

FCC Test Report

Report No. : 1814C50217012501

Applicant : Amoreo Europe S.L.

Address : Amado Granell Mesado, 75, Valencia, 46013, Spain

Product Name : SVibe Snail GIIZI Duo Couples Stimulator with remote

Report Date : 2025-08-21

Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

Contents

1. General Information	6
1.1. Client Information	6
1.2. Description of Device (EUT)	6
1.3. Auxiliary Equipment Used During Test.....	7
1.4. Operation channel list.....	7
1.5. Description of Test Modes.....	7
1.6. Measurement Uncertainty	7
1.7. Test Summary	8
1.8. Description of Test Facility	9
1.9. Disclaimer.....	9
1.10. Test Equipment List.....	10
2. Antenna requirement	11
2.1. Conclusion.....	11
3. Conducted Emission at AC power line	12
3.1. EUT Operation	12
3.2. Test Setup	12
3.3. Test Data.....	12
4. 20dB Bandwidth	13
4.1. EUT Operation	14
4.2. Test Setup	14
4.3. Test Data.....	14
5. Dwell Time	16
5.1. EUT Operation	16
5.2. Test Setup	16
5.3. Test Data.....	16
6. Duty Cycle	18
6.1. EUT Operation	18
6.2. Test Setup	18
6.3. Test Data.....	19
7. Field Strength of The Fundamental Signal	20
7.1. EUT Operation	22
7.2. Test Setup	22
7.3. Test Data.....	22
8. Radiated Emission (below 1GHz).....	23
8.1. EUT Operation	24
8.2. Test Setup	24
8.3. Test Data.....	25
9. Radiated Emission (above 1GHz)	27
9.1. EUT Operation	28
9.2. Test Setup	28
9.3. Test Data.....	29
APPENDIX I -- TEST SETUP PHOTOGRAPH	30

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

APPENDIX II -- EXTERNAL PHOTOGRAPH	30
APPENDIX III -- INTERNAL PHOTOGRAPH.....	30

TEST REPORT

Applicant : Amoreo Europe S.L.
Manufacturer : Amoreo Europe S.L.
Product Name : SVibe Snail GIZI Duo Couples Stimulator with remote
Model No. : SVibe Snail GIZI Duo Couples Stimulator with remote
Trade Mark : SVibe
Rating(s) : Input: 5V=600mA (with DC 3.7V, 50mAh battery inside)
Test Standard(s) : **47 CFR Part 15.231**
ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt: 2025-07-10

Date of Test: 2025-07-10 to 2025-07-22

Prepared By:

(Lene Chen)

Approved & Authorized Signer:

(Hugo Chen)

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	2025-08-21

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

1. General Information

1.1. Client Information

Applicant	:	Amoreo Europe S.L.
Address	:	Amado Granell Mesado, 75, Valencia, 46013, Spain
Manufacturer	:	Amoreo Europe S.L.
Address	:	Amado Granell Mesado, 75, Valencia, 46013, Spain
Factory	:	Odeco Ltd.
Address	:	2F, Block 7th,Rundongsheng Industrial Zone, Xixiang,Baoan district,518102 Shenzhen,China

1.2. Description of Device (EUT)

Product Name	:	SVibe Snail GIZI Duo Couples Stimulator with remote
Model No.	:	SVibe Snail GIZI Duo Couples Stimulator with remote
Trade Mark	:	SVibe
Test Power Supply	:	DC 3.7V battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A

RF Specification

Operation Frequency	:	433.92MHz
Number of Channel	:	1
Modulation Type	:	ASK
Antenna Type	:	PCB Antenna
Antenna Gain(Peak)	:	0dBi

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
/	/	/	/

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)
01	433.92

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT in continuously transmitting mode

1.6. Measurement Uncertainty

Parameter	Uncertainty
Occupied Bandwidth	925Hz
Dwell Time	2%
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.70dB; Vertical: 4.42dB
Radiated emissions (Below 30MHz)	3.26dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.64dB; 6G-18GHz: 4.82dB 18G-40GHz: 5.62dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	/	P
Conducted Emission at AC power line	/	N
20dB Bandwidth	Mode1	P
Dwell Time	Mode1	P
Duty Cycle	Mode1	P
Field Strength of The Fundamental Signal	Mode1	P
Radiated Emission (below 1GHz)	Mode1	P
Radiated Emission (above 1GHz)	Mode1	P
Note: P: Pass N: N/A, not applicable		

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:279531

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 279531.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
2. The test report is invalid if there is any evidence and/or falsification.
3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.
7. The data in this report will be synchronized with the corresponding national market supervision and management departments and cross-border e-commerce platforms as required by regulatory agencies.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

1.10. Test Equipment List

20dB Bandwidth Dwell Time Duty Cycle						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2025-04-25	2026-04-24
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2025-01-14	2026-01-13

Field Strength of The Fundamental Signal Radiated Emission (below 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/

Radiated Emission (above 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	EMI Preamplifier	SKET Electronic	LNPA-0118G-45	SKET-PA-002	2025-01-13	2026-01-12
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/
5	Horn Antenna	A-INFO	LB-180400-KF	J2110606 28	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2025-04-25	2026-04-24
7	Amplifier	Talent Microwave	TLLA18G40 G-53-30	23022802	2025-02-24	2026-02-23

2. Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

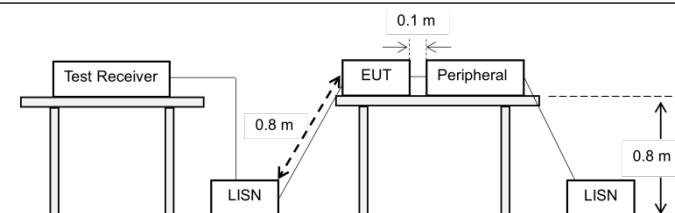
2.1. Conclusion

The antenna is a **PCB antenna** which permanently attached, and the best case gain of the antenna is **0dBi**. It complies with the standard requirement.

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a). Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).		
Test Limit:	Frequency of emission (MHz)		Conducted limit (dB μ V)
	Quasi-peak		Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50

*Decreases with the logarithm of the frequency.


| Test Method: | ANSI C63.10-2020 section 6.2 | | |
| Procedure: | Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices | | |

3.1. EUT Operation

Operating Environment:

Test mode: /

3.2. Test Setup

3.3. Test Data

Not applicable for equipment operated with DC power supply.

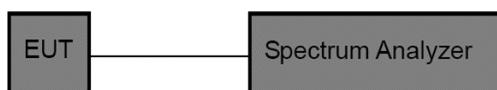
4. 20dB Bandwidth

Test Requirement:	47 CFR 15.231(c)
Test Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.
Test Method:	ANSI C63.10-2020, section 6.9.2
Procedure:	<p>a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.</p> <p>b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.</p> <p>c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (\text{OBW}/\text{RBW})]$ below the reference level. Specific guidance is given in 4.1.5.2.</p> <p>d) Steps a) through c) might require iteration to adjust within the specified tolerances.</p> <p>e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target “-xx dB down” requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.</p> <p>f) Set detection mode to peak and trace mode to max hold.</p> <p>g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).</p> <p>h) Determine the “-xx dB down amplitude” using $[(\text{reference value}) - \text{xx}]$. Alternatively, this calculation may be made by using the marker-delta function of the instrument.</p> <p>i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).</p> <p>j) Place two markers, one at the lowest frequency and the other at the</p>

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com


	<p>highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the “f_{xx} dB down amplitude” determined in step h). If a marker is below this “-xx dB down amplitude” value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the “f_{xx} dB down amplitude” determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.</p> <p>k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).</p>
--	---

4.1. EUT Operation

Operating Environment:

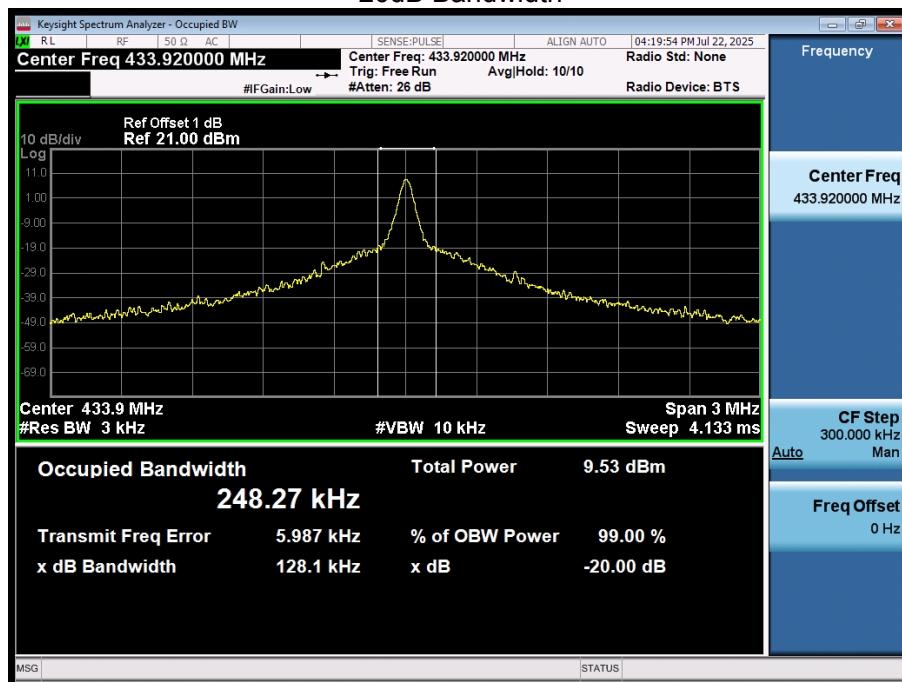
Test mode: 1: TX mode: Keep the EUT in continuously transmitting mode

4.2. Test Setup

4.3. Test Data

Temperature:	23.8 °C	Humidity:	51.9 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	--------	-----------------------	---------

Mode	Freq. (MHz)	20dB Bandwidth (kHz)	Limit (kHz)	Results
TX Mode	433.92	128.1	≤1084.8	PASS


Note: Limit=0.0025*Freq.

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

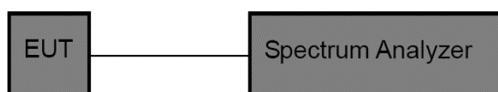
Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

20dB Bandwidth

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com


5. Dwell Time

Test Requirement:	47 CFR 15.231(a)(1) & (a)(2)
Test Limit:	<p>(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.</p> <p>(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.</p>
Test Method:	ANSI C63.10-2020, Section 7.4
Procedure:	<p>For evaluation of periodic operation characteristics, the following procedure may be used:</p> <p>a) Trigger the spectrum analyzer sweep on the RF waveform of the unlicensed wireless device.</p> <p>b) Set the spectrum analyzer sweep time greater than the specified time for periodic operation.</p> <p>c) Manually activate and deactivate the unlicensed wireless device and confirm that it ceases transmission within the specified time of deactivation.</p> <p>d) Document the test results.</p> <p>e) Verify and document that periodic transmissions at regular predetermined intervals do not exist, except where regulatory requirements allow polling or supervision transmissions, including data, to determine system integrity. Compliance is addressed by an attestation supported by the equipment theory of operation.</p>

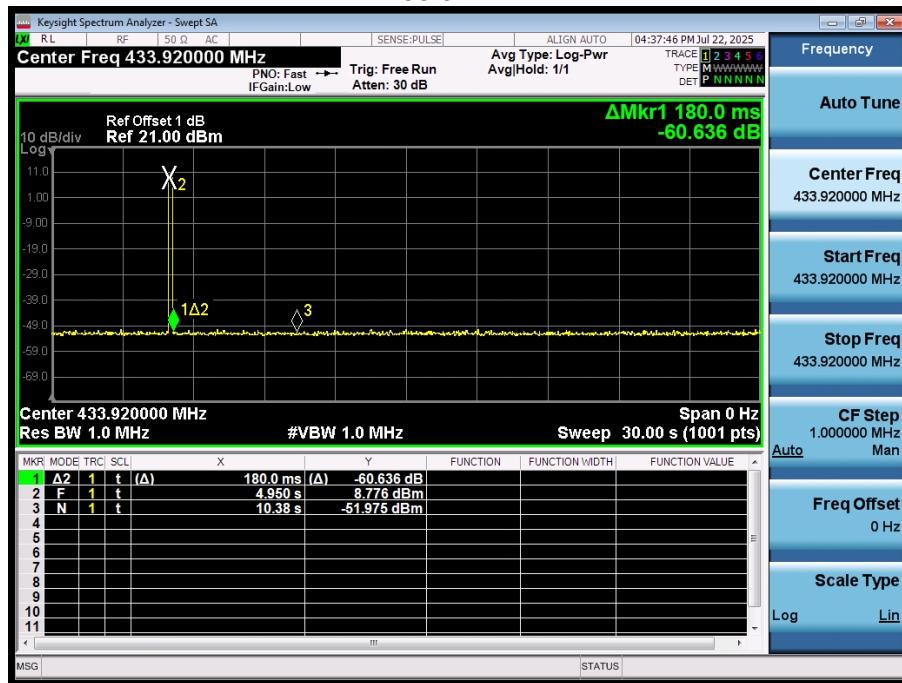
5.1. EUT Operation

Operating Environment:	
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode

5.2. Test Setup

5.3. Test Data

Temperature:	23.8 °C	Humidity:	51.9 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	--------	-----------------------	---------


Mode	Freq. (MHz)	Dwell time(s)	Limit(s)	Results
TX Mode	433.92	0.18	≤5	PASS

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

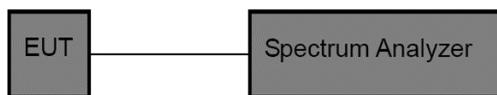
Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

433.92 MHz

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com


6. Duty Cycle

Test Requirement:	47 CFR 15.231(b) & (e)
Test Limit:	No limit, only for Report Use.
Test Method:	ANSI C63.10-2020, Section 7.5
Procedure:	<p>a) Adjust and configure any EUT switches, controls, or input data streams to ensure that the EUT is transmitting or encoded to obtain the “worst-case” pulse ON time.</p> <p>b) Couple the final radio frequency output signal to the input of a spectrum analyzer. This may be performed by a radiated, direct connection (i.e., conducted) or by a “near-field” coupling method. The signal received shall be of sufficient level to trigger adequately the spectrum analyzer sweep display. NOTE—If the bandwidth of the pulse is greater than the RBW of the spectrum analyzer, then a similar measurement may be performed using a wideband digital storage oscilloscope (DSO).</p> <p>c) Adjust the center frequency of the spectrum analyzer to the center of the RF signal.</p> <p>d) Set the spectrum analyzer for ZERO SPAN.</p> <p>e) Adjust the SWEEP TIME to obtain at least a 100 ms period of time on the horizontal display axis of the spectrum analyzer.</p> <p>f) If the pulse train is periodic (i.e., consists of a series of pulses that repeat in a characteristic pattern over a constant time period), and the period (T) is less than or equal to 100 ms, then:</p> <ol style="list-style-type: none"> 1) Set the TRIGGER on the spectrum analyzer to capture at least one period of the pulse train, including any blanking intervals. 2) Determine the total maximum pulse “ON time” (t_{ON}) over one period of the pulse train. An example of a periodic pulse train and the associated period is shown in Figure 14. If the pulse train contains pulses of different widths, then t_{ON} is determined by summing the duration of all of the pulses within the pulse train [i.e., $t_{ON} = \sum(t_1 + t_2 + \dots + t_n)$]. 3) The duty cycle is then determined by dividing the total maximum “ON time” by the period of the pulse train (t_{ON}/T). <p>g) If the pulse train is nonperiodic or is periodic with a period that exceeds 100 ms, or as an alternative to step f), then:</p> <ol style="list-style-type: none"> 1) Set the TRIGGER on the spectrum analyzer to capture the greatest amount of pulse “ON time” over 100 ms. 2) Find the 100 ms period that contains the maximum “on time”; this may require summing the duration of multiple pulses as described in step f2). 3) Determine the duty cycle by dividing the total maximum “ON time” by 100 ms ($t_{ON}/100$ ms).

6.1. EUT Operation

Operating Environment:	
Test mode:	1: TX mode: Keep the EUT in continuously transmitting mode

6.2. Test Setup

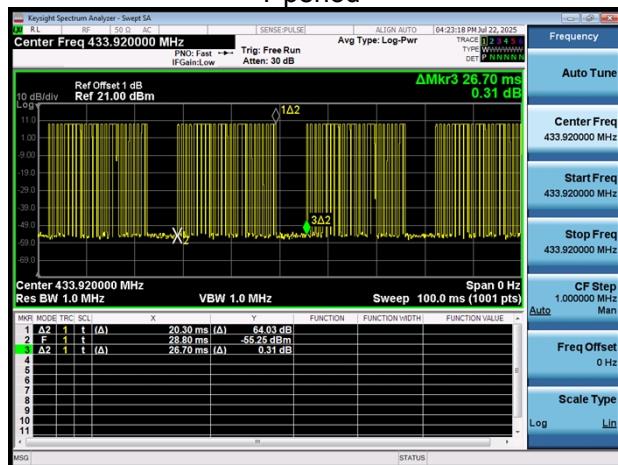
Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

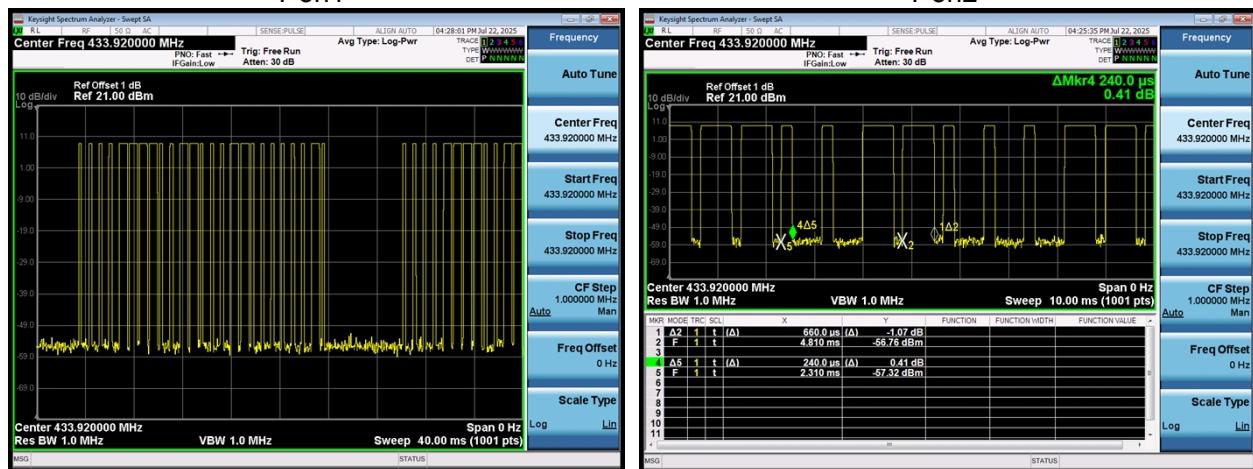
Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

6.3. Test Data

Temperature:	23.8 °C	Humidity:	51.9 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	--------	-----------------------	---------


Duty Cycle Factor

Mode	Freq. (MHz)	T on1 (ms)	N1	T on2 (ms)	N2	T on (ms)	T period (ms)	Duty Cycle	Duty Cycle Factor
TX Mode	433.92	0.66	9	0.24	16	9.780	26.7	36.63 %	-8.72


Remark:

1. T on=T on1*N1+T on2*N2
2. Duty Cycle=T on/T period
3. Duty Cycle Factor = $20 \times \lg(\text{Duty Cycle})$

T period

T on2

7. Field Strength of The Fundamental Signal

Test Requirement:	47 CFR 15.231(b)		
Test Limit:	Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
	40.66-40.70	2,250	225
	70-130	1,250	125
	130-174	¹ 1,250 to 3,750	¹ 125 to 375
	174-260	3,750	375
	260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
	Above 470	12,500	1,250
<p>¹ Linear interpolations.</p> <p>(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.</p>			
Test Method:	ANSI C63.10-2020, Section 6.5		
Procedure:	<p>Below 1GHz:</p> <p>a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.</p> <p>b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</p> <p>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</p> <p>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</p> <p>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</p> <p>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.</p> <p>g. Test the EUT in the lowest channel, the middle channel, the Highest channel.</p> <p>h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</p> <p>i. Repeat above procedures until all frequencies measured was complete.</p> <p>Remark:</p> <p>1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor</p> <p>2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB</p>		

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

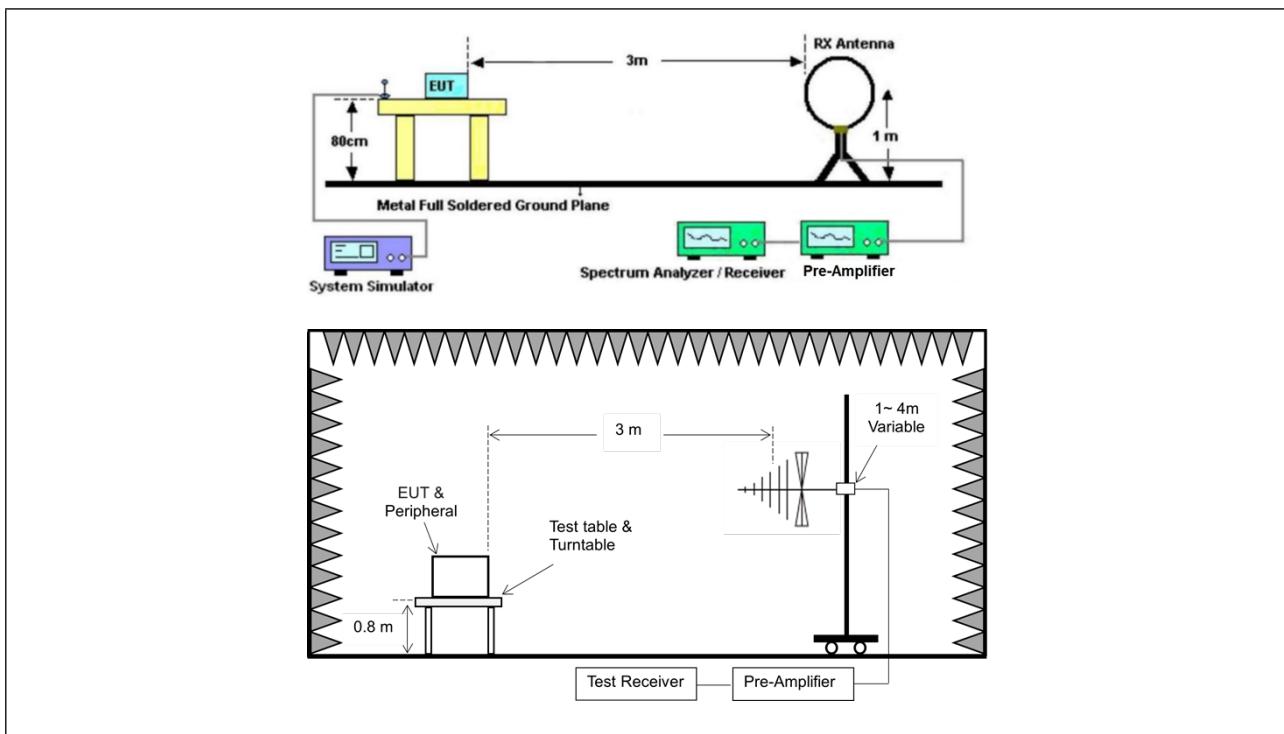
Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

below the limit need not be reported.
3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete.

Remark:


1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

7.1. EUT Operation

Operating Environment:

Test mode: 1: TX mode: Keep the EUT in continuously transmitting mode

7.2. Test Setup

7.3. Test Data

Temperature:	23.8 °C	Humidity:	51.9 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	--------	-----------------------	---------

Test Results (Fundamental)								
Mode	Freq. (MHz)	Antenna Pol.	Reading (dBuV/m)	Factor (dB)	Duty cycle Factor (dB)	Results (dBuV/m)	Limits (dBuV/m)	Det. Mode
TX Mode	433.92	H	59.99	-12.93	--	47.06	100.82	PK
	433.92	H	59.99	-12.93	-8.72	38.34	80.82	AV
	433.92	V	60.60	-10.58	--	50.02	100.82	PK
	433.92	V	60.60	-10.58	-8.72	41.30	80.82	AV

Remark:
1. Results = Reading + Factor + Duty cycle Factor

8. Radiated Emission (below 1GHz)

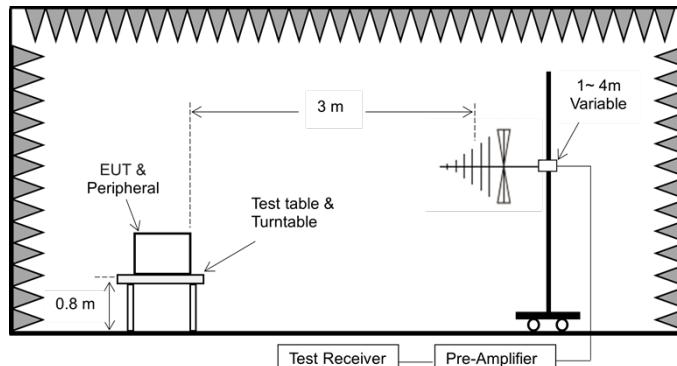
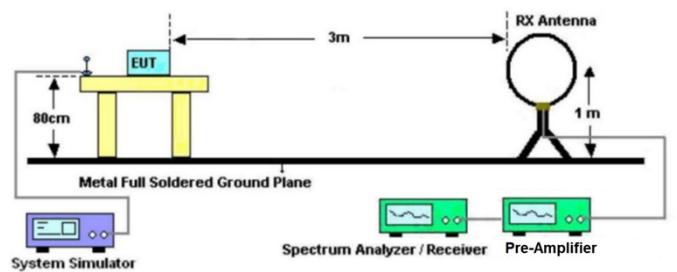
Test Requirement:	47 CFR 15.231		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Test Limit:	<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p>		
Test Method:	ANSI C63.10-2020, Section 6.5		
Procedure:	<p>a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.</p> <p>b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</p> <p>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</p> <p>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</p> <p>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</p> <p>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.</p> <p>g. Test the EUT in the lowest channel, the middle channel, the Highest channel.</p> <p>h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</p> <p>i. Repeat above procedures until all frequencies measured was complete.</p>		

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

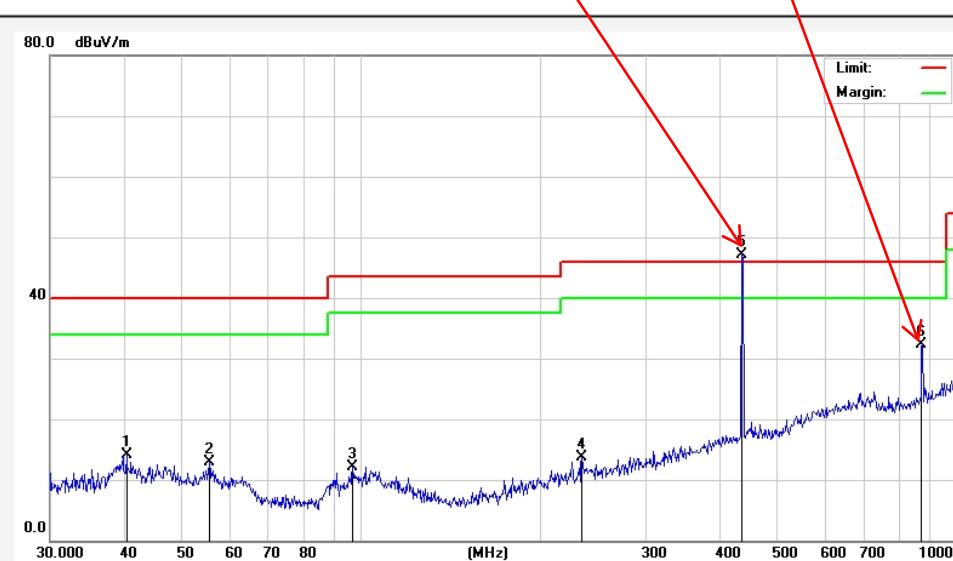
Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

Remark:

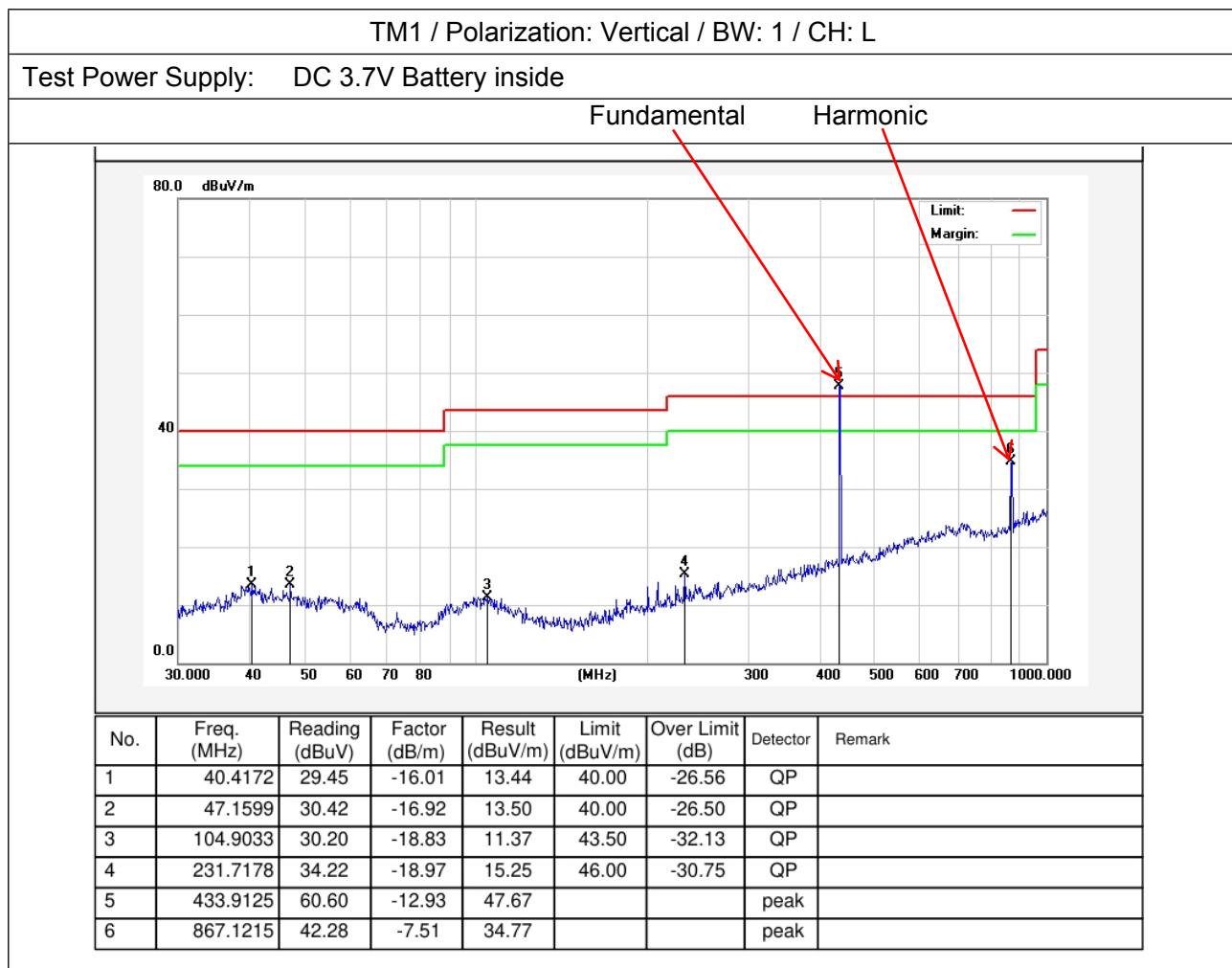


1. Result(dB μ V/m) = Reading(dB μ V) + Factor(dB/m); Over Limit(dB) = Result(dB μ V/m) - Limit(dB μ V/m)
2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

8.1. EUT Operation

Operating Environment:


Test mode: 1: TX mode: Keep the EUT in continuously transmitting mode

8.2. Test Setup



8.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature:	22.5 °C	Humidity:	55 %	Atmospheric Pressure:	101 kPa																																																															
TM1 / Polarization: Horizontal / BW: 1 / CH: L																																																																				
Test Power Supply: DC 3.7V Battery inside																																																																				
Fundamental Harmonic																																																																				
<table border="1"> <thead> <tr> <th>No.</th> <th>Freq. (MHz)</th> <th>Reading (dBuV)</th> <th>Factor (dB/m)</th> <th>Result (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit (dB)</th> <th>Detector</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>40.2757</td> <td>30.10</td> <td>-15.99</td> <td>14.11</td> <td>40.00</td> <td>-25.89</td> <td>QP</td> <td></td> </tr> <tr> <td>2</td> <td>55.4147</td> <td>30.63</td> <td>-17.76</td> <td>12.87</td> <td>40.00</td> <td>-27.13</td> <td>QP</td> <td></td> </tr> <tr> <td>3</td> <td>96.7749</td> <td>31.07</td> <td>-18.99</td> <td>12.08</td> <td>43.50</td> <td>-31.42</td> <td>QP</td> <td></td> </tr> <tr> <td>4</td> <td>234.1682</td> <td>32.66</td> <td>-18.91</td> <td>13.75</td> <td>46.00</td> <td>-32.25</td> <td>QP</td> <td></td> </tr> <tr> <td>5</td> <td>433.9125</td> <td>59.99</td> <td>-12.93</td> <td>47.06</td> <td></td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>6</td> <td>867.1215</td> <td>39.82</td> <td>-7.51</td> <td>32.31</td> <td></td> <td></td> <td>peak</td> <td></td> </tr> </tbody> </table>						No.	Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Remark	1	40.2757	30.10	-15.99	14.11	40.00	-25.89	QP		2	55.4147	30.63	-17.76	12.87	40.00	-27.13	QP		3	96.7749	31.07	-18.99	12.08	43.50	-31.42	QP		4	234.1682	32.66	-18.91	13.75	46.00	-32.25	QP		5	433.9125	59.99	-12.93	47.06			peak		6	867.1215	39.82	-7.51	32.31			peak	
No.	Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Remark																																																												
1	40.2757	30.10	-15.99	14.11	40.00	-25.89	QP																																																													
2	55.4147	30.63	-17.76	12.87	40.00	-27.13	QP																																																													
3	96.7749	31.07	-18.99	12.08	43.50	-31.42	QP																																																													
4	234.1682	32.66	-18.91	13.75	46.00	-32.25	QP																																																													
5	433.9125	59.99	-12.93	47.06			peak																																																													
6	867.1215	39.82	-7.51	32.31			peak																																																													

Temperature:	22.5 °C	Humidity:	55 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Test Results (Harmonics Emissions+Radiated Emissions)

Test Mode: 433.92MHz

Frequency (MHz)	Antenna Pol.	Reading (dBuV/m)	Factor (dB)	Duty cycle Factor (dB)	Results (dBuV/m)	Limits (dBuV/m)	Det. Mode
867.84	H	39.82	-7.51	--	32.31	80.82	PK
867.84	H	39.82	-7.51	-8.72	23.59	60.82	AV
867.84	V	42.28	-7.51	--	34.77	80.82	PK
867.84	V	42.28	-7.51	-8.72	26.05	60.82	AV

Remark:

1. Result = Reading + Factor + Duty cycle Factor
2. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

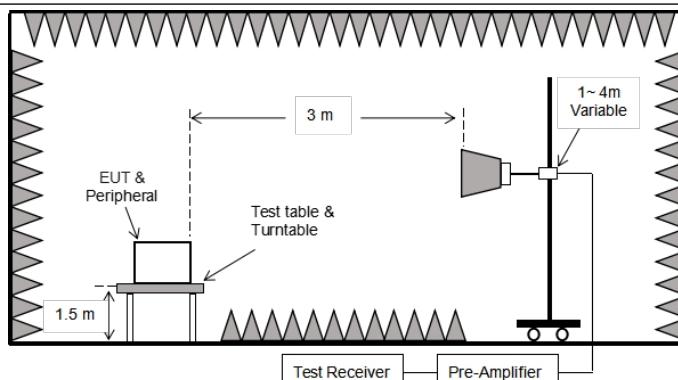
9. Radiated Emission (above 1GHz)

Test Requirement:	47 CFR 15.231		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Test Limit:	<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p>		
Test Method:	ANSI C63.10-2020, Section 6.6		
Procedure:	<p>a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.</p> <p>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</p> <p>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</p> <p>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</p> <p>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</p> <p>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.</p> <p>g. Test the EUT in the lowest channel, the middle channel, the Highest channel.</p> <p>h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</p> <p>i. Repeat above procedures until all frequencies measured was complete.</p> <p>Remark:</p>		

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com


1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation

Operating Environment:

Test mode: 1: TX mode: Keep the EUT in continuously transmitting mode

9.2. Test Setup

9.3. Test Data

Temperature:	22.8 °C	Humidity:	52 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Test Results (Harmonics Emissions+Radiated Emissions from 1G-4G)

Test Mode: 433.92MHz

Frequency (MHz)	Antenna Pol.	Reading (dBuV/m)	Factor (dB)	Duty cycle Factor (dB)	Results (dBuV/m)	Limits (dBuV/m)	Det. Mode
1301.76	H	45.33	2.38	--	47.71	74.00	PK
1301.76	H	45.33	2.38	-8.72	38.99	54.00	AV
1301.76	V	47.31	2.38	--	49.69	74.00	PK
1301.76	V	47.31	2.38	-8.72	40.97	54.00	AV

Remark:

1. Result = Reading + Factor + Duty cycle Factor
2. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----