Conformity:

In addition, it is to confirm that all the below information

(Others, please specify)

- 1) the U.S. responsible party,
- 2) FCC label artworks and location,
- 3) FCC required statement in the user manual

are the same but different in the following model numbers only:

١	ltem	New	Model Number	Trade	Remarks
	No.	model		Name	
	1	√YES	CT9x23Wyyzz	VENTURER	
	2	√YES	CT9x23Wyyzz	Pro12	
	3	√YES	RCT6x23Wyyzz	RCA	
			(x & y will be in numeric/alphabet and stands for different version/design; z will be in numeric/alphabet and stands for accessory optionally)		

The sample being submitted to Intertek Testing Services for conformity assessment is CT9223W97 (tested model) of the above list.

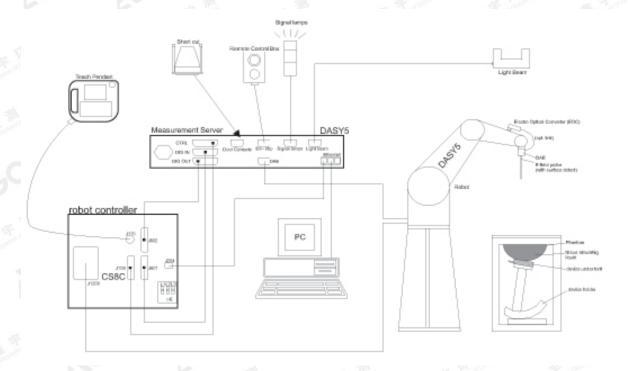
Regards,

Alco Electronics Ltd.

PEGGY SUEN

Secretary, Engineering Dept.

(for Peggy Suen)


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 8 of 45

3. SAR MEASUREMENT SYSTEM

3.1. The DASY5 system used for performing compliance tests consists of following items

- A standard high precision 6-axis robot with controller, teach pendant and software.
- Data acquisition electronics (DAE) which attached to the robot arm extension. The DAE consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock
- A dosimetric probe equipped with an optical surface detector system.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital Communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- A Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- Phantoms, device holders and other accessories according to the targeted measurement.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 9 of 45

3.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE Std. 1528:2013;FCC 47CFR § 2.1093;IEEE/ANSI C95.1:1992 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	ES3DV3	A distance	-G	60
Manufacture	SPEAG	Ringan		
frequency	0.15GHz-3 GHz Linearity:±0.2dB(150MHz-3 GHz)			
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.2dB			C
A. F. L. B.	Overall length:337mm Tip diameter:4mm Typical distance from probe tip to dipole		3953 EXDD/4	(A)
Dimensions	centers:2mm	19		
Application	High precision dosimetric measurements in a (e.g., very strong gradient fields). Only probe compliance testing for frequencies up to 3 GF 30%.	which enables		CC

3.3. Data Acquisition Electronics description

The data acquisition electronics (DAE) consist if a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement sever is accomplished through an optical downlink fir data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

DAE4

Input Impedance	200MOhm		SECURE .
The Inputs	Symmetrical and floating	S GOOD	or Doy BM witzerland
B. T. E. T.	S. T. T. T. C. S. S. C.	E COLOR	DAEA PARTEA Matte in So
Common mode rejection	above 80 dB	E	is adding
No.	T. T. E. T.		

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

@ 400 089 2118

Page 10 of 45

3.4. Robot

The DASY system uses the high precision robots (DASY5:TX60) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from is used.

The XL robot series have many features that are important for our application:

☐ High precision (repeatability 0.02 mm)

☐ High reliability (industrial design)

☐ Jerk-free straight movements

□ Low ELF interference (the closed metallic construction shields against motor control fields)

□ 6-axis controller

3.5. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned prob.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. e, the same position will be reached with another aligned probe within 0

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 11 of 45

3.6. Device Holder

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.7. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip-disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DAYS I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

No.16 E

Page 12 of 45

3.8. PHANTOM SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

Left head

□ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELI4 Phantom

☐ Flat phantom a fiberglass shell flat phantom with 2mm+/- 0.2 mm shell thickness. It has only one measurement area for Flat phantom

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Page 13 of 45

@ 400 089 2118

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt} \Big|_{t=0}$$

Where

is the specific absorption rate in watts per kilogram;

E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

σ is the conductivity of the tissue in siemens per metre;

ρ is the density of the tissue in kilograms per cubic metre;

ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 14 of 45

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Std. 1528:2013 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
	- 15°		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.com.

Page 15 of 45

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]		
	uniform ;	grid: ∆z _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	5 – 6 GHz: ≤ 2 mm 3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid	∆z _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

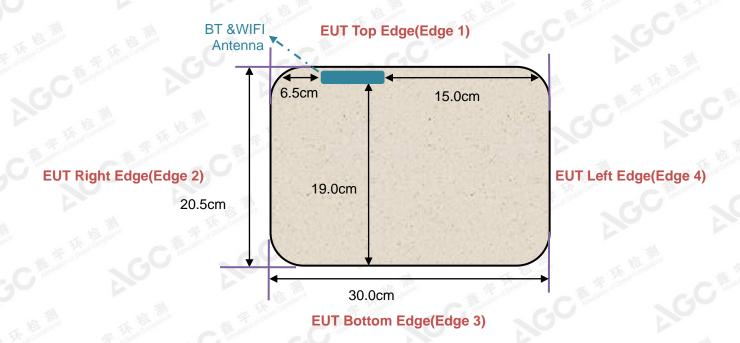
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.


Page 16 of 45

4.3. RF Exposure Conditions

Test Configuration and setting:

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (back view)

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 17 of 45

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 4.2

5.1. The composition of the tissue simulating liquid

o. i. The composition of t	ne tissue simulating ilquid	- TA 1 7
Ingredient	2450MHz	
(Weight)	Body (100%)	
Water	70%	
Salt	1%	极
DGBE	9%	a Thomas and
Triton X-100	20%	C The state of the

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	h	ead	bo	dy
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

($\varepsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}3$)

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Page 18 of 45

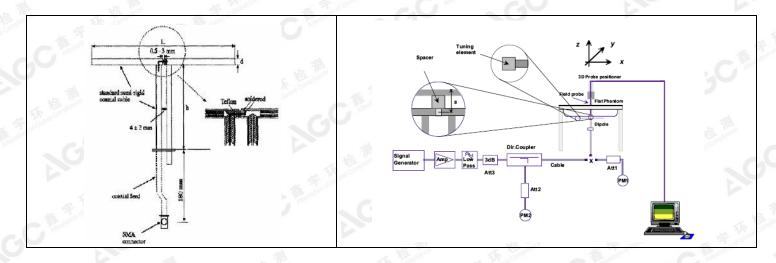
5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant M	easurement for 2450MHz		
THE STORY	Fr.	Dielectric Pa	rameters (±5%)	Tissue	To a diament
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [°C]	Test time
Body	2412	54.59	1.87	The same	-0
The Compliance	2437	53.74	1.89	20.7	Son 10 2016
	2450	53.21	1.91	20.7	Sep. 10,2016
	2462	52.53	1.95		Z That Committee

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 19 of 45


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each DASY system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at Attp://www.agc-cert.com.

Page 20 of 45

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE 1528 standard, the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	51.5	30.4	3.6

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a structure.

Page 21 of 45

@ 400 089 2118

6.2.2. System Check Result

System Per	rformar	nce Che	ck at 2450MH	z for Body						
Validation	Kit: D24	450V2-S	N:968							
Frequency [MHz]		rget (W/Kg)	Reference (± 1	Tested SAR Value(W/Kg) Input Power=18dBm		Normalized to 1W(W/Kg)		Tissue Temp. [°C]	Test time	
	1g	10g	1g	10g	1g	10g	1g	10g	The state of	. 1
2450	51.7	24.3	46.53-56.87	21.87-26.73	3.24	1.55	51.351	24.566	20.7	Sep. 10,2016

Note:

(2) Tested normalized SAR (W/kg) = Tested SAR (W/kg) ×[1000/ 10^1.8]

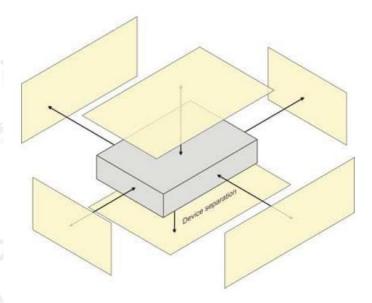
6.3. SAR System Validation

SAR probe and tissue dielectric parameters are as shown bellow.

		-0.0		- No. 100		701 100	197					
) (8)							CV	V validation	1	Mo	od. valida	ition
	Test Data	Probe S/N	Tested Freq. (MHz)	Tissue Type	Cond.	Perm	Sensitivity	Probe	Probe	Mod.	Duty	Peak to average
j			(IVIIIZ)				Í	Linearity	Isotropy	Type	Factor	power ratio
ľ	03/12/2016	3337	2450	body	1.95	53.55	PASS	PASS	PASS	OFDM	N/A	PASS
4	03/12/2016	3337	2450	body	1.95	53.55	PASS	PASS	PASS	DSSS	PASS	N/A
¢	03/11/2016	3337	2450	head	1.73	39.77	PASS	PASS	PASS	OFDM	N/A	PASS
	03/11/2016	3337	2450	head	1.73	39.77	PASS	PASS	PASS	DSSS	PASS	N/A

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

⁽¹⁾ We use a CW signal of 18dBm for system check, and then all SAR value are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.


Page 22 of 45

7. EUT TEST POSITION

This EUT was tested in Body back, Body front and 4 edges.

7.1. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 0mm.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 23 of 45

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE Std. 1528:2013, FCC 47CFR § 2.1093, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)					
Spatial Peak SAR (1g cube tissue for brain or body)	1.60					
Spatial Average SAR (Whole body)	0.08					
Spatial Peak SAR (Limbs)	4.0					

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16

Page 24 of 45

9. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date
Stäubli Robot	Stäubli-TX60	F13/5Q2UD1/A/01	N/A	N/A
Robot Controller	Stäubli-CS8	139522	N/A	N/A
TISSUE Probe	SATIMO	SN 45/11 OCPG45	12/02/2015	12/01/2016
E-Field Probe	Speag- ES3DV3	SN:3337	10/01/2015	09/30/2016
EL4 Phantom	ELI V5.0	1210	N/A	N/A
Device Holder	Speag-SD 000 H01 KA	SD 000 H01 KA	N/A	N/A
DAE4	Speag-SD 000 D04 BM	1398	02/02/2016	02/01/2017
SAR Software	Speag-DASY5	DASY52.8	N/A	N/A
Liquid	SATIMO	11/1	N/A	N/A
Dipole	D2450V2	SN968	06/12/2015	06/11/2018
Signal Generator	Agilent-E4438C	US41461365	02/29/2016	02/28/2017
Vector Analyzer	Agilent / E4440A	US40420298	07/02/2016	07/01/2017
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	03/04/2016	03/03/2017
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A
Amplifier	EM30180	SN060552	03/04/2016	03/03/2017
Directional Couple	Werlatone/ C5571-10	SN99463	07/02/2016	07/01/2017
Directional Couple	Werlatone/ C6026-10	SN99482	07/02/2016	07/01/2017
Power Sensor	NRP-Z21	1137.6000.02	10/20/2015	10/19/2016
Power Sensor	NRP-Z23	US38261498	03/01/2016	02/28/2017
Power Viewer	R&S	V2.3.1.0	N/A	N/A

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Page 25 of 45

10. MEASUREMENT UNCERTAINTY

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table as follow.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor(a)	1/k(b)	1/√3	1/√6	1/√2

- (a) Standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 13.1 Standard Uncertainty for Assumed Distribution (above table)

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

NO. 10

Page 26 of 45

	in a	500	\\	_ \$ (op)	2	- Cool		1	
			SY5 Ui						
Measuremen	t uncerta	nty for 15	O MHZ to Prob.	3GHz a	iveraged ov	/er 1 gram /	10 gram	1	-700
Uncertainty Component	Sec.	(+- %)	Dist.	Div.	Ci (1g)	Ci (10g)	(+-%)	10g Ui (+-%)	V
Measurement System	ALC: THE	, ,,,,	10 All		St. Trades	_ # 10	(1, 70)	The state of the	
Probe calibration	E.2.1	6.65	N	_1	1	1	6.65	6.65	∞
Axial Isotropy	E.2.2	0.25	R	$\sqrt{3}$	1	1	0.14	0.14	∞
Hemispherical Isotropy	E.2.2	1.3	R	√3	1	1	0.75	0.75	
Linearity	E.2.4	0.3	R	$\sqrt{3}$	1	1 1	0.17	0.17	∞
Probe modulation	E.2.5	1.65	R	$\sqrt{3}$	15	1	0.95	0.95	~
Detection limits	E.2.4	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	~
Boundary effect	E.2.3	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	~ ~
Readout Electronics	E.2.6	0.2	N	1	1	1 :	0.20	0.20	∞
Response Time	E.2.7	0.0	R	$\sqrt{3}$	1	5/61 to 2	0.00	0.00	~
Integration Time	E.2.8	0.0	R	$\sqrt{3}$	1	7,09	0.00	0.00	~
RF ambient Conditions-noise	E.6.1	0.9	R	√3	600	1	0.52	0.52	~
RF ambient Conditions-reflections	E.6.1	0.9	R	√3	1	1	0.52	0.52	~
Probe positioned mech. restrictions	E.6.2	0.7	R	√3	F 1	15.5	0.40	0.40	~
Probe positioning with respect to phantom shell	E.6.3	6.5	R	√3	1	3 1	3.75	3.75	~
Post-processing	E.5	3.8	R	$\sqrt{3}$	1	1 70	2.19	2.19	~
Test sample related		-111		A FILL	ě	The comment	二年]	Global	
Device holder uncertainty	E.4.1	3.6	N 9	of 1	19	1	3.60	3.60	M-
Test sample positioning	E.4.2	3.2	N	1	1	1	3.20	3.20	M-
SAR scaling	E.6.5	0	R	$\sqrt{3}$	1	1	0.00	0.00	×
Drift of output power(measured SAR drift)	E.2.9	5.0	R	√3	11	1	2.89	2.89	×
Phantom and set-up	ATT:	- 3h	A Compline	# 37	L Cou.,	一年 1		A Miles and	
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	√3	1	1	0.03	0.03	~
Algorithm for correcting SAR for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	٥
Liquid conductivity (meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	M-
Liquid permittivity (meas.)	E.3.3	5	N	(1)	0.23	0.26	1.15	1.30	N
Liquid permittivity – temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	~
Liquid conductivity – temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	×
Combined Standard Uncertainty	C. 5	ord Grow	RSS	and a	COL		10.65	10.39	
Expanded Uncertainty (95% Confidence interval)			k		抓拉	All and a	21.30	20.78	# Station

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

No.16 E

Page 27 of 45

System v	alidation	for 150 M	Hz to 3G	Hz avera	aged over 1	1 gram / 10	gram.		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	٧
Measurement System					不恒	Charles .	The same	N.	NO.
Probe calibration	E.2.1	6.65	N	1	E 7 1000	1 %	6.65	6.65	~
Axial Isotropy	E.2.2	0.25	R	$\sqrt{3}$	1	1	0.14	0.14	~
Hemispherical Isotropy	E.2.2	1.3	R	$\sqrt{3}$	1	1	0.75	0.75	1
Linearity	E.2.4	0.3	R	$\sqrt{3}$	1	1	0.17	0.17	~
Probe modulation	E.2.5	1.65	R	√3	1	测 1	0.95	0.95	~
Detection limits	E.2.4	0.9	R	$\sqrt{3}$	13/	1	0.52	0.52	~
Boundary effect	E.2.3	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	~
Readout Electronics	E.2.6	0.2	N	1	1	1	0.20	0.20	~
Response Time	E.2.7	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	~
Integration Time	E.2.8	0.0	R	$\sqrt{3}$	1	12	0.00	0.00	~
RF ambient Conditions-noise	E.6.1	0.9	R	√3	1_ %	1	0.52	0.52	~
RF ambient Conditions-reflections	E.6.1	0.9	R	√3	C1	1	0.52	0.52	×
Probe positioned mech. restrictions	E.6.1	0.7	R	√3	1 1	1 2	0.40	0.40	×
Probe positioning with respect to phantom shell	E.6.2	6.5	R	√3	1	·Cl	3.75	3.75	~
Post-processing	E.6.3	3.8	R	$\sqrt{3}$	1	1	2.19	2.19	~
System validation source(d	lipole)					THE SALE		一根 神	
Deviation of the experimental source from numerical source	E6.4	5.3	N	1 1	1	1	5.30	5.30	×
Source to liquid distance	8,E.6.6	1.0	R	$\sqrt{3}$	1	10	0.58	0.58	~
Drift of output power(measured SAR drift)	8,6.6.4	5.0	R	√3	1	1	2.89	2.89	~
Phantom and set-up			1/2	4	15 mm	# 3	V Cours	14 H 3	1081
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	√3	1	G1	0.03	0.03	~
Algorithm for correcting SAR for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	×
Liquid conductivity (meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	N
Liquid permittivity (meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	N
Liquid permittivity – temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	٥
Liquid conductivity – temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	٥
Combined Standard Uncertainty	50 100	The Company	RSS	Attendanter of	CO*		10.90	10.635	
Expanded Uncertainty (95% Confidence interval)	-,C		k		. 17		21.79	21.270	#

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

No.16 E

AGC 8

Page 28 of 45

System	n check for	r 150 MH	z to 3GH:	z averag	ed over 1 o	gram / 10 gi	am.		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	٧
Measurement System		,			人地	Transition of the second	相	16	163
Probe calibration drift	E.2.1.3	2.0	N	1	71	_1 # 1	6.00	6.00	~
Axial Isotropy	E.2.2	0.25	R	$\sqrt{3}$	0	0	0	0	×
Hemispherical Isotropy	E.2.2	1.3	R	$\sqrt{3}$	0	0	0	0	
Linearity	E.2.4	0.3	R	√3	0	0	0	0	٥
Probe modulation	E.2.5	1.65	R	√3	0	% 0	0	0	٥
Detection limits	E.2.4	0.9	R	$\sqrt{3}$	0	0	0	0	٥
Boundary effect	E.2.3	0.9	R	$\sqrt{3}$	0	0	0	0	٥
Readout Electronics	E.2.6	0.2	N	1	0	0	0	0	
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0	0	0
Integration Time	E.2.8	0	R	$\sqrt{3}$	0	0	0	0	٥
RF ambient Conditions-noise	E.6.1	0.9	R	√3	0	0	0	0	°
RF ambient Conditions-reflections	E.6.1	0.9	R	√3	0	0	0	0	٥
Probe positioned mech. restrictions	E.6.2	0.7	R	√3	1 1	1 2	0.40	0.40	٥
Probe positioning with respect to phantom shell	E.6.3	6.5	R	√3	1	. C ¹	3.75	3.75	٥
Post-processing	E.5	3.8	R	$\sqrt{3}$	0	0	0	0	٥
System check source(dipo	le)					A THE		极洲	
Deviation of the experimental source from numerical source	E6.4	5.3	N	1	1	The second	5.30	5.30	•
Source to liquid distance	8,E.6.6	1.0	R	$\sqrt{3}$	1	10	0.58	0.58	۰
Drift of output power(measured SAR drift)	8,6.6.4	5.0	R	√3	1	1	2.89	2.89	100
Phantom and set-up			15	4	极	# 3	V Cours	展节。	10.00
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	√3	1	G 1	0.03	0.03	٥
Algorithm for correcting SAR for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	٥
Liquid conductivity (meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	N
Liquid permittivity (meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	N
Liquid permittivity – temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	9
Liquid conductivity – temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	٥
Combined Standard Uncertainty	100 Mar	F of Common Common	RSS	Attendantion of the	CO"		8.11	7.86	
Expanded Uncertainty (95% Confidence interval)	·,C		k			100	16.22	15.52	学

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

No.16 E

AGC 8

Page 29 of 45

11. CONDUCTED POWER MEASUREMENT

WIFI

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Maximum Output Power (dBm)
		01	2412	15.46
802.11b	1	06	2437	15.98
	- 5	11	2462	16.78
THE PROPERTY OF THE PARTY OF TH	10	01	2412	17.28
802.11g	6	06	2437	18.16
	打造	11	2462	18.98
也 地	10 To 100	01	2412	17.18
802.11n(20)	6.5	06	2437	18.18
	10 10	11	2462	18.88
GO		03	2422	11.04
802.11n(40)	13.5	06	2437	12.08
The state of the s	The Third	09	2452	11.48

Bluetooth_V3.0

Modulation	Channel	Frequency(MHz)	Maximum Output Power (dBm)		
-70	0	2402	-4.60		
GFSK	39	2441	-4.80		
	78	2480	-4.60		
	0	2402	-4.60		
π /4-DQPSK	39	2441	-4.80		
	78	2480	-4.60		
Committee of the Commit	0	2402	-4.60		
8-DPSK	39	2441	-4.80		
	78	2480	-4.60		

Bluetooth V4.0

Modulation	Channel	Frequency(MHz)	Maximum Output Power (dBm)
-0	0	2402	-9.80
GFSK	19	2440	-10.20
	39	2480	-10.40

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.cent.com.

Page 30 of 45

@ 400 089 2118

12. TEST RESULTS

12.1. SAR Test Results Summary

12.1.1. Test position and configuration

Body SAR was performed with the device 0mm from the phantom according to KDB 616217.

12.1.2. Operation Mode

- Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:
 Maximum Scaling SAR =tested SAR (Max.) ×[maximum tune-up power (mw)/ maximum measurement output power(mw)]
- 4. 802.11b DSSS SAR Test Requirements:
 - a. SAR is measured for 2.4GHz 802.11b DSSS mode using the highest measured maximum output power channel, when the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤0.8W/Kg, no further SAR testing is requires for 802.11b DSSS in that exposure configuration.
 - b. When the reported SAR is >0.8W/Kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is >1.2W/Kg, SAR is required the for third channel; il,e., all channels require testing.
- 802.11g/n OFDM SAR Test Exclusion Requirement:
 - a. When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - SAR is not required for 802.11g/n since the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/Kg.
- 6. OFDM Transmission Mode SAR Test Channel Selection

For the 2.4G and 5GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configuration; for example, 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 31 of 45

etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n or 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7. Initial Test Configuration Procedure

For OFDM, in both 2.4GHz and 5GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configurations with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be initial test configuration.

When the reported SAR is ≤0.8W/Kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2W/kg or all channels are measured. When there are multiple untested channels giving the 802.11 mode is considered for SAR measurements (See section 7).

8. Subsequent Test Configuration Procedure

For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the radio of the subsequent test configuration to initial test configuration specified maximum output power is ≤1.2W/kg, no addition SAR testing for the subsequent test configurations is required.

- 9. Bluetooth and WIFI have same antennas, and cannot transmit simultaneously;
- 10. According to KDB 447498 D01, annex A, SAR is not required for bluetooth because its maximum output power is less than 10 mW.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attempting the confirmed at a state of the confirmed at a sta

Page 32 of 45

12.1.3. SAR Test Results Summary

SAR MEASUREME	NT								
Depth of Liquid (cm):>15			Rela	ative Humic	dity (%): 52	.5		
Product: Tablet									
Test Mode: 802.11b)								
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
Body back	DSSS	11	2462	0.16	0.734	17	16.78	0.772	1.6
Body front	DSSS	11	2462	0.19	0.518	17	16.78	0.545	1.6
Body back + keyboard	DSSS	11	2462	-0.11	0.754	17	16.78	0.793	1.6
Edge 1	DSSS	11	2462	-0.11	0.671	17	16.78	0.706	1.6

Note:

SAR MEASUREMENT

(2). The test separation of all above table is 0mm.

Depth of Liquid (cm):>15 Relative Humidity (%): 52.5									
Product: Tablet									
Test Mode: 802.	11g								
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
Body back	OFDM	11	2462	0.00	0.266	19	18.98	0.267	1.6
Body front	OFDM	11	2462	0.05	0.232	19	18.98	0.233	1.6
Body back + keyboard	OFDM	11	2462	-0.18	0.105	19	18.98	0.105	1.6
Edge 1	OFDM	11_	2462	-0.15	0.210	19	18.98	0.211	1.6

Note:

(2). The test separation of all above table is 0mm.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

^{(1).} When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

^{(1).}When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

Page 33 of 45

SAR Test Exclusion Consideration for Adjacent Edges

Per KDB 447498 D01 cl. 4.3.1:

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [√f(GHz)] :

- b) For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:
- 1) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance 50 mm)-(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz
- 2) {[Power allowed at numeric threshold for 50 mm in step a)] + [(test separation distance 50 mm)-10]} mW, for > 1500 MHz and ≤ 6 GHz

Edge 2(Right)

SAR test exclusion threshold

= (Power allowed at numeric threshold for 50 mm in step a)+(test separation distance - 50 mm) x 10

- $= 150/\sqrt{2.462 + (65-50)} \times 10 \text{ mW}$
- = 245.598 mW.

Edge 3(Bottom)

SAR test exclusion threshold

= (Power allowed at numeric threshold for 50 mm in step a)+(test separation distance - 50 mm) x 10

mW

- $= 150/\sqrt{2.462} + (190-50) \times 10 \text{ mW}$
- = 1495.598 mW.

Edge 4(Left)

SAR test exclusion threshold

- = (Power allowed at numeric threshold for 50 mm in step a)+(test separation distance 50 mm) x 10
- $= 150/\sqrt{2.462} + (150-50) \times 10 \text{ mW}$
- = 1095.598 mW.

Since the Maximum Tune-up Power (79.43 mW) is less than the SAR Exclusion Threshold for the right, the bottom and the left edges, SAR evaluation for these adjacent edges are not required.

The results showning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

E-mail: agc@agc-cert.com

@ 400 089 2118

Page 34 of 45

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Sep. 10,2016

System Check Body 2450 MHz

DUT: Dipole 2450 MHz Type: D2450V2

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.91$ mho/m; $\epsilon r = 53.21$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 21.2, Liquid temperature ($^{\circ}$ C): 20.7

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(4.36, 4.36, 4.36); Calibrated:10/01/2015

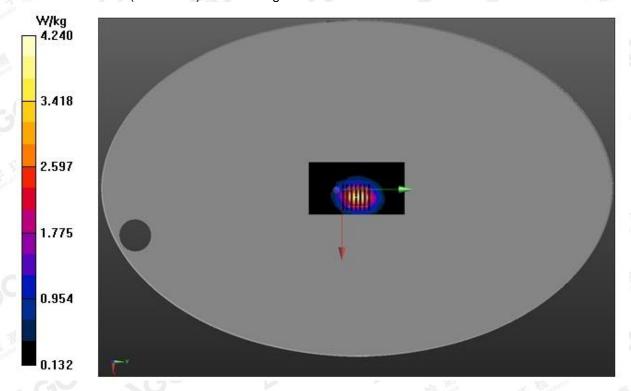
• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 02/02/2016

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/System Check Body 2450MHz / Area Scan (7x12x1): Measurement grid: dx=10mm dy=10mm


Maximum value of SAR (measured) = 4.17 W/kg

Configuration/System Check Body 2450MHz/ Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.036 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 6.77 W/kg

SAR(1 g) = 3.24 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 4.24 W/kg

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Page 35 of 45

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab

Date: Sep. 10,2016

802.11b High- Body- Back DUT: Tablet; Type: CT9223W97

Communication System: UID 0, WiFi 802.11b (0); Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.53$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.2, Liquid temperature ($^{\circ}$ C): 20.7

DASY Configuration:

• Probe: ES3DV3 - SN3337; ConvF(4.36,4.36, 4.36); Calibrated:10/01/2015

• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 02/02/2016

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

B-WIFI/BACK-H/Area Scan (23x34x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.16 W/kg

B-WIFI/BACK-H/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.219 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.734 W/kg; SAR(10 g) = 0.269 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

Page 36 of 45

Test Laboratory: AGC Lab Date: Sep. 10,2016

802.11b High- Body- Front

DUT: Tablet; Type: CT9223W97

Communication System: UID 0, WiFi 802.11b (0); Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{mho/m}$; $\epsilon r = 52.53$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.2, Liquid temperature ($^{\circ}$): 20.7

DASY Configuration:

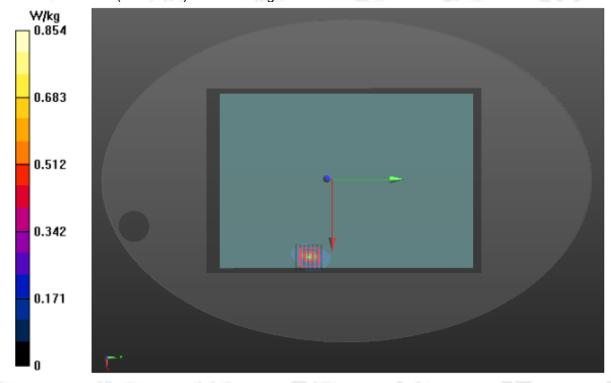
Probe: ES3DV3 – SN3337; ConvF(4.36,4.36, 4.36); Calibrated:10/01/2015

• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 02/02/2016

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


B-WIFI/FRONT-H/Area Scan (23x34x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.815 W/kg

B-WIFI/FRONT-H/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.19dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.518 W/kg; SAR(10 g) = 0.188 W/kg Maximum value of SAR (measured) = 0.854 W/kg

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

Page 37 of 45

Test Laboratory: AGC Lab Date: Sep. 10,2016

802.11b High- Body- Back with keyboard DUT: Tablet; Type: CT9223W97

Communication System: UID 0, WiFi 802.11b (0); Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.53$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.2, Liquid temperature ($^{\circ}$): 20.7

DASY Configuration:

Probe: ES3DV3 – SN3337; ConvF(4.36,4.36, 4.36); Calibrated:10/01/2015

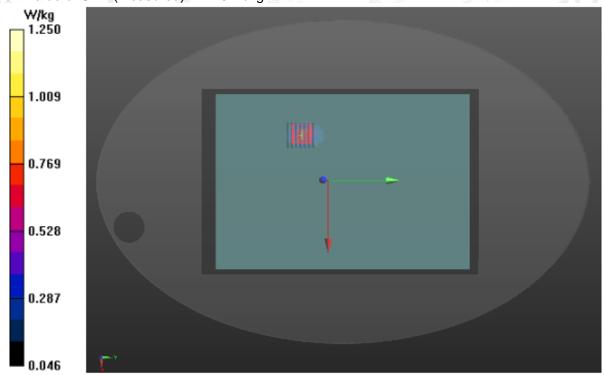
• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 02/02/2016

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

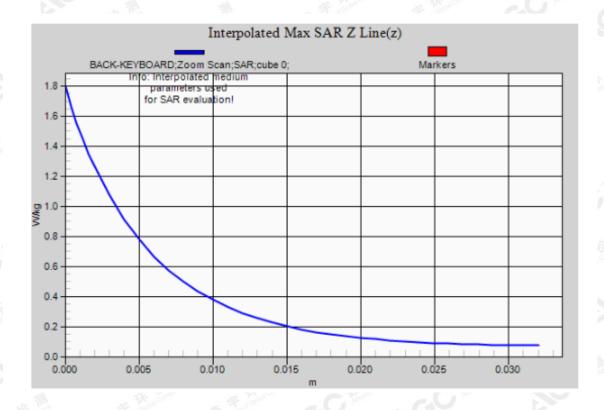
B-WIFI/BACK-KEYBOARD/Area Scan (23x34x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.880 W/kg

B-WIFI/BACK-KEYBOARD/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.929 V/m; Power Drift =- 0.11 dB

Peak SAR (extrapolated) = 1.80 W/kg


SAR(1 g) = 0.754 W/kg; SAR(10 g) = 0.311 W/kg Maximum value of SAR (measured) = 1.25 W/kg

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

Page 38 of 45

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gert.com.

Date: Sep. 10,2016

Page 39 of 45

@ 400 089 2118

Test Laboratory: AGC Lab

802.11b High- Edge 1

DUT: Tablet; Type: CT9223W97

Communication System: UID 0, WiFi 802.11b (0); Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{mho/m}$; $\epsilon r = 52.53$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.2, Liquid temperature ($^{\circ}$): 20.7

DASY Configuration:

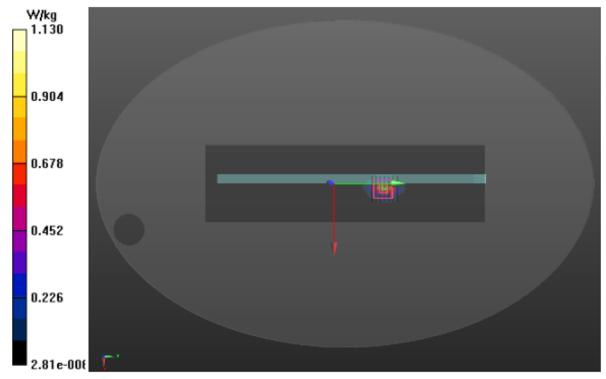
Probe: ES3DV3 – SN3337; ConvF(4.36,4.36, 4.36); Calibrated:10/01/2015

• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 02/02/2016

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


B-WIFI 2/ Edge 1-H/Area Scan (10x34x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.14 W/kg

B-WIFI 2/ Edge 1-H/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.344 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 0.671 W/kg; SAR(10 g) = 0.249 W/kg Maximum value of SAR (measured) = 1.13 W/kg

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 40 of 45

Test Laboratory: AGC Lab Date: Sep. 10,2016

802.11g High- Body- Back

DUT: Tablet; Type: CT9223W97

Communication System: UID 0, WiFi 802.11g (0); Communication System Band: 802.11g; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{mho/m}$; $\epsilon r = 52.53$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.2, Liquid temperature ($^{\circ}$): 20.7

DASY Configuration:

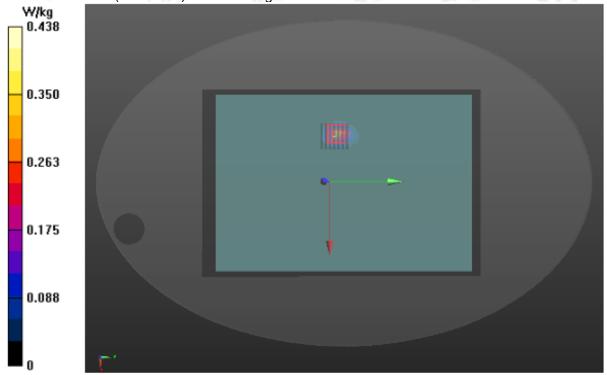
Probe: ES3DV3 – SN3337; ConvF(4.36,4.36, 4.36); Calibrated:10/01/2015

• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 02/02/2016

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;

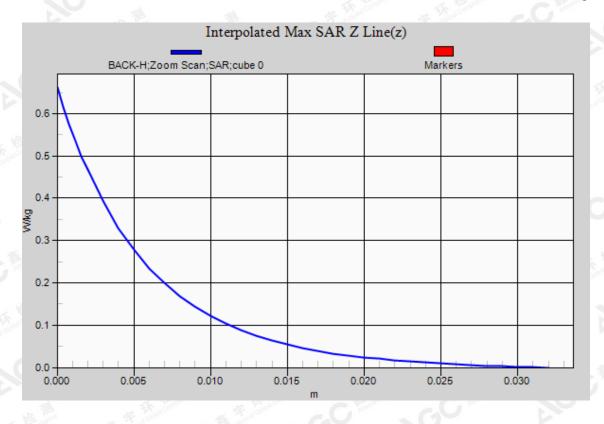
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


G-WIFI/BACK-H/Area Scan (23x34x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.363 W/kg

G-WIFI/BACK-H/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.662 W/kg


SAR(1 g) = 0.266 W/kg; SAR(10 g) = 0.097 W/kgMaximum value of SAR (measured) = 0.438 W/kg

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 41 of 45

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gert.com.

Page 42 of 45

Test Laboratory: AGC Lab

Date: Sep. 10,2016

802.11g High- Body- Front

DUT: Tablet; Type: CT9223W97

Communication System: UID 0, WiFi 802.11g (0); Communication System Band: 802.11g; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{mho/m}$; $\epsilon r = 52.53$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.2, Liquid temperature ($^{\circ}$): 20.7

DASY Configuration:

- Probe: ES3DV3 SN3337; ConvF(4.36,4.36, 4.36); Calibrated:10/01/2015
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1398; Calibrated: 02/02/2016
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

G-WIFI/FRONT-H/Area Scan (23x34x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.319 W/kg

G-WIFI/FRONT-H/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.341 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.511 W/kg

SAR(1 g) = 0.232 W/kg; SAR(10 g) = 0.120 W/kg Maximum value of SAR (measured) = 0.336 W/kg

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Page 43 of 45

Test Laboratory: AGC Lab Date: Sep. 10,2016

802.11g High- Body- Back with keyboard DUT: Tablet; Type: CT9223W97

Communication System: UID 0, WiFi 802.11g (0); Communication System Band: 802.11g; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{mho/m}$; $\epsilon r = 52.53$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$): 21.2, Liquid temperature ($^{\circ}$): 20.7

DASY Configuration:

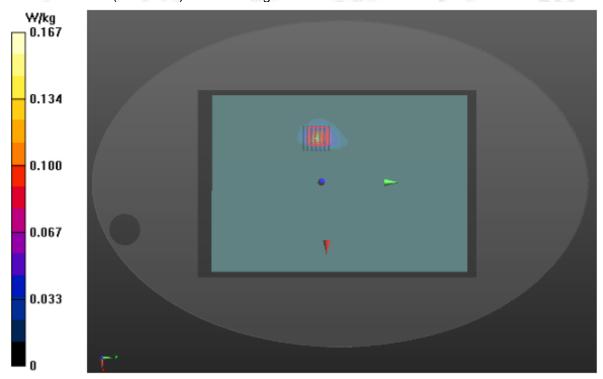
Probe: ES3DV3 – SN3337; ConvF(4.36,4.36, 4.36); Calibrated:10/01/2015

• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 02/02/2016

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


G-WIFI/ BACK-KEYBOARD -H/Area Scan (23x34x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.149 W/kg

G-WIFI/ BACK-KEYBOARD -H/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.229 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.232 W/kg

SAR(1 g) = 0.105 W/kg; SAR(10 g) = 0.043 W/kg Maximum value of SAR (measured) = 0.167 W/kg

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

Attestation of Global Compliance

Date: Sep. 10,2016

Page 44 of 45

Test Laboratory: AGC Lab 802.11g High- Edge 1

DUT: Tablet; Type: CT9223W97

Communication System: UID 0, WiFi 802.11g (0); Communication System Band: 802.11g; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{mho/m}$; $\epsilon r = 52.53$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 21.2, Liquid temperature (°C): 20.7

DASY Configuration:

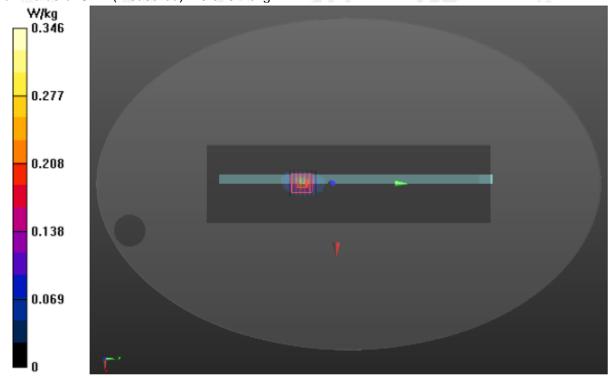
Probe: ES3DV3 – SN3337; ConvF(4.36,4.36, 4.36); Calibrated:10/01/2015

• Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1398; Calibrated: 02/02/2016

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1210;

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


G-WIFI 2/ Edge 1-H/Area Scan (10x34x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.276 W/kg

G-WIFI 2/ Edge 1-H/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.769 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.210 W/kg; SAR(10 g) = 0.080 W/kgMaximum value of SAR (measured) = 0.346 W/kg

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 45 of 45

APPENDIX C. TEST SETUP PHOTOGRAPHS & EUT PHOTOGRAPHS

Refer to Attached files.

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gert.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 400 089 2118 Add: 2F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China