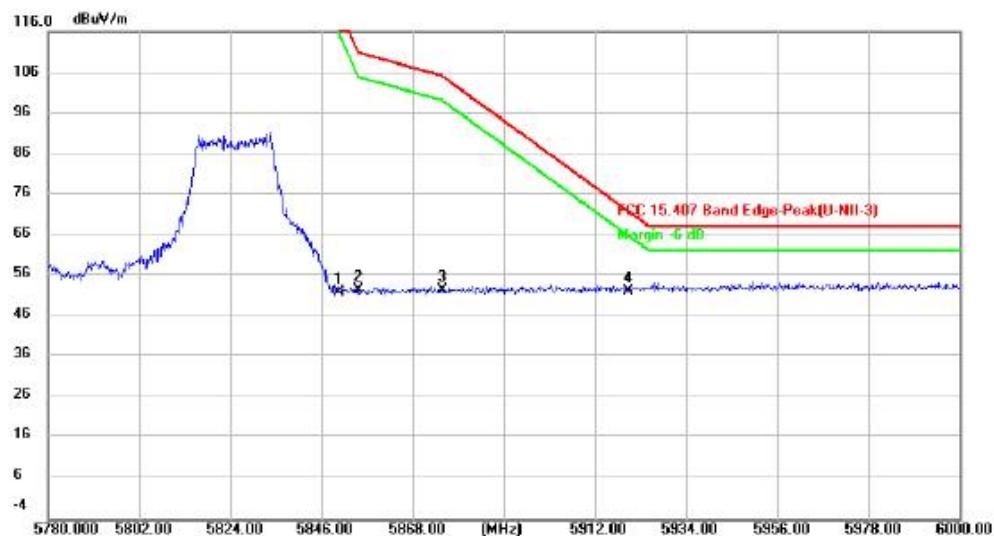


TEST REPORT

Report No.: MTi250714009-0106E4

Mode6 / Polarization: Vertical / CH: L

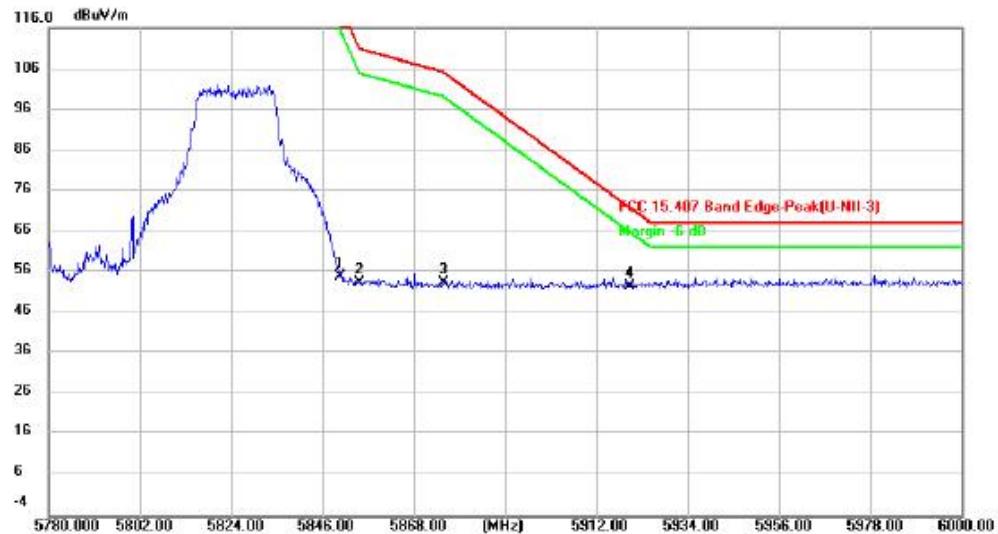


No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV/m	dB	Detector	Comment
1	*	5650.000	48.16	3.39	51.55	68.20	-16.65	peak
2		5700.000	47.09	3.76	50.85	105.20	-54.35	peak
3		5720.000	47.27	3.75	51.02	110.80	-59.78	peak
4		5725.000	53.95	3.75	57.70	122.20	-64.50	peak

TEST REPORT

Report No.: MTi250714009-0106E4

Mode6 / Polarization: Horizontal / CH: H

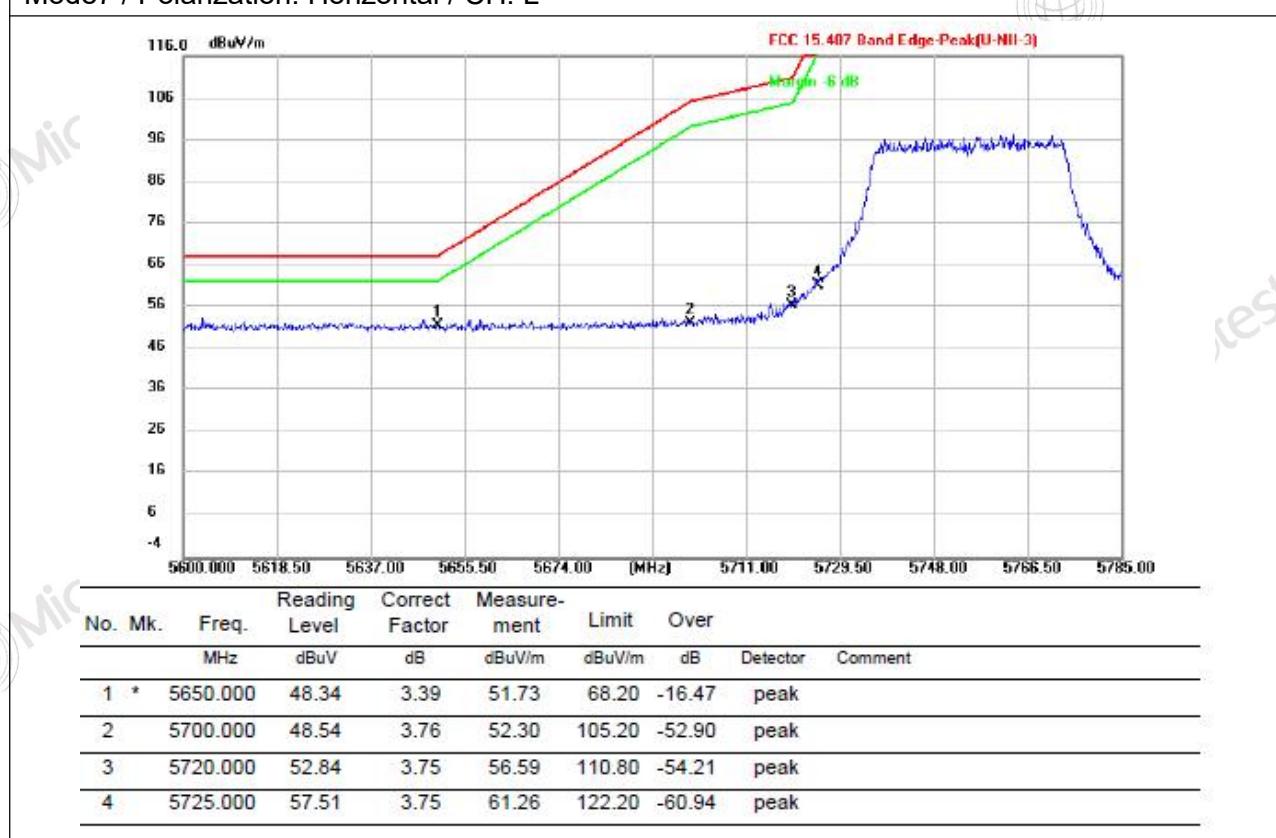


No.	Mk.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
		Freq.	Level	Factor	dBuV/m	dBuV/m	dB	
		MHz	dBuV	dB				
1		5850.000	47.77	4.27	52.04	122.20	-70.16	peak
2		5855.000	48.26	4.30	52.56	110.80	-58.24	peak
3		5875.000	48.12	4.41	52.53	105.20	-52.67	peak
4	*	5920.000	47.64	4.66	52.30	71.90	-19.60	peak

TEST REPORT

Report No.: MTi250714009-0106E4

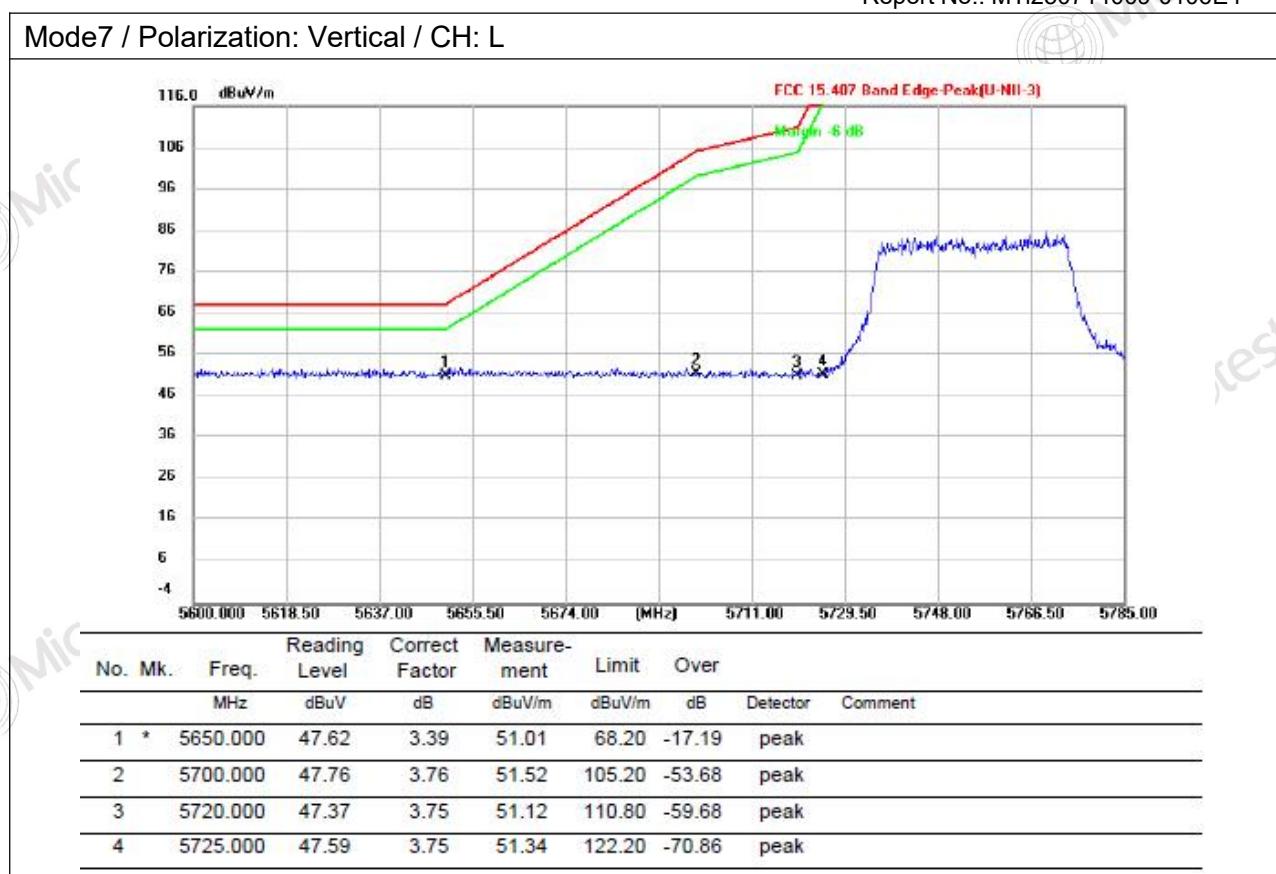
Mode6 / Polarization: Vertical / CH: H



No.	Mk.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
		Freq.	Level	Factor				
		MHz	dBuV	dB	dBuV/m	dB		
1		5850.000	50.66	4.27	54.93	122.20	-67.27	peak
2		5855.000	49.29	4.30	53.59	110.80	-57.21	peak
3		5875.000	49.18	4.41	53.59	105.20	-51.61	peak
4	*	5920.000	47.88	4.66	52.54	71.90	-19.36	peak

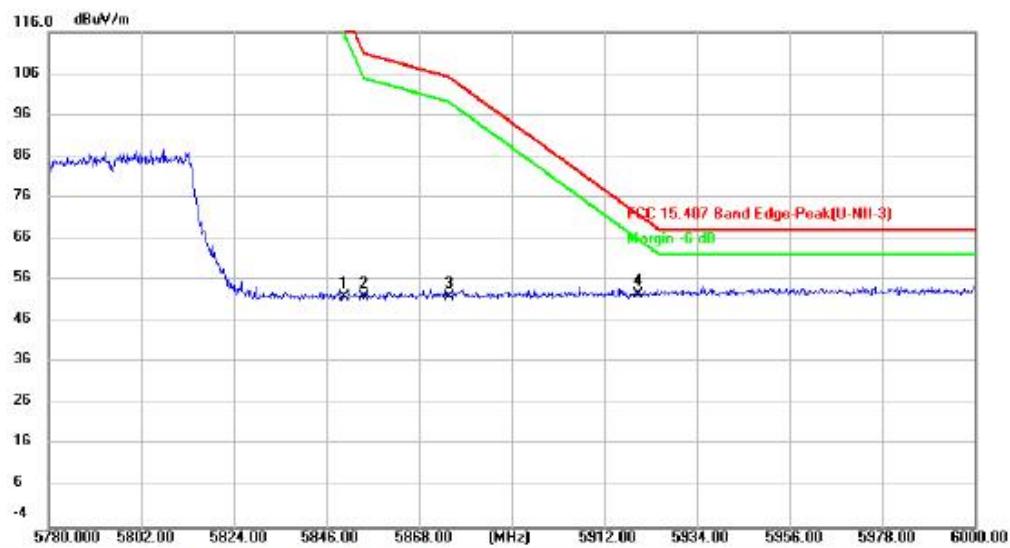
TEST REPORT

Report No.: MTi250714009-0106E4


Mode7 / Polarization: Horizontal / CH: L

TEST REPORT

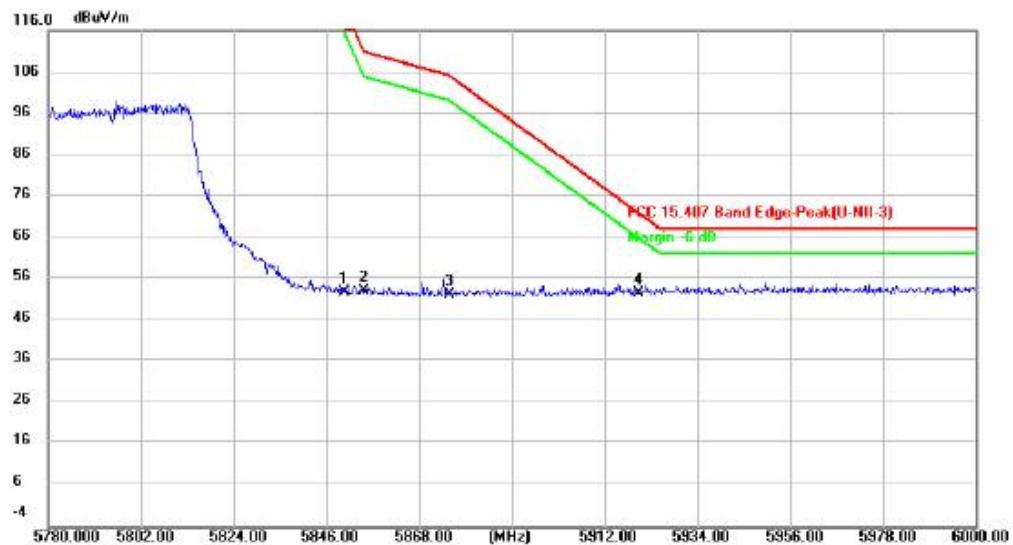
Report No.: MTi250714009-0106E4


Mode7 / Polarization: Vertical / CH: L

TEST REPORT

Report No.: MTi250714009-0106E4

Mode7 / Polarization: Horizontal / CH: H



No.	Mk.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
		MHz	Level	Factor				
1		5850.000	47.81	4.27	52.08	122.20	-70.12	peak
2		5855.000	47.64	4.30	51.94	110.80	-58.86	peak
3		5875.000	47.47	4.41	51.88	105.20	-53.32	peak
4	*	5920.000	48.01	4.66	52.67	71.90	-19.23	peak

TEST REPORT

Report No.: MTi250714009-0106E4

Mode7 / Polarization: Vertical / CH: H

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1		5850.000	48.51	4.27	52.78	122.20	-69.42	peak	
2		5855.000	48.89	4.30	53.19	110.80	-57.61	peak	
3		5875.000	47.81	4.41	52.22	105.20	-52.98	peak	
4	*	5920.000	47.86	4.66	52.52	71.90	-19.38	peak	

TEST REPORT

Report No.: MTi250714009-0106E4

6.6 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)																										
Test Limit:	<p>Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.</p> <p>Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:</p>																										
	<table border="1"> <thead> <tr> <th>Frequency (MHz)</th><th>Field strength (microvolts/meter)</th><th>Measuremen t distance (meters)</th></tr> </thead> <tbody> <tr> <td>0.009-0.490</td><td>2400/F(kHz)</td><td>300</td></tr> <tr> <td>0.490-1.705</td><td>24000/F(kHz)</td><td>30</td></tr> <tr> <td>1.705-30.0</td><td>30</td><td>30</td></tr> <tr> <td>30-88</td><td>100 **</td><td>3</td></tr> <tr> <td>88-216</td><td>150 **</td><td>3</td></tr> <tr> <td>216-960</td><td>200 **</td><td>3</td></tr> <tr> <td>Above 960</td><td>500</td><td>3</td></tr> </tbody> </table>			Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)	0.009-0.490	2400/F(kHz)	300	0.490-1.705	24000/F(kHz)	30	1.705-30.0	30	30	30-88	100 **	3	88-216	150 **	3	216-960	200 **	3	Above 960	500	3
Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)																									
0.009-0.490	2400/F(kHz)	300																									
0.490-1.705	24000/F(kHz)	30																									
1.705-30.0	30	30																									
30-88	100 **	3																									
88-216	150 **	3																									
216-960	200 **	3																									
Above 960	500	3																									
	<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>In the emission table above, the tighter limit applies at the band edges.</p> <p>The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p>																										
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5																										
Procedure:	<p>Below 1GHz:</p> <ol style="list-style-type: none"> For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet. Test the EUT in the lowest channel, the middle channel, the Highest channel. The radiation measurements are performed in X, Y, Z axis positioning for 																										

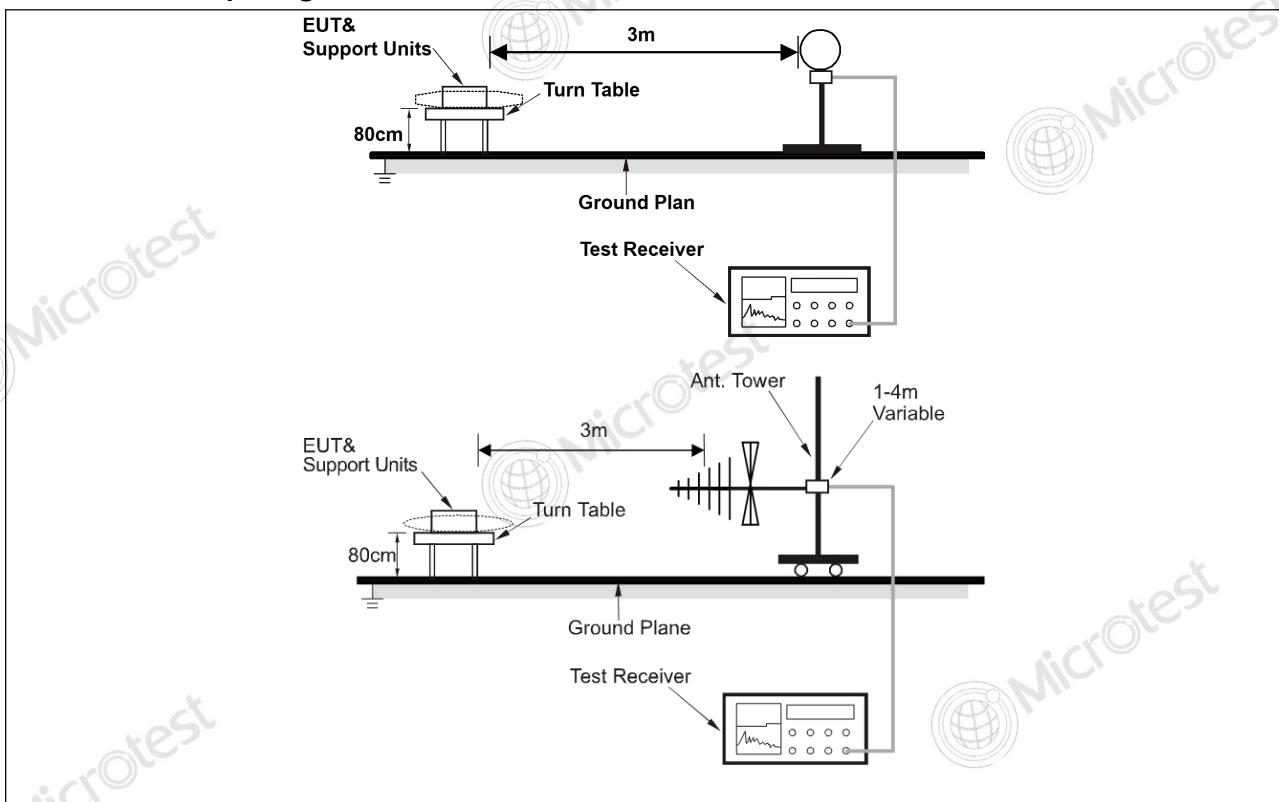
TEST REPORT

Report No.: MTi250714009-0106E4

	<p>Transmitting mode, and found the X axis positioning which it is the worst case.</p> <p>i. Repeat above procedures until all frequencies measured was complete.</p> <p>Remark:</p> <ol style="list-style-type: none">1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. <p>Above 1GHz:</p> <ol style="list-style-type: none">a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.g. Test the EUT in the lowest channel, the middle channel, the Highest channel.h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.i. Repeat above procedures until all frequencies measured was complete. <p>Remark:</p> <ol style="list-style-type: none">1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had
--	--

TEST REPORT

Report No.: MTi250714009-0106E4

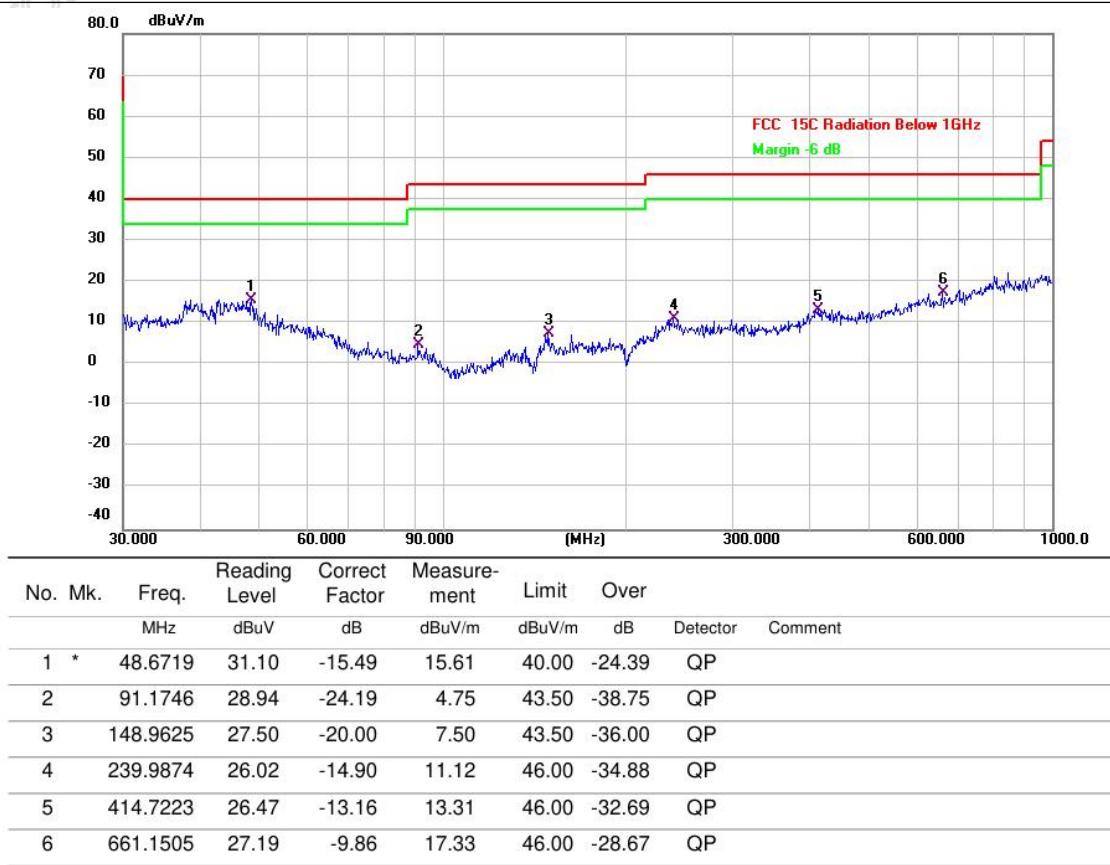

been displayed.

6.6.1 E.U.T. Operation:

Operating Environment:

Temperature:	23.6 °C	Humidity:	58 %	Atmospheric Pressure:	101 kPa
Pre test mode:	Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7				
Final test mode:	All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report				

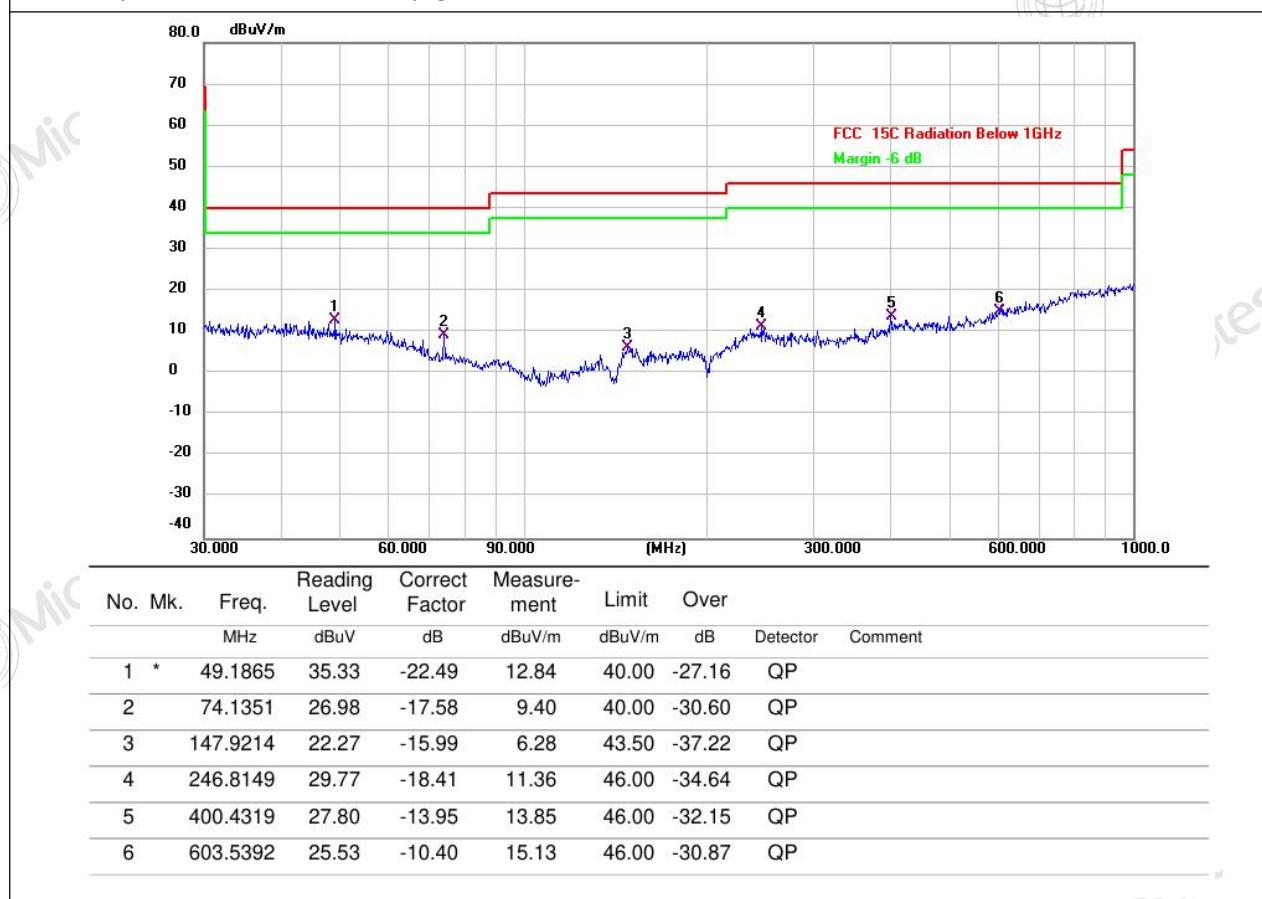
6.6.2 Test Setup Diagram:


TEST REPORT

Report No.: MTi250714009-0106E4

6.6.3 Test Data:

Mode1 / Polarization: Horizontal / CH: H


U-NII Band 1:

TEST REPORT

Report No.: MTi250714009-0106E4

Mode1 / Polarization: Vertical / CH: H

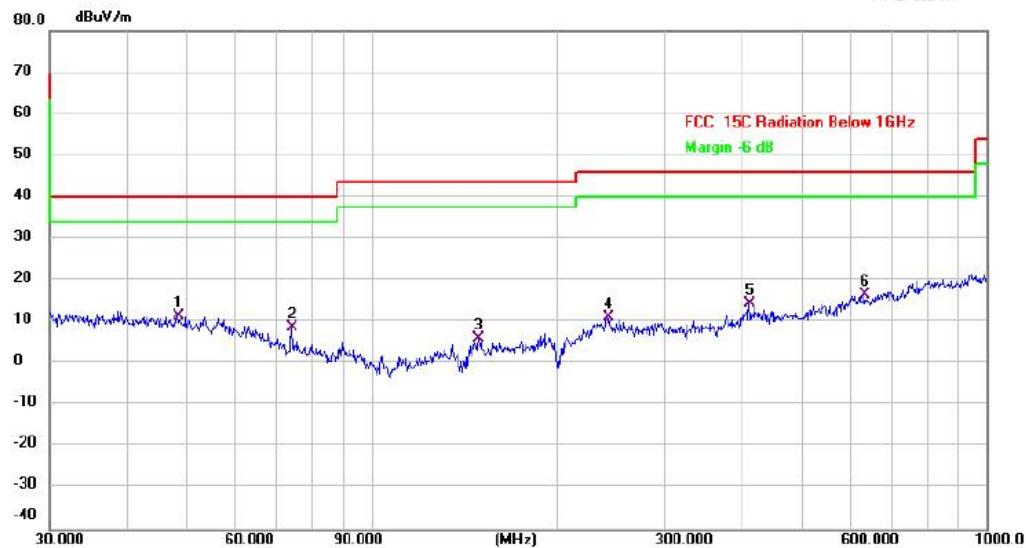


TEST REPORT

Report No.: MTi250714009-0106E4

Mode1 / Polarization: Horizontal / CH: H

U-NII Band 3:



No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dB			
1	*	39.2991	31.46	-14.32	17.14	40.00	-22.86	QP	
2		91.1746	28.21	-24.19	4.02	43.50	-39.48	QP	
3		162.6106	26.72	-20.34	6.38	43.50	-37.12	QP	
4		232.5318	27.25	-15.10	12.15	46.00	-33.85	QP	
5		431.0316	27.73	-13.61	14.12	46.00	-31.88	QP	
6		593.0497	27.38	-10.68	16.70	46.00	-29.30	QP	

TEST REPORT

Report No.: MTi250714009-0106E4

Mode1 / Polarization: Vertical / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	Detector	Comment
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
1	*	48.5016	34.16	-22.62	11.54	40.00	-28.46	QP	
2		74.1351	26.22	-17.58	8.64	40.00	-31.36	QP	
3		149.4857	23.02	-17.01	6.01	43.50	-37.49	QP	
4		241.6763	30.30	-19.02	11.28	46.00	-34.72	QP	
5		410.3825	28.41	-13.94	14.47	46.00	-31.53	QP	
6		631.6884	28.11	-11.66	16.45	46.00	-29.55	QP	

TEST REPORT

Report No.: MTi250714009-0106E4

6.7 Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)																																																																										
Test Limit:	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.																																																																										
	<table border="1"> <thead> <tr> <th>MHz</th><th>MHz</th><th>MHz</th><th>GHz</th></tr> </thead> <tbody> <tr><td>0.090-0.110</td><td>16.42-16.423</td><td>399.9-410</td><td>4.5-5.15</td></tr> <tr><td>¹0.495-0.505</td><td>16.69475- 16.69525</td><td>608-614</td><td>5.35-5.46</td></tr> <tr><td>2.1735-2.1905</td><td>16.80425- 16.80475</td><td>960-1240</td><td>7.25-7.75</td></tr> <tr><td>4.125-4.128</td><td>25.5-25.67</td><td>1300-1427</td><td>8.025-8.5</td></tr> <tr><td>4.17725-4.17775</td><td>37.5-38.25</td><td>1435-1626.5</td><td>9.0-9.2</td></tr> <tr><td>4.20725-4.20775</td><td>73-74.6</td><td>1645.5- 1646.5</td><td>9.3-9.5</td></tr> <tr><td>6.215-6.218</td><td>74.8-75.2</td><td>1660-1710</td><td>10.6-12.7</td></tr> <tr><td>6.26775-6.26825</td><td>108-121.94</td><td>1718.8- 1722.2</td><td>13.25-13.4</td></tr> <tr><td>6.31175-6.31225</td><td>123-138</td><td>2200-2300</td><td>14.47-14.5</td></tr> <tr><td>8.291-8.294</td><td>149.9-150.05</td><td>2310-2390</td><td>15.35-16.2</td></tr> <tr><td>8.362-8.366</td><td>156.52475- 156.52525</td><td>2483.5-2500</td><td>17.7-21.4</td></tr> <tr><td>8.37625-8.38675</td><td>156.7-156.9</td><td>2690-2900</td><td>22.01-23.12</td></tr> <tr><td>8.41425-8.41475</td><td>162.0125-167.17</td><td>3260-3267</td><td>23.6-24.0</td></tr> <tr><td>12.29-12.293</td><td>167.72-173.2</td><td>3332-3339</td><td>31.2-31.8</td></tr> <tr><td>12.51975- 12.52025</td><td>240-285</td><td>3345.8-3358</td><td>36.43-36.5</td></tr> <tr><td>12.57675- 12.57725</td><td>322-335.4</td><td>3600-4400</td><td>(²)</td></tr> <tr><td>13.36-13.41</td><td></td><td></td><td></td></tr> </tbody> </table>			MHz	MHz	MHz	GHz	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	¹ 0.495-0.505	16.69475- 16.69525	608-614	5.35-5.46	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4	6.31175-6.31225	123-138	2200-2300	14.47-14.5	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	12.51975- 12.52025	240-285	3345.8-3358	36.43-36.5	12.57675- 12.57725	322-335.4	3600-4400	(²)	13.36-13.41			
MHz	MHz	MHz	GHz																																																																								
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15																																																																								
¹ 0.495-0.505	16.69475- 16.69525	608-614	5.35-5.46																																																																								
2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75																																																																								
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5																																																																								
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2																																																																								
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5																																																																								
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7																																																																								
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4																																																																								
6.31175-6.31225	123-138	2200-2300	14.47-14.5																																																																								
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2																																																																								
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4																																																																								
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12																																																																								
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0																																																																								
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8																																																																								
12.51975- 12.52025	240-285	3345.8-3358	36.43-36.5																																																																								
12.57675- 12.57725	322-335.4	3600-4400	(²)																																																																								
13.36-13.41																																																																											

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

TEST REPORT

Report No.: MTi250714009-0106E4

	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:																										
	<table border="1"> <thead> <tr> <th>Frequency (MHz)</th><th>Field strength (microvolts/meter)</th><th>Measuremen t distance (meters)</th></tr> </thead> <tbody> <tr> <td>0.009-0.490</td><td>2400/F(kHz)</td><td>300</td></tr> <tr> <td>0.490-1.705</td><td>24000/F(kHz)</td><td>30</td></tr> <tr> <td>1.705-30.0</td><td>30</td><td>30</td></tr> <tr> <td>30-88</td><td>100 **</td><td>3</td></tr> <tr> <td>88-216</td><td>150 **</td><td>3</td></tr> <tr> <td>216-960</td><td>200 **</td><td>3</td></tr> <tr> <td>Above 960</td><td>500</td><td>3</td></tr> </tbody> </table>			Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)	0.009-0.490	2400/F(kHz)	300	0.490-1.705	24000/F(kHz)	30	1.705-30.0	30	30	30-88	100 **	3	88-216	150 **	3	216-960	200 **	3	Above 960	500	3
Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)																									
0.009-0.490	2400/F(kHz)	300																									
0.490-1.705	24000/F(kHz)	30																									
1.705-30.0	30	30																									
30-88	100 **	3																									
88-216	150 **	3																									
216-960	200 **	3																									
Above 960	500	3																									
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.																										
	In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.																										
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7																										
Procedure:	Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low.																										

TEST REPORT

Report No.: MTi250714009-0106E4

	<p>The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.</p> <p>3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.</p> <p>4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.</p>
--	---

6.7.1 E.U.T. Operation:

Operating Environment:				
Temperature:	23.6 °C	Humidity:	58 %	Atmospheric Pressure: 101 kPa
Pre test mode:	Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7			
Final test mode:	All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report			

TEST REPORT

Report No.: MTi250714009-0106E4

6.7.2 Test Data:

Mode1 / Polarization: Horizontal / CH: L

U-NII Band 1:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10360.000	45.93	10.59	56.52	74.00	-17.48	peak
2		10360.000	32.67	10.59	43.26	54.00	-10.74	AVG
3		15540.000	46.45	12.96	59.41	74.00	-14.59	peak
4	*	15540.000	33.62	12.96	46.58	54.00	-7.42	AVG

Mode1 / Polarization: Vertical / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		10360.000	45.56	10.59	56.15	74.00	-17.85	peak
2		10360.000	32.89	10.59	43.48	54.00	-10.52	AVG
3		15540.000	47.01	12.96	59.97	74.00	-14.03	peak
4	*	15540.000	33.63	12.96	46.59	54.00	-7.41	AVG

TEST REPORT

Report No.: MTi250714009-0106E4

Mode1 / Polarization: Horizontal / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Detector
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1		10400.000	45.31	10.65	55.96	74.00	-18.04	peak
2		10400.000	32.61	10.65	43.26	54.00	-10.74	AVG
3		15600.000	46.09	13.11	59.20	74.00	-14.80	peak
4	*	15600.000	33.04	13.11	46.15	54.00	-7.85	AVG

Mode1 / Polarization: Vertical / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Detector
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1		10400.000	44.62	10.65	55.27	74.00	-18.73	peak
2		10400.000	31.67	10.65	42.32	54.00	-11.68	AVG
3		15600.000	46.37	13.11	59.48	74.00	-14.52	peak
4	*	15600.000	33.14	13.11	46.25	54.00	-7.75	AVG

TEST REPORT

Report No.: MTi250714009-0106E4

Mode1 / Polarization: Horizontal / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Detector
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1		10480.000	45.32	10.53	55.85	74.00	-18.15	peak
2		10480.000	32.06	10.53	42.59	54.00	-11.41	AVG
3		15720.000	47.91	13.02	60.93	74.00	-13.07	peak
4	*	15720.000	35.65	13.02	48.67	54.00	-5.33	AVG

Mode1 / Polarization: Vertical / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Detector
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1		10480.000	44.35	10.53	54.88	74.00	-19.12	peak
2		10480.000	31.82	10.53	42.35	54.00	-11.65	AVG
3		15720.000	46.88	13.02	59.90	74.00	-14.10	peak
4	*	15720.000	33.65	13.02	46.67	54.00	-7.33	AVG

TEST REPORT

Report No.: MTi250714009-0106E4

Mode1 / Polarization: Horizontal / CH: L

U-NII Band 3:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11490.000	44.05	11.30	55.35	68.20	-12.85	peak
2		11490.000	31.18	11.30	42.48	54.00	-11.52	AVG
3		17235.000	45.70	13.81	59.51	68.20	-8.69	peak
4	*	17235.000	32.58	13.81	46.39	54.00	-7.61	AVG

Mode1 / Polarization: Vertical / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11490.000	44.36	11.30	55.66	68.20	-12.54	peak
2		11490.000	31.91	11.30	43.21	54.00	-10.79	AVG
3		17235.000	45.45	13.81	59.26	68.20	-8.94	peak
4	*	17235.000	32.37	13.81	46.18	54.00	-7.82	AVG

TEST REPORT

Report No.: MTi250714009-0106E4

Mode1 / Polarization: Horizontal / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11570.000	45.22	10.96	56.18	68.20	-12.02	peak
2		11570.000	32.31	10.96	43.27	54.00	-10.73	AVG
3		17355.000	45.62	14.11	59.73	68.20	-8.47	peak
4	*	17355.000	32.47	14.11	46.58	54.00	-7.42	AVG

Mode1 / Polarization: Vertical / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11570.000	43.80	10.96	54.76	68.20	-13.44	peak
2		11570.000	31.51	10.96	42.47	54.00	-11.53	AVG
3		17355.000	46.04	14.11	60.15	68.20	-8.05	peak
4	*	17355.000	34.51	14.11	48.62	54.00	-5.38	AVG

TEST REPORT

Report No.: MTi250714009-0106E4

Mode1 / Polarization: Horizontal / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11650.000	45.45	10.89	56.34	68.20	-11.86	peak
2		11650.000	32.49	10.89	43.38	54.00	-10.62	AVG
3		17475.000	45.21	14.40	59.61	68.20	-8.59	peak
4	*	17475.000	32.17	14.40	46.57	54.00	-7.43	AVG

Mode1 / Polarization: Vertical / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		11650.000	45.24	10.89	56.13	68.20	-12.07	peak
2		11650.000	32.37	10.89	43.26	54.00	-10.74	AVG
3		17475.000	45.59	14.40	59.99	68.20	-8.21	peak
4	*	17475.000	32.17	14.40	46.57	54.00	-7.43	AVG

TEST REPORT

Report No.: MTi250714009-0106E4

Photographs of the test setup

Refer to Appendix - Test Setup Photos

TEST REPORT

Report No.: MTi250714009-0106E4

Photographs of the EUT

Refer to Appendix - EUT Photos

Microtest

TEST REPORT

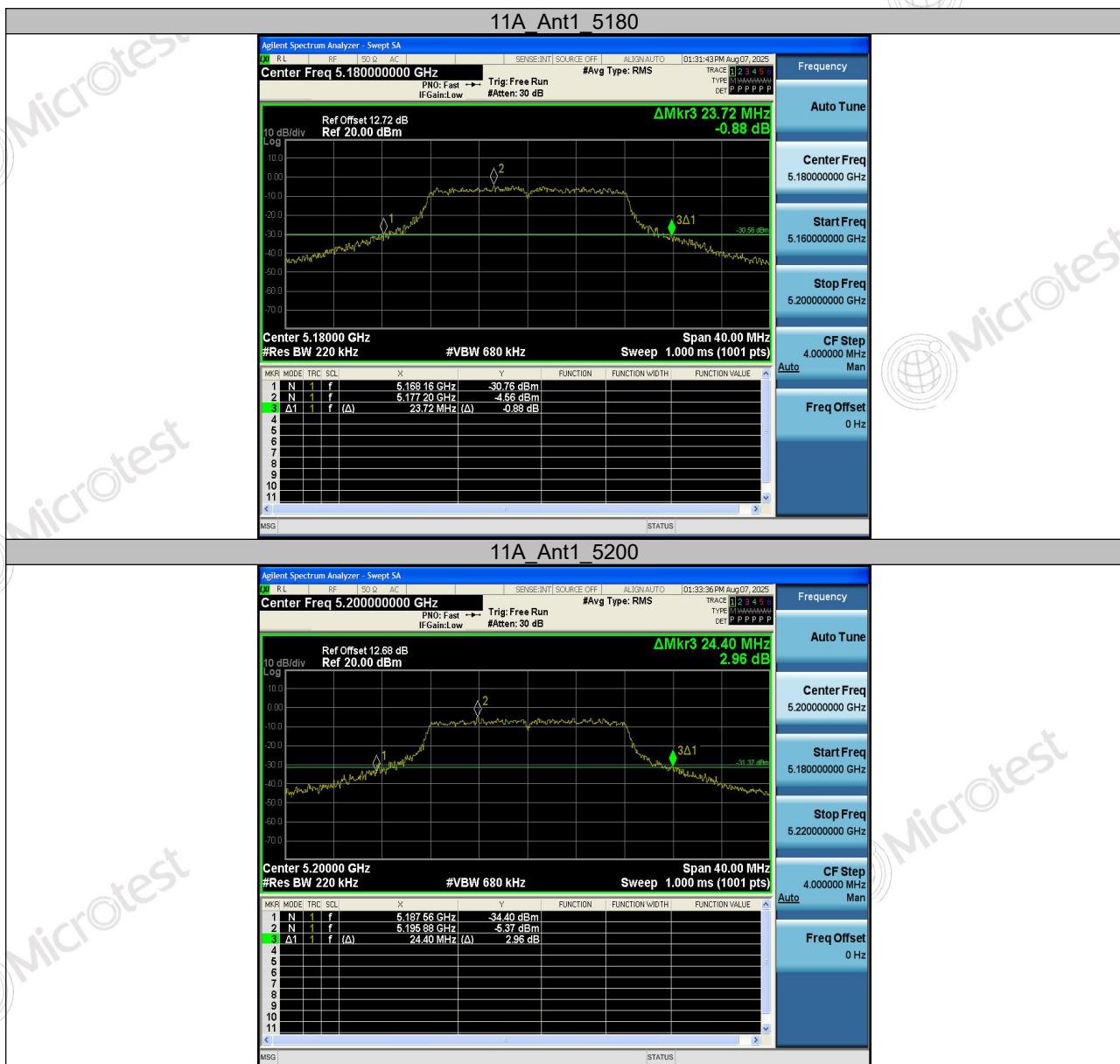
Report No.: MTi250714009-0106E4

Appendix

TEST REPORT

Report No.: MTi250714009-0106E4

Appendix A1: Emission bandwidth (26dB bandwidth)


Test Result

Test Mode	Antenna	Frequency [MHz]	26db EBW [MHz]
11A	Ant1	5180	23.720
		5200	24.400
		5240	23.440
		5745	25.560
		5785	24.360
		5825	24.160
11N20SISO	Ant1	5180	25.200
		5200	24.760
		5240	24.360
		5745	25.240
		5785	26.120
		5825	25.320
11N40SISO	Ant1	5190	46.160
		5230	45.520
		5755	46.000
		5795	47.280
11AC20SISO	Ant1	5180	26.400
		5200	24.880
		5240	25.120
		5745	26.000
		5785	25.040
		5825	25.720
11AC40SISO	Ant1	5190	45.520
		5230	46.080
		5755	46.160
		5795	45.440
11AX20SISO	Ant1	5180	25.280
		5200	26.040
		5240	25.360
		5745	27.120
		5785	23.200
		5825	25.480
11AX40SISO	Ant1	5190	43.520
		5230	44.640
		5755	45.040
		5795	45.520

TEST REPORT

Report No.: MTi250714009-0106E4

Test Graphs

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

TEST REPORT

Report No.: MTi250714009-0106E4

