

Test Report No.: RF2505WDG0283

TEST REPORT

Applicant	BEIJING POPMART CULTURAL & CREATIVE CO., LTD.
Address	BUILDING 13, AREA 4, WANGJING EAST GARDEN, CHAOYANG DISTRICT, BEIJING

Manufacturer or Supplier	Beijing Pop Mart Cultural & Creative Co., Ltd.
Address	Room 3606, 36th Floor, Block A, 101, No. 13, District 4, Wangjing East Park, Chaoyang District, Beijing, China
Product	DIMOO DREAM MELODY SERIES BLOCKS-DREAM CONDUCTOR
Brand Name	N/A
Model	P10018
Additional Model & Model Difference	N/A
Date of tests	Jul. 04, 2025 ~ Jul. 18, 2025

the tests have been carried out according to the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.225

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

Prepared by Andrew Sha Project Engineer / EMC Department	Approved by Glyn He Assistant Manager / EMC Department

Date: Sep. 02, 2025

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

RELEASE CONTROL RECORD	4
1 SUMMARY OF TEST RESULTS.....	5
2 MEASUREMENT UNCERTAINTY	5
3 GENERAL INFORMATION	6
3.1 GENERAL DESCRIPTION OF EUT	6
3.2 DESCRIPTION OF TEST MODES	7
3.2.1. CONFIGURATION OF SYSTEM UNDER TEST.....	7
3.2.2. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL.....	7
3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS	9
3.4 DESCRIPTION OF SUPPORT UNITS	9
3.5 CONFIGURATION OF SYSTEM UNDER TEST	10
4 TEST TYPES AND RESULTS.....	11
4.1. CONDUCTED EMISSION MEASUREMENT	11
4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT	11
4.1.2 TEST INSTRUMENTS.....	11
4.1.3 TEST PROCEDURES	12
4.1.4 DEVIATION FROM TEST STANDARD	12
4.1.5 TEST SETUP	13
4.1.6 EUT OPERATING CONDITIONS	13
4.1.7 TEST RESULTS.....	14
4.2. RADIATED EMISSION AND BANDEdge MEASUREMENT	16
4.2.1 LIMITS OF RADIATED EMISSION AND BANDEdge MEASUREMENT	16
4.2.2 TEST INSTRUMENTS	17
4.2.3 TEST PROCEDURES	18
4.2.4 DEVIATION FROM TEST STANDARD	18
4.2.5 TEST SETUP.....	19
4.2.6 EUT OPERATING CONDITIONS.....	20
4.2.7 TEST RESULTS	20
4.3. FREQUENCY TOLERANCE	23
4.3.1. LIMIT OF FREQUENCY TOLERANCE	23
4.3.2. TEST INSTRUMENTS	23
4.3.3. TEST PROCEDURES	24
4.3.4. DEVIATION FROM TEST STANDARD	24

Test Report No.: RF2505WDG0283

4.3.5. TEST SETUP.....	24
4.3.6. EUT OPERATING CONDITIONS.....	25
4.3.7. TEST RESULTS.....	25
4.4. 20DB BANDWIDTH.....	26
4.4.1. LIMITS OF 20DB BANDWIDTH	26
4.4.2. TEST INSTRUMENTS	26
4.4.3. TEST PROCEDURE	27
4.4.4. DEVIATION FROM TEST STANDARD	27
4.4.5. TEST SETUP.....	27
4.4.6. EUT OPERATING CONDITION	28
4.4.7. TEST RESULTS	28
5. PHOTOGRAPHS OF THE TEST CONFIGURATION	29
6. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	30

Test Report No.: RF2505WDG0283

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF2505WDG0283	Original release	Sep. 02, 2025

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit.
15.225 (a)&(b)&(c)	The field strength of any emissions within the band	PASS	Meet the requirement of limit.
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit.
15.225 (e)	Frequency tolerance	PASS	Meet the requirement of limit.
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	3.36dB
Radiated emissions	9KHz ~ 30MHz	2.80dB
	30MHz ~ 1GHz	4.56dB
	1GHz ~ 18GHz	5.02dB
	18GHz ~ 40GHz	4.50dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	DIMOO DREAM MELODY SERIES BLOCKS-DREAM CONDUCTOR
MODEL NO.	P10018
ADDITIONAL MODELS	N/A
FCC ID	2BRFS-P10018
POWER SUPPLY	USB 5V from host unit
MODULATION TECHNOLOGY	NFC
MODULATION TYPE	ASK
OPERATING FREQUENCY	13.56MHz
NUMBER OF CHANNEL	1
ANTENNA TYPE	Loop Antenna, with 0dBi gain
I/O PORTS	N/A
CABLE SUPPLIED	USB cable: Unshielded, Detachable, 1.0m

NOTES:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
3. Please refer to the EUT photo document (Reference No.: 2505WDG0283) for detailed product photo.

3.2 DESCRIPTION OF TEST MODES

The EUT only have one channel.

CHANNEL	FREQUENCY (MHz)
1	13.56

3.2.1. CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photograph of the test configuration for reference.

3.2.2. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	APPLICABLE TO				DESCRIPTION
	RE	FT	PLC	BW	
A	√	√	√	√	NFC Function

Where

RE: Radiated Emission

FT: Frequency tolerance

PLC: Power Line Conducted Emission

BW: 20dB Bandwidth

RADIATED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	TESTED CHANNEL	TESTED FREQUENCY (MHz)	MODULATION TYPE	AXIS
A	1	13.56	ASK	X

FREQUENCY TOLERANCE:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	TESTED CHANNEL	TESTED FREQUENCY (MHZ)	MODULATION TYPE	AXIS
A	1	13.56	ASK	X

POWER LINE CONDUCTED EMISSION TEST:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	TESTED CHANNEL	TESTED FREQUENCY (MHZ)	MODULATION TYPE	AXIS
A	1	13.56	ASK	X

20dB BANDWIDTH:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	TESTED CHANNEL	TESTED FREQUENCY (MHZ)	MODULATION TYPE	AXIS
A	1	13.56	ASK	X

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY
RE	25deg. C, 63%RH	DC 5V from adapter	Vincent
FT	25deg. C, 60%RH	DC 5V from adapter	Vincent
PLC	25deg. C, 55%RH	DC 5V from adapter	Vincent
BW	25deg. C, 60%RH	DC 5V from adapter	Vincent

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

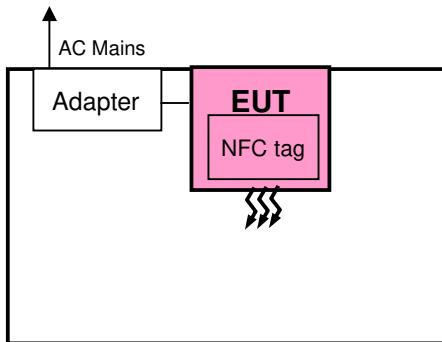
The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.225

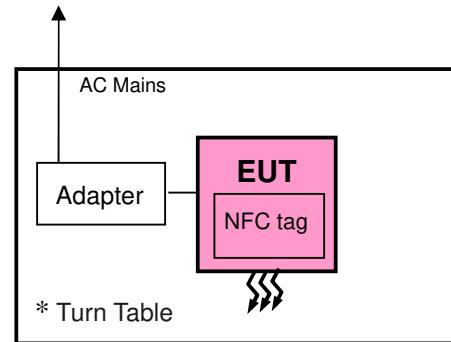
ANSI C63.10-2020

All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NCF tag	Popmart	N/A	N/A	N/A
2	NCF tag	Popmart	N/A	N/A	N/A
3	NCF tag	Popmart	N/A	N/A	N/A
4	NCF tag	Popmart	N/A	N/A	N/A


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

3.5 CONFIGURATION OF SYSTEM UNDER TEST

CONDUCTED EMISSION TEST:

RADIATED EMISSION TEST:

4 TEST TYPES AND RESULTS

4.1. CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dB μ V)	
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTES: 1. The lower limit shall apply at the transition frequencies.

1. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
2. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

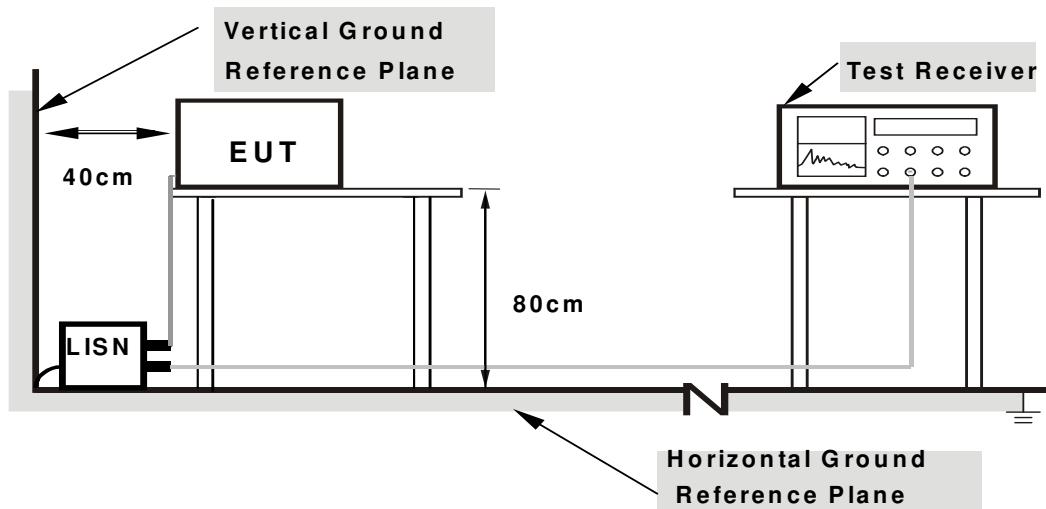
4.1.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR7	101494	Oct. 09, 25
Artificial Mains Network	Rohde&Schwarz	ENV216	101173	Oct. 10, 25
Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	100317	Oct. 09, 25
Artificial Mains Network	SCHWARZBECK	NSLK 8122	8122-05001	Apr. 09, 26
V-LISN (CISPR 25)	SCHWARZBECK	NNBM 8124-200	8124-200 05857	Apr. 09, 26
V-LISN (CISPR 25)	SCHWARZBECK	NNBM 8124-200	8124-200 05858	Apr. 09, 26
Voltage probe	SCHWARZBECK	TK 9421	TK 9421-176	Jul. 06, 26
Coaxial RF Cable	SUHNER	RG 223/U-CE	C2310066DG	Jun. 22, 26
Test software	ADT	ADT_Cond_V7.3.7	N/A	N/A

NOTES:

1. The test was performed in shielded room 553.
2. Equipment are calibrated by calibration laboratory accredited to ISO/IEC 17025 by a mutually recognized Accreditation and all tests are conducted within a valid calibration cycle.

4.1.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

Note:

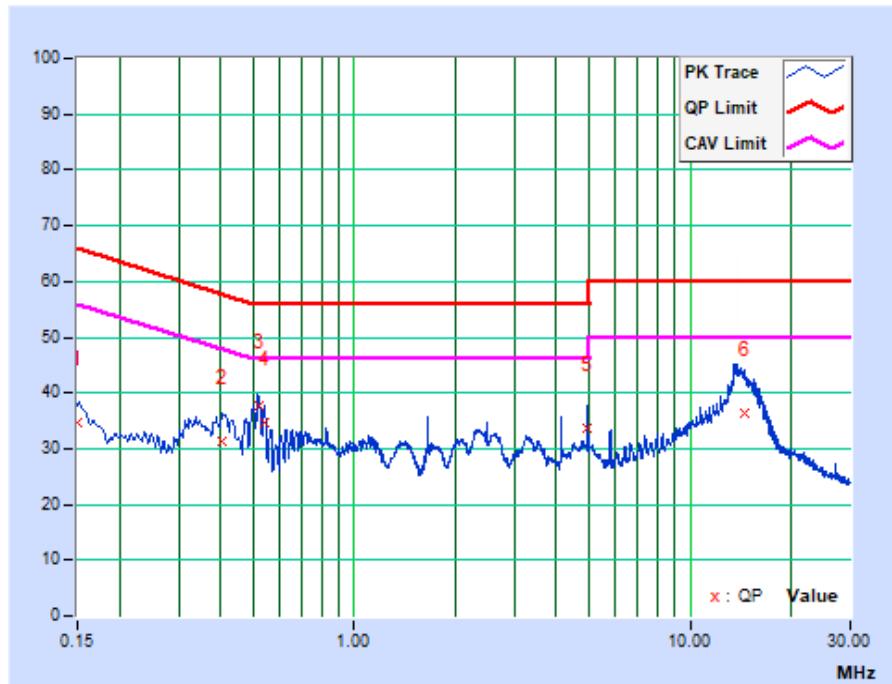
1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

4.1.7 TEST RESULTS

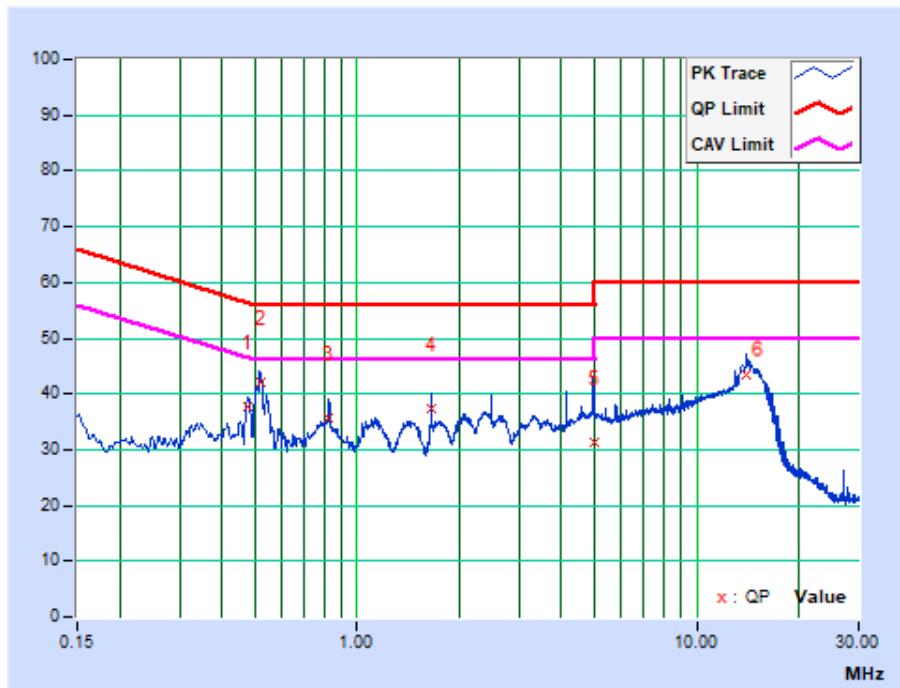

CONDUCTED WORST-CASE DATA:

PHASE		Line		6dB BANDWIDTH		9kHz	
-------	--	------	--	---------------	--	------	--

No	Freq. [MHz]	Corr. Factor (dB)	Reading Value [dB (uV)]		Emission Level [dB (uV)]		Limit [dB (uV)]		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.79	25.00	12.60	34.79	22.39	66.00	56.00	-31.21	-33.61
2	0.40442	9.67	21.72	10.39	31.39	20.06	57.76	47.76	-26.37	-27.70
3	0.51900	9.69	28.17	23.19	37.86	32.88	56.00	46.00	-18.14	-13.12
4	0.53925	9.69	24.96	18.28	34.65	27.97	56.00	46.00	-21.35	-18.03
5	4.95825	9.97	23.73	19.82	33.70	29.79	56.00	46.00	-22.30	-16.21
6	14.46675	10.66	25.59	12.39	36.25	23.05	60.00	50.00	-23.75	-26.95

REMARKS:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. The emission levels of other frequencies were very low against the limit.
4. Margin value = Emission level - Limit value
5. Correction factor = Insertion loss + Cable loss
6. Emission Level = Correction Factor + Reading Value.



PHASE	Neutral	6dB BANDWIDTH	9kHz
-------	---------	---------------	------

No	Freq. [MHz]	Corr. Factor (dB)	Reading Value [dB (uV)]		Emission Level [dB (uV)]		Limit [dB (uV)]		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.47887	9.83	27.84	21.79	37.67	31.62	56.36	46.36	-18.69	-14.74
2	0.52109	9.83	32.36	27.23	42.19	37.06	56.00	46.00	-13.81	-8.94
3	0.82714	9.85	25.73	18.80	35.58	28.65	56.00	46.00	-20.42	-17.35
4	1.65300	9.93	27.37	21.82	37.30	31.75	56.00	46.00	-18.70	-14.25
5	5.00000	10.09	21.33	13.27	31.42	23.36	56.00	46.00	-24.58	-22.64
6	14.08425	10.65	32.75	21.76	43.40	32.41	60.00	50.00	-16.60	-17.59

REMARKS:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
3. The emission levels of other frequencies were very low against the limit.
4. Margin value = Emission level - Limit value
5. Correction factor = Insertion loss + Cable loss
6. Emission Level = Correction Factor + Reading Value.

4.2. RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

The field strength of any emissions shall not exceed the following limits:

- (a) 15.848mV/m(84dBuV/m) at 30m, within the band 13.553-13.567 MHz;
- (b) 334uV/m(50.5dBuV/m) at 30m, within the band 13.410-13.553 MHz and 13.567-13.710MHz;
- (c) 106uV/m(40.5dBuV/m) at 30m, within the band 13.110-13.410 MHz and 13.710-14.010MHz;

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTES:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
4. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example:

$$\begin{aligned}13.56\text{MHz} &= 15848\text{uV/m} & 30\text{m} \\&= 84\text{dBuV/m} & 30\text{m} \\&= 84+20\log(30/3)^2 & 3\text{m} \\&= 124\text{dBuV/m}\end{aligned}$$

4.2.2 TEST INSTRUMENTS

9KHz~30MHz

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR7	101564	Nov. 28, 25
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	1519B-045	May 10, 26
Amplifier	Burgeon	BPA-530	100210	Feb. 21, 26
Coaxial RF Cable	Yaohong	Cable below 30MHz	C2310019DG	Jun. 26, 26
Test Software	ADT	ADT_Radiated_V8.7.07	N/A	N/A

NOTES:

1. The test was performed in 10m Chamber.
2. Equipment are calibrated by calibration laboratory accredited to ISO/IEC 17025 by a mutually recognized Accreditation and all tests are conducted within a valid calibration cycle.
3. Test Firm Registration Number: 749762.
4. Designation Number: CN1174

30MHz~1GHz

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESU40	100449	Oct. 10, 25
Trilog-Broadband Antenna	SCHWARZBECK	VULB 9168	9168-554	Dec. 25, 25
Pre-Amplifier	Burgeon	BPA-530	100220	Feb. 21, 26
3m Semi-anechoic Chamber	Burgeon	9m*6m*6m	NSEMC003	May 17, 26
Coaxial RF Cable(3m Below 1G)	Yaohong	966 below 1GHz	C2310017DG	Jun. 22, 26
Coaxial RF Cable(3m Below 1G)	Yaohong	966 below 1GHz	C2310087DG	Jun. 22, 26
Test software	ADT	ADT_Radiated_V7.6.15.9.2	N/A	N/A

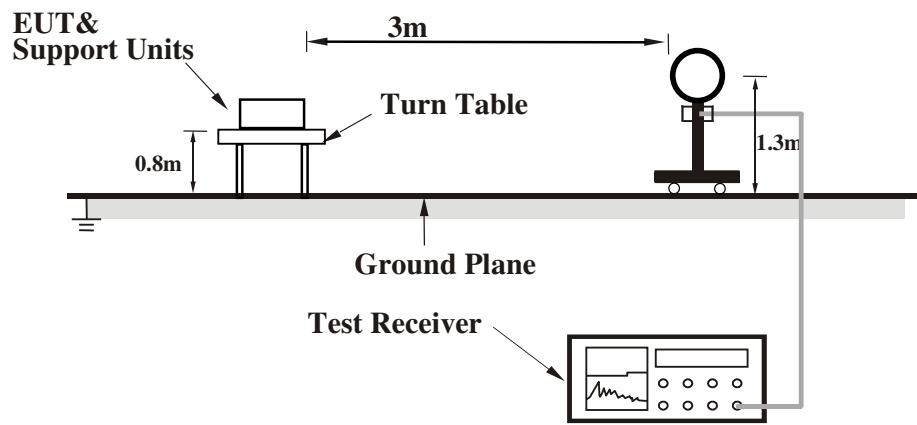
NOTES:

1. The test was performed in 966 Chamber (a 3m Semi-anechoic chamber).
2. Equipment are calibrated by calibration laboratory accredited to ISO/IEC 17025 by a mutually recognized Accreditation and all tests are conducted within a valid calibration cycle.
3. Test Firm Registration Number: 749762.
4. Designation Number: CN1174

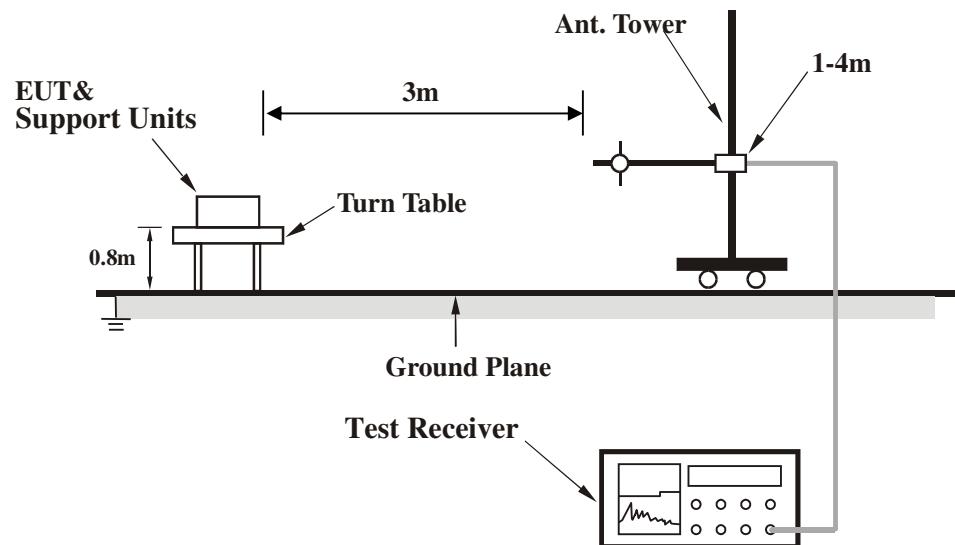
4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10&3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.
- g. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1.3m above the ground.

NOTES:


1. The resolution bandwidth of test receiver/spectrum analyzer is 100kHz for peak detection (PK) at fundamental frequency below 1GHz; The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at radiated spurious emission frequency below 1GHz.
2. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
3. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
4. Margin value = Emission level – Limit value.
5. Fundamental AV value =PK Emission +AV factor.

4.2.4 DEVIATION FROM TEST STANDARD


No deviation.

4.2.5 TEST SETUP

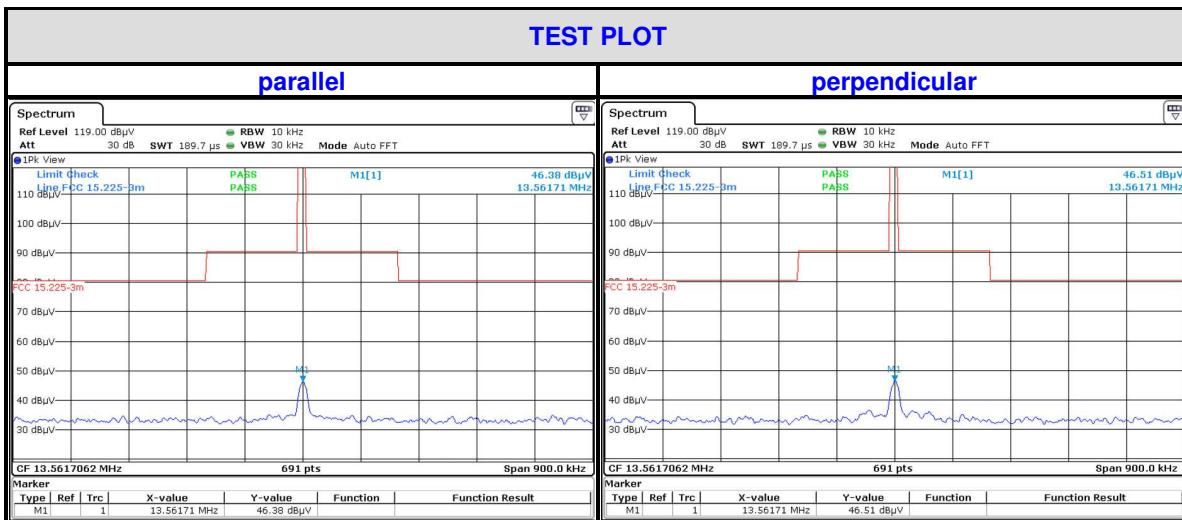
Below 30MHz test setup

Below 1GHz test setup

Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Set the EUT under transmission condition continuously at specific channel frequency.

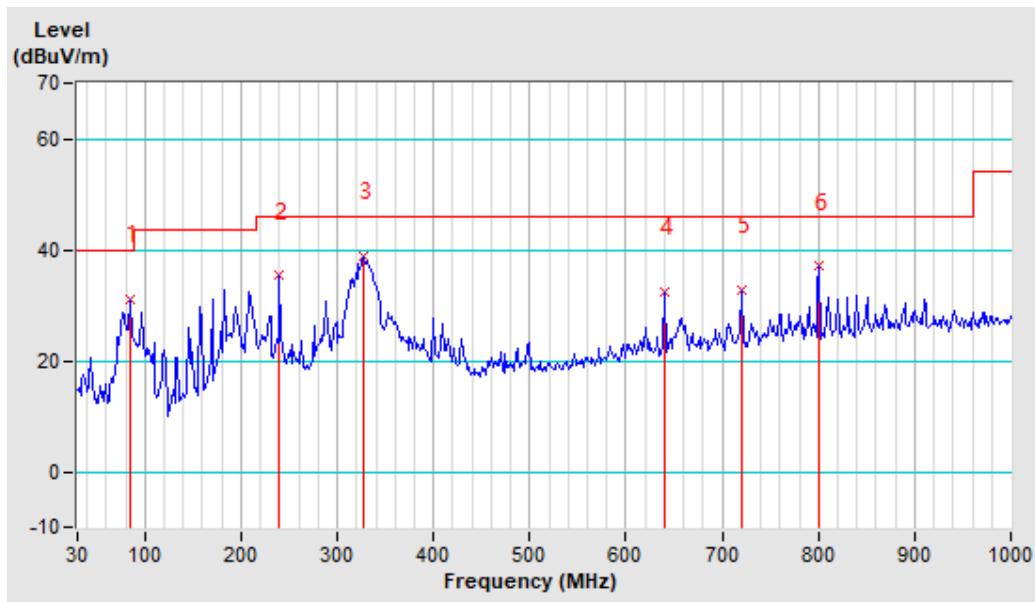

4.2.7 TEST RESULTS

FIELD STRENGTH (BELOW 30MHZ AT 3M)

No.	Freq. (MHz)	Correction Factor (dB/m)	Raw Value (dBuV)	Emission Level (dBuV/m)	Polarity	Limit (dBuV/m)	Margin (dB)
1	*13.56(QP)	-10.07	56.45	46.38	parallel	124	-77.62
2	27.12(QP)	-10.20	22.32	12.12	parallel	69.5	-57.38
3	*13.56(QP)	-10.07	56.58	46.51	perpendicular	124	-77.49
4	27.12(QP)	-10.20	23.56	13.36	perpendicular	69.5	-56.14

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. " * ": Fundamental frequency.
6. All three antenna orientations(parallel, perpendicular, and ground-parallel) testing. But the worst orientation showed in report only.

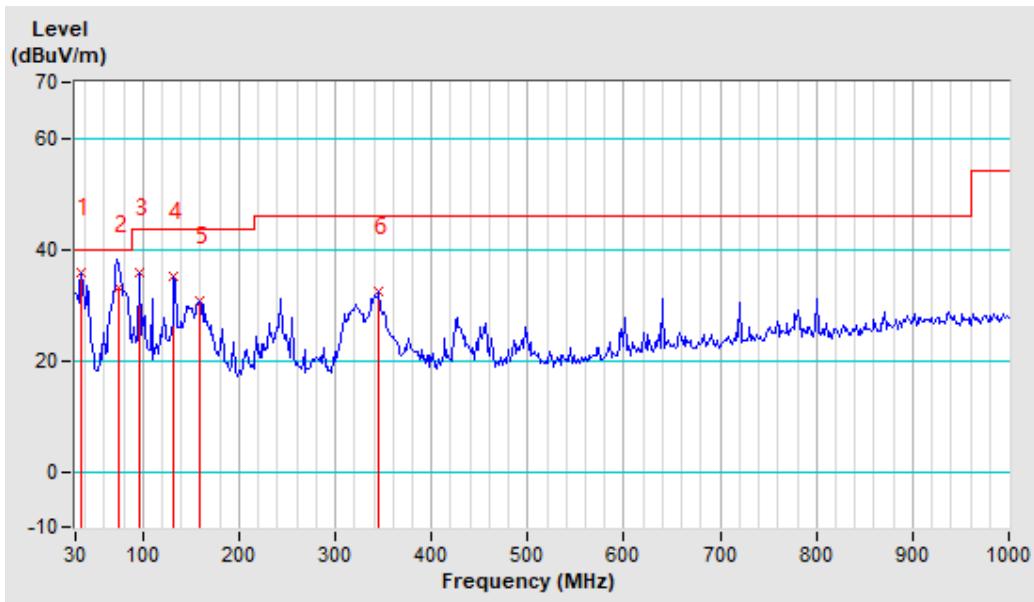

BELOW 1GHz WORST-CASE DATA:

CHANNEL	Channel 1	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9KHz ~ 1GHz		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	84.41	31.07	40.00	-8.93	196	356	53.96	-22.89
2	239.86	35.30	46.00	-10.70	116	278	53.02	-17.72
3	326.91	38.82	46.00	-7.18	130	292	53.55	-14.73
4	639.36	32.35	46.00	-13.65	173	334	39.29	-6.94
5	720.19	32.84	46.00	-13.16	147	308	38.53	-5.69
6	801.03	37.03	46.00	-8.97	160	321	41.51	-4.48

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The emission levels of other frequencies were greater than 20dB margin.
4. 9KHz~30MHz have been test and test data more than 20dB margin.
5. Margin value = Emission level – Limit value.



CHANNEL	Channel 1	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9KHz ~ 1GHz		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	36.22	35.83	40.00	-4.17	143	295	54.54	-18.71
2	75.08	32.90	40.00	-7.10	132	136	53.71	-20.81
3	96.84	35.90	43.50	-7.60	175	263	57.90	-22.00
4	132.60	35.04	43.50	-8.46	161	277	53.00	-17.96
5	159.02	30.73	43.50	-12.77	190	248	47.39	-16.66
6	345.56	32.34	46.00	-13.66	199	234	46.76	-14.42

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The emission levels of other frequencies were greater than 20dB margin.
4. 9KHz~30MHz have been test and test data more than 20dB margin.
5. Margin value = Emission level – Limit value.

4.3. FREQUENCY TOLERANCE

4.3.1. LIMIT OF FREQUENCY TOLERANCE

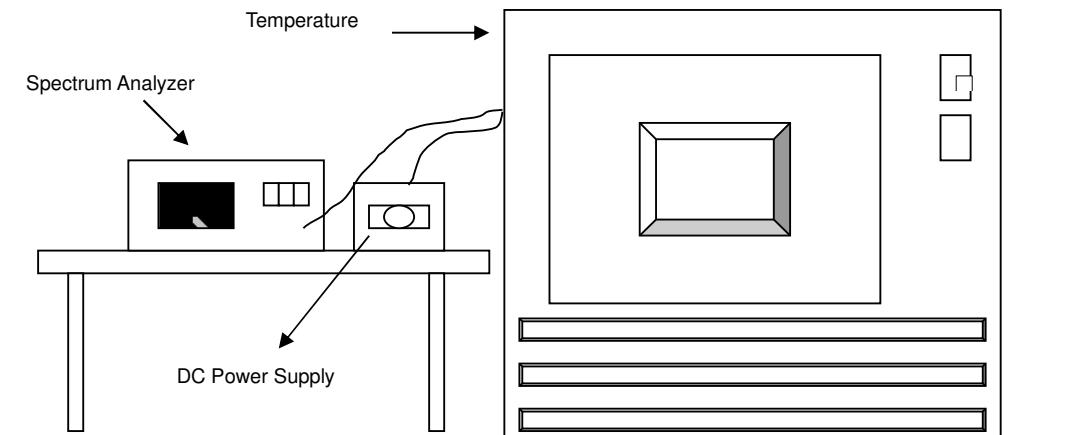
The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2. TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
Power Sensor	Keysight	U2021XA	MY57320002	Apr. 07, 26
Digital Multimeter	FLUKE	15B	A1220010DG	N/A
Humid & Temp Programmable Tester	Haida	HD-225T	110807201	Oct. 10, 25
Oscilloscope	Agilent	DSO9254A	MY51260160	Jul. 06, 26
Signal and Spectrum Analyzer	Rohde&Schwarz	FSV40	101094	Oct. 09, 25
Signal Generator	Agilent	N5183A	MY50140980	Jul. 06, 26
MXG-B RF Vector Signal Generator	Keysight	N5182B	MY56200288	Jul. 06, 26
BLUETOOTH TESTER	Rohde&Schwarz	CBT32	100811	N/A
Attenuator	MINI	BW-S10W2+	S130129FGE2	N/A
DC Source	Keysight	E3642A	MY56146098	N/A
Test software	ADT	ADT_RF Test Software V6.6.5.3	N/A	N/A

NOTES:

1. The test was performed in RF Oven room.
2. Equipment are calibrated by calibration laboratory accredited to ISO/IEC 17025 by a mutually recognized Accreditation and all tests are conducted within a valid calibration cycle.


4.3.3. TEST PROCEDURES

- a) The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b) Turn the EUT on and couple its output to a spectrum analyzer.
- c) Turn the EUT off and set the chamber to the highest temperature specified.
- d) Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- e) Repeat step c) and d) with the temperature chamber set to the lowest temperature.
- f) The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.4. DEVIATION FROM TEST STANDARD

No deviation.

4.3.5. TEST SETUP

4.3.6. EUT OPERATING CONDITIONS

Set the EUT under transmission condition continuously at specific channel frequency.

4.3.7. TEST RESULTS

FREQUEMCY STABILITY VERSUS TEMP.									
TEMP. (°C)	POWER SUPPLY (Adapter) (V)	0 MINUTE		2 MINUTE		5 MINUTE		10 MINUTE	
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
55	DC5V	13.55998	-0.00015	13.55999	-0.00007	13.55999	-0.00007	13.55999	-0.00007
50	DC5V	13.55996	-0.00029	13.55996	-0.00029	13.55996	-0.00029	13.55996	-0.00029
40	DC5V	13.56001	0.00007	13.56001	0.00007	13.56001	0.00007	13.56	0.00000
30	DC5V	13.56	0.00000	13.56001	0.00007	13.56001	0.00007	13.56002	0.00015
20	DC5V	13.56007	0.00052	13.56007	0.00052	13.56007	0.00052	13.56007	0.00052
10	DC5V	13.55993	-0.00052	13.55993	-0.00052	13.55993	-0.00052	13.55993	-0.00052
0	DC5V	13.55999	-0.00007	13.56	0.00000	13.56	0.00000	13.56	0.00000
-10	DC5V	13.55997	-0.00022	13.55995	-0.00037	13.55996	-0.00029	13.55995	-0.00037
-20	DC5V	13.55995	-0.00037	13.55995	-0.00037	13.55995	-0.00037	13.55995	-0.00037

FREQUEMCY STABILITY VERSUS TEMP.									
TEMP. (°C)	POWER SUPPLY (Notebook) (V)	0 MINUTE		2 MINUTE		5 MINUTE		10 MINUTE	
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
20	DC5V	13.56	0.00000	13.56001	0.00007	13.56001	0.00007	13.56002	0.00015
	DC5V	13.56	0.00000	13.56001	0.00007	13.56001	0.00007	13.56002	0.00015
	DC4.25V	13.56	0.00000	13.56001	0.00007	13.56001	0.00007	13.56002	0.00015

4.4. 20dB BANDWIDTH

4.4.1 LIMITS OF 20dB BANDWIDTH

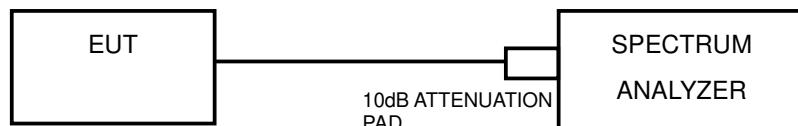
The 20dB bandwidth shall be specified in operating frequency band.(13.11MHz – 14.01MHz)

4.4.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Next Cal.
Power Sensor	Keysight	U2021XA	MY57320002	Apr. 07, 26
Digital Multimeter	FLUKE	15B	A1220010DG	N/A
Humid & Temp Programmable Tester	Haida	HD-225T	110807201	Oct. 10, 25
Oscilloscope	Agilent	DSO9254A	MY51260160	Jul. 06, 26
Signal and Spectrum Analyzer	Rohde&Schwarz	FSV40	101094	Oct. 09, 25
Signal Generator	Agilent	N5183A	MY50140980	Jul. 06, 26
MXG-B RF Vector Signal Generator	Keysight	N5182B	MY56200288	Jul. 06, 26
BLUETOOTH TESTER	Rohde&Schwarz	CBT32	100811	N/A
Attenuator	MINI	BW-S10W2+	S130129FGE2	N/A
DC Source	Keysight	E3642A	MY56146098	N/A
Test software	ADT	ADT_RF Test Software V6.6.5.3	N/A	N/A

NOTES:

1. The test was performed in RF Oven room.
2. Equipment are calibrated by calibration laboratory accredited to ISO/IEC 17025 by a mutually recognized Accreditation and all tests are conducted within a valid calibration cycle.


4.4.3 TEST PROCEDURE

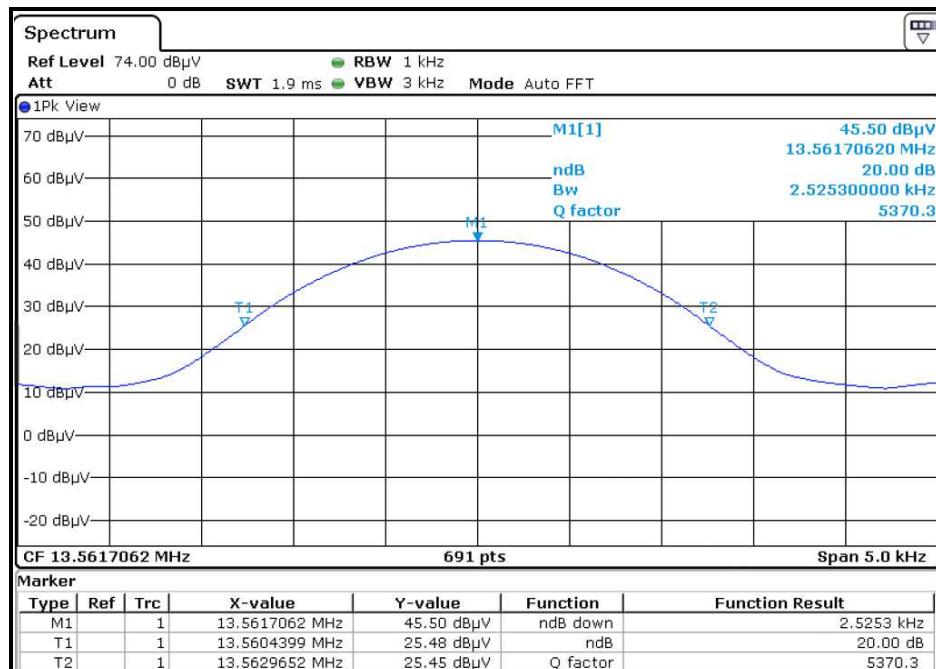
- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation.

4.4.5 TEST SETUP

Test Report No.: RF2505WDG0283


4.4.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously.

4.4.7 TEST RESULTS

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (KHz)
1	13.56	2.5253

Lower & Upper Test Frequency Point (MHz)	Test Frequency (MHz)	P/F
Lower	13.5604399	PASS
Upper	13.5629652	PASS

Test Report No.: RF2505WDG0283

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---