

Part 24

TEST REPORT

Product Name	GSM 850/1900 dual band mobile
Model Name	PB100
FCC ID	A2F-PB100
Client	Pengbo Telcom (H.K) Limited.

TA Technology (Shanghai) Co., Ltd.

GENERAL SUMMARY

Product Name	GSM 850/1900 dual band mobile	Model Name	PB100
FCC ID	A2F-PB100		
Report No.	RZA1111-1844RF02R1		
Client	Pengbo Telcom (H.K) Limited.		
Manufacturer	MINGYI		
Reference Standard(s)	<p>FCC CFR47 Part 2 (2010-12) Frequency Allocations And Radio Treaty Matters; General Rules And Regulations</p> <p>FCC CFR47 Part 24E (2010-12) Personal Communications Services</p> <p>ANSI/TIA-603-C(2004) Land mobile FM or PM Communications Equipment Measurements and Performance Standards.</p>		
Conclusion	<p>This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 2 of this test report are below limits specified in the relevant standards.</p> <p>General Judgment: Pass</p> <p>(Stamp)</p> <p>Date of issue: November 24th, 2011</p>		
Comment	The test result only responds to the measured sample.		

Approved by 杨伟中

Director

Revised by 徐凯

RF Manager

Performed by 王军

RF Engineer

TABLE OF CONTENT

1. General Information	4
1.1. Notes of the test report	4
1.2. Testing laboratory	4
1.3. Applicant Information	5
1.4. Manufacturer Information.....	5
1.5. Information of EUT.....	6
1.6. Test Date	7
2. Test Information	8
2.1. Summary of test results	8
2.2. RF Power Output	9
2.3. Effective Isotropic Radiated Power	11
2.4. Occupied Bandwidth.....	14
2.5. Band Edge Compliance	17
2.6. Frequency Stability	20
2.7. Spurious Emissions at Antenna Terminals	22
2.1. Radiates Spurious Emission	29
3. Main Test Instruments	34
ANNEX A: EUT Appearance and Test Setup.....	35
A.1 EUT Appearance	35
A.2 Test Setup.....	36

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 4 of 36

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at **TA Technology (Shanghai) Co., Ltd.** at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.
Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Yang Weizhong
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <http://www.ta-shanghai.com>
E-mail: yangweizhong@ta-shanghai.com

1.3. Applicant Information

Company: Pengbo Telcom (H.K) Limited.
Address: Room#F,10th Floor,Meyer Industrial Building 2 Chong Yip St. Kwun Tong, Kowloon Hongkong
City: Hongkong
Postal Code: /
Country: P.R. China
Contact: YaBo.Zhang
Telephone: 86-13825210005
Fax: 0755-25267272

1.4. Manufacturer Information

Company: MINGYI
Address: Room 1703~1706, International Chamber of Commerce Building-B, No.138 Fuhua Road 1, Futian District
City: Shenzhen
Postal Code: /
Country: P.R. China
Telephone: +86 13510010762
Fax: +86 755 33356212

1.5. Information of EUT

General information

Name of EUT:	GSM 850/1900 dual band mobile		
IMEI:	353848042542733		
Hardware Version:	X100_P1		
Software Version:	X100V1.2.1B01-Q802-ES-SILICON7-US		
Antenna Type:	Internal Antenna		
Device Operating Configurations:			
Operating Mode(s):	GSM1900; (tested)		
Test Modulation:	(GSM)GMSK		
Maximum E.I.R.P.	GSM 1900: 27.07 dBm		
Power Supply:	Battery or Charger		
Rated Power Supply Voltage:	3.8V		
Extreme Voltage:	Minimum: 3.5V Maximum: 4.2V		
Extreme Temperature:	Lowest: -10°C Highest: +50°C		
Test Channel: (Low - Middle - High)	512 - 661 - 810 (GSM 1900) (tested)		
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)
	GSM1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8

Auxiliary equipment details

AE1: Battery

Model: BL-4C

Manufacturer: SHENZHEN KingerPower Technology CO.,Ltd

S/N: /

Equipment Under Test (EUT) is GSM 850/1900 dual band mobile with internal antenna. The EUT is tested GSM1900 in this report.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. Test Date

The test is performed from November 3, 2011 to November 6, 2011.

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

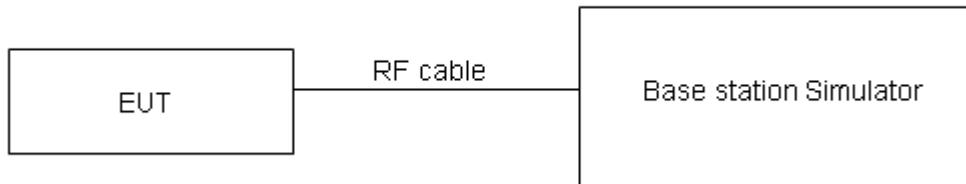
Page 8 of 36

2. Test Information

2.1. Summary of test results

Number	Test Case	Clause in FCC rules	Verdict
1	RF power output	2.1046	PASS
2	Effective Isotropic Radiated power	24.232	PASS
3	Occupied Bandwidth	2.1049	PASS
4	Band Edge Compliance	24.238	PASS
5	Frequency Stability	2.1055 / 24.235	PASS
6	Spurious Emissions at Antenna Terminals	2.1051 / 24.238	PASS
7	Radiates Spurious Emission	2.1053 / 24.238	PASS

2.2. RF Power Output


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

Test Setup

The loss between RF output port of the EUT and the input port of the tester has been taken into consideration.

Limits

No specific RF power output requirements in part 2.1046.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 2$, $U = 0.4$ dB.

TA Technology (Shanghai) Co., Ltd.**Test Report**

Registration Num:428261

Report No.: RZA1111-1844RF02R1

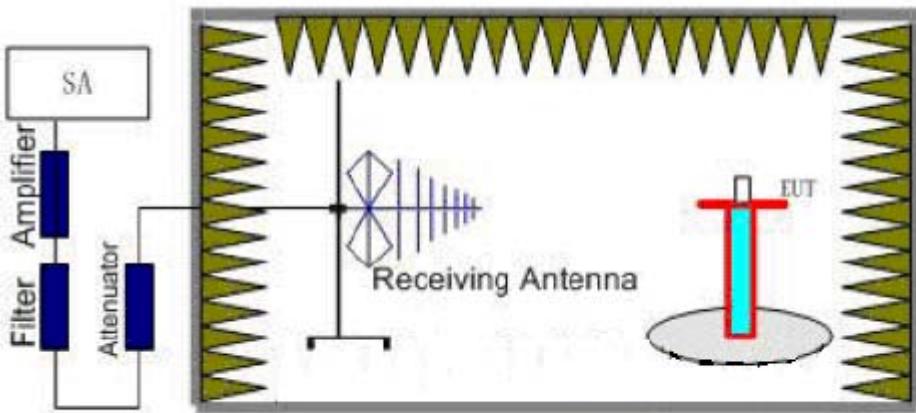
Page 10 of 36

Test Results

GSM 1900		Conducted Power(dBm)		
		Channel 512	Channel 661	Channel 810
		1850.2(MHz)	1880(MHz)	1909.8(MHz)
GSM	Results	28.62	28.64	28.63

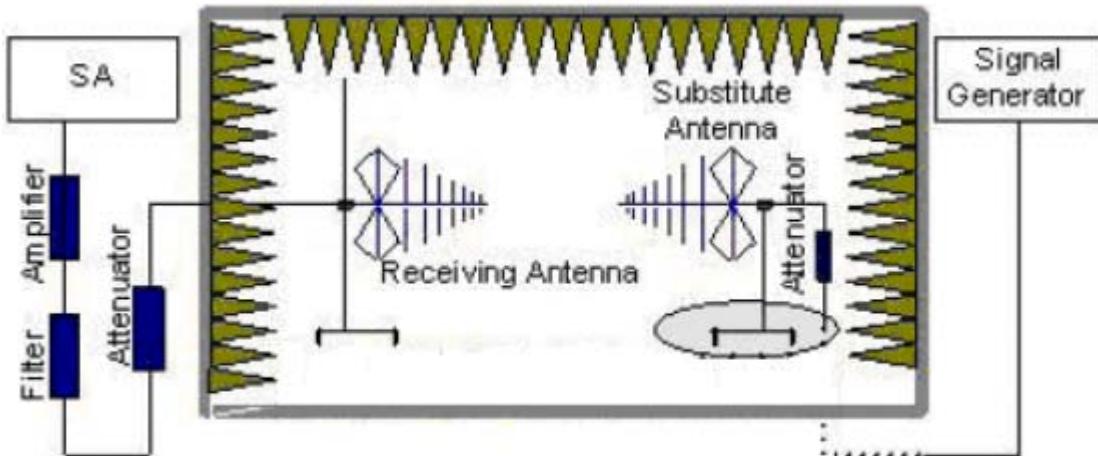
2.3. Effective Isotropic Radiated Power

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The measurement procedures in TIA- 603C are used.


Step 1:

The measurement is carried out in the semi-anechoic chamber.. EUT was placed on a 0.8 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used while RBW and VBW are both set to 3MHz. During the measurement, the highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna moved up and down over a range from 1 to 4 meters in both horizontally and vertically polarized orientations. The test setup refers to figure below.

Step 2:

A dipole antenna shall be substituted in place of the EUT. The antenna will be driven by a signal generator with a adjustable S.G. applied through a 30dB amplifier and a Tx cable. Then the Analyzer reading which is equal to LVL is recorded while the antenna was moving up and down. The E.R.P. /E.I.R.P. of the EUT can be calculated through the level of the signal generator, Tx cable loss and the gain of the substitution antenna. The test setup refers to figure below.

$$E.R.P = S.G + 30. - \text{Tx Cable loss} + \text{Substitution antenna gain} - 2.15.$$

$$EIRP = E.R.P + 2.15$$

Limits

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts EIRP. Peak power" and Rule Part 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage".

Limit (EIRP)	$\leq 2 \text{ W (33 dBm)}$
--------------	-----------------------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 2$, $U = 1.19 \text{ dB}$

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 13 of 36

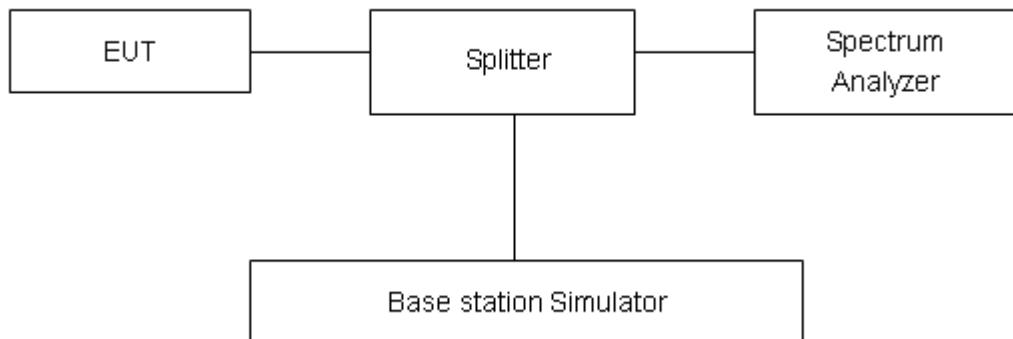
Test Results: Pass

	Channel	Polarization	LVL (dBm)	SG+30 (dBm)	Gain (dBi)	Cable Loss (dBm)	E.I.R.P. (dBm)
GSM 1900	512	Vertical	-14.67	43.33	1.92	18.18	27.07
	661	Vertical	-15.27	42.97	1.94	18.27	26.64
	810	Vertical	-15.08	43.13	1.9	18.3	26.73

Note: 1. E.R.P =S.G+30. - Tx Cable loss + Substitution antenna gain – 2.15.

2. EIRP= E.R.P+2.15

2.4. Occupied Bandwidth


Ambient condition

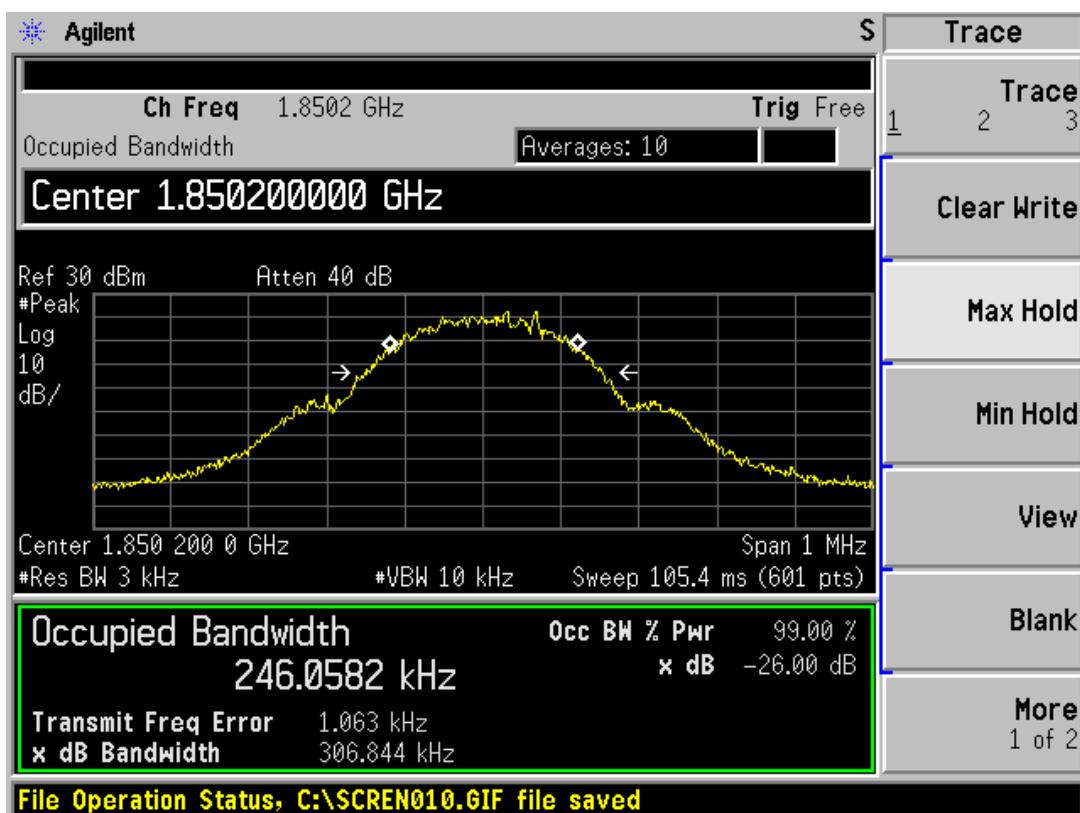
Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 3kHz, VBW is set to 10kHz for GSM 1900. 99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

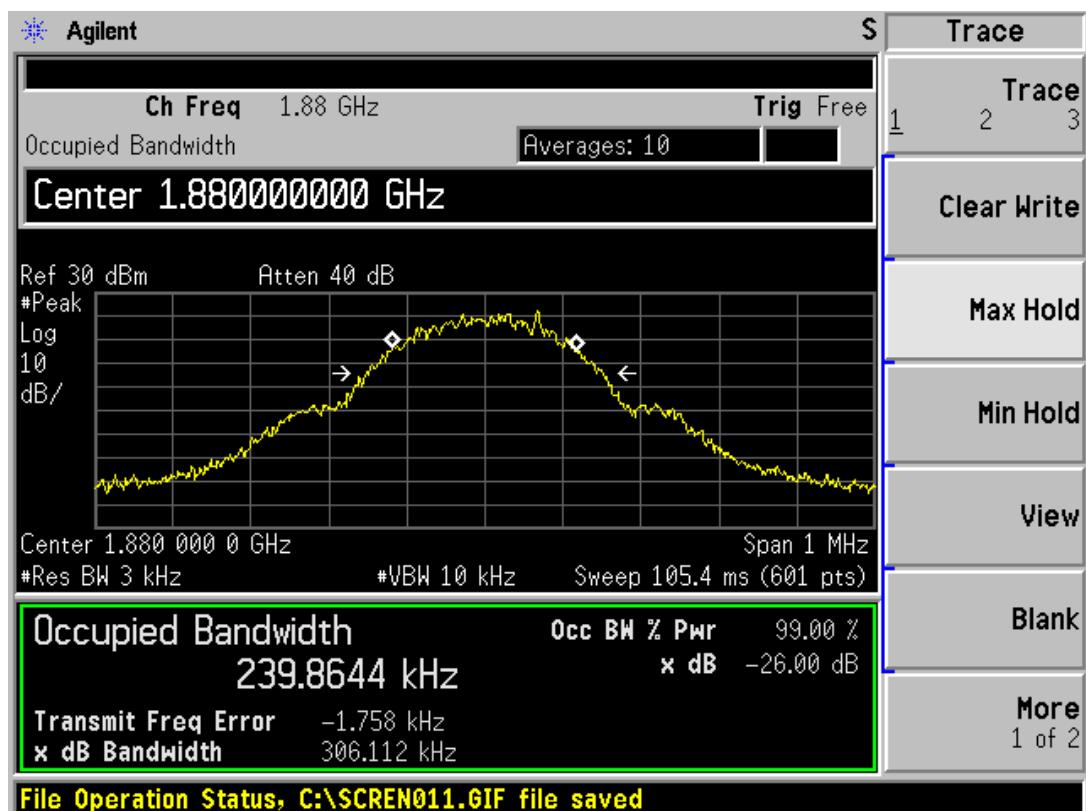

No specific occupied bandwidth requirements in part 2.1049.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 2$, $U = 624\text{Hz}$.

Test Result

	Channel	Frequency (MHz)	99% Power Bandwidth (kHz)	-26dBc Bandwidth(kHz)
GSM 1900	512	1850.2	246.0582	306.844
	661	1880.0	239.8644	306.112
	810	1909.8	239.7678	305.358


GSM1900 CH512 Occupied Bandwidth

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 16of 36

GSM 1900 CH661 Occupied Bandwidth

GSM 1900 CH810 Occupied Bandwidth

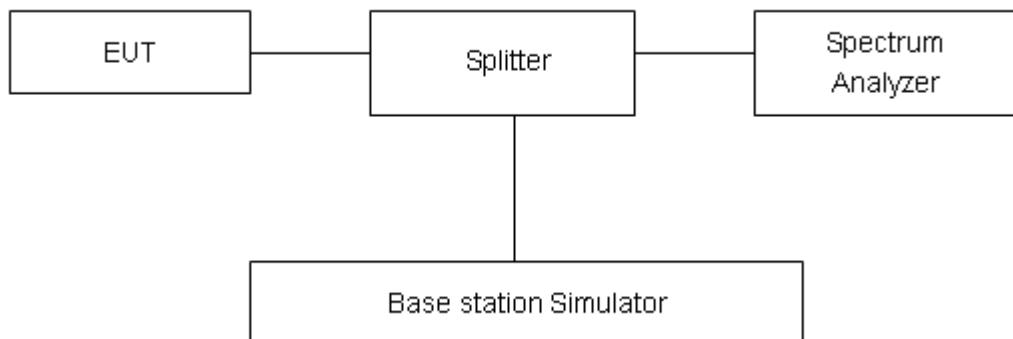
TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 17 of 36

2.5. Band Edge Compliance


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured. The Average detector is used and RBW is set to 3kHz, VBW is set to 10kHz for GSM 1900. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

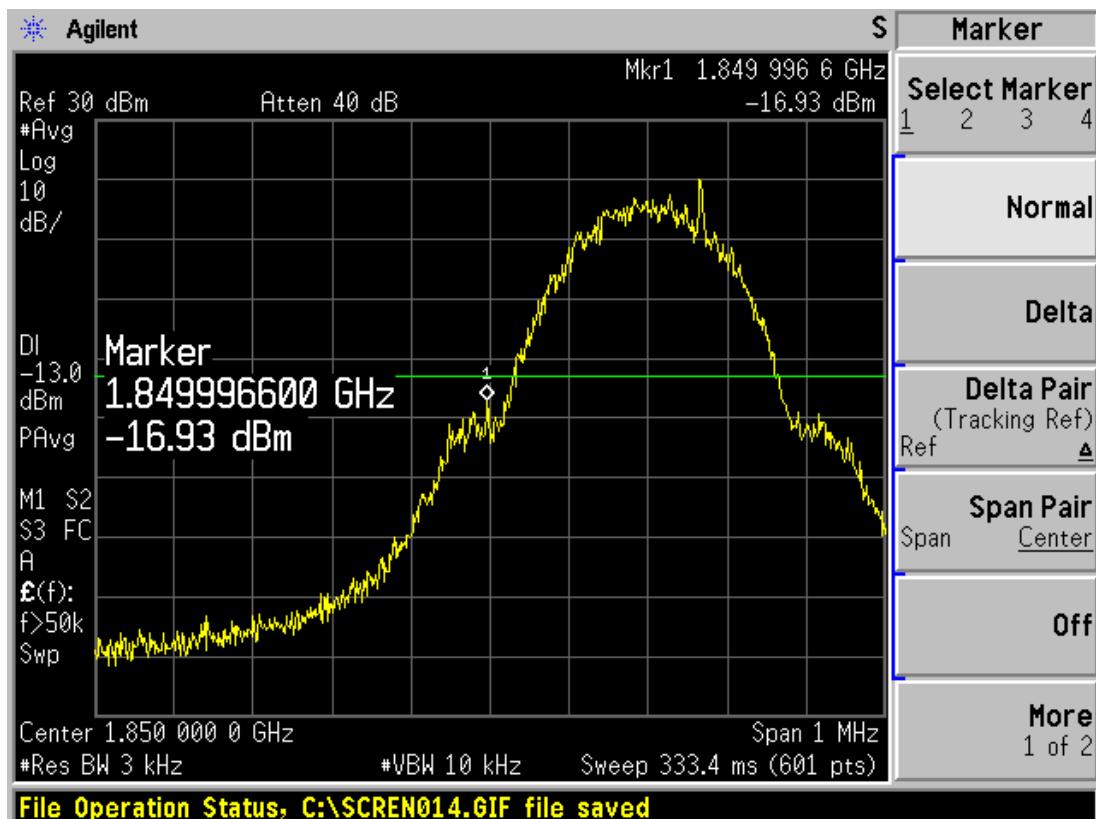
Rule Part 24.238(a) specifies that “on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10} (P)$ dB.”

Limit	-13 dBm
-------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 1.96$, $U=0.684\text{dB}$.

TA Technology (Shanghai) Co., Ltd. Test Report

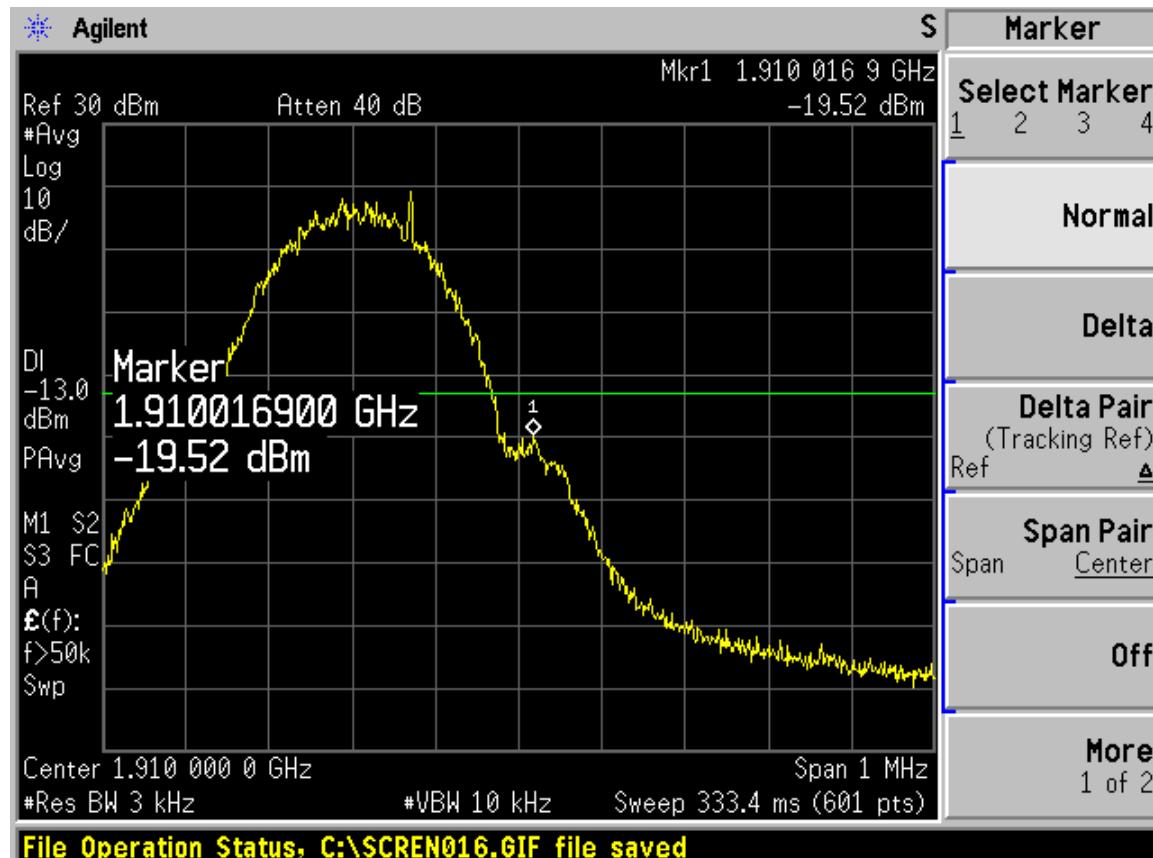

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 18 of 36

Test Result:

	Carrier frequency (MHz)	Reference value (dBm)	Limit	Conclusion
GSM 1900	1850.0	-16.93	-13	PASS
	1910.0	-19.52	-13	PASS


GSM 1900 512 Channel

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 19of 36

GSM1900 810 Channel

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 20 of 36

2.6. Frequency Stability

Ambient condition

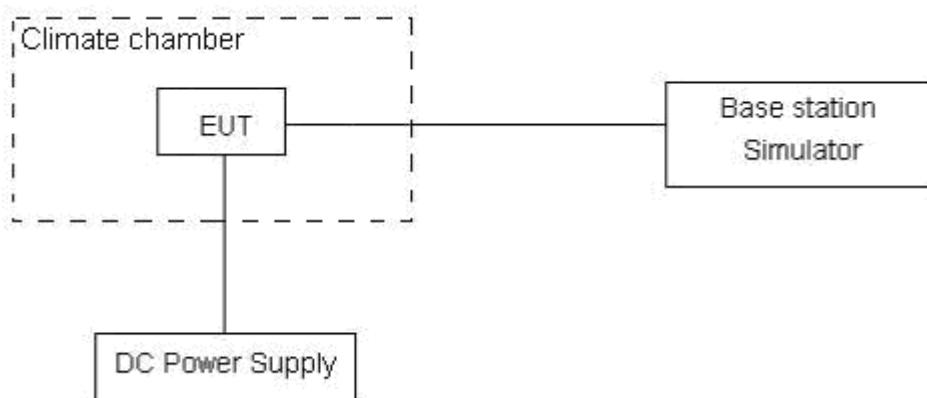
Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

1. Frequency Stability (Temperature Variation)

The temperature inside the climate chamber is varied from -30°C to +50°C in 10°C step size,

- (1) With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours.
- (2) Measure the carrier frequency with the test equipment in a “call mode”. These measurements should be made within 1 minute of powering up the mobile station, to prevent significant self warming.
- (3) Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, un-powered, before making measurements.


2. Frequency Stability (Voltage Variation)

The frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery-operating end point which shall be specified by the manufacturer.

This transceiver is specified to operate with an input voltage of between 3.5 V and 4.2 V, with a nominal voltage of 3.8V.

Test setup

Limits

No specific frequency stability requirements in part 24.235

Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor $k = 3$, $U = 0.01\text{ppm}$.

Test Result

Temperature (°C)	Test Results (ppm) / 3.8 V Power supply
	Channel 661
-30	0.01574
-20	0.01396
-10	0.01247
0	0.01036
10	0.00789
20	0.01627
30	0.01789
40	0.01936
50	0.02134

Voltage (V)	Test Results(ppm) / 20°C
	Channel 661
3.5	0.01678
3.8	0.01627
4.2	0.01823

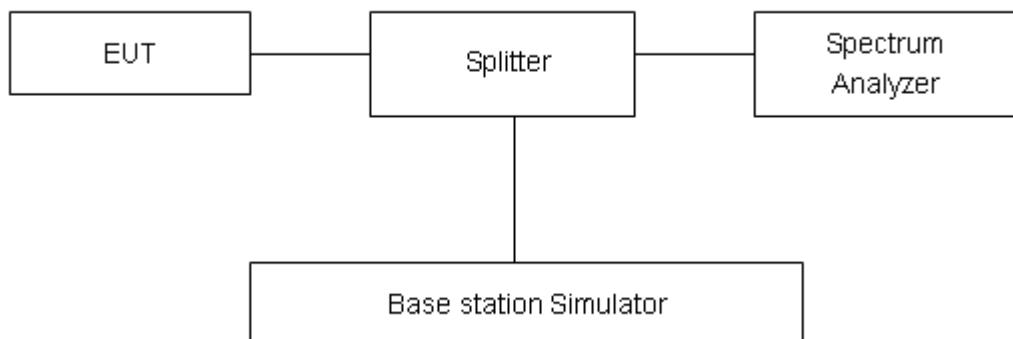
TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 22 of 36

2.7. Spurious Emissions at Antenna Terminals


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

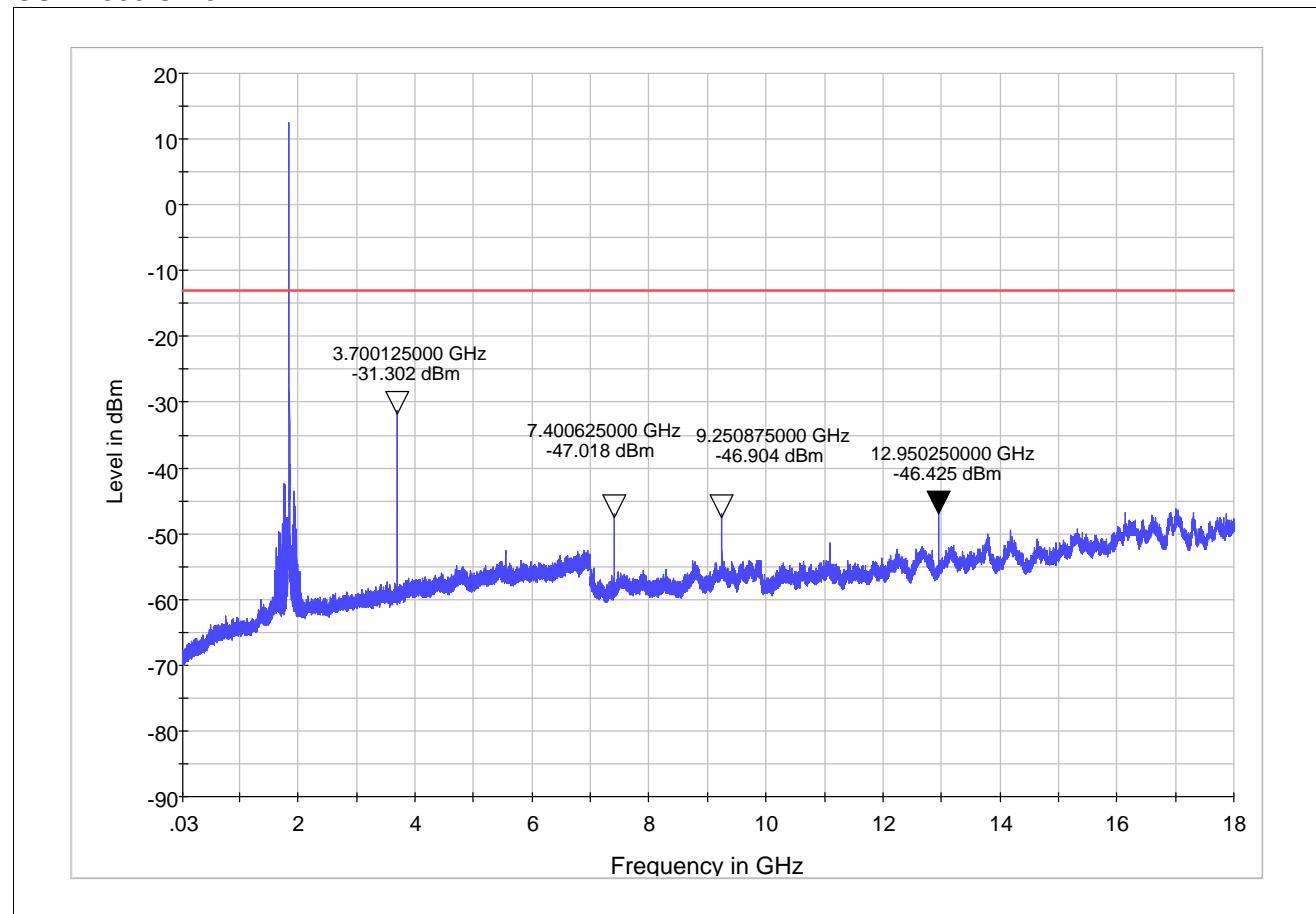
The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. For GSM 1900, RBW and VBW are set to 100 kHz, Sweep is set to ATUO.

Test setup

Limits

Rule Part 24.238(a) specifies that “on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10} (P)$ dB.”

Limit	-13 dBm
-------	---------


Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75 % confidence level for the normal distribution is with the coverage factor $k = 1.96$.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-12.75GHz	1.407 dB

Test Result

GSM 1900 CH 512

Note: The signal beyond the limit is carrier.

GSM 1900 512 Channel 30MHz~18GHz

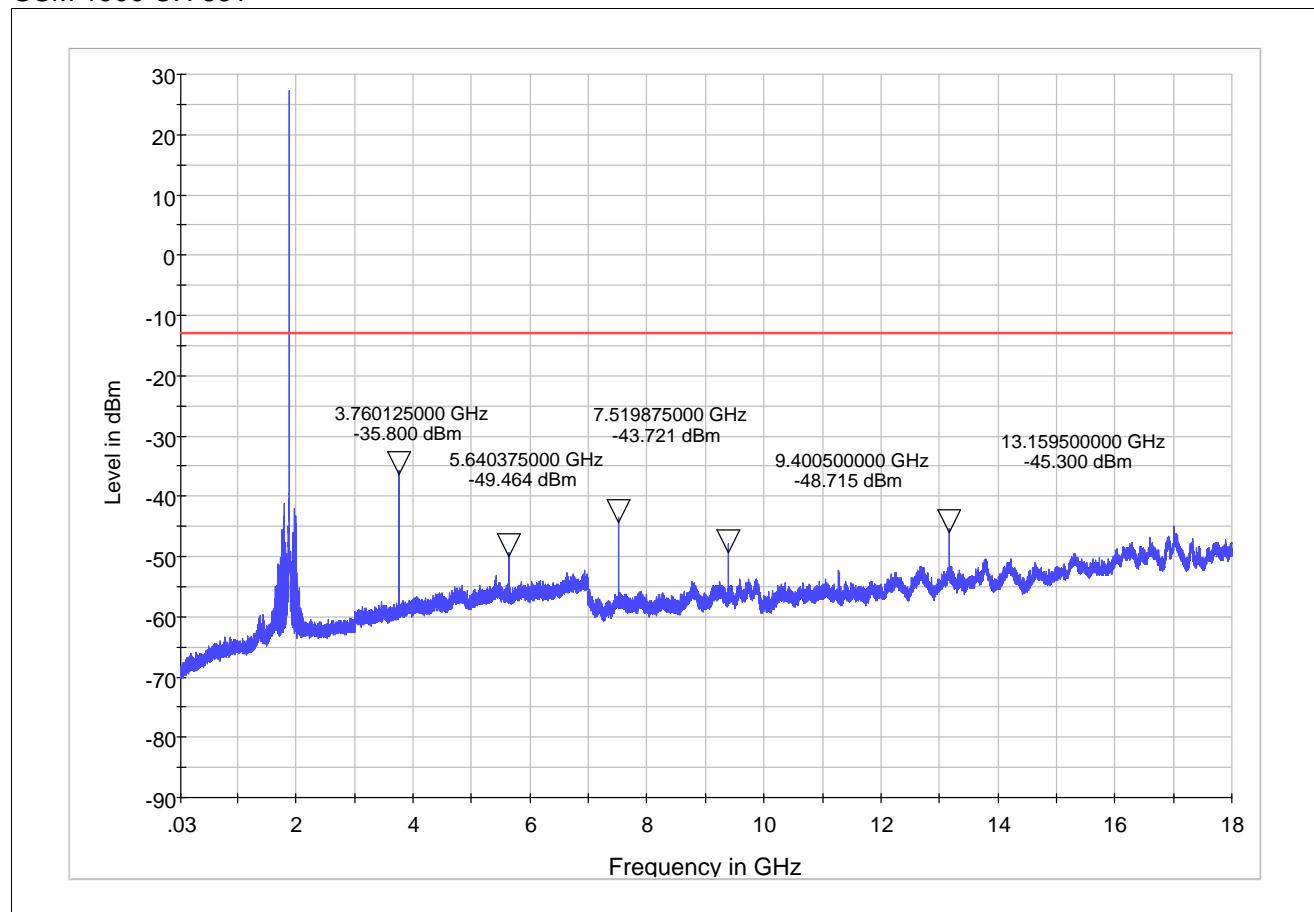

TA Technology (Shanghai) Co., Ltd.

Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 24 of 36


GSM 1900 512 Channel 18GHz~20GHz

Harmonic	TX ch.512 Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)
2	3700.125	-31.302	-13	18.302
3	5550.6	Nf	-13	/
4	7400.625	-47.018	-13	34.018
5	9250.875	-46.904	-13	33.904
6	11101.2	Nf	-13	/
7	12950.25	-46.425	-13	33.425
8	14801.6	Nf	-13	/
9	16651.8	Nf	-13	/
10	18502	Nf	-13	/

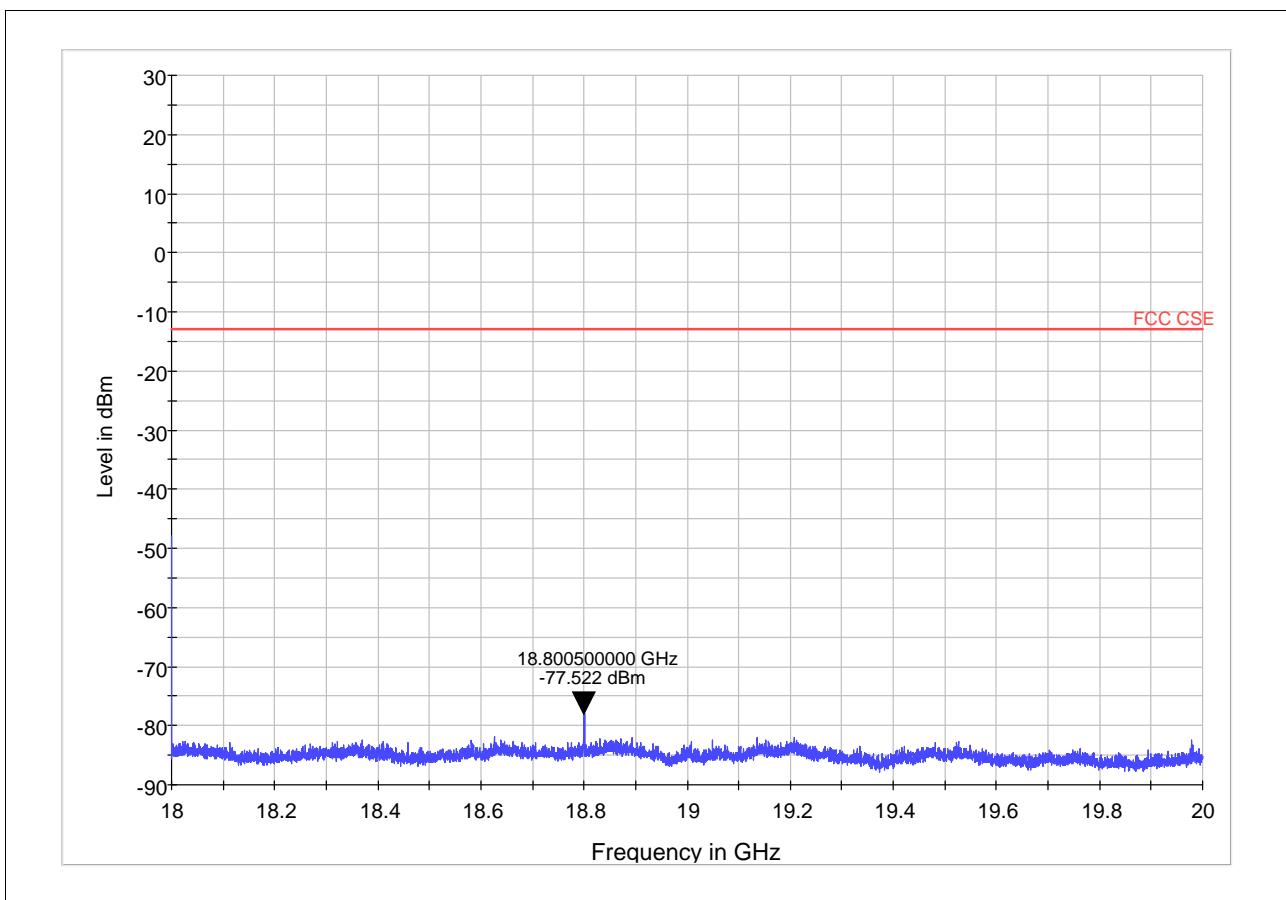
Nf: noise floor

Note: The other Spurious RF conducted emissions level is no more than noise floor.

GSM 1900 CH 661

Note: The signal beyond the limit is carrier.

GSM 1900 661 Channel 30MHz~18GHz


TA Technology (Shanghai) Co., Ltd.

Test Report

Registration Num:428261

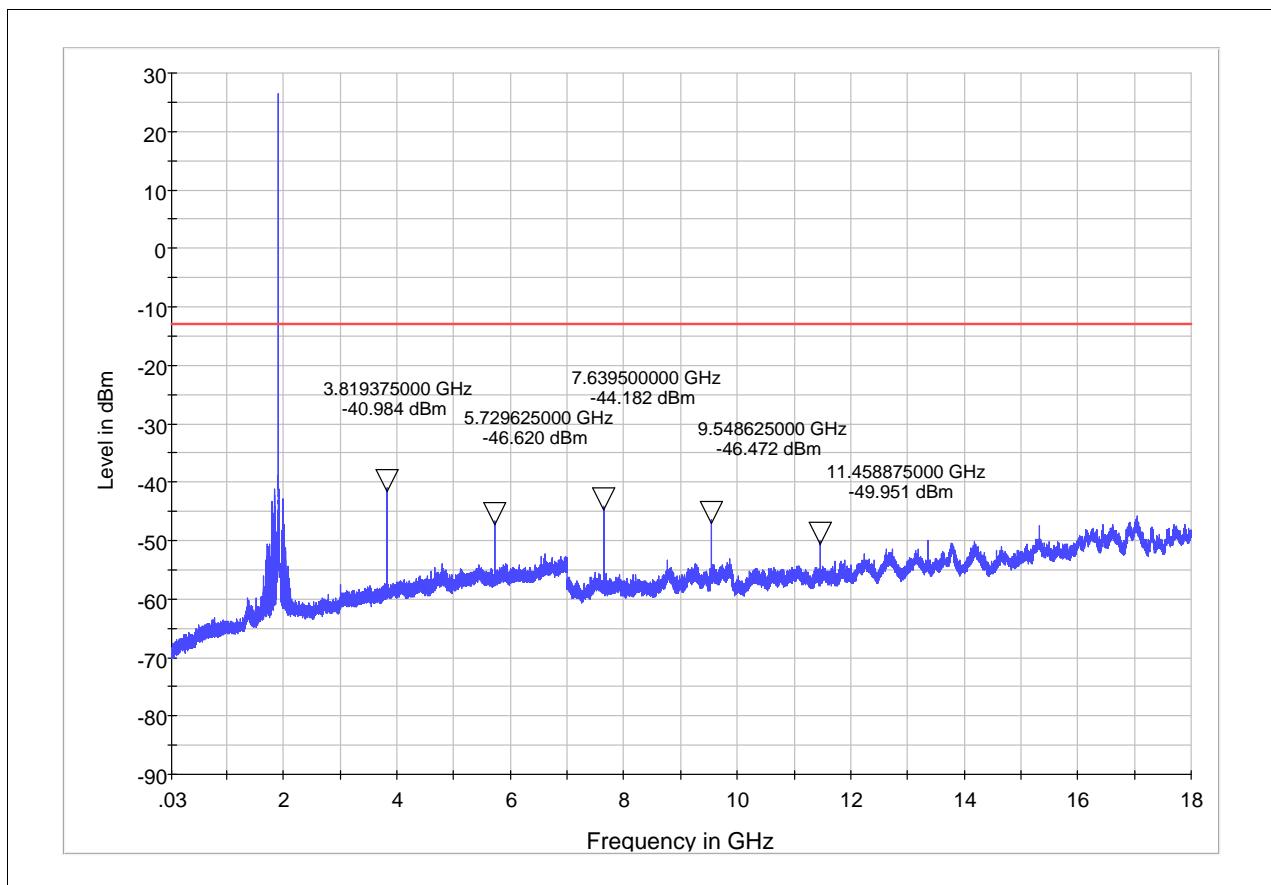
Report No.: RZA1111-1844RF02R1

Page 26 of 36

GSM 1900 661 Channel 18GHz~20GHz

Harmonic	TX ch.661 Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)
2	3760.125	-35.8	-13	22.8
3	5640.375	-49.464	-13	36.464
4	7519.875	-43.721	-13	30.721
5	9400.5	-48.715	-13	35.715
6	11280	Nf	-13	/
7	13159.5	-45.3	-13	32.3
8	15040	Nf	-13	/
9	16920	Nf	-13	/
10	18800.5	-77.522	-13	64.522

Nf: noise floor


Note: The other Spurious RF conducted emissions level is no more than noise floor.

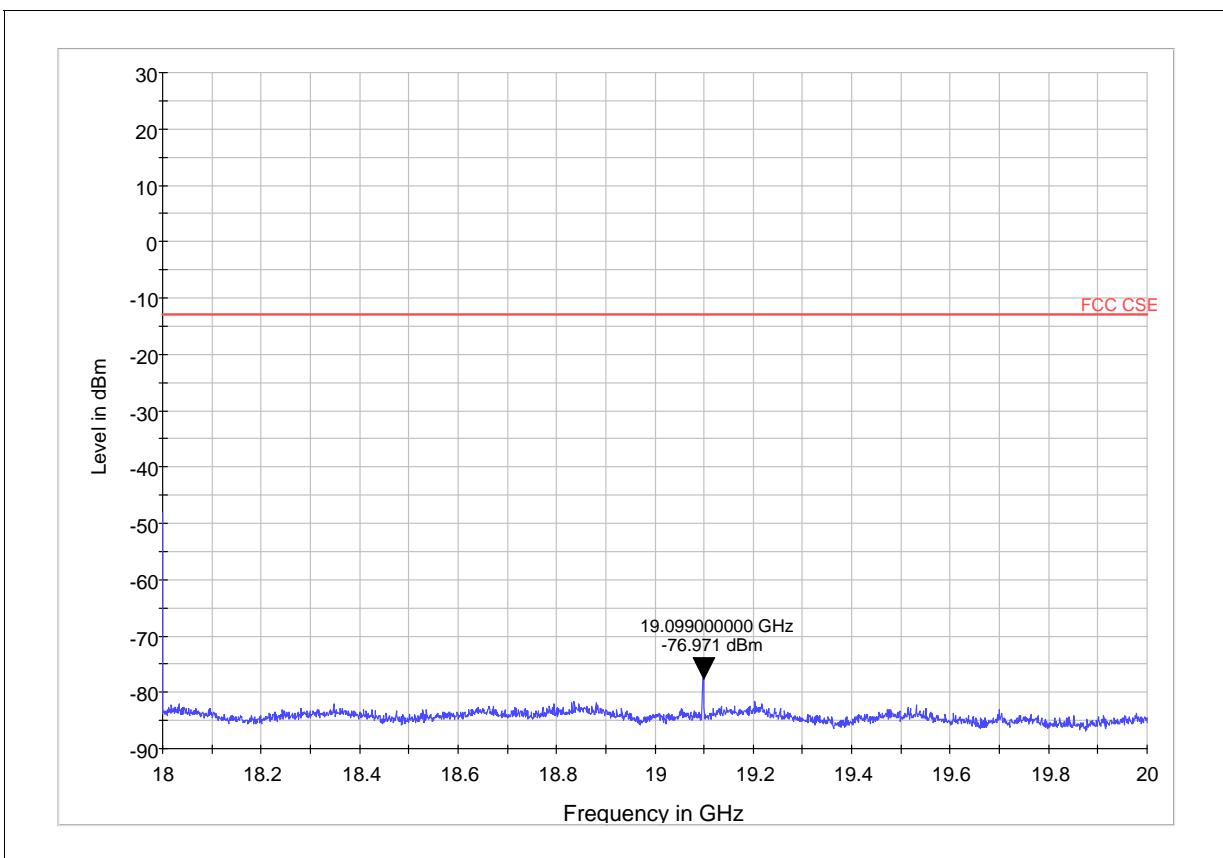
TA Technology (Shanghai) Co., Ltd.
Test Report
Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 27 of 36

GSM 1900 CH 810

Note: The signal beyond the limit is carrier.
GSM 1900 810 Channel 30MHz~18GHz


TA Technology (Shanghai) Co., Ltd.

Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 28 of 36

GSM 1900 810 Channel 18GHz~20GHz

Harmonic	TX ch.810 Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)
2	3819.375	-40.984	-13	27.984
3	5729.625	-46.620	-13	33.620
4	7639.5	-44.182	-13	31.182
5	9548.625	-46.472	-13	33.472
6	11458.875	-49.951	-13	36.951
7	13368.6	Nf	-13	/
8	15278.4	Nf	-13	/
9	17188.2	Nf	-13	/
10	19099	-76.971	-13	63.971

Nf: noise floor

Note: The other Spurious RF conducted emissions level is no more than noise floor.

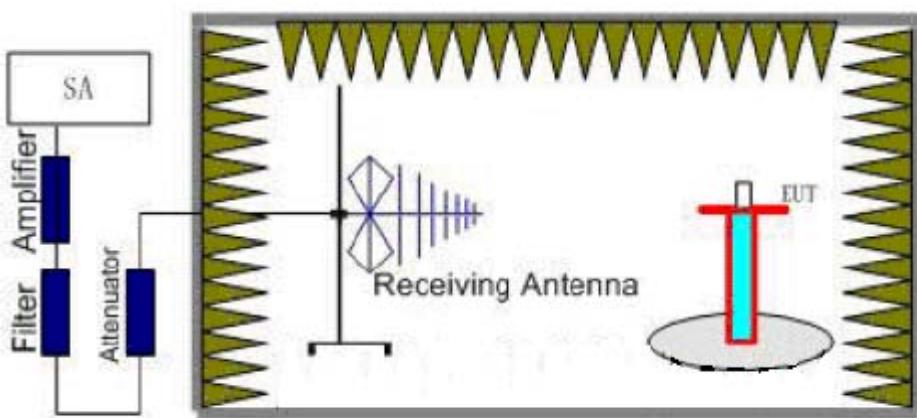
2.1. Radiates Spurious Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The measurements procedures in TIA -603C are used.


the spectrum is investigated from 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

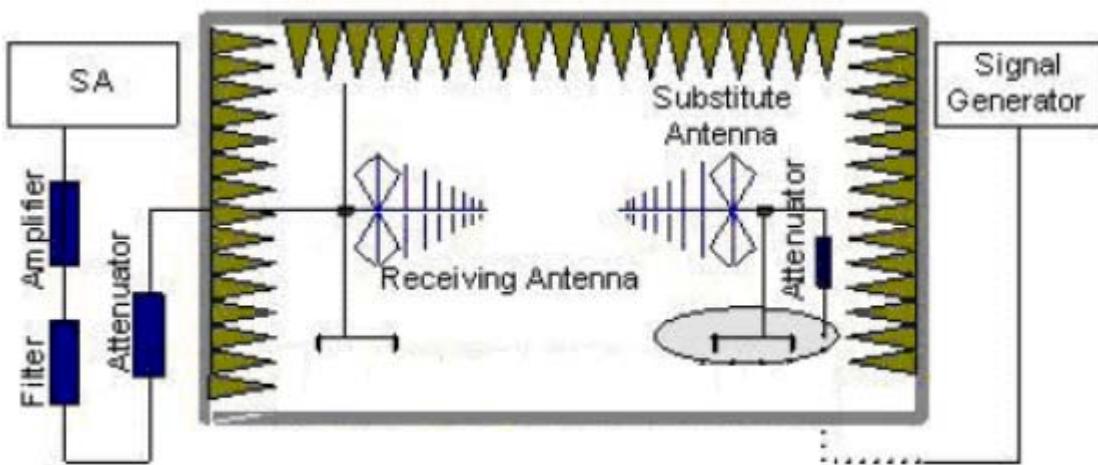
The emissions less than 20 dB below the permissible value are reported.

The procedure of Radiates Spurious Emission is as follows:

Step 1:

The measurement is carried out in the semi-anechoic chamber. EUT was placed on a 0.8 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used while RBW and VBW are both set to 3MHz. During the measurement, the highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna moved up and down over a range from 1 to 4 meters in both horizontally and vertically polarized orientations. The test setup refers to figure below.

Step 2:


A dipole antenna shall be substituted in place of the EUT. The antenna will be driven by a signal generator with a adjustable S.G. applied through a Tx cable. Adjust the level of the signal generator output until the value of the receiver reach the previously recorded analyzer power level (LVL). Then The E.R.P. /E.I.R.P. of the EUT can be calculated through the level of the signal generator, Tx cable loss and the gain of the substitution antenna. The test setup refers to figure below.

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 30 of 36

$$\text{E.R.P (peak power)} = \text{S.G.} - \text{Tx Cable loss} + \text{Substitution antenna gain} - 2.15.$$

$$\text{EIRP} = \text{E.R.P} + 2.15$$

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the antenna is vertical.

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10} (P)$ dB."

Limit	-13 dBm
-------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 1.96$, $U = 3.55$ dB.

Test Result

GSM 1900 CH 512

Harmonic	TX ch.512 Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3700.5	-41.379	5.1	7.25	-41.379	-13	28.379	180
3	5550.8	-45.442	5.42	7.57	-45.442	-13	32.442	180
4	7400.8	-48.047	6.7	8.85	-48.047	-13	35.047	180
5	9251	-44	7.01	9.16	-44	-13	31	180
6	11101	-44.323	7.48	9.63	-44.323	-13	31.323	180
7	12951.4	/	/	/	Nf	-13	/	/
8	14801.6	/	/	/	Nf	-13	/	/
9	16651.8	/	/	/	Nf	-13	/	/
10	18502	/	/	/	Nf	-13	/	/

Nf: noise floor

Note: The other Spurious RF Radiated emissions level is no more than noise floor.

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 32 of 36

GSM 1900 CH 661

Harmonic	TX ch.661 Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3760.1	-44.123	5.1	11.05	-40.323	-13	27.323	180
3	5640.4	-49.781	5.42	12.65	-44.701	-13	31.701	180
4	7520	-49.454	6.7	13.85	-44.454	-13	31.454	180
5	9400	-48.917	7.01	14.75	-43.327	-13	30.327	180
6	11280.5	-48.799	7.48	15.95	-42.479	-13	29.479	180
7	13160	-50.99	7.51	16.55	-44.1	-13	31.1	180
8	15040	/	/	/	Nf	-13	/	/
9	16920	/	/	/	Nf	-13	/	/
10	18800	/	/	/	Nf	-13	/	/

Nf: noise floor

Note: The other Spurious RF Radiated emissions level is no more than noise floor.

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 33 of 36

GSM 1900 CH 810

Harmonic	TX ch.810 Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3819.4	-42.143	6.1	11.05	-39.343	-13	26.343	180
3	5729.4	-50.016	5.7	12.65	-45.216	-13	32.216	180
4	7639.2	-50.798	6.7	13.85	-45.798	-13	32.798	180
5	9549	-45.943	7.6	14.75	-40.943	-13	27.943	180
6	11458.5	-45.691	7.54	15.95	-39.431	-13	26.431	180
7	13368.6	-51.562	8.14	16.55	-45.302	-13	32.302	180
8	15278.4	/	/	/	Nf	-13	/	/
9	17188.2	/	/	/	Nf	-13	/	/
10	19098	/	/	/	Nf	-13	/	/

Nf: noise floor

Note: The other Spurious RF Radiated emissions level is no more than noise floor.

TA Technology (Shanghai) Co., Ltd.
Test Report

Registration Num:428261

Report No.: RZA1111-1844RF02R1

Page 34 of 36

3. Main Test Instruments

No.	Name	Type	Manufacturer	Serial Number	Calibration Date	Valid Period
01	Base Station Simulator	CMU200	R&S	118133	2011-05-26	One year
02	Power Splitter	SHX-GF2-2-13	Hua Xiang	10120101	NA	NA
03	Spectrum Analyzer	E4445A	Agilent	MY46181146	2011-06-07	One year
04	Universal Radio Communication Tester	E5515C	Agilent	MY48367192	2011-06-03	One year
05	Signal Analyzer	FSV	R&S	100815	2011-06-27	One year
06	Signal generator	SMR27	R&S	1606.6000.02	2011-06-27	One year
07	EMI Test Receiver	ESCI	R&S	100948	2011-06-30	One year
08	Loop Antenna	FMZB1516	SCHWARZB ECK	237	2010-06-29	Two years
09	Trilog Antenna	VUBL 9163	SCHWARZB ECK	9163-201	2010-06-29	Two years
10	Horn Antenna	HF907	R&S	100126	2011-07-01	Two years
11	Climatic Chamber	PT-30B	Re Ce	20101891	2010-09-10	Three years
12	Semi-Anechoic Chamber	9.6*6.7*6.6m	ETS-Lindgren	NA	NA	NA
13	EMI test software	ES-K1	R&S	NA	NA	NA

*****END OF REPORT BODY*****

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance

a: EUT

b: Battery

Picture 1 EUT and Auxiliary

A.2 Test Setup

Picture 2: Radiated Spurious Emissions Test setup