

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No. CTA25082000902

FCC ID.: 2BR4J-POWERAURAE1

Compiled by

(position+printed name+signature) .: File administrators Zoey Cao

Supervised by

(position+printed name+signature) .: Project Engineer Ace Chai

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Aug. 27, 2025

Testing Laboratory Name...... Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name power appliance Co., Ltd.

Test specification....:

Standard..... FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description...... Bluetooth headset

Trade Mark.....: N/A

Manufacturer power appliance Co., Ltd.

Model/Type reference POWER AURA E1

Listed Models N/A

Modulation GFSK, Π/4DQPSK

Frequency From 2402MHz to 2480MHz

Ratings Earphone: DC 3.7V From Battery and DC 5V from Charging Box

CTATESTING

Charging Box: DC 3.7V From Battery and DC 5V from Type-C

Result: PASS

Page 2 of 30 Report No.: CTA25082000902

TEST REPORT

Equipment under Test Bluetooth headset

Model /Type **POWER AURA E1**

Listed Models N/A

Applicant power appliance Co., Ltd.

2-4-7 Izumimachi, Chuo Ward, Osaka 540-0019, Japan Address

power appliance Co., Ltd. Manufacturer

Address 2-4-7 Izumimachi, Chuo Ward, Osaka 540-0019, Japan

Test Result:	PASS
	.C

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTA25082000902

Contents

	1	TEST	STANDARDS	4
	2	SUMI	MARY	5
		2.1	General Remarks	
		2.2	Product Description	5
		2.3	Equipment Under Test	5
		2.4	Short description of the Equipment under Test (EUT)	5
		2.5	EUT configuration	6
		2.6	EUT operation mode	6
		2.7	Block Diagram of Test Setup	6
		2.8	Related Submittal(s) / Grant (s)	
		2.9	Modifications	
	3	TEST	FENVIRONMENT	7
	57	3.1	Address of the test laboratory	7
TATE		3.2	Test Facility	
CIL		3.3	Environmental conditions	7
5		3.4	Summary of measurement results	3
		3.5	Statement of the measurement uncertainty	9
		3.6	Equipments Used during the Test	10
	4	TEST	「CONDITIONS AND RESULTS	11
		4.1	AC Power Conducted Emission	
		4.2	Radiated Emission	
		4.3	Maximum Peak Output Power	
		4.4	20dB Bandwidth	
		4.5	Frequency Separation	
		4.6	Number of hopping frequency	
		4.7	Time of Occupancy (Dwell Time)	
		4.8	Out-of-band Emissions	
		4.9	Pseudorandom Frequency Hopping Sequence	27
		4.10	Antenna Requirement	
		4.11	On Time and Duty Cycle	29
	5	Test S	Setup Photos of the EUT	30
	6	Exter	nal and Internal Photos of the EUT	30
			CTATE	

Report No.: CTA25082000902 Page 4 of 30

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2020+Cor. 1-2023+C63.10a-2024 + Errata to C63.10a-2024</u>: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 30 Report No.: CTA25082000902

SUMMARY

General Remarks

2.1 General Remarks				
Date of receipt of test sample	:	Aug. 20, 2025		ING
Testing commenced on		Aug. 20, 2025		TESTIN
Testing concluded on	:	Aug. 27, 2025	10 10	CTA.
<u> </u>		J ,	Tour wife	1

2.2 Product Description

Product Name:	Bluetooth headset
Model/Type reference:	
wiodei/Type reference.	POWER AURA E1
Power supply:	Earphone: DC 3.7V From Battery and DC 5V from Charging Box Charging Box: DC 3.7V From Battery and DC 5V from Type-C
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA250820009-1# (Engineer sample) CTA250820009-2# (Normal sample)
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79 CTATE
Channel separation:	1MHz
Antenna type:	Ceramic antenna
Antenna gain:	2.78 dBi
Notal off and Dight comb	ones were tested, only recorded the worst case data in the test report.

2.3 Equipment Under Test

Power supply system utilised

Refer to section 2.2

Short description of the Equipment under Test (EUT)

This is a Bluetooth headset.

fer to section 2.2		TES!		
4 Short description	of the Equipmen	it under Test (EU	T)	
s is a Bluetooth headset. more details, refer to the	user's manual of the	EUT.	CT CT	ATES
Test Software Version	Tools	software(FCC_assist_	1.0.2.2)	
Frequency	2402 MHz	2441MHz	2480 MHz	
GFSK	3	3	3	
π /4-DQPSK	3	3	3	
CTA	CTATE	STING	CTATESTING	

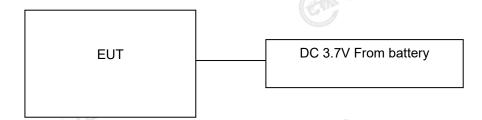
Page 6 of 30 Report No.: CTA25082000902

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

O - supplied by the manufacturer

supplied by the lab


Adapter information	Model: EP-TA20CBC
(Auxiliary test supplied by test Lab)	Input: AC 100-240V 50/60Hz
	Output: DC 5V 2A

EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

selected to test.	
Operation Frequency:	TATES
Channel	Frequency (MHz)
00	2402
01	2403
i i	: 69
38	2440
39	2441
40	2442
CTA	TING
77 TE	2479
78	2480

2.7 **Block Diagram of Test Setup**

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 30 Report No.: CTA25082000902

TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

CTA TESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:		24 ° C
	The same with	
Humidity:		45 %
Atmospheric pressure:		950-1050mbar

AC Power Conducted Emission:

o i ottor oomaaotoa Emiloolom	
Temperature:	25 ° C
TIN	3
Humidity:	46 %
CTA	
Atmospheric pressure:	950-1050mbar

Conducted testing:

Conducted testing.	
Temperature:	25 ° C
	To water
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATESTING	CTATESTING

Report No.: CTA25082000902 Page 8 of 30

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
	§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK		Compliant
	§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK	⊠ Full	GFSK	⊠ Full	Compliant
	§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK	⊠ Middle	Compliant
CTATES	§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK	□ Lowest □ Middle □ Highest	GFSK Π/4DQPSK	 Lowest Middle Highest	Compliant
	§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
	§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK	☑ Lowest☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Highest	Compliant
C	§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK		GFSK П/4DQPSK		Compliant
G	§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
(-	§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK		GFSK	⊠ Middle	Compliant
	§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK	 Lowest Middle Highest	GFSK	⊠ Middle	Compliant

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report
- RF Conducted test Offset= cable loss, For conducted spurious emission test, cable loss is the maximum ...ss CTATESTING value in the range of test.

Page 9 of 30 Report No.: CTA25082000902

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

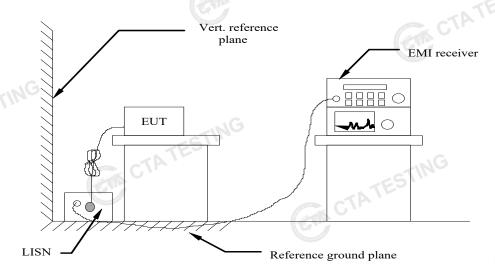
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes	To married
Radiated Emission	9KHz~30MHz	3.02 dB	(1)	
Radiated Emission	30~1000MHz	4.06 dB	(1)	
Radiated Emission	1~18GHz	5.14 dB	(1)	
Radiated Emission	18-40GHz	5.38 dB	(1)	
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	
Output Peak power	30MHz~18GHz	0.55 dB	(1)	TING
Power spectral density	7	0.57 dB	(1)	res !!
Spectrum bandwidth	1	1.1%	(1)	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	
Time	TING	±2%	(1)	

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% July to confidence level using a coverage factor of k=2.

Report No.: CTA25082000902 Page 10 of 30

3.6 Equipments Used during the Test


ipment N N Receiver Receiver Analyzer Signal ator D RADIO ICATION TER ure and meter adband nna atenna atenna ifier	Manufacturer R&S R&S R&S R&S R&S Agilent Agilent CMW500 Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck Schwarzbeck Schwarzbeck	Model No. ENV216 ENV216 ESPI ESCI N9020A N5182A E4421B R&S ZG-7020 VULB9163 BBHA 9120D ZN30900C	Equipment No. CTA-308 CTA-314 CTA-307 CTA-306 CTA-301 CTA-305 CTA-304 CTA-302 CTA-302 CTA-326 CTA-310 CTA-309 CTA-311	Calibration Date 2025/08/04 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/31 2023/10/17 2023/10/13	Calibration Due Date 2026/08/03 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29
Receiver Receiver Analyzer Signal ator Signal rator D RADIO ICATION ER ure and meter adband nna itenna itenna ifier	R&S R&S R&S R&S Agilent Agilent R&S CMW500 Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	ENV216 ESPI ESCI N9020A N5182A E4421B R&S ZG-7020 VULB9163 BBHA 9120D ZN30900C	CTA-314 CTA-307 CTA-306 CTA-301 CTA-305 CTA-304 CTA-302 CTA-326 CTA-310 CTA-309	2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/31 2023/10/17	2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/30 2026/10/16
Receiver Receiver Receiver Analyzer Signal rator Signal rator D RADIO ICATION TER ure and reter adband nna stenna stenna ifier	R&S R&S R&S R&S Agilent Agilent R&S CMW500 Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	ENV216 ESPI ESCI N9020A N5182A E4421B R&S ZG-7020 VULB9163 BBHA 9120D ZN30900C	CTA-314 CTA-307 CTA-306 CTA-301 CTA-305 CTA-304 CTA-302 CTA-326 CTA-310 CTA-309	2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/31 2023/10/17	2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/30 2026/10/16
Receiver Analyzer Signal ator Signal ator D RADIO ICATION ER ure and meter adband nna atenna atenna ifier	R&S Agilent Agilent R&S CMW500 Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	ESCI N9020A N5182A E4421B R&S ZG-7020 VULB9163 BBHA 9120D ZN30900C	CTA-306 CTA-301 CTA-305 CTA-304 CTA-302 CTA-326 CTA-310 CTA-309	2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/31 2023/10/17	2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/30 2026/10/16
Analyzer Signal rator Signal rator D RADIO ICATION ER ure and reter adband nna itenna itenna itenna ifier	Agilent Agilent R&S CMW500 Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	N9020A N5182A E4421B R&S ZG-7020 VULB9163 BBHA 9120D ZN30900C	CTA-301 CTA-305 CTA-304 CTA-302 CTA-326 CTA-310 CTA-309	2025/07/30 2025/07/30 2025/07/30 2025/07/30 2025/07/31 2023/10/17	2026/07/29 2026/07/29 2026/07/29 2026/07/29 2026/07/30 2026/10/16
Signal ator Signal rator D RADIO ICATION ER ure and meter adband and atenna atenna ifier	Agilent R&S CMW500 Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	N5182A E4421B R&S ZG-7020 VULB9163 BBHA 9120D ZN30900C	CTA-305 CTA-304 CTA-302 CTA-326 CTA-310 CTA-309	2025/07/30 2025/07/30 2025/07/30 2025/07/31 2023/10/17	2026/07/29 2026/07/29 2026/07/29 2026/07/30 2026/10/16
sator Signal Fator D RADIO ICATION TER Ure and Tenter adband Than Itenna	R&S CMW500 Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	E4421B R&S ZG-7020 VULB9163 BBHA 9120D ZN30900C	CTA-304 CTA-302 CTA-326 CTA-310 CTA-309	2025/07/30 2025/07/30 2025/07/31 2023/10/17	2026/07/29 2026/07/29 2026/07/30 2026/10/16
rator D RADIO ICATION ER ure and meter adband nna itenna itenna ifier	CMW500 Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	R&S ZG-7020 VULB9163 BBHA 9120D ZN30900C	CTA-302 CTA-326 CTA-310 CTA-309	2025/07/30 2025/07/31 2023/10/17	2026/07/29 2026/07/30 2026/10/16
ICATION TER ure and meter adband nna ntenna ntenna ifier	Chigo Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	ZG-7020 VULB9163 BBHA 9120D ZN30900C	CTA-326 CTA-310 CTA-309	2025/07/31 2023/10/17	2026/07/30 2026/10/16
meter adband nna itenna itenna itenna itenna	Schwarzbeck Schwarzbeck Zhinan Schwarzbeck	VULB9163 BBHA 9120D ZN30900C	CTA-310 CTA-309	2023/10/17	2026/10/16
nna ntenna ntenna ntenna ifier	Schwarzbeck Zhinan Schwarzbeck	BBHA 9120D ZN30900C	CTA-309		
ntenna ntenna ifier	Zhinan Schwarzbeck	ZN30900C		2023/10/13	2026/40/42
itenna ifier	Schwarzbeck		CTA-311	AV AND S	2026/10/12
ifier			0174-011	2023/10/17	2026/10/16
	Cobyyorzbook	BBHA 9170	CTA-346	2025/05/18	2028/05/17
	Schwarzbeck	BBV9745	CTA-312	2025/07/30	2026/07/29
ifier	Tonscend	TAP-011840	CTA-313	2025/07/30	2026/07/29
s Filter	XingBo	XBLBQ-GTA18	CTA-402	2025/07/30	2026/07/29
s Filter	XingBo	XBLBQ-GTA27	CTA-403	2025/07/30	2026/07/29
control it	Tonscend	JS0806-2	CTA-404	2025/07/30	2026/07/29
Sensor	Agilent	U2021XA	CTA-405	2025/07/30	2026/07/29
ifier	SKET	LNPA 1840G-50	CTA-345	2025/05/17	2026/05/16
analyzer	R&S	FSV40-N	CTA-344	2025/05/17	2026/05/16
Meter	R&S	NRVS	CTA-354	2025/07/30	2026/07/29
ıator	XINQY	10dB	N/A	N/A	N/A
nmable tant ure And y Test iber	DONGGUAN JINGYU	HT-H-408	CTA-053	2025/07/30	2026/07/29
Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
oftwore	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	tant ure And y Test ober Software	tant ure And y Test ber Software Tonscend oftware Tonscend Tonscend	tant ure And y Test ober Software Tonscend TS®JS32-RE Software Tonscend TS®JS32-CE oftware Tonscend TS®JS120-3	DONGGUAN	DONGGUAN

Page 11 of 30 Report No.: CTA25082000902

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

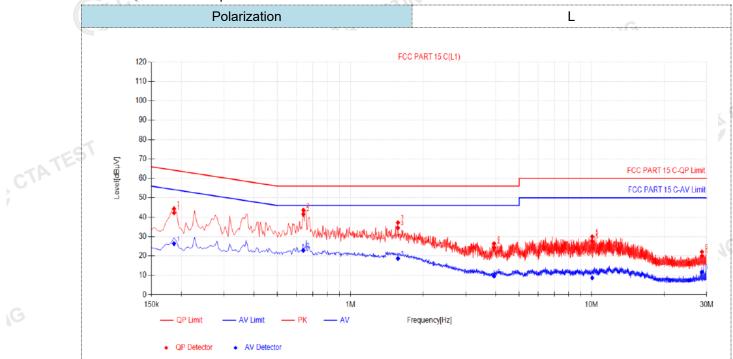
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020+Cor. 1-2023+C63.10a-2024 + Errata to C63.10a-2024.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020+Cor. 1-2023+C63.10a-2024 + Errata to C63.10a-2024
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020+Cor. 1-2023+C63.10a-2024 + Errata to C63.10a-2024
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

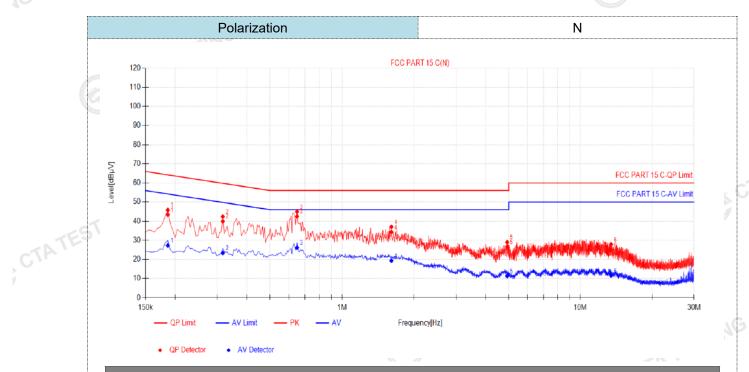

Frequency range (N 0.15-0.5 0.5-5 5-30 * Decreases with the logarith EST RESULTS	10 (MUz)	Limit	(dBuV)
Frequency rang	je (IVII IZ)	Quasi-peak	Average
0.15-0.5	5	66 to 56*	56 to 46*
0.5-5		56	46
5-30		60	50
* Decreases with the logar	arithm of the frequen	icy.	
TEST RESULTS	CTA CTA		ATESTING
Remark:		CW C	

TEST RESULTS

Page 12 of 30 Report No.: CTA25082000902

1. All modes of GFSK, ⊓/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



Fina	Final Data List												
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict		
1	0.186	10.03	32.20	42.23	64.21	21.98	16.34	26.37	54.21	27.84	PASS	1	
2	0.6405	9.99	31.51	41.50	56.00	14.50	12.86	22.85	46.00	23.15	PASS		
3	1.572	9.90	24.54	34.44	56.00	21.56	8.76	18.66	46.00	27.34	PASS		
4	3.939	9.92	14.47	24.39	56.00	31.61	-0.27	9.65	46.00	36.35	PASS]	
5	10.0635	10.25	17.42	27.67	60.00	32.33	-1.54	8.71	50.00	41.29	PASS		
6	28.6845	10.59	9.37	19.96	60.00	40.04	1.17	11.76	50.00	38.24	PASS		
													1

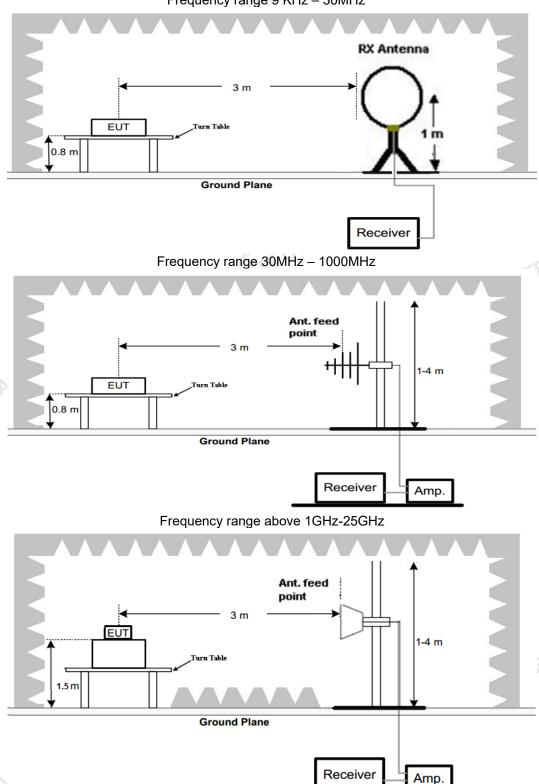
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - CTA TESTING 4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV)

Report No.: CTA25082000902 Page 13 of 30

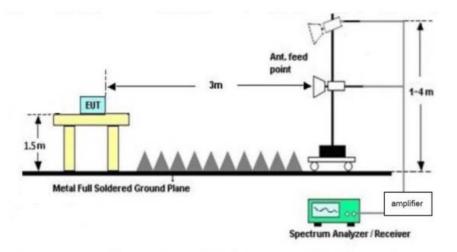
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict		
1	0.186	10.01	33.39	43.40	64.21	20.81	17.31	27.32	54.21	26.89	PASS		
2	0.3165	9.86	30.07	39.93	59.80	19.87	13.51	23.37	49.80	26.43	PASS		
3	0.6495	10.11	32.42	42.53	56.00	13.47	16.05	26.16	46.00	19.84	PASS		
4	1.608	10.14	24.15	34.29	56.00	21.71	9.21	19.35	46.00	26.65	PASS		
5	4.9245	10.08	16.53	26.61	56.00	29.39	1.22	11.30	46.00	34.70	PASS		
6	13.4475	10.41	14.59	25.00	60.00	35.00	1.14	11.55	50.00	38.45	PASS		
. Fact	6 13.4475 10.41 14.59 25.00 60.00 35.00 1.14 11.55 50.00 38.45 PASS of te:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB) Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)												

CTATE


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

Report No.: CTA25082000902 Page 14 of 30

Radiated Emission


TEST CONFIGURATION

Frequency range 9 KHz - 30MHz

CTATESTING

Report No.: CTA25082000902 Page 15 of 30

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector
range		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	TES.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	TATL

Transd=AF +CL-AG

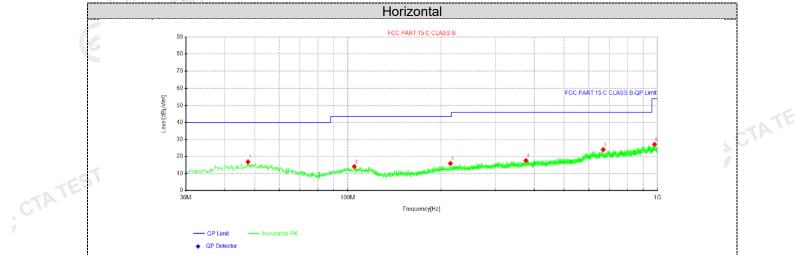
Page 16 of 30 Report No.: CTA25082000902

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
- 0	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
TE	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
CITIA.	1.705-30	3	20log(30)+ 40log(30/3)	30
2	30-88	3	40.0	100
,	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500

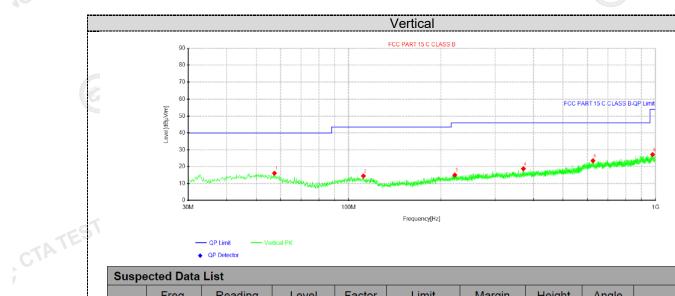

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. We measured Radiated Emission at GFSK,π/4 DQPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTING

Report No.: CTA25082000902 Page 17 of 30

For 30MHz-1GHz



Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	47.5812	28.18	16.89	-11.29	40.00	23.11	200	27	Horizontal
2	104.932	27.13	14.09	-13.04	43.50	29.41	100	252	Horizontal
3	214.542	28.56	15.94	-12.62	43.50	27.56	100	78	Horizontal
4	376.168	28.07	17.64	-10.43	46.00	28.36	200	286	Horizontal
5	668.502	29.53	24.08	-5.45	46.00	21.92	100	356	Horizontal
6	978.902	29.01	27.15	-1.86	54.00	26.85	100	360	Horizontal

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA25082000902 Page 18 of 30

Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	57.2812	28.19	16.09	-12.10	40.00	23.91	200	0	Vertical
2	111.722	27.92	14.47	-13.45	43.50	29.03	100	256	Vertical
3	221.817	27.48	15.01	-12.47	46.00	30.99	100	229	Vertical
4	371.076	29.30	18.77	-10.53	46.00	27.23	200	30	Vertical
5	625.701	29.24	23.54	-5.70	46.00	22.46	100	108	Vertical
6	978.296	29.06	27.19	-1.87	54.00	26.81	100	272	Vertical

CTATESTING

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA25082000902 Page 19 of 30

For 1GHz to 25GHz

7206.00

43.31

ΑV

Note: GFSK , $\pi/4$ DQPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

54

					,					
Frequency(MHz):			24	02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.99	PK	74	12.01	66.26	32.33	5.12	41.72	-4.27	
4804.00	45.51	AV	54	8.49	49.78	32.33	5.12	41.72	-4.27	
7206.00	53.89	PK	74	20.11	54.41	36.6	6.49	43.61	-0.52	

43.83

36.6

6.49

43.61

-0.52

10.69

Freque	ncy(MHz)):	24	02	Pola	arity:	VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	60.16	PK	74	13.84	64.43	32.33	5.12	41.72	-4.27	
4804.00	43.30	AV	54	10.70	47.57	32.33	5.12	41.72	-4.27	
7206.00	52.26	PK	74	21.74	52.78	36.6	6.49	43.61	-0.52	
7206.00	41.74	AV	54	12.26	42.26	36.6	6.49	43.61	-0.52	

						43.			
Frequency(MHz):			24	41	Pola	arity:	HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	61.40	PK	74	12.60	65.28	32.6	5.34	41.82	-3.88
4882.00	44.81	AV	54	9.19	48.69	32.6	5.34	41.82	-3.88
7323.00	53.14	PK	74	20.86	53.25	36.8	6.81	43.72	-0.11
7323.00	42.76	AV	54	11.24	42.87	36.8	6.81	43.72	-0.11

Frequency(MHz):			24	41	Pola	arity:	VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.53	PK	74	14.47	63.41	32.6	5.34	41.82	-3.88
4882.00	43.13	AV	54	10.87	47.01	32.6	5.34	41.82	-3.88
7323.00	51.46	PK	74	22.54	51.57	36.8	6.81	43.72	-0.11
7323.00	41.19	AV	54	12.81	41.30	36.8	6.81	43.72	-0.11

Frequency(MHz):			24	80	Pola	rity:	HORIZONTAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.86	PK	74	13.14	63.94	32.73	5.66	41.47	-3.08
4960.00	44.05	AV	54	9.95	47.13	32.73	5.66	41.47	-3.08
7440.00	52.60	PK	74	21.40	52.15	37.04	7.25	43.84	0.45
7440.00	42.25	AV	54	11.75	41.80	37.04	7.25	43.84	0.45

Frequency(MHz):			24	80	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu'	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.16	PK	74	14.84	62.24	32.73	5.66	41.47	-3.08
4960.00	42.39	AV	54	11.61	45.47	32.73	5.66	41.47	-3.08
7440.00	50.74	PK	74	23.26	50.29	37.04	7.25	43.84	0.45
7440.00	40.66	AV	54	13.34	40.21	37.04	7.25	43.84	0.45

Page 20 of 30 Report No.: CTA25082000902

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Note: GFSK, π/4 DQPSK all have been tested, only worse case GFSK is reported.

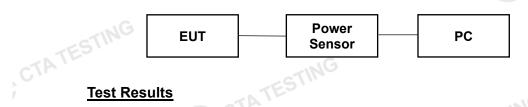
Frequency(MHz):			24	02	Pola	rity:	rity: HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.64	PK	74	12.36	72.06	27.42	4.31	42.15	-10.42
2390.00	43.29	AV	54	10.71	53.71	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	Polarity: VERTICAL			•
Frequency (MHz)	1 6/6		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.86	PK	74	14.14	70.28	27.42	4.31	42.15	-10.42
2390.00	41.40	AV	54	12.60	51.82	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	rity:	HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value _(dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.12	PK	74	12.88	71.23	27.7	4.47	42.28	-10.11
2483.50	42.58	AV	54	11.42	52.69	27.7	4.47	42.28	-10.11
Freque	Frequency(MHz):		24	80	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.25	PK	74	14.75	69.36	27.7	4.47	42.28	-10.11
2483.50	40.69	AV	54	13.31	50.80	27.7	4.47	42.28	-10.11

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- CTA TESTING 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 21 of 30 Report No.: CTA25082000902

Maximum Peak Output Power


Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

Test Configuration

Test Results

Please refer to Appendix RF Test Data for BT

Note: 1. The test results including the cable loss.

Page 22 of 30 Report No.: CTA25082000902

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

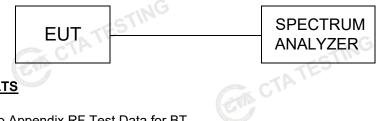
Test Configuration

Test Results

Please refer to Appendix RF Test Data for BT

Page 23 of 30 Report No.: CTA25082000902

Frequency Separation


LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 300 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

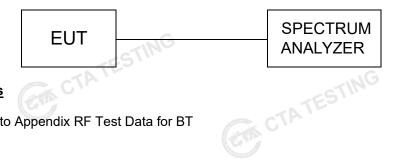
TEST RESULTS

Please refer to Appendix RF Test Data for BT

We have tested all mode at high, middle and low channel, and recorded worst case at middle CTATESTING

Page 24 of 30 Report No.: CTA25082000902

Number of hopping frequency


Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer CTATE start 2400MHz to 2483.5MHz with 300 KHz RBW and 300 KHz VBW.

Test Configuration CTATESTING

Test Results

Please refer to Appendix RF Test Data for BT

Page 25 of 30 Report No.: CTA25082000902

Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

Please refer to Appendix RF Test Data for BT

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Page 26 of 30 Report No.: CTA25082000902

Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results 25 TIME

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

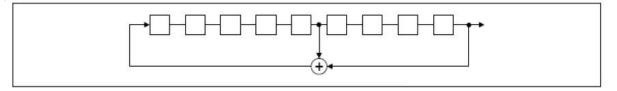
We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Please refer to Appendix RF Test Data for BT

Page 27 of 30 Report No.: CTA25082000902

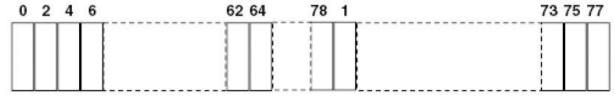
4.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Page 28 of 30 Report No.: CTA25082000902

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain CTATE greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

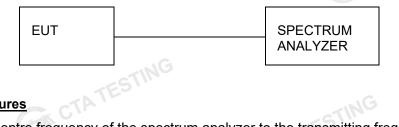
Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not CTA TESTING apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 2.78 dBi

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTA TESTING


Page 29 of 30 Report No.: CTA25082000902

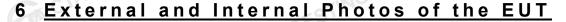
4.11 On Time and Duty Cycle

Standard Applicable

None; for reporting purpose only.

TEST CONFIGURATION

CTATESTING **Test Procedures**


- CTATESTING 1). Set the Centre frequency of the spectrum analyzer to the transmitting frequency;
- 2). Set the span=0MHz, RBW=8MHz, VBW=8MHz, Sweep time=5ms;
- 3). Detector = peak;
- 4). Trace mode = Single hold.

Please refer to Appendix RF Test Data for BT

Page 30 of 30 Report No.: CTA25082000902

Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

Please refer to separated files for External Photos & Internal Photos of the EUT.End of Report..