

Shenzhen Most Technology Service Co., Ltd.

East A, 1 floor of New Aolin Factory building, Langshan Erlu, North District, Hi-tech Industry Park, Nanshan, Shenzhen, Guangdong, China

RF Exposure Evaluation Report

Compiled by

(position+printed name+signature)..: File administrators Alisa Luo

Supervised by

(position+printed name+signature)..: Test Engineer Sunny Deng

Approved by

(position+printed name+signature)..: Manager Yvette Zhou

Date of issue...... August 28,2025

Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd.

Nanshan, Shenzhen, Guangdong, China.

Applicant's name...... Shenzhen Skyler Technology Co., Ltd

Room 609, Gongle Development Technology Building, Gongle

Guangdong Province, China

Test specification/ Standard............: 47 CFR Part 1.1307;47 CFR Part 1.1310

KDB447498D01 General RF Exposure Guidance v06

TRF Originator...... Shenzhen Most Technology Service Co., Ltd.

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Trade Mark....... N/A

Model/Type reference...... Q1AS

Listed Models Q1AA,Q1AB,Q1AC,Q1AD,Q1AE,Q1AF

Modulation Type.....: b: DSSS ; g/n: OFDM

GFSK

Operation Frequency.....: From 2412MHz~2462MHz

2402MHz to 2480MHz

Hardware Version..... V1.0

Software Version...... V1.0

Rating..... DC 5V

Result..... PASS

Report No.: MTEB25080333-H Page 2 of 7

TEST REPORT

Equipment under Test AI BOX

Model /Type Q1AS

Address

Q1AA,Q1AB,Q1AC,Q1AD,Q1AE,Q1AF Listed Models

Use Q1AS for all tests. Only the model name is different.while Remark

other designs are the same. Internal electronic components, circuit

layout and wiring are consistent.

Applicant Shenzhen Skyler Technology Co., Ltd

Room 609, Gongle Development Technology Building, Gongle

Industrial Zone, Xixiang Street, Bao'an District, Shenzhen City, Address

Guangdong Province, China

Shenzhen Skyler Technology Co., Ltd Manufacturer

Room 609, Gongle Development Technology Building, Gongle

Industrial Zone, Xixiang Street, Bao'an District, Shenzhen City,

Guangdong Province, China

Test Result:	PASS
	<u> </u>

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: MTEB25080333-H Page 3 of 7

1. Revision History

Revision	Issue Date	Revisions	Revised By
00	2025.08.28	Initial Issue	Alisa Luo

Report No.: MTEB25080333-H Page 4 of 7

Report No.: MTEB25080333-H Page 5 of 7

2. SAR Evaluation

2.1 RF Exposure Compliance Requirement

2.1.1 Standard Requirement

According to KDB447498D01 General RF Exposure Guidance v06

4.3.1. Standalone SAR test exclusion considerations

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

2.1.2 Limits

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposure	es	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/1²) 1.0 f/300	6 6 6 6
1915 300000	The state of the s	on/Uncontrolled Exp	2000000	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500			f/1500	30
1500-100,000			1.0	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*Pi*R^2)$ Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.1.3 EUT RF Exposure

BLE

GFSK					
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power		
	(dBm)	(dBm)	(dBm)		
Lowest(2402 MHz)	2.10	2.10±1	3.10		
Middle(2440MHz)	1.73	1.73±1	2.73		
Highest(2480MHz)	1.34	1.34±1	2.34		

BLE

	Worst case: GFSK						
Channel	Maximum tune-up Power (dBm)	Maximum tune-up Power (MW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)	Limit	Result	
Lowest(2402 MHz)	3.10	2.04	-0.5	0.00040	1.0	Pass	

Note: 1) Refer to report MTEB25080333-R for EUT test Max Conducted average Output Power value. Note: 2) Pd = $(Pout*G)/(4*Pi*R2)=(2.04*0.99)/(4*3.1416*20^2)=0.00040$

WIFI 2.4G

7711 1 2.10				
802.11b				
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power	
	(dBm)	(dBm)	(dBm)	
Lowest(2412MHz)	13.25	13.25±1	14.25	
Middle(2437MHz)	14.70	14.70 ± 1	15.70	
Highest(2462MHz)	14.75	14.75±1	15.75	

Report No.: MTEB25080333-H Page 7 of 7

802.11g					
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power		
rest sharmer	(dBm)	(dBm)	(dBm)		
Lowest(2412MHz)	13.00	13.00±1	14.00		
Middle(2437MHz)	13.14	13.14±1	14.14		
Highest(2462MHz)	13.51	13.51±1	14.51		

802.11n(H20)					
Test channel	Peak Output Power	Tune up tolerance	Maximum tune-up Power		
. SSC SHAFFICE	(dBm)	(dBm)	(dBm)		
Lowest(2412MHz)	13.30	13.30±1	14.30		
Middle(2437MHz)	13.35	13.35±1	14.35		
Highest(2462MHz)	13.68	13.68±1	14.68		

WIFI 2.4G

	Worst case: 802.11g						
Channel	Maximum tune-up Power (dBm)	Maximum tune-up Power (MW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm2)	Limit	Result	
Lowest(2462MHz)	15.75	37.58	-0.5	0.00740	1.0	Pass	

Note: 1) Refer to report MTEB25080333-R1 for EUT test Max Conducted average Output Power value Note: 2) Pd = (Pout*G)/(4* Pi * R2)=(37.58*0.99)/(4*3.1416*20²)=0.00740	Je
THE END OF REPORT	