

# **FCC Test Report**

Report No.: AGC00688250702FR02

FCC ID : 2BQVU-BM1

**APPLICATION PURPOSE**: Original Equipment

**PRODUCT DESIGNATION**: Smart Security Camera

**BRAND NAME** : VNOZ

BM1-500W, J7T-300W, J6-300W, DU1-500W, DU1-800W,

MODEL NAME DU1C-500W, DU1C-800W, BQ7-500W, BQ7-800W,

BM7-500W, P10-500W, DU1-500LTE, DU1-800LTE,

BM7-500LTE, DB4C-300W, DB4C-500W

**APPLICANT** : Vnoz Innovations Limited

**DATE OF ISSUE** : Aug. 15, 2025

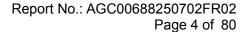
**STANDARD(S)** : FCC Part 15 Subpart C §15.247

**REPORT VERSION**: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

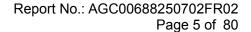


Page 2 of 80


# **Report Revise Record**

| Report Version | Revise Time | Issued Date   | Valid Version | Notes           |
|----------------|-------------|---------------|---------------|-----------------|
| V1.0           | 1           | Aug. 15, 2025 | Valid         | Initial Release |




## **Table of Contents**

| 1. General Information                                 |    |
|--------------------------------------------------------|----|
| 2. Product Information                                 | 6  |
| 2.1 Product Technical Description                      | 6  |
| 2.2 Table of Carrier Frequency                         | 7  |
| 2.3 IEEE 802.11n Modulation Scheme                     | 8  |
| 2.4 Related Submittal(S) / Grant (S)                   | 9  |
| 2.5 Test Methodology                                   | 9  |
| 2.6 Special Accessories                                | 9  |
| 2.7 Equipment Modifications                            | 9  |
| 2.8 Antenna Requirement                                | 9  |
| 2.9 Description of Test Software                       | 10 |
| 3. Test Environment                                    | 11 |
| 3.1 Address of The Test Laboratory                     | 1  |
| 3.2 Test Facility                                      | 1  |
| 3.3 Environmental Conditions                           | 12 |
| 3.4 Measurement Uncertainty                            | 12 |
| 3.5 List of Equipment Used                             | 13 |
| 4.System Test Configuration                            |    |
| 4.1 EUT Configuration                                  | 15 |
| 4.2 EUT Exercise                                       | 15 |
| 4.3 Configuration of Tested System                     | 15 |
| 4.4 Equipment Used in Tested System                    | 16 |
| 4.5 Summary of Test Results                            | 17 |
| 5. Description of Test Modes                           | 18 |
| 6. Duty Cycle Measurement                              |    |
| 7. RF Output Power Measurement                         |    |
| 7.1 Provisions Applicable                              |    |
| 7.2 Measurement Procedure                              |    |
| 7.3 Measurement Setup (Block Diagram of Configuration) |    |
| 7.4 Measurement Result                                 |    |
| 8. 6dB Bandwidth Measurement                           | 23 |
| 8.1 Provisions Applicable                              | 23 |
| 8.2 Measurement Procedure                              | 23 |
| 8.3 Measurement Setup (Block Diagram of Configuration) | 23 |
| 8.4 Measurement Result                                 | 24 |
| 9. Power Spectral Density Measurement                  | 35 |





| 9.1 Provisions Applicable                                  | 35 |
|------------------------------------------------------------|----|
| 9.2 Measurement Procedure                                  | 35 |
| 9.3 Measurement Setup (Block Diagram of Configuration)     | 36 |
| 9.4 Measurement Result                                     | 36 |
| 10. Conducted Band Edge and Out-of-Band Emissions          | 42 |
| 10.1 Provisions Applicable                                 | 42 |
| 10.2 Measurement Procedure                                 | 42 |
| 10.3 Measurement Setup (Block Diagram of Configuration)    | 42 |
| 10.4 Measurement Result                                    | 43 |
| 11. Radiated Spurious Emission                             | 54 |
| 11.1 Measurement Limits                                    | 54 |
| 11.2 Measurement Procedure                                 | 54 |
| 11.3 Measurement Setup (Block Diagram of Configuration)    | 57 |
| 11.4 Measurement Result                                    | 58 |
| 12. AC Power Line Conducted Emission                       | 75 |
| 12.1 Measurement Limits                                    | 75 |
| 12.2 Block Diagram of Line Conducted Emission Test         | 75 |
| 12.3 Preliminary Procedure of Line Conducted Emission Test | 76 |
| 12.4 Final Procedure of Line Conducted Emission Test       | 76 |
| 12.5 Test Result of Line Conducted Emission Test           | 76 |
| Appendix I: Photographs of Test Setup                      | 79 |
| Appendix II: Photographs of Test EUT                       | 79 |





## 1. General Information

| Vnoz Innovations Limited                                                                                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 109B, Floor 1, Building 2, Zaimao Industrial Park, No. 12 Baoji Road,<br>Xiangjiaotang Community, Bantian, Longgang District, Shenzhen, Guangdong<br>Province, China |  |
| Vnoz Innovations Limited                                                                                                                                             |  |
| 109B, Floor 1, Building 2, Zaimao Industrial Park, No. 12 Baoji Road,<br>Xiangjiaotang Community, Bantian, Longgang District, Shenzhen, Guangdong<br>Province, China |  |
| Dongguan Brovotech Co., Ltd                                                                                                                                          |  |
| 601, Building 3, Changxingzhigu Industrial Park, No. 16 Xinfeng Road,<br>Changlong, Huangjiang, Dongguan                                                             |  |
| Smart Security Camera                                                                                                                                                |  |
| VNOZ                                                                                                                                                                 |  |
| BM1-500W                                                                                                                                                             |  |
| J7T-300W, J6-300W, DU1-500W, DU1-800W, DU1C-500W, DU1C-800W, BQ7-500W, BQ7-800W, BM7-500W, P10-500W, DU1-500LTE, DU1-800LTE, BM7-500LTE, DB4C-300W, DB4C-500W        |  |
| All the series models are the same as the test model except for the model names.                                                                                     |  |
| Jul. 16, 2025                                                                                                                                                        |  |
| Jul. 16, 2025 to Aug. 15, 2025                                                                                                                                       |  |
| No any deviation from the test method                                                                                                                                |  |
| ole Normal                                                                                                                                                           |  |
| Pass                                                                                                                                                                 |  |
| AGCER-FCC-2.4GWLAN-V1                                                                                                                                                |  |
|                                                                                                                                                                      |  |

Note: The test results of this report relate only to the tested sample identified in this report.

| Prepared By | Coli                              |               |
|-------------|-----------------------------------|---------------|
|             | Cici Li<br>(Project Engineer)     | Aug. 15, 2025 |
| Reviewed By | Bibo zhang                        |               |
|             | Bibo Zhang<br>(Reviewer)          | Aug. 15, 2025 |
| Approved By | Angole li                         |               |
|             | Angela Li<br>(Authorized Officer) | Aug. 15, 2025 |



Page 6 of 80

## 2. Product Information

## 2.1 Product Technical Description

| Equipment Type         | WLAN 2.4G                                                      |
|------------------------|----------------------------------------------------------------|
| Frequency Band         | 2400MHz ~ 2483.5MHz                                            |
| Operation Frequency    | 2412MHz ~ 2462MHz                                              |
| Output Power (Average) | IEEE 802.11b:12.98dBm; IEEE 802.11g:11.49dBm;                  |
| Output Fower (Average) | IEEE 802.11n(HT20):11.06dBm                                    |
| Output Power (Peak)    | IEEE 802.11b:15.20dBm; IEEE 802.11g:19.25dBm;                  |
| Output I ower (I eak)  | IEEE 802.11n(HT20):19.16dBm                                    |
| Modulation             | 802.11b:(DQPSK, DBPSK, CCK) DSSS                               |
| Wiodulation            | 802.11g/n:(64-QAM,16-QAM, QPSK, BPSK) OFDM                     |
|                        | 802.11b:1/2/5.5/11Mbps                                         |
| Data Rate              | 802.11g: 6/9/12/18/24/36/48/54Mbps                             |
|                        | 802.11n: up to 72.2Mbps                                        |
| Number of channels     | 11                                                             |
| Hardware Version       | M1413                                                          |
| Software Version       | V7.00.47.250510                                                |
| Antenna Designation    | FPC Antenna                                                    |
| Antenna Gain           | 4.12dBi                                                        |
| Power Supply           | DC 5V by adapter or DC 3.7V by battery or DC 5V by Solar Panel |



Page 7 of 80

# 2.2 Table of Carrier Frequency

## For 2412-2462MHz:

## 11 channels are provided for 802.11b/g/n(HT20):

| Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|
| 01      | 2412 MHz  | 02      | 2417 MHz  | 03      | 2422 MHz  |
| 04      | 2427 MHz  | 05      | 2432 MHz  | 06      | 2437 MHz  |
| 07      | 2442 MHz  | 08      | 2447 MHz  | 09      | 2452 MHz  |
| 10      | 2457 MHz  | 11      | 2462 MHz  |         |           |



Page 8 of 80

#### 2.3 IEEE 802.11n Modulation Scheme

| MOO          |     |            |     |                   | N <sub>CBPS</sub> |       | N <sub>DBPS</sub> |       | Data Rate(Mbps) |       |      |
|--------------|-----|------------|-----|-------------------|-------------------|-------|-------------------|-------|-----------------|-------|------|
| MCS<br>Index | Nss | Modulation | R   | N <sub>BPSC</sub> | N <sub>BPSC</sub> | INC   | BPS               | ואט   | BPS             | 800   | nsGl |
| macx         |     |            |     |                   | 20MHz             | 40MHz | 20MHz             | 40MHz | 20MHz           | 40MHz |      |
| 0            | 1   | BPSK       | 1/2 | 1                 | 52                | 108   | 26                | 54    | 6.5             | 13.5  |      |
| 1            | 1   | QPSK       | 1/2 | 2                 | 104               | 216   | 52                | 108   | 13.0            | 27.0  |      |
| 2            | 1   | QPSK       | 3/4 | 2                 | 104               | 216   | 78                | 162   | 19.5            | 40.5  |      |
| 3            | 1   | 16-QAM     | 1/2 | 4                 | 208               | 432   | 104               | 216   | 26.0            | 54.0  |      |
| 4            | 1   | 16-QAM     | 3/4 | 4                 | 208               | 432   | 156               | 324   | 39.0            | 81.0  |      |
| 5            | 1   | 64-QAM     | 2/3 | 6                 | 312               | 648   | 208               | 432   | 52.0            | 108.0 |      |
| 6            | 1   | 64-QAM     | 3/4 | 6                 | 312               | 648   | 234               | 489   | 58.5            | 121.5 |      |
| 7            | 1   | 64-QAM     | 5/6 | 6                 | 312               | 648   | 260               | 540   | 65.0            | 135.0 |      |

| Symbol | Explanation                             |
|--------|-----------------------------------------|
| NSS    | Number of spatial streams               |
| R      | Code rate                               |
| NBPSC  | Number of coded bits per single carrier |
| NCBPS  | Number of coded bits per symbol         |
| NDBPS  | Number of data bits per symbol          |
| GI     | Guard interval                          |



Page 9 of 80

## 2.4 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2BQVU-BM1**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

#### 2.5 Test Methodology

The tests were performed according to following standards:

|     | ·                  |                                                                               |
|-----|--------------------|-------------------------------------------------------------------------------|
| No. | Identity           | Document Title                                                                |
| 1   | FCC 47 CFR Part 2  | Frequency allocations and radio treaty matters; general rules and regulations |
| 2   | FCC 47 CFR Part 15 | Radio Frequency Devices                                                       |
| 3   | ANSI C63.10-2013   | American National Standard for Testing Unlicensed Wireless Devices            |

#### 2.6 Special Accessories

Refer to section 4.4.

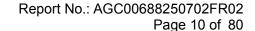
## 2.7 Equipment Modifications

Not available for this EUT intended for grant.

## 2.8 Antenna Requirement

## **Standard Requirement**

#### 15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

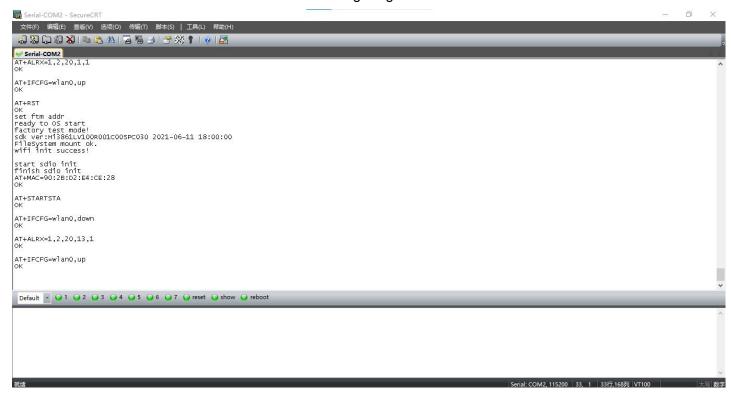
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

#### **EUT Antenna:**

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 4.12 dBi.






2.9 Description of Test Software

## For IEEE 802.11 mode:

The test utility software used during testing was "SecureCRT", and the version was "6.6.1".

## Software Setting Diagram



| Test Mode    | Channel | Power Index |
|--------------|---------|-------------|
| 802.11b      | L/M/H   | Default     |
| 802.11g      | L/M/H   | Default     |
| 802.11n-HT20 | L/M/H   | Default     |



Page 11 of 80

#### 3. Test Environment

#### 3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

#### 3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

#### A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

## FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

## IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.



Page 12 of 80

## 3.3 Environmental Conditions

|                         | Normal Conditions |
|-------------------------|-------------------|
| Temperature range (°C)  | 15 - 35           |
| Relative humidity range | 20 % - 75 %       |
| Pressure range (kPa)    | 86 - 106          |

## 3.4 Measurement Uncertainty

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Item                                          | Measurement Uncertainty    |  |  |
|-----------------------------------------------|----------------------------|--|--|
| Uncertainty of Conducted Emission for AC Port | $U_c = \pm 2.9 \text{ dB}$ |  |  |
| Uncertainty of Radiated Emission below 1GHz   | $U_c = \pm 3.9 \text{ dB}$ |  |  |
| Uncertainty of Radiated Emission above 1GHz   | $U_c = \pm 4.9 \text{ dB}$ |  |  |
| Uncertainty of total RF power, conducted      | $U_c = \pm 0.8 \text{ dB}$ |  |  |
| Uncertainty of RF power density, conducted    | $U_c = \pm 2.6 \text{ dB}$ |  |  |
| Uncertainty of spurious emissions, conducted  | U <sub>c</sub> = ±2 %      |  |  |
| Uncertainty of Occupied Channel Bandwidth     | U <sub>c</sub> = ±2 %      |  |  |
| Uncertainty of Dwell Time                     | U <sub>c</sub> = ±2 %      |  |  |



Page 13 of 80

## 3.5 List of Equipment Used

| • F         | RF Conducted Test System |                        |               |               |            |                              |                              |  |  |  |
|-------------|--------------------------|------------------------|---------------|---------------|------------|------------------------------|------------------------------|--|--|--|
| Used        | Equipment No.            | Test Equipment         | Manufacturer  | Model No.     | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |  |
| $\boxtimes$ | AGC-ER-E036              | Spectrum Analyzer      | Agilent       | N9020A        | MY49100060 | 2025-05-08                   | 2026-05-07                   |  |  |  |
|             | AGC-ER-E062              | Power Sensor           | Agilent       | U2021XA       | MY54110007 | 2025-05-08                   | 2026-05-07                   |  |  |  |
|             | AGC-ER-E063              | Power Sensor           | Agilent       | U2021XA       | MY54110009 | 2025-05-08                   | 2026-05-07                   |  |  |  |
| $\boxtimes$ | AGC-ER-A007              | 6dB Fixed Attenuator   | Mini circuits | BW-S6-2W263A+ | N/A        | 2025-01-30                   | 2026-01-29                   |  |  |  |
|             | AGC-ER-E083              | Signal Generator       | Agilent       | E4421B        | US39340815 | 2025-05-21                   | 2026-05-20                   |  |  |  |
|             | N/A                      | RF Connection<br>Cable | N/A           | 1#            | N/A        | Each time                    | N/A                          |  |  |  |
| $\boxtimes$ | N/A                      | RF Connection<br>Cable | N/A           | 2#            | N/A        | Each time                    | N/A                          |  |  |  |

| • F         | Radiated Spurious Emission |                                  |              |            |            |                              |                              |  |  |
|-------------|----------------------------|----------------------------------|--------------|------------|------------|------------------------------|------------------------------|--|--|
| Used        | Equipment No.              | Test Equipment                   | Manufacturer | Model No.  | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |
|             | AGC-EM-E046                | EMI Test Receiver                | R&S          | ESCI       | 100096     | 2025-01-14                   | 2026-01-13                   |  |  |
|             | AGC-EM-E116                | EMI Test Receiver                | R&S          | ESCI       | 100034     | 2025-05-08                   | 2026-05-07                   |  |  |
|             | AGC-EM-E061                | Spectrum Analyzer                | Agilent      | N9010A     | MY53470504 | 2025-05-08                   | 2026-05-07                   |  |  |
| $\boxtimes$ | AGC-EM-E086                | Loop Antenna                     | ZHINAN       | ZN30900C   | 18051      | 2024-03-05                   | 2026-03-04                   |  |  |
| $\boxtimes$ | AGC-EM-E001                | Wideband Antenna                 | SCHWARZBECK  | VULB9168   | D69250     | 2025-03-14                   | 2027-03-13                   |  |  |
|             | AGC-EM-E029                | Broadband Ridged<br>Horn Antenna | ETS          | 3117       | 00034609   | 2025-03-27                   | 2026-03-26                   |  |  |
|             | AGC-EM-E082                | Horn Antenna                     | SCHWARZBECK  | BBHA 9170  | #768       | 2023-09-24                   | 2025-09-23                   |  |  |
| $\boxtimes$ | AGC-EM-E146                | Pre-amplifier                    | ETS          | 3117-PA    | 00246148   | 2024-07-24                   | 2026-07-23                   |  |  |
| $\boxtimes$ | AGC-EM-A119                | 2.4GHz Filter                    | SongYi       | N/A        | N/A        | 2025-05-16                   | 2026-05-15                   |  |  |
| $\boxtimes$ | AGC-EM-A138                | 6dB Attenuator                   | Eeatsheep    | LM-XX-6-5W | N/A        | 2025-05-16                   | 2027-05-15                   |  |  |
|             | AGC-EM-A139                | 6dB Attenuator                   | Eeatsheep    | LM-XX-6-5W | N/A        | 2025-05-16                   | 2027-05-15                   |  |  |

| • A  | AC Power Line Conducted Emission |                |               |           |            |                              |                              |  |  |  |
|------|----------------------------------|----------------|---------------|-----------|------------|------------------------------|------------------------------|--|--|--|
| Used | Equipment No.                    | Test Equipment | Manufacturer  | Model No. | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |  |
|      | AGC-EM-E116                      | Test Receiver  | R&S           | ESCI      | 100034     | 2025-05-08                   | 2026-05-07                   |  |  |  |
|      | AGC-EM-A171                      | Attenuator     | Mini-Circuits | UNAT-10A+ | N/A        | 2024-02-01                   | 2026-01-31                   |  |  |  |
|      | AGC-EM-E023                      | AMN            | R&S           | ESH2-Z5   | 100086     | 2025-05-08                   | 2026-05-07                   |  |  |  |



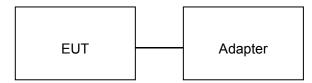


| • Te        | Test Software                   |                     |                                              |                      |                     |  |  |  |  |
|-------------|---------------------------------|---------------------|----------------------------------------------|----------------------|---------------------|--|--|--|--|
| Used        | ed Equipment No. Test Equipment |                     | uipment No. Test Equipment Manufacturer Mode |                      | Version Information |  |  |  |  |
| $\boxtimes$ | AGC-EM-S001                     | CE Test System      | R&S                                          | ES-K1                | V1.71               |  |  |  |  |
| $\boxtimes$ | AGC-EM-S003                     | RE Test System      | FARA                                         | EZ-EMC               | VRA-03A             |  |  |  |  |
| $\boxtimes$ | AGC-ER-S012                     | BT/WIFI Test System | Tonscend                                     | JS1120-2             | 2.6                 |  |  |  |  |
| $\boxtimes$ | AGC-EM-S011                     | RSE Test System     | Tonscend                                     | TS+-Ver2.1(JS36-RSE) | 4.0.0.0             |  |  |  |  |

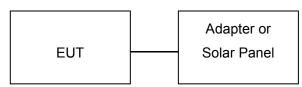


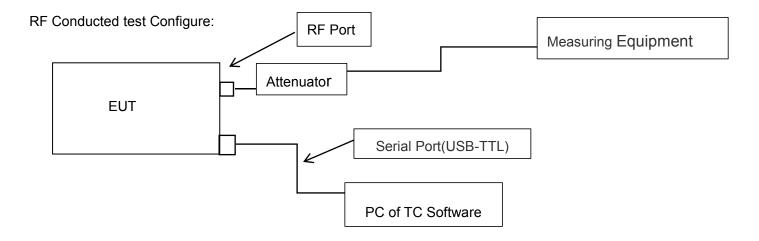
**4.System Test Configuration** 

## 4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

#### 4.2 EUT Exercise


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.


## 4.3 Configuration of Tested System

Conducted Emission Configure:



## Radiated Emission Configure:







Page 16 of 80

## 4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

## 

| No. | Equipment            | Manufacturer | Model No.  | Specification Information | Cable |
|-----|----------------------|--------------|------------|---------------------------|-------|
| 1   | Control Box          | !            | HQPCB-2    |                           |       |
| 2   | Adapter              | Xiaomi       | MDY-16-EA  |                           |       |
| 3   | Redmi Notebook<br>PC | Redmi        | XMA2002-AB |                           |       |

#### 

| No. | Equipment | Manufacturer | Model No. | Specification Information | Cable              |
|-----|-----------|--------------|-----------|---------------------------|--------------------|
| 1   | USB cable |              |           |                           | 1.5m<br>unshielded |



Page 17 of 80

## 4.5 Summary of Test Results

| Item | FCC Rules            | Description of Test                           | Result |
|------|----------------------|-----------------------------------------------|--------|
| 1    | §15.203&15.247(b)(4) | Antenna Equipment                             | Pass   |
| 2    | §15.247 (b)(1)       | RF Output Power                               | Pass   |
| 3    | §15.247 (a)(1)       | 6 dB Bandwidth                                | Pass   |
| 4    | §15.247 (e)          | Power Spectral Density                        | Pass   |
| 5    | §15.247 (d)          | Conducted Band Edge and Out-of-Band Emissions | Pass   |
| 6    | §15.247 (d)&15.209   | Radiated Spurious Emission                    | Pass   |
| 7    | §15.207              | AC Power Line Conducted Emission              | Pass   |



Page 18 of 80

## 5. Description of Test Modes

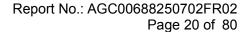
|                        | Summary table of Test Cases                                                                                                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Toot Itom              | Data Rate / Modulation                                                                                                                            |
| Test Item              | 2.4G WLAN – 802.11b/g/n (DSSS/OFDM)                                                                                                               |
|                        | Mode 1: 802.11b_TX CH01_2412 MHz_1 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                          |
|                        | Mode 2: 802.11b_TX CH06_2437 MHz_1 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                          |
|                        | Mode 3: 802.11b_TX CH11_2462 MHz_1 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                          |
|                        | Mode 4: 802.11g_TX CH01_2412 MHz_6 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                          |
| Radiated<br>Test Cases | Mode 5: 802.11g_TX CH06_2437 MHz_6 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                          |
|                        | Mode 6: 802.11g_TX CH11_2462 MHz_6 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                          |
|                        | Mode 7: 802.11n-HT20_TX CH01_2412 MHz_MCS0 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                  |
|                        | Mode 8: 802.11n-HT20_TX CH06_2437 MHz_ MCS0 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                 |
|                        | Mode 9: 802.11n-HT20_TX CH11_2462 MHz_ MCS0 Mbps(Battery powered or AC/DC adapter or Solar Panel)                                                 |
|                        | Mode 1: 802.11b_TX CH01_2412 MHz_1 Mbps(Powered-by Control Box)                                                                                   |
|                        | Mode 2: 802.11b_TX CH06_2437 MHz_1 Mbps(Powered-by Control Box)                                                                                   |
|                        | Mode 3: 802.11b_TX CH11_2462 MHz_1 Mbps(Powered-by Control Box)                                                                                   |
| RF Conducted           | Mode 4: 802.11g_TX CH01_2412 MHz_6 Mbps(Powered-by Control Box)                                                                                   |
| Test Cases             | Mode 5: 802.11g_TX CH06_2437 MHz_6 Mbps(Powered-by Control Box)                                                                                   |
|                        | Mode 6: 802.11g_TX CH11_2462 MHz_6 Mbps(Powered-by Control Box)                                                                                   |
|                        | Mode 7: 802.11n-HT20_TX CH01_2412 MHz_MCS0 Mbps(Powered-by Control Box)                                                                           |
|                        | Mode 8: 802.11n-HT20_TX CH06_2437 MHz_ MCS0 Mbps(Powered-by Control Box) Mode 9: 802.11n-HT20_TX CH11_2462 MHz_ MCS0 Mbps(Powered-by Control Box) |
|                        | Wode 9. 002. THE TIZO_TA CITTI_2402 WITZ_WC30 WIDPS(FOWERED-DY CONTROL BOX)                                                                       |
| AC Conducted Emission  | Mode 1: 2.4G WLAN Link + Battery + USB Cable (Charging from AC Adapter)                                                                           |

#### Note:

- The battery is full-charged during the test.
- 2. The 802.11ax mode is only tested and evaluated at Full RU bandwidth.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 4. For Conducted Test method, a temporary antenna connector is provided by the manufacture.
- The manufacturer of RF external cable claims that the cable loss is 0.5dB, and the cable loss and attenuator have been compensated into the Corrections Configuration of measuring equipment.
- 6. Input correction factor includes external cable loss and attenuator amplitude compensation. The formula is: Input compensation coefficient (dB) = Cable Loss (dB) + Attenuator attenuation value (dB)

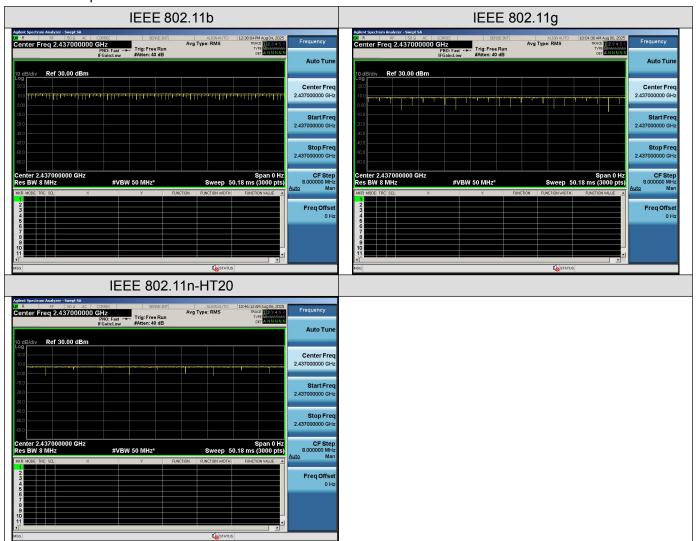


Page 19 of 80


## 6. Duty Cycle Measurement

2.4GHz WLAN (DTS) operation is possible in 20MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Average. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

| Operating mode    | Data rates (Mbps) | Duty Cycle (%) | Duty Cycle Factor (dB) |
|-------------------|-------------------|----------------|------------------------|
| IEEE 802.11b      | 1                 | 100            |                        |
| IEEE 802.11g      | 6                 | 100            |                        |
| IEEE 802.11n-HT20 | MCS0              | 100            |                        |


#### Remark:

- 1. Duty Cycle factor = 10 \* log (1/ Duty cycle)
- 2. The duty cycle of each frequency band mode reflects the determination requirements of the Middle channel measurement value.





## The test plots as follows:





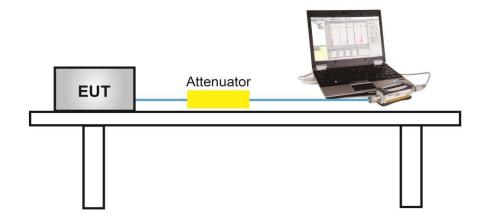
Page 21 of 80

## 7. RF Output Power Measurement

## 7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

#### 7.2 Measurement Procedure


☑ Method PM is Measurement using an RF Peak power meter. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.1.3
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

☑ Method PM is Measurement using an RF AV power meter. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.2.3
- 2. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
- 3. The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
- 4. At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 5. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 6. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below.
- 7. Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- 8. Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25%}.
- 9. Record the test results in the report.

#### 7.3 Measurement Setup (Block Diagram of Configuration)





Page 22 of 80

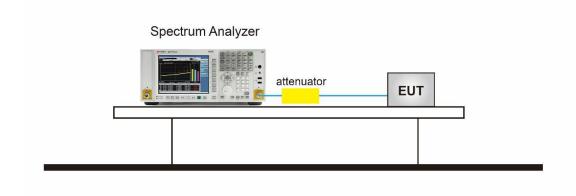
#### 7.4 Measurement Result

| Test Data of Conducted Output Power |                         |                     |                     |              |        |  |  |
|-------------------------------------|-------------------------|---------------------|---------------------|--------------|--------|--|--|
| Test Mode                           | Test Frequency<br>(MHz) | Average Power (dBm) | Peak Power<br>(dBm) | Limits (dBm) | Result |  |  |
|                                     | 2412                    | 12.29               | 14.78               | ≤30          | Pass   |  |  |
| 802.11b                             | 2437                    | 12.98               | 15.20               | ≤30          | Pass   |  |  |
|                                     | 2462                    | 12.11               | 14.58               | ≤30          | Pass   |  |  |
|                                     | 2412                    | 11.17               | 18.94               | ≤30          | Pass   |  |  |
| 802.11g                             | 2437                    | 11.49               | 19.25               | ≤30          | Pass   |  |  |
|                                     | 2462                    | 11.49               | 19.24               | ≤30          | Pass   |  |  |
|                                     | 2412                    | 11.06               | 19.16               | ≤30          | Pass   |  |  |
| 802.11n20                           | 2437                    | 11.00               | 19.09               | ≤30          | Pass   |  |  |
|                                     | 2462                    | 10.72               | 18.89               | ≤30          | Pass   |  |  |



Page 23 of 80

#### 8. 6dB Bandwidth Measurement

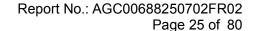

## 8.1 Provisions Applicable

The minimum 6dB bandwidth shall be 500 kHz.

#### 8.2 Measurement Procedure

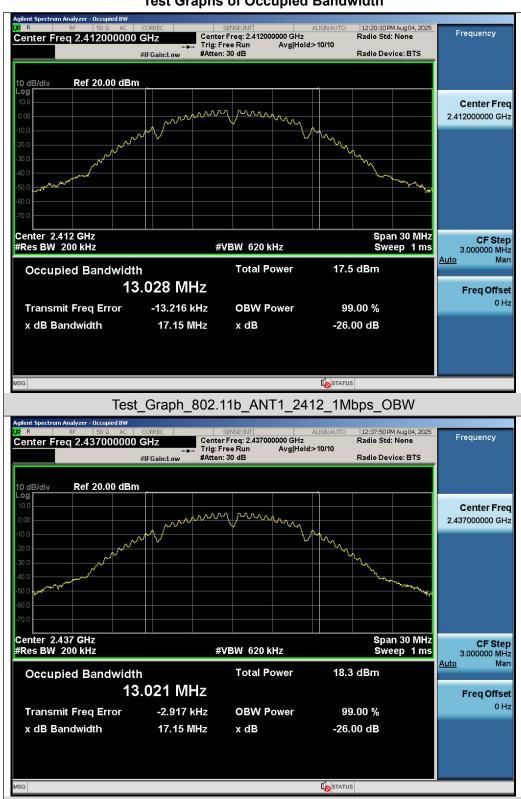
- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. For 6dB Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement.
- 4. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 \* RBW.
- 5. Detector = peak
- 6. Trace mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize.
- 9. Measure and record the results in the test report.

## 8.3 Measurement Setup (Block Diagram of Configuration)



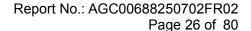



Page 24 of 80

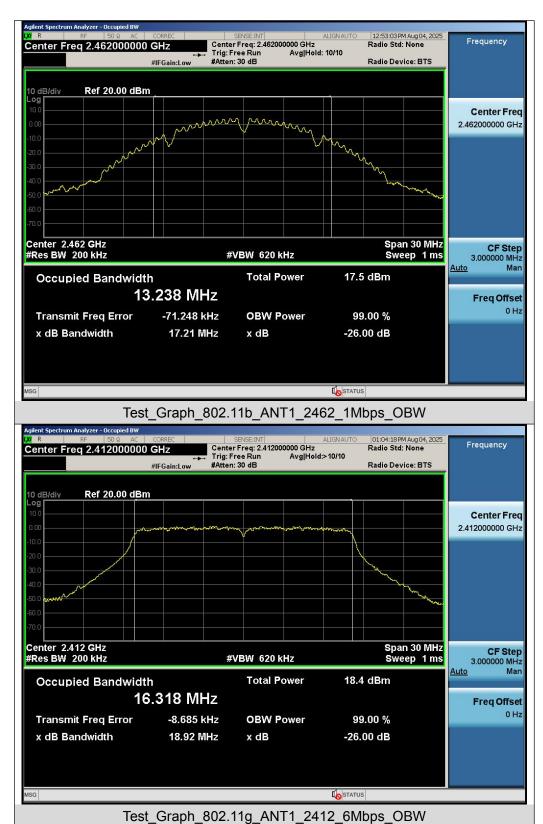

#### 8.4 Measurement Result

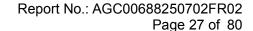
|           | Test Data of Occupied Bandwidth and DTS Bandwidth |                                    |                        |                                  |        |  |  |  |
|-----------|---------------------------------------------------|------------------------------------|------------------------|----------------------------------|--------|--|--|--|
| Test Mode | Test Frequency<br>(MHz)                           | 99% Occupied<br>Bandwidth<br>(MHz) | DTS Bandwidth<br>(MHz) | DTS Bandwidth<br>Limits<br>(MHz) | Result |  |  |  |
|           | 2412                                              | 13.028                             | 8.068                  | ≥0.5                             | Pass   |  |  |  |
| 802.11b   | 2437                                              | 13.021                             | 7.146                  | ≥0.5                             | Pass   |  |  |  |
|           | 2462                                              | 13.238                             | 8.108                  | ≥0.5                             | Pass   |  |  |  |
|           | 2412                                              | 16.318                             | 16.326                 | ≥0.5                             | Pass   |  |  |  |
| 802.11g   | 2437                                              | 16.352                             | 16.338                 | ≥0.5                             | Pass   |  |  |  |
|           | 2462                                              | 16.339                             | 16.337                 | ≥0.5                             | Pass   |  |  |  |
|           | 2412                                              | 17.535                             | 17.571                 | ≥0.5                             | Pass   |  |  |  |
| 802.11n20 | 2437                                              | 17.529                             | 17.590                 | ≥0.5                             | Pass   |  |  |  |
|           | 2462                                              | 17.534                             | 17.317                 | ≥0.5                             | Pass   |  |  |  |



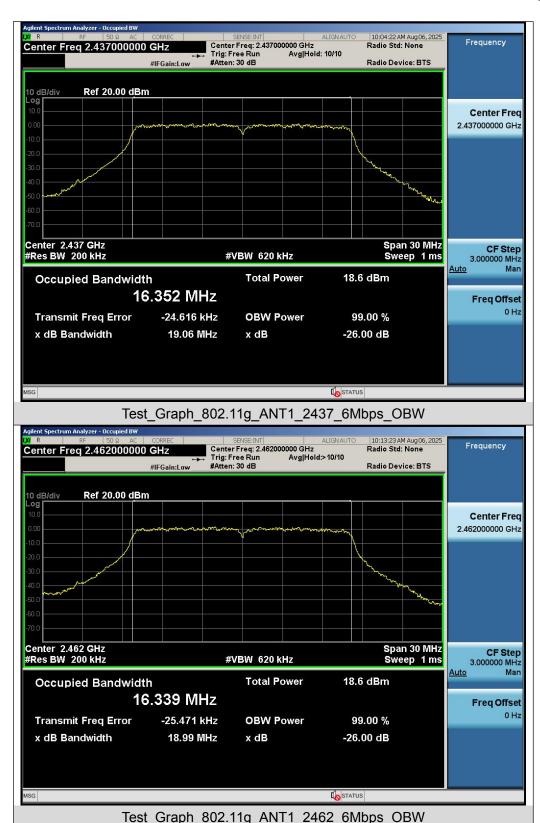


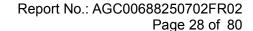

## Test Graphs of Occupied Bandwidth



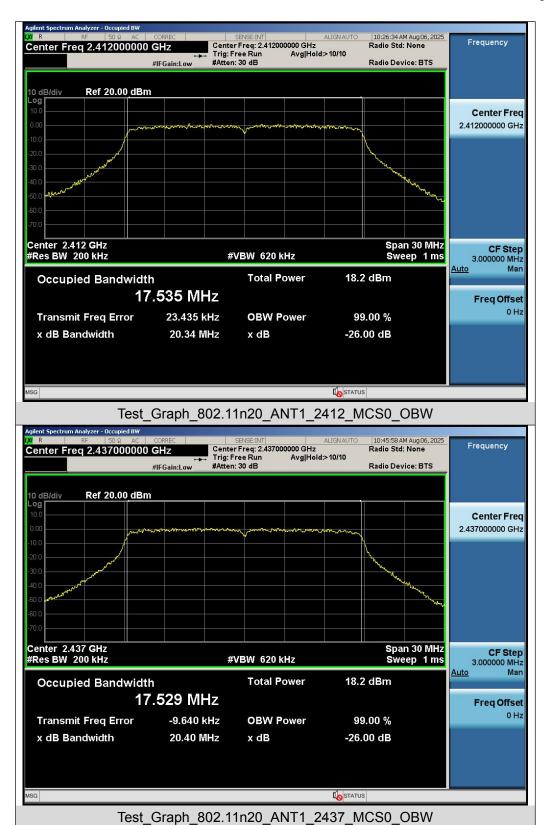


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

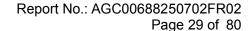
Test\_Graph\_802.11b\_ANT1\_2437\_1Mbps\_OBW



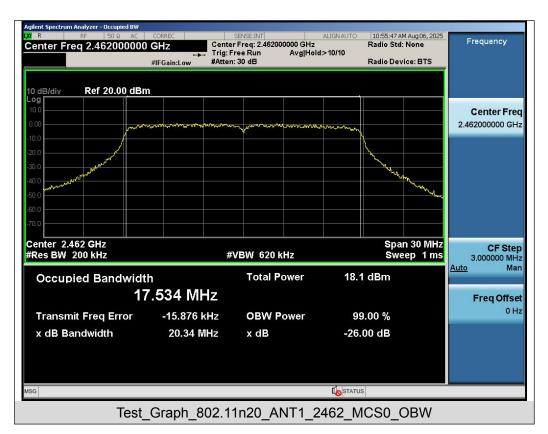



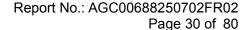




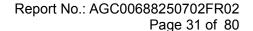



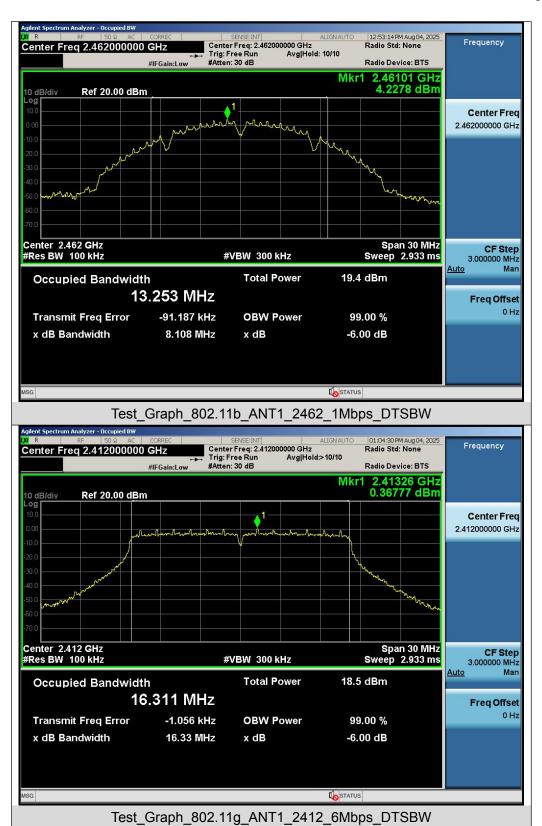


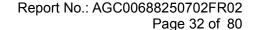




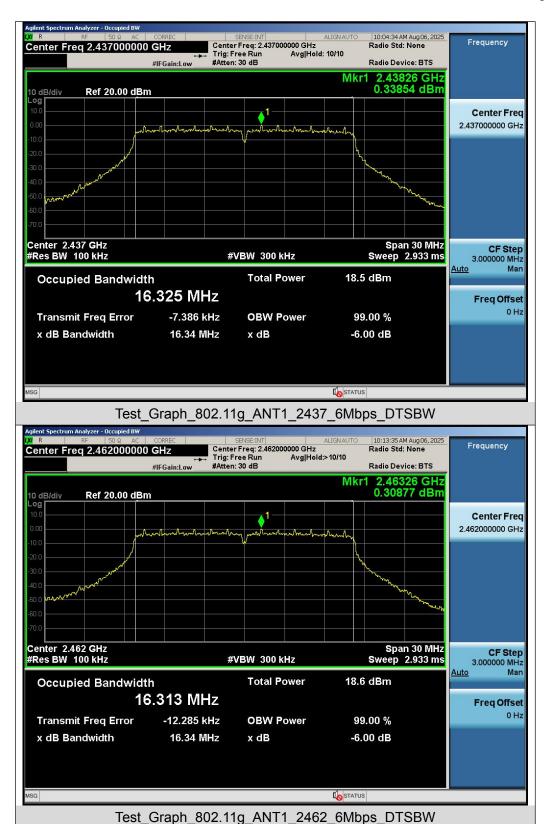



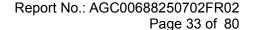


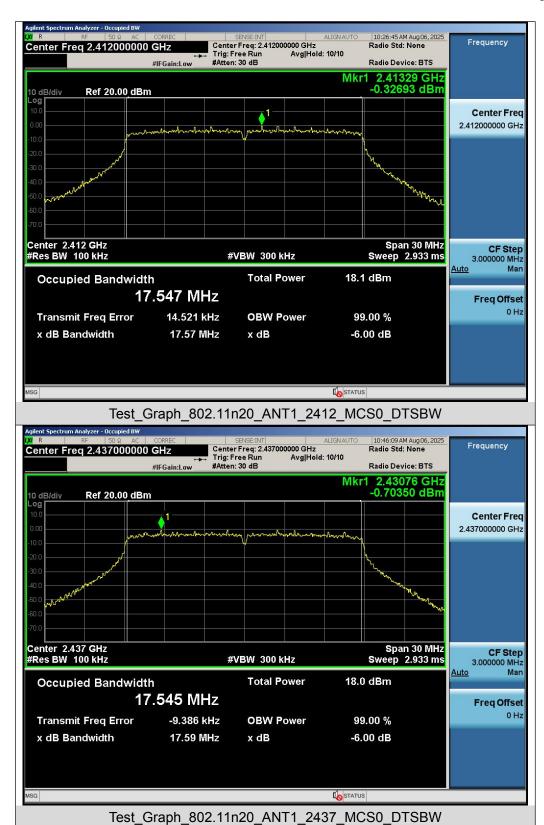


## **Test Graphs of DTS Bandwidth**

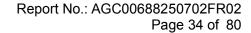




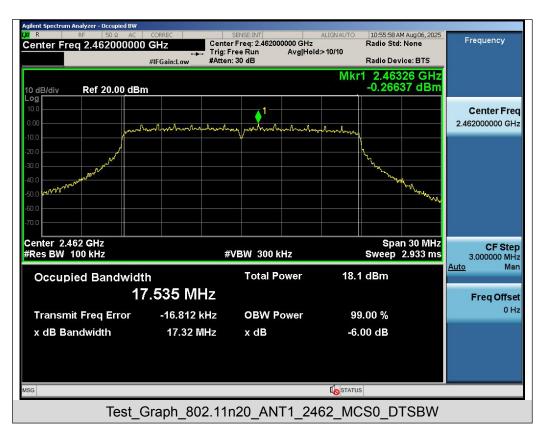




















Page 35 of 80

## 9. Power Spectral Density Measurement

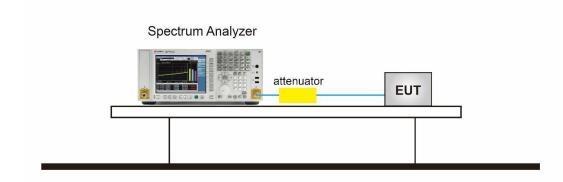
## 9.1 Provisions Applicable

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### 9.2 Measurement Procedure

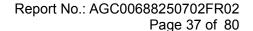
□ For Peak power spectral density test:

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the RBW = 20 kHz.
- 4. Set the VBW ≥ [3 × RBW].
- 5. Set the Span ≥ [1.5 × DTS bandwidth].
- 6. Sweep time=Auto couple.
- 7. Detector function=Peak.
- 8. Trace Mode=Max hold.
- 9. When the measurement bandwidth of the maximum PSD is 3 kHz, a constant factor of 10\*log(3kHz/20kHz) = -8.23 dB is added to the measurement result.
- 10. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
- 11. The indicated level is the peak output power, after any corrections for external attenuators and cables.


☐ For Average power spectral density test:

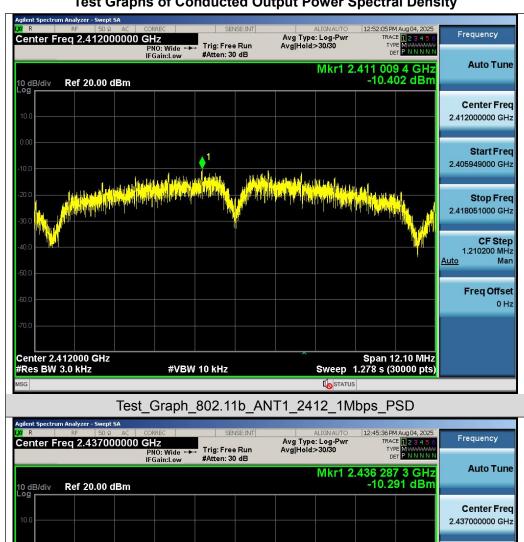
- 1. The testing follows the ANSI C63.10 Section 11.10.5 Method AVPSD.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 3. Set Span to at least 1.5 times the OBW.
- 4. Set RBW to:3 kHz ≤ RBW ≤ 100 kHz.
- 5. Set VBW≥[3×RBW].
- 6. Sweep Time=Auto couple.
- 7. Detector function=RMS (i.e., power averaging).
- 8. Trace average at least 100 traces in power averaging (rms) mode.
- 9. When the measurement bandwidth of the maximum PSD is 3 kHz, a constant factor of 10\*log(3kHz/20kHz) = -8.23 dB is added to the measurement result.
- 10. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below.
- 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.
- 12. Record the test results in the report.

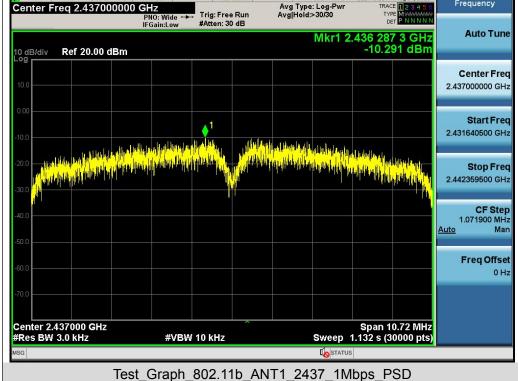


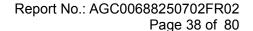

Page 36 of 80

## 9.3 Measurement Setup (Block Diagram of Configuration)

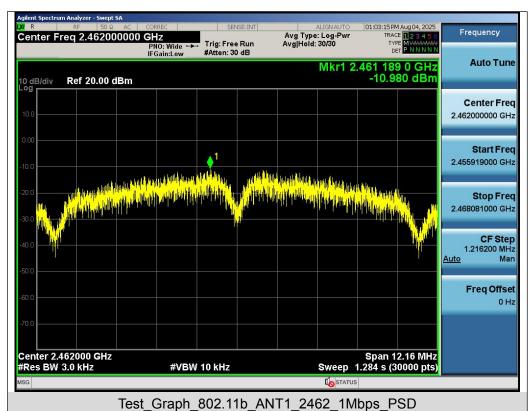


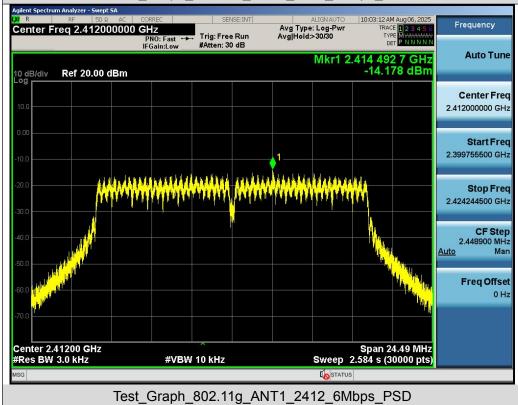

#### 9.4 Measurement Result

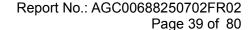

| Test Data of Conducted Output Power Spectral Density |                         |                                   |                     |        |
|------------------------------------------------------|-------------------------|-----------------------------------|---------------------|--------|
| Test Mode                                            | Test Frequency<br>(MHz) | Power Spectral density (dBm/3kHz) | Limit<br>(dBm/3kHz) | Result |
| 802.11b                                              | 2412                    | -10.402                           | ≪8                  | Pass   |
|                                                      | 2437                    | -10.291                           | ≪8                  | Pass   |
|                                                      | 2462                    | -10.980                           | ≤8                  | Pass   |
| 802.11g                                              | 2412                    | -14.178                           | ≤8                  | Pass   |
|                                                      | 2437                    | -14.856                           | ≤8                  | Pass   |
|                                                      | 2462                    | -14.296                           | ≪8                  | Pass   |
| 802.11n20                                            | 2412                    | -13.878                           | ≪8                  | Pass   |
|                                                      | 2437                    | -12.501                           | ≤8                  | Pass   |
|                                                      | 2462                    | -13.121                           | ≤8                  | Pass   |



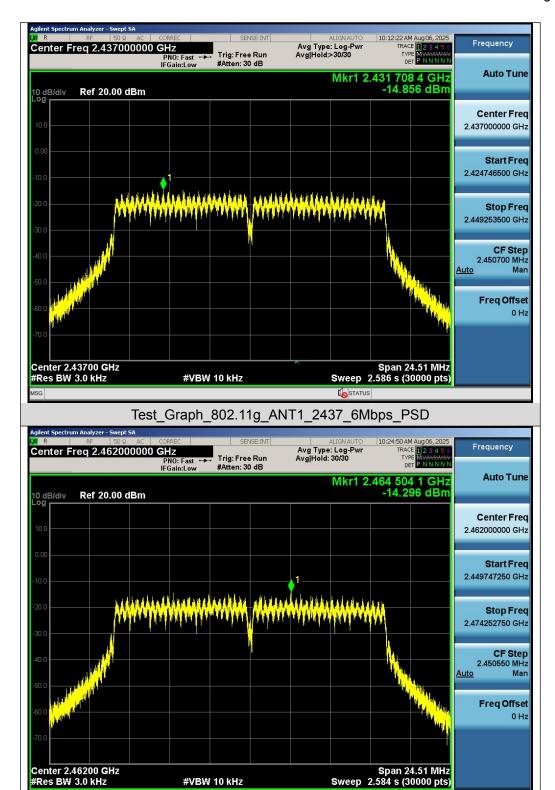




## **Test Graphs of Conducted Output Power Spectral Density**



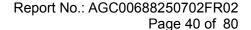





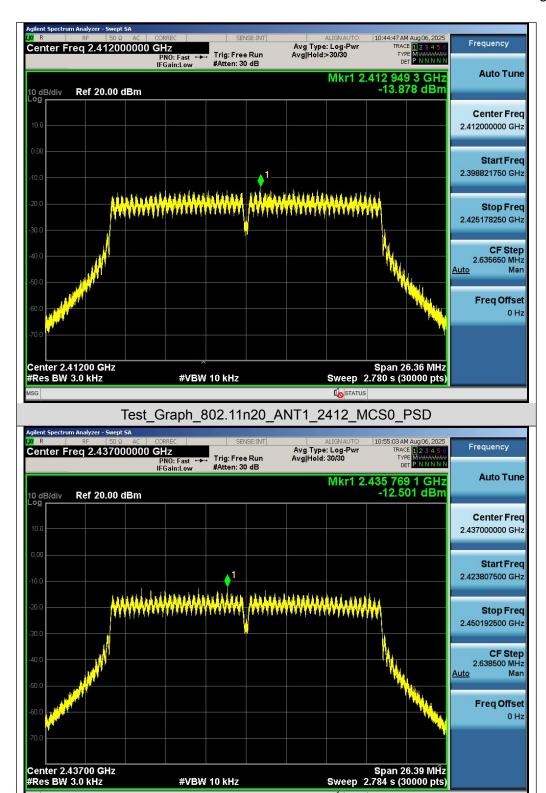





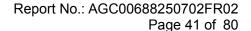


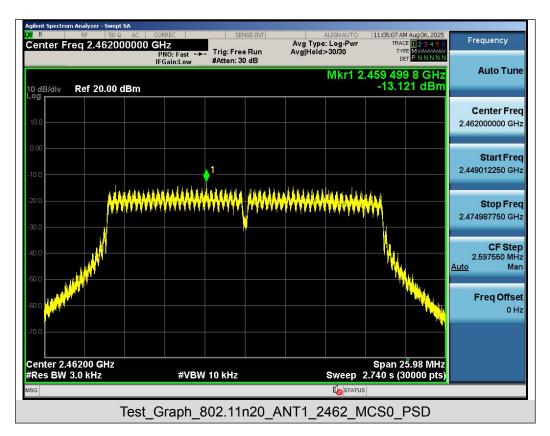



Test\_Graph\_802.11g\_ANT1\_2462\_6Mbps\_PSD


**#VBW 10 kHz** 








Test\_Graph\_802.11n20\_ANT1\_2437\_MCS0\_PSD







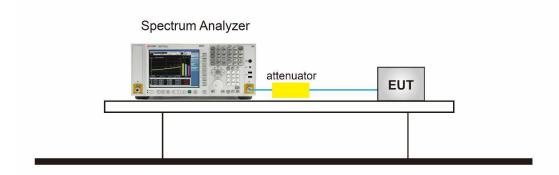


10. Conducted Band Edge and Out-of-Band Emissions

#### 10.1 Provisions Applicable

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

#### 10.2 Measurement Procedure


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

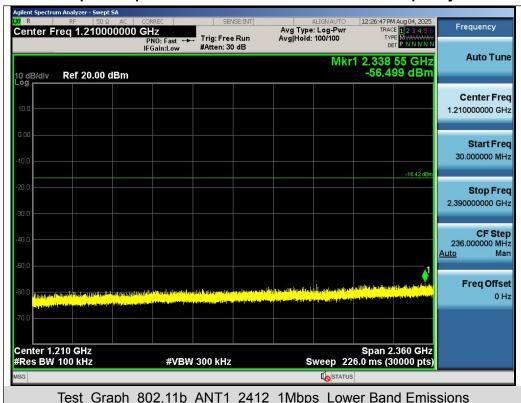
Use the following spectrum analyzer settings:

- Step 1: Measurement Procedure In-Band Reference Level
  - 1. Set instrument center frequency to DTS channel center frequency.
  - 2. Set the span to  $\geq$  1.5 times the DTS bandwidth.
  - 3. Set the RBW = 100 kHz.
  - 4. Set the VBW  $\geq$  3 x RBW.
  - 5. Detector = peak.
  - 6. Sweep time = auto couple.
  - 7. Trace mode = max hold.
  - 8. Allow trace to fully stabilize.
  - Use the peak marker function to determine the maximum PSD level.
  - Note that the channel found to contain the maximum PSD level can be used to establish the reference level.
  - 11. For reference level values, please refer to DTS bandwidth test.
- Step 2: Measurement Procedure Out of Band Emission
  - 1. Set RBW = 100 kHz.
  - 2. Set VBW ≥ 300 kHz.
  - 3. Detector = peak.
  - 4. Sweep = auto couple.
  - 5. Trace Mode = max hold.
  - 6. Allow trace to fully stabilize.
  - 7. Use the peak marker function to determine the maximum amplitude level.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

## 10.3 Measurement Setup (Block Diagram of Configuration)




Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/



#### 10.4 Measurement Result

## Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands



