

FCC 47 CFR PART 15.255

TEST REPORT

For

RIO-10

Model No.: RIO-10

Trade Name: AVDS

Issued to

AV Design Corporation
2F., No. 11, Aly. 6, Ln. 45, Baoxing Rd., New Taipei City 231, Taiwan

Issued by

Compliance Certification Services Inc.
Wugu Laboratory
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City, Taiwan.
Issued Date: August 5, 2025

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.
除非另有說明，此報告結果僅對測試之樣品負責，同時此樣品僅保留90天。本報告未經本公司書面許可，不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com.tw/Terms-and-Conditions> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com.tw/Terms-and-Conditions>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	August 5, 2025	Initial Issue	ALL	Peggy Tsai

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION.....	4
2. EUT DESCRIPTION.....	5
3. TEST SUMMARY.....	6
4. TEST METHODOLOGY.....	7
4.1 EUT CONFIGURATION	7
4.2 EUT EXERCISE	7
4.3 GENERAL TEST PROCEDURES	7
4.4 DESCRIPTION OF TEST MODES	8
4.5 FAR FIELD CONDITION FOR FREQUENCY ABOVE 40GH	9
5. INSTRUMENT CALIBRATION.....	10
5.1 MEASURING INSTRUMENT CALIBRATION	10
5.2 MEASUREMENT EQUIPMENT USED	10
5.3 MEASUREMENT UNCERTAINTY	12
5.4 FACILITIES AND TEST LOCATION	12
6. SETUP OF EQUIPMENT UNDER TEST.....	13
6.1 SETUP CONFIGURATION OF EUT	13
6.2 SUPPORT EQUIPMENT	13
6.3 SETUP CONFIGURATION OF EUT	14
6.4 TEST PROGRAM.....	14
7. TEST REQUIREMENTS.....	15
7.1 DUTY CYCLE.....	15
7.2 OUTPUT POWER & EIRP	19
7.3 EMISSION BANDWIDTH	22
7.4 SPURIOUS EMISSIONS	25
7.5 FREQUENCY STABILITY	36
7.6 AC POWER LINE CONDUCTED EMISSION.....	38
APPENDIX I PHOTOGRAPHS OF TEST SETUP	A-1
APPENDIX 1 - PHOTOGRAPHS OF EUT	

1. TEST RESULT CERTIFICATION

Applicant: AV Design Corporation
2F., No. 11, Aly. 6, Ln. 45, Baoxing Rd., Xindian Dist., New
Taipei City 231, Taiwan

Manufacturer: AV Design Corporation
2F., No. 11, Aly. 6, Ln. 45, Baoxing Rd., Xindian Dist., New
Taipei City 231, Taiwan

Equipment Under Test: RIO-10

Trade Name: AVDS

Model No.: RIO-10

Date of Test: June 20 ~ July 22, 2025

APPLICABLE STANDARDS	
STANDARD	TEST RESULT
FCC 47 CFR Part 15.255	Compliance
Statements of Conformity	
Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.	

We hereby certify that:

All test results conform to above mentioned standards.

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2020+Cor.1-2023 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.255.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Sehni Hu
Supervisor

2. EUT DESCRIPTION

Product	RIO-10
Trade	AVDS
Model No.	RIO-10
Model Discrepancy	N/A
Received Date	June 2, 2025
Power Supply	1. Power for USB-Type C (DC 5V) 2. Power from Adapter. UNIFIVE / UB310-0520 I/P: 100~240Vac, 50/60Hz, 0.3A O/P: 5Vdc, 2A
Frequency Band	60 ~ 61.9GHz
Modulation	FMCW
Number of Channel	1
Antenna Designation	Type: Patch Antenna Model: 60-2T-3r55 Gain: 9.35 dBi
Temperature Range	-20°C to +50 °C
HW Version	RADAR-GO-V22 A5L2A
SW Version	fwp_250702_103531
Sweep Characteristics	AI privacy guard Sweep Bandwidth:1880MHz Sweep Time:36us
Declaration conditions	Operating environment: Indoor use Operating frequency band: 57-64GHz product type: FDS

Remark:

1. The sample selected for test was production product and was provided by manufacturer.
2. Disclaimer: Antenna and sweep characteristics information is provided by the applicant, test results of this report are applicable to the sample EUT received.

3. TEST SUMMARY

Report Section	FCC Standard Section	Test Item	Result
7.1	15.255(c)(2)(iii) 15.255(c)(2)(iv)	Duty cycle	Pass
7.2	15.255(c)(2)(iii)	Output Power	Pass
7.3	15.255(e)	6dB Bandwidth	Reference only
7.3	-	Occupied Bandwidth	Pass
7.4	15.255(d) 15.205 15.209	Spurious Emissions	Pass
7.5	15.255(f)	Frequency Stability	Pass
7.6	15.207	AC Power Conducted Emission	Pass

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2020+Cor.1-2023, FCC CFR 47 Part 15.255, Part 15.207, Part 15.209 and Part 15.215 , FCC KDB 364244 D01 Meas 15.255 Radars v01.

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

4.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in ANSI C63.10-2020+Cor.1-2023 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 1.5 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10-2020+Cor.1-2023.

4.4 DESCRIPTION OF TEST MODES

The EUT (model: RIO-10) had been tested under operating condition. Software used to control the EUT for staying in continuous transmitting mode was programmed. The worst case data rate is determined as the data rate with highest output power.

AC Power Line Conduction Emission	
Test Condition	AC Power line conduction emission for line and neutral
Power supply Mode	Mode 1: EUT power by Adapter
Worst Mode	<input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4

Radiated Emission Measurement Above 1G	
Test Condition	Radiated Emission Above 1G
Power supply Mode	Mode 1: EUT power by Adapter
Worst Mode	<input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4
Worst Position	<input type="checkbox"/> Placed in fixed position. <input type="checkbox"/> Placed in fixed position at X-Plane (E2-Plane) <input type="checkbox"/> Placed in fixed position at Y-Plane (E1-Plane) <input checked="" type="checkbox"/> Placed in fixed position at Z-Plane (H-Plane)

Radiated Emission Measurement Below 1G	
Test Condition	Radiated Emission Below 1G
Power supply Mode	Mode 1: EUT power by Adapter
Worst Mode	<input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4

Remark:

1. The worst mode was record in this test report.
2. AC power line conducted emission were performed the EUT transmit at the highest output power channel as worse case.
3. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Z-Plane) were recorded in this report

4.5 FAR FIELD CONDITION FOR FREQUENCY ABOVE 40GH

The equipment under test was transmitting while connected to its integral antenna and is placed on a turn table. The measurement antenna is in the far field of the EUT per formula $2D^2/\lambda$ where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT.

In this case, "D" is the largest dimension of the measurement antenna. The EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

Model	Frequency Range (GH)	Largest Dimension of the Horn Antenna (mm)	Minimum Test Distance Rm (m)
RCHO19R	40~60	31	0.38
RCHO15R	50~75	25	0.26
RCHO12R	60~90	21	0.26
RCHO08R	90~140	15	0.21
RCHO05R	140~220	10	0.15
FH-PP-325	220~325	8	0.14

5. INSTRUMENT CALIBRATION

5.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due
Constant Temperature Humidity Chamber	TERCHY	MHG-150LF	930619	2024-10-15	2025-10-14
Coaxial Cable	TELEDYNE	ROHS-095-0004-1.2MTR	201100-013	2025-05-19	2026-05-18
Horn Antenna	CMI	WR-15	WR-15-03	2023-11-29	2026-11-28
PXA Signal Analyzer	Keysight	N9030B	MY62291089	2024-10-04	2025-10-03
SA EXTENSION MODULE	VDI	SAX WR15	SAX994	2023-06-14	2026-06-13
Software			N/A		

AC Mains Conduction					
Name of Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due
EMI Test Receiver	R&S	ESCI	100064	2025-06-02	2026-06-02
LISN	TESEQ	LN2-16N	22012	2025-02-23	2026-02-22
Cable	Woken	RFC-SMA-100-NMR-084SFL402	MFR-2Y194	2025-03-21	2026-03-20
Software			e3 V9-210616c		

Remark:

1. Each piece of equipment is scheduled for calibration once a year.
2. N.C.R. = No Calibration Request.

3M 966 Chamber Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due
Active Loop Antenna	COM-POWER	AL-130	121051	2025-02-18	2026-02-17
Preamplifier	EMEC	EM330	060609	2025-02-20	2026-02-19
Thermo-Hygro Meter	HTC	HTC-1	HTC-D06	2025-05-26	2026-05-25
Signal Analyzer	Aglient	N9010A	MY52220817	2025-03-05	2026-03-04
Preamplifier	HP	8449B	3008A00965	2024-12-18	2025-12-17
Cable	EMCI	EMC101G	221012+2302 05+250204	2025-03-03	2026-03-02
Signal Generator	R&S	SMB100A	175936	2025-01-23	2026-01-22
STANDARD GAIN HORN ANTENNA	CMI	RCHO05R	RCHO05R	2023-06-22	2026-06-21
STANDARD GAIN HORN ANTENNA	CMI	RCHO08R	RCHO08R	2023-06-16	2026-06-15
STANDARD GAIN HORN ANTENNA	CMI	RCHO12R	RCHO12R	2023-06-16	2026-06-15
STANDARD GAIN HORN ANTENNA	CMI	RCHO19R	RCHO19R	2023-06-15	2026-06-14
Horn Antenna	CMI	WR-15	WR-15-03	2023-11-29	2026-11-28
SA EXTENSION MODULE	VDI	SAX WR8.0	SAX982	2023-06-14	2026-06-13
SA EXTENSION MODULE	VDI	SAX WR12	SAX983	2023-06-14	2026-06-13
SA EXTENSION MODULE	VDI	SAX WR19	SAX993	2023-06-14	2026-06-13
SA EXTENSION MODULE	VDI	SAX WR5.1	SAX995	2023-06-16	2026-06-15
SA EXTENSION MODULE	VDI	SAX WR15	SAX994	2024-06-14	2026-06-13
Bi-Log Antenna	Sunol Sciences	JB3	A030105&53 2	2025-06-26	2026-05-25
Horn Antenna	ETC	MCTD 1209	DRH13M020 03	2024-12-20	2025-12-19
Horn Antenna	SCHWARZBECK	BBHA9170	1047	2024-12-06	2025-12-05
Pre-Amplifier	EMCI	EMC184045SE	980860	2024-12-02	2025-12-01
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Software	e3 V9-210616c				

Remark:

1. Each piece of equipment is scheduled for calibration once a year. (Except mmwave antenna)
2. N.C.R. = No Calibration Request.

5.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.21 dB
Channel Bandwidth	± 2.79 dB
Radiated Emission_9kHz-30MHz	± 3.492 dB
Radiated Emission_30MHz-200MHz	± 3.683 dB
Radiated Emission_200MHz-1GHz	± 3.966 dB
Radiated Emission_1GHz-6GHz	± 5.063 dB
Radiated Emission_6GHz-18GHz	± 5.122 dB
Radiated Emission_18GHz-26GHz	± 3.032 dB
Radiated Emission_26GHz-40GHz	± 3.271 dB
Radiated Emission_40GHz-60GHz	± 2.294 dB
Radiated Emission_60GHz-90GHz	± 2.209 dB
Radiated Emission_90GHz-140GHz	± 2.208 dB
Radiated Emission_140GHz-220GHz	± 2.217 dB
Radiated Emission_220GHz-325GHz	± 2.306 dB

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2
2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

5.4 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	David Li	-
Radiation	Tony Chao	-
RF Conducted	Marco Chan	-

Remark: The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC public Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

6. SETUP OF EQUIPMENT UNDER TEST

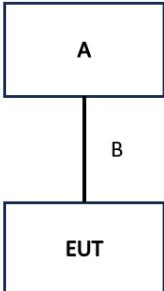
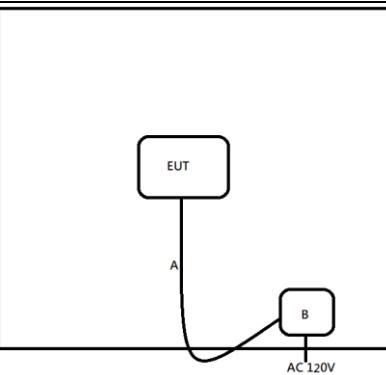
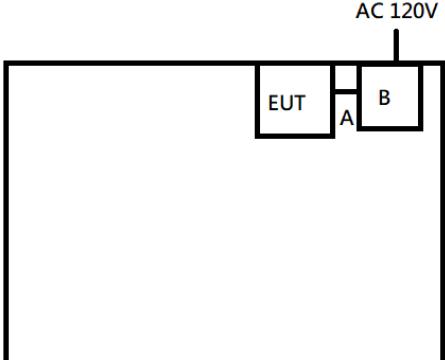
6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

EUT Accessories Equipment

No.	Equipment	Brand	Model	Series No.	FCC ID	IC
	N/A					




Support Equipment (Conducted)

No.	Equipment	Brand	Model	Series No.	FCC ID
A	Adapter	UNIFIVE	UB310-0520	J06-0487293	N/A
B	Type-C Cable	N/A	N/A	N/A	N/A

Support Equipment (RSE & Conduction)

No.	Equipment	Brand	Model	Series No.	FCC ID
A	Type-C Cable	N/A	N/A	N/A	N/A
B	Adapter	UNIFIVE	UB310-0520	J06-0487293	N/A

6.3 SETUP CONFIGURATION OF EUT

Conducted	RSE
Conduction	

6.4 TEST PROGRAM

This EUT power on to allow the sample to continuously transmit.

7. TEST REQUIREMENTS

7.1 DUTY CYCLE

LIMIT

Applies to 15.255(C)(2)(iii)

The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds.

Applies to 15.255(C)(2)(iv)

A field disturbance sensor may operate in any of the modes in the above sub-sections so long as the device operates in only one mode at any time and does so for at least 33 milliseconds before switching to another mode.

TEST PROCEDURES

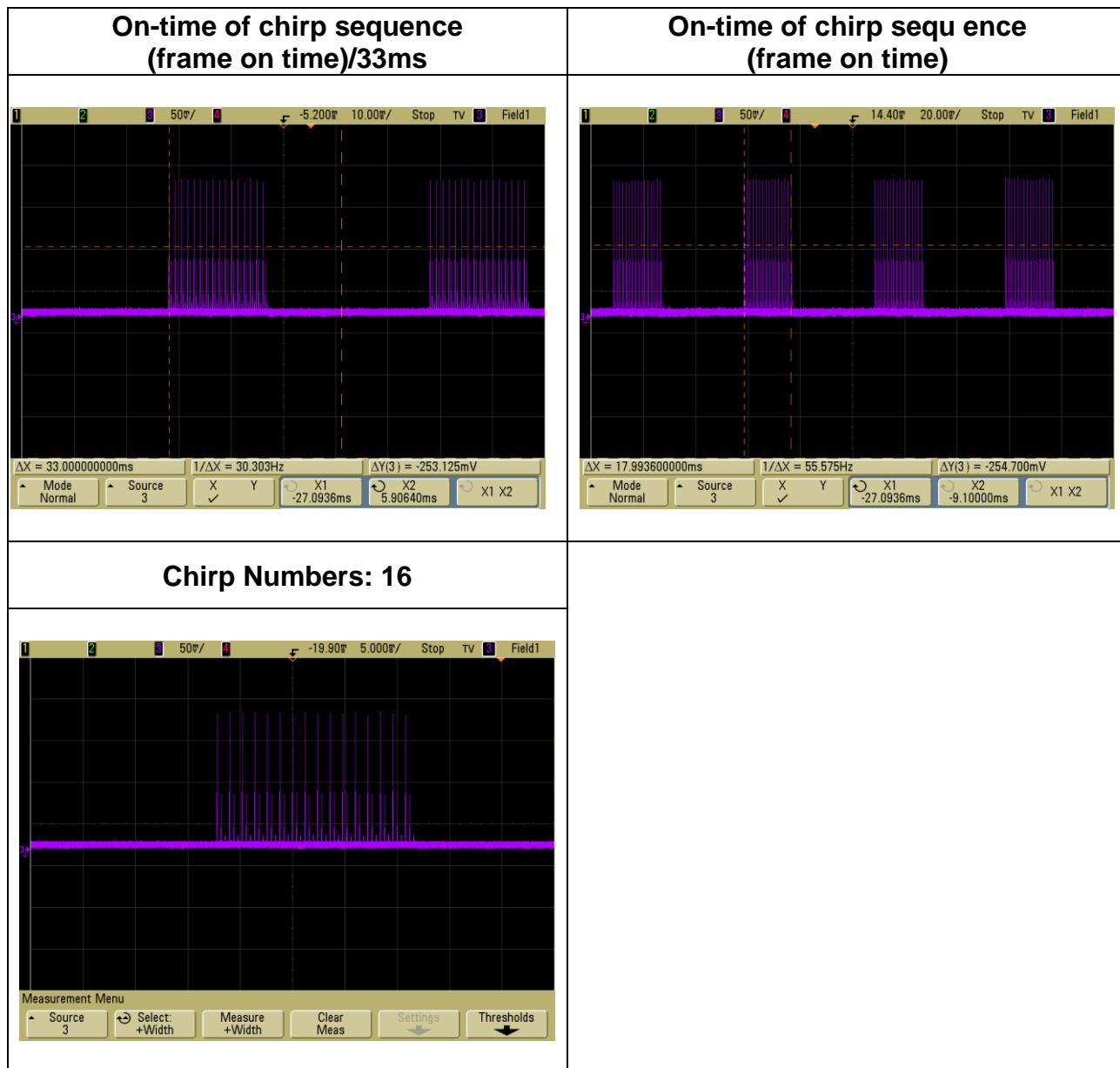
1. Applies to Measurement of the fundamental emission using spectrum analyzer.
2. Set the maximum power setting and enable the EUT to FMCW mode.
3. The EUT is placed on a turntable with 1.5 meter respectively above ground.
4. The EUT is set 1 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
5. Use 50-75 GHz receiver antenna, pre-amp and digital storage oscilloscope (DSO) or SA.
6. The EUT is arranged to its worst case and then tune the antenna tower and turntable (from 0 degree to 360 degrees) to find the maximum reading.
7. Digital storage oscilloscope (DSO) and SA adjust the length of time appropriately and confirm burst period, chirp width and chirp numbers.

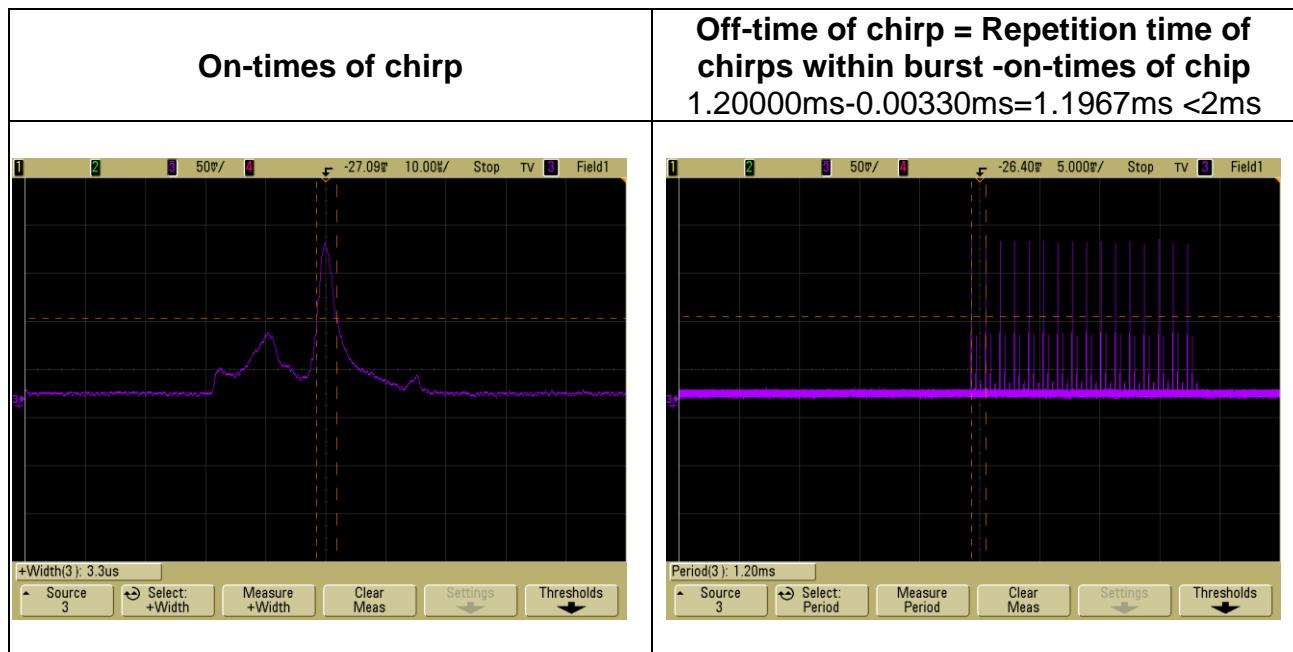
TEST RESULTS

Compliance

Test Data

Temperature: 24.9 ~ 25.6°C **Test date:** June 20 ~ July 14, 2025
Humidity: 51 ~ 55% RH **Tested by:** Tony Chao


Observation Time 33ms


60.1 ~ 61.9GHz					
Chirp Width (ms)	Chirp Number	Transmitter on (ms)	Sum of continuous transmitter off-times (ms)	Limit (ms)	Result
0.0033	16	0.0528	32.9472	>25.50	Pass

Note:

Transmitter on = Chirp numbers (16) x Chirp Width (0.0033ms)

Sum of continuous transmitter off-times= Observation Time 33ms- Transmitter on

7.2 OUTPUT POWER & EIRP

LIMIT

Applies to 15.255(C)(2)(iii),

The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds.

TEST PROCEDURE

1. Applies to Measurement of the fundamental emission using spectrum analyzer.
2. Set the maximum power setting and enable the EUT to FMCW mode.
3. The EUT is placed on a turntable with 1.5 meter respectively above ground.
4. The EUT is set 1 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
5. Use 50-75 GHz receiver antenna, mixer and spectrum analyzer.
6. The EUT is arranged to its worst case and then tune the antenna tower(antenna polarization adjustment) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
7. The spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and Video bandwidth (VBW) is set 3MHz.
8. Use mark Peak function to check result.
9. Measure and record the results in the test report.

TEST RESULTS

Compliance

Test Data

Temperature: 24.9 ~ 25.6°C **Test date:** June 20 ~ July 22, 2025
Humidity: 51 ~ 56% RH **Tested by:** Tony Chao

Far Field Condition for EUT

Frequency Range (GHz)	Largest Dimension of the Horn Antenna (mm)		Minimum Test Distance Rm (m)
60.95	30.00		0.37

Frequency (GHz)	SA Reading (dBm)	Antenna Gain	Mixer	Cable	Distance (m)	Level (dBm)	FMCW desensitization factor	EIRP (dBm)	Limit (dBm)	Margin (dB)	Remark	Result
61.71	-54.142	21.70	11.39	1.53	0.5	-0.69	-13.63	12.94	14.00	-1.06	Peak	Pass

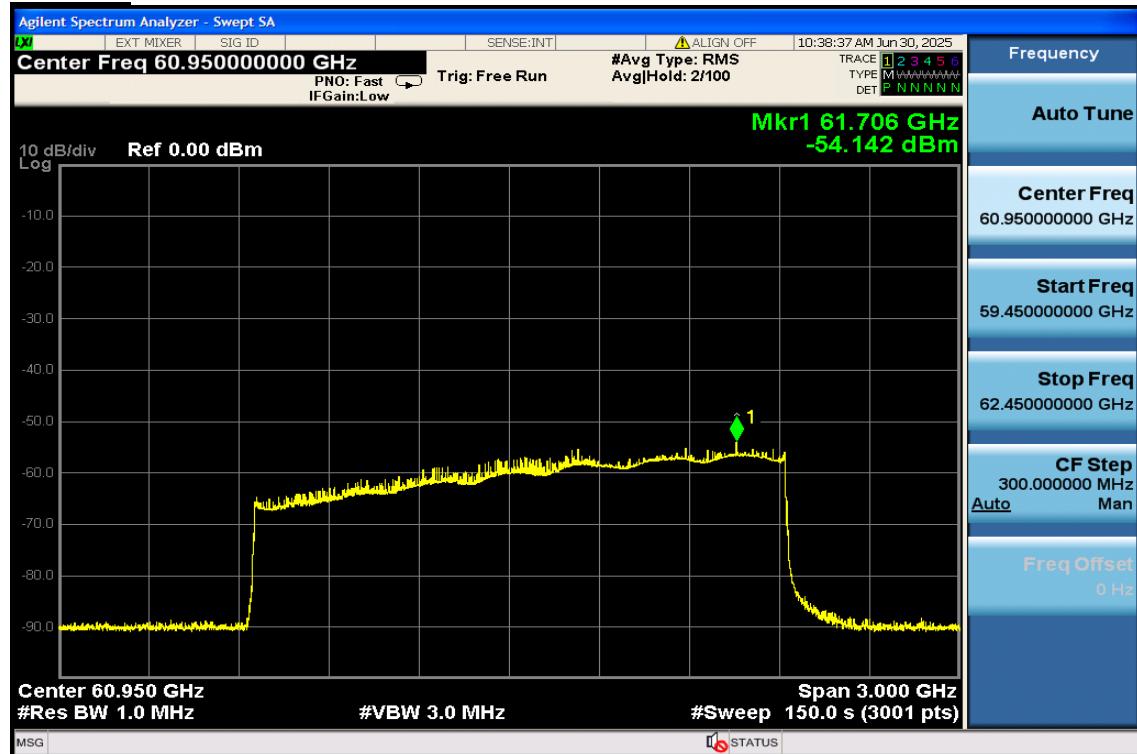
Note:

1. Level=Reading - antenna Gain + mixer loss + cable
 $EIRP = Level - desensitization\ factor$
2. Follow Annex L of the C63.10-2020 standard.
 $FMCW\ desensitization\ factor = 20 * \log(\alpha)$

$$\alpha = \frac{1}{1 + \left[\left(\frac{2 \times \ln(2)}{\pi} \right)^2 \times \left(\frac{BW_{Chirp}}{T_{Chirp} \times RBW^2} \right)^2 \right]^{0.25}}$$

BW_{Chirp} : follow report sec 2

T_{Chirp} : Follow manufacturer's declaration 36us


RBW : 1MHz

$$3. EIRP = 21.98 - 20\log(\lambda) + 20\log(d_{Meas}) + P \cdot G$$

where

$EIRP$ is the equivalent isotropic radiated power, in dBm
 λ is the wavelength of the emission under investigation $\left[300/f(\text{MHz}) \right]$, in m
 d_{Meas} is the measurement distance, in m
 P is the power measured at the output of the measurement antenna, in dBm
 G is the gain of the measurement antenna, in dBi

POWER

7.3 EMISSION BANDWIDTH

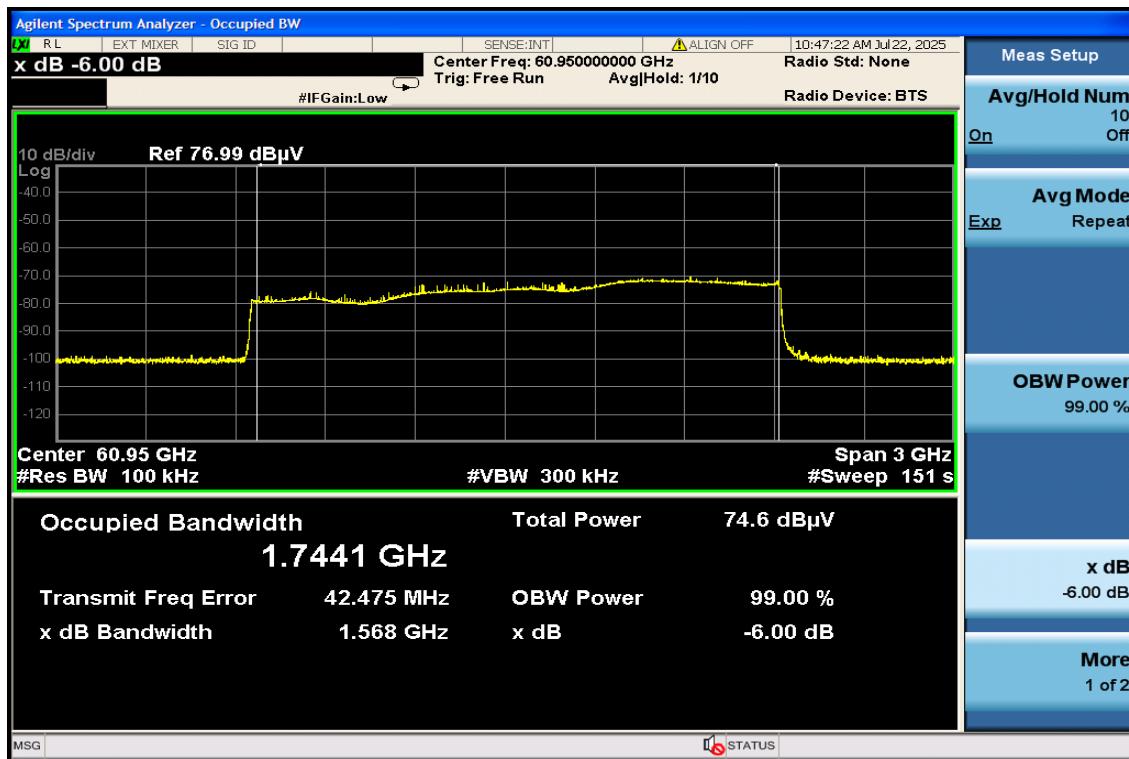
LIMIT

99% Occupied Bandwidth and 6dB Bandwidth are for reporting only.

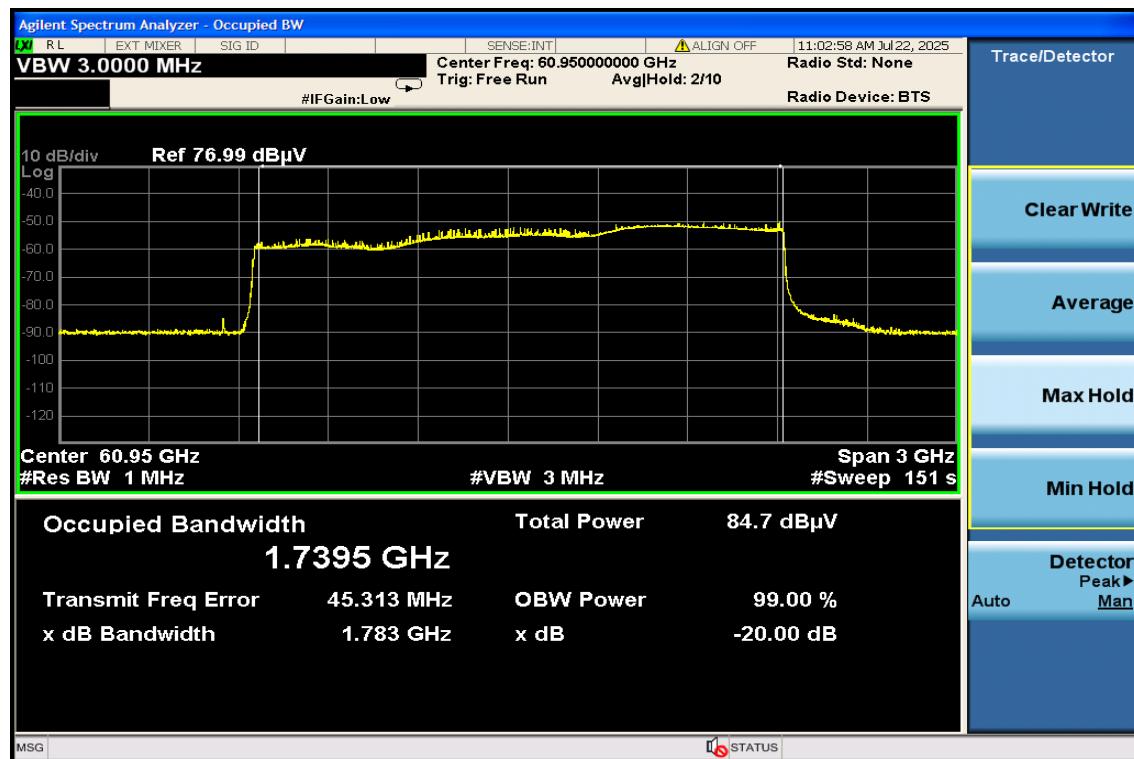
Limit for 20 dB Bandwidth: Per Part 15.255(e), the device shall operate in the 57 – 64 GHz band.

The emission bandwidth (EBW) is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least the specified amount below the maximum level of the modulated carrier.

TEST PROCEDURE


1. Applies to Measurement of the fundamental emission using spectrum analyzer.
2. Set the maximum power setting and enable the EUT to FMCW mode.
3. The EUT is placed on a turntable with 1.5 meter respectively above ground.
4. The EUT is set 1 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
5. Use 50-75 GHz receiver antenna, mixer and spectrum analyzer.
6. The EUT is arranged to its worst case and then tune the antenna tower(antenna polarization adjustment) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
7. For 20dB and 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and Video bandwidth (VBW) is set 3MHz.
8. For 6dB Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 100kHz and Video bandwidth (VBW) is set 300kHz
9. Measure and record the results in the test report.

TEST RESULTS


Compliance.

Temperature:	24.9 ~ 25.6°C	Test date:	June 20 ~ July 22, 2025
Humidity:	51 ~ 56% RH	Tested by:	Tony Chao

99% Occupied Bandwidth				
Freq(GHz)		Limit Range (GHz)	OBW (MHz)	Test Result
FL	60.120425	FL \geq 57GHz	1744.1	PASS
FH	61.864525	FH \leq 64GHz		
6dB Occupied Bandwidth				
Freq(GHz)		Limit Range (GHz)	OBW (MHz)	Test Result
FL	60.208475	FL \geq 57GHz	1568	PASS
FH	61.776475	FH \leq 64GHz		

99% Occupied Bandwidth				
Freq(GHz)		Limit Range (GHz)	OBW (MHz)	Test Result
FL	60.013187	FL \geq 57GHz	1783	PASS
FH	61.796187	FH \leq 64GHz		
20dB Occupied Bandwidth				
Freq(GHz)		Limit Range (GHz)	OBW (MHz)	Test Result
FL	60.125563	FL \geq 57GHz	1739.5	PASS
FH	61.865063	FH \leq 64GHz		

7.4 SPURIOUS EMISSIONS

7.4.1 Radiated Emissions

LIMIT

1. According to FCC PART 15.255(d), Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

2. Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm² at a distance of 3 meters.
3. The levels of the spurious emissions shall not exceed the level of the fundamental emission.

Notes:

Calculate correction:

Power density (mW/m²) $\times 4\pi(r)^2 = P(mW)$

$P(mW) - 20\log(d) + 104.77 = \text{dBuV/m}$

90 pW/cm² = 85.31 dBuV/m @ 3m

P: Power

r: measurement distance(m)

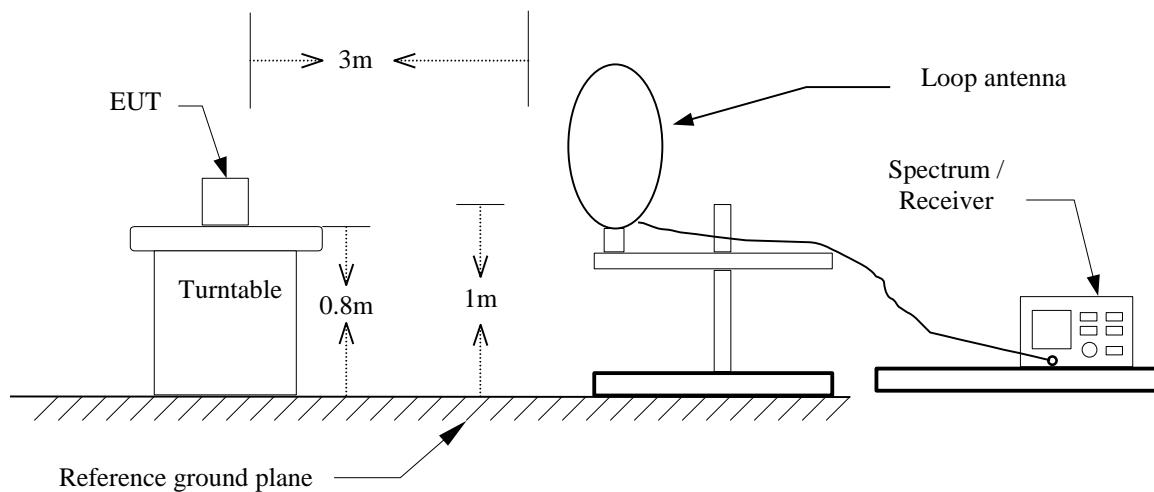
Field Strength = Reading + Factor
EIRP (dBm) = Field Strength (dB μ V/m) + 20log(D) - 104.8
D is the measurement distance

$$EIRP_{\text{Linear}} = 10^{[(EIRP_{\text{Log}} - 30)/10]}$$

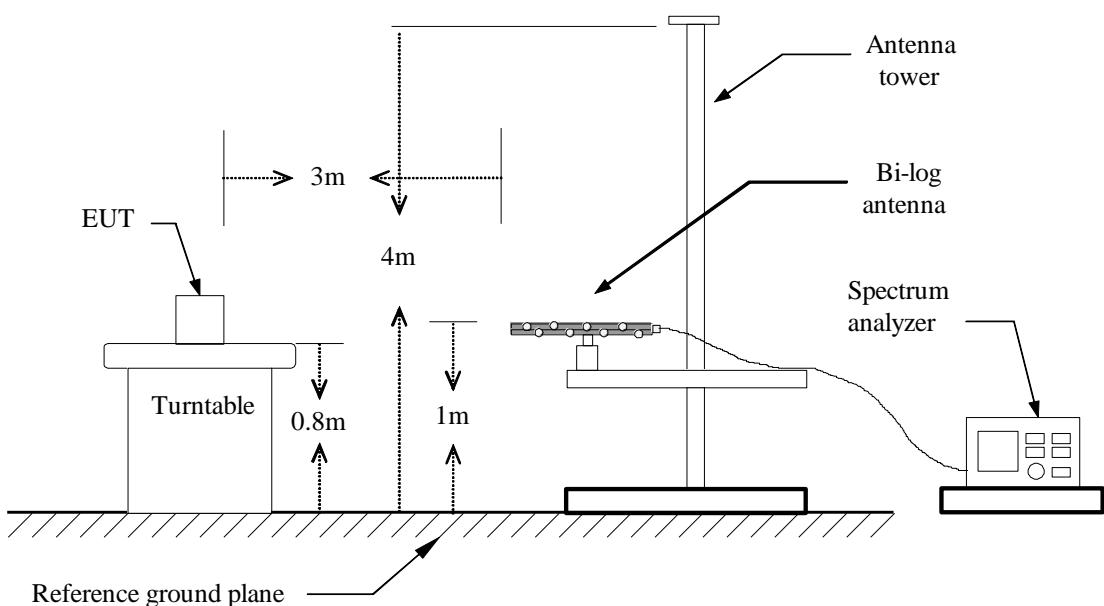
where

$EIRP_{\text{Linear}}$ is the equivalent isotropically radiated power, in watts
 $EIRP_{\text{Log}}$ is the equivalent isotropically radiated power, in dBm

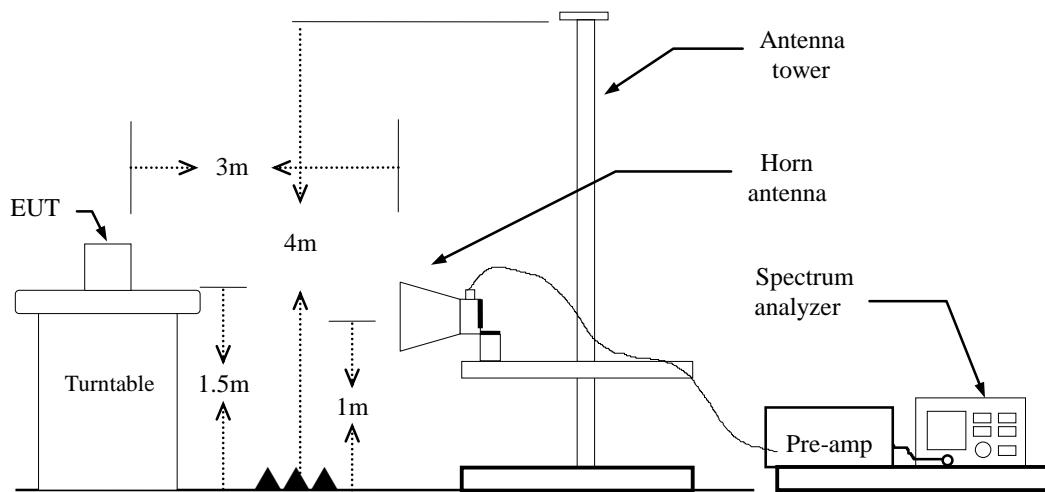
$$PD = \frac{EIRP_{\text{Linear}}}{4\pi d^2}$$

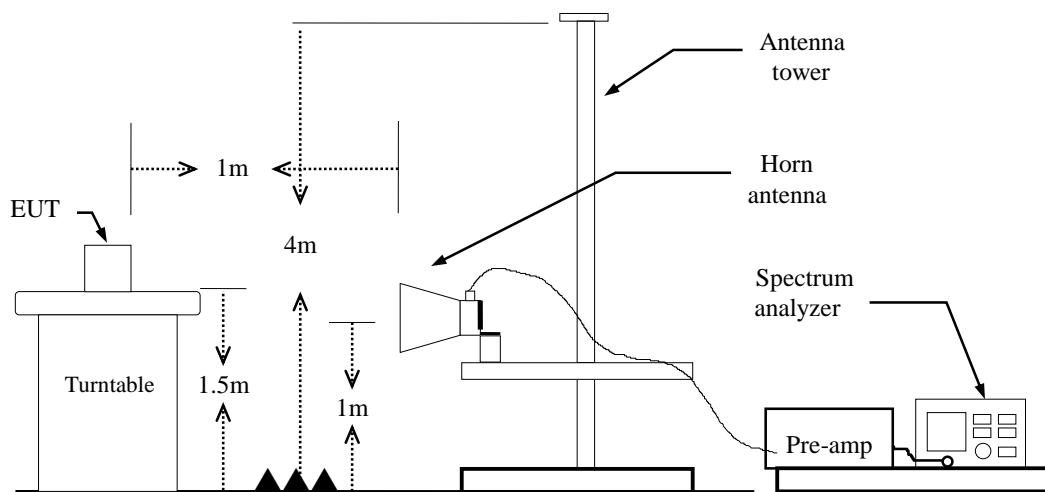

where

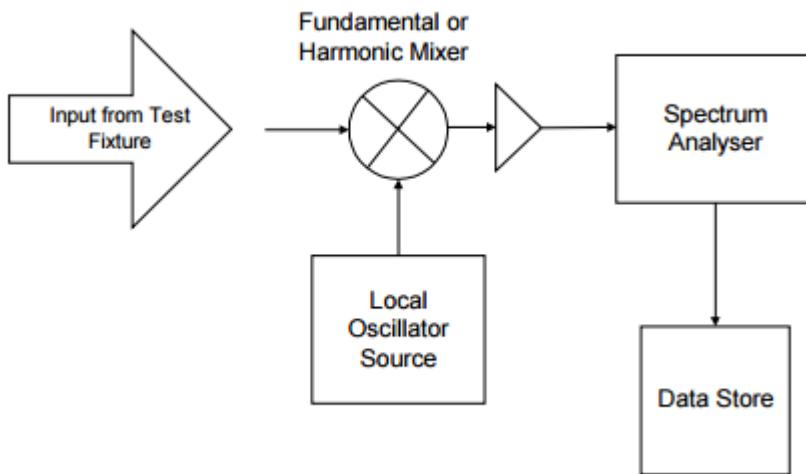
PD is the power density at the distance specified by the limit, in W/m²
 $EIRP_{\text{Linear}}$ is the equivalent isotropically radiated power, in watts
 d is the distance at which the power density limit is specified, in m


The Specified distance is 3m.

Test Configuration


9kHz ~ 30MHz


30MHz ~ 1 GHz


Above 1 GHz ~ 18GHz

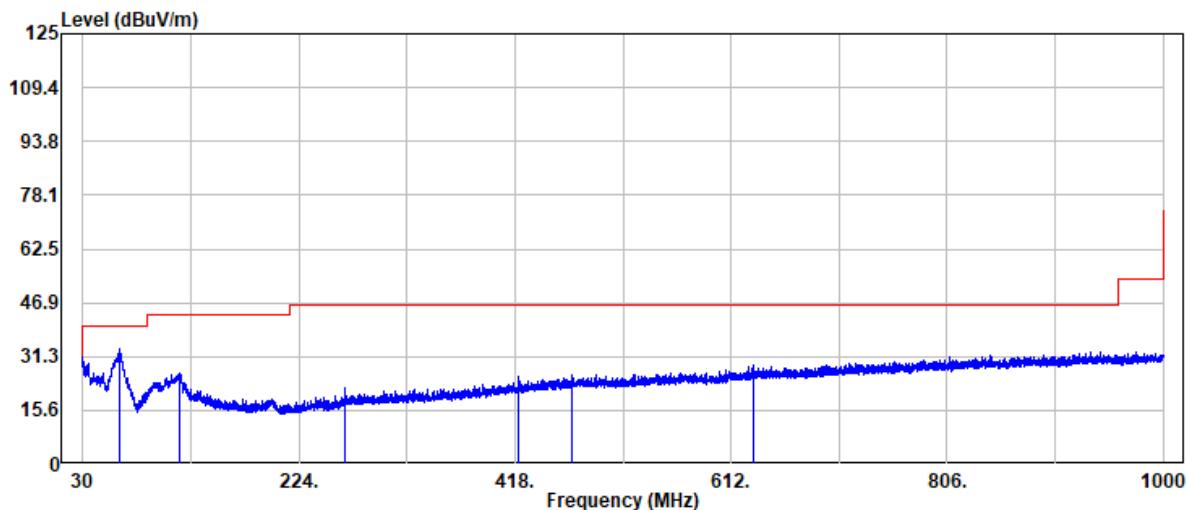
18GHz ~ 40GHz

Above 40 GHz

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 1.5m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. The system was investigated from 9kHz to 200 GHz.

During the radiated emission test, the Spectrum Analyzer Setup were set with the following configurations:

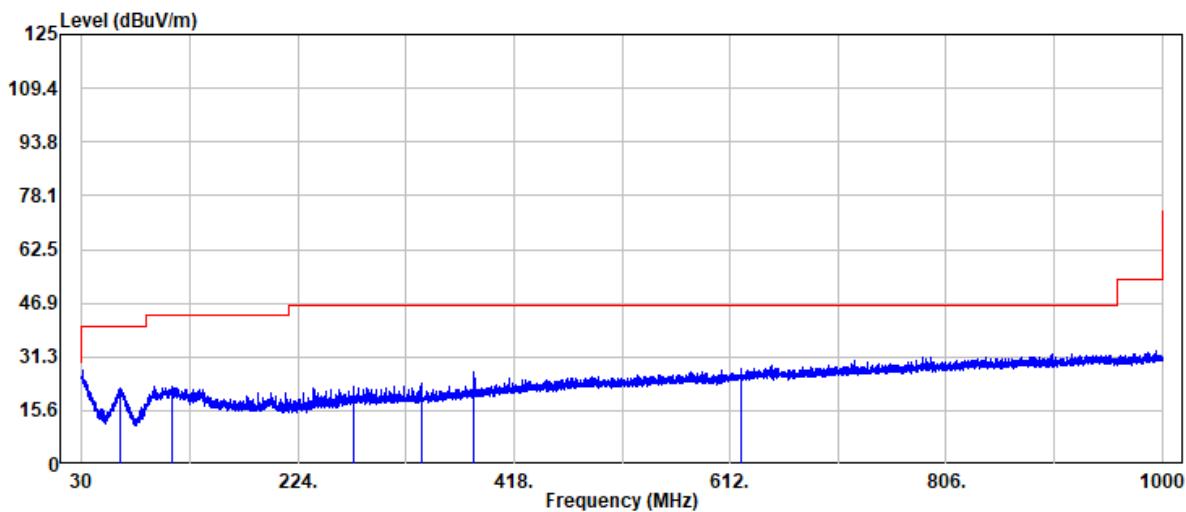

Frequency Range	RBW	Video B/W
9kHz-150kHz	300 Hz	1 kHz
150 kHz-30MHz	10 kHz	30 kHz
30MHz-1000MHz	100 kHz	300 kHz
1-40GHz	1 MHz	3 MHz
Above 40GHz	1 MHz	3 MHz

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

7. Repeat above procedures until the measurements for all frequencies are complete.
8. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
9. Radiated emission below 30MHz is measured in a 9m*6m*6m semi-anechoic chamber, the measurements correspond to those obtained at an open-field test site. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

Below 1 GHz

Project No	:	TM-2505000349P	Test Date	:	2025-06-30
Operation Band	:	Radar	Temp./Humi.	:	25.3/54
Frequency	:	61.706 GHz	Antenna Pol.	:	VERTICAL
Operation Mode	:	TX	Engineer	:	Tony.Chao
EUT Pol	:	H	Test Chamber	:	966A
Setting	:				

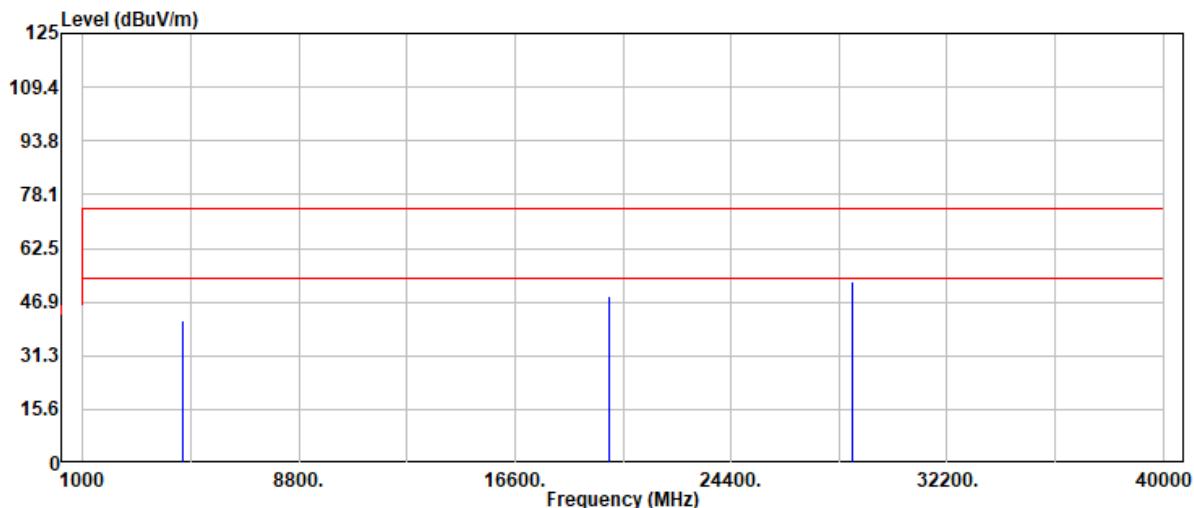


Freq	Read Level	Actual Factor	Actual FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
63.20	49.60	-15.98	33.62	40.00	-6.38	Peak
116.70	36.54	-9.91	26.63	43.50	-16.87	Peak
265.80	32.02	-9.95	22.07	46.00	-23.93	Peak
421.40	31.51	-6.15	25.36	46.00	-20.64	Peak
469.40	30.89	-4.83	26.06	46.00	-19.94	Peak
631.50	30.58	-1.95	28.63	46.00	-17.37	Peak

Remark:

1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
2. Radiated emissions measured were made with an instrument using peak/quasi-peak detector mode.
3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
5. Margin (dB) = Remark result (dBuV/m) – Quasi-peak limit (dBuV/m).
6. Factor=antenna factor+amp gain+ cable loss
7. Actual FS (dBuV/m) = Factor + Spectrum Reading Level

Project No : TM-2505000349P Test Date : 2025-06-30
Operation Band : Radar Temp./Humi. : 25.3/54
Frequency : 61.706 GHz Antenna Pol. : HORIZONTAL
Operation Mode : TX Engineer : Tony.Chao
EUT Pol : H Test Chamber : 966A
Setting :

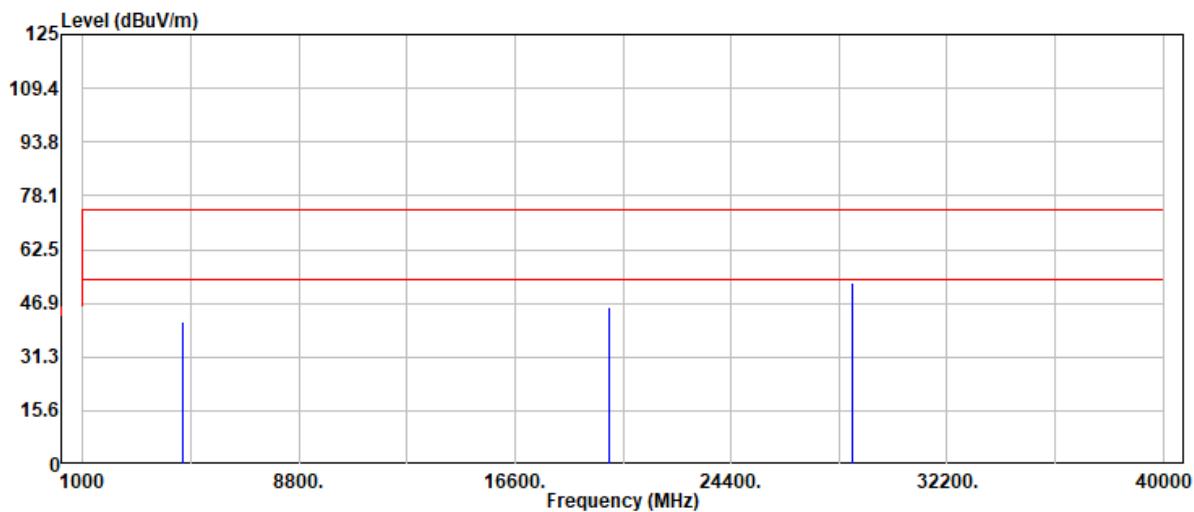

Freq MHz	Read Level dBuV	Read Factor dB	Actual FS dBuV/m	Limit @3m dBuV/m	Margin dB	Detector Mode
64.00	38.05	-15.82	22.23	40.00	-17.77	Peak
110.90	33.30	-10.82	22.48	43.50	-21.02	Peak
274.50	32.21	-9.50	22.71	46.00	-23.29	Peak
334.50	32.15	-8.77	23.38	46.00	-22.62	Peak
382.40	34.29	-7.44	26.85	46.00	-19.15	Peak
621.60	30.02	-2.29	27.73	46.00	-18.27	Peak

Remark:

1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
2. Radiated emissions measured were made with an instrument using peak/quasi-peak detector mode.
3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
5. Margin (dB) = Remark result (dBuV/m) – Quasi-peak limit (dBuV/m).
6. Factor=antenna factor-amp gain+ cable loss
7. Actual FS (dBuV/m) = Factor + Spectrum Reading Level

1 GHz ~ 40 GHz

Project No	:	TM-2505000349P	Test Date	:	2025-06-30
Operation Band	:	Radar	Temp./Humi.	:	25.3/54
Frequency	:	61.706 GHz	Antenna Pol.	:	VERTICAL
Operation Mode	:	TX	Engineer	:	Tony.Chao
EUT Pol	:	H	Test Chamber	:	966A
Setting	:				


Freq	Read Level	Actual Factor	FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
4613.00	38.47	3.04	41.51	74.00	-32.49	Peak
20000.00	50.65	-2.09	48.56	74.00	-25.44	Peak
20000.00	47.44	-2.09	45.35	54.00	-8.65	Average
28800.00	50.35	2.62	52.97	74.00	-21.03	Peak
28800.00	50.14	2.62	52.76	54.00	-1.24	Average

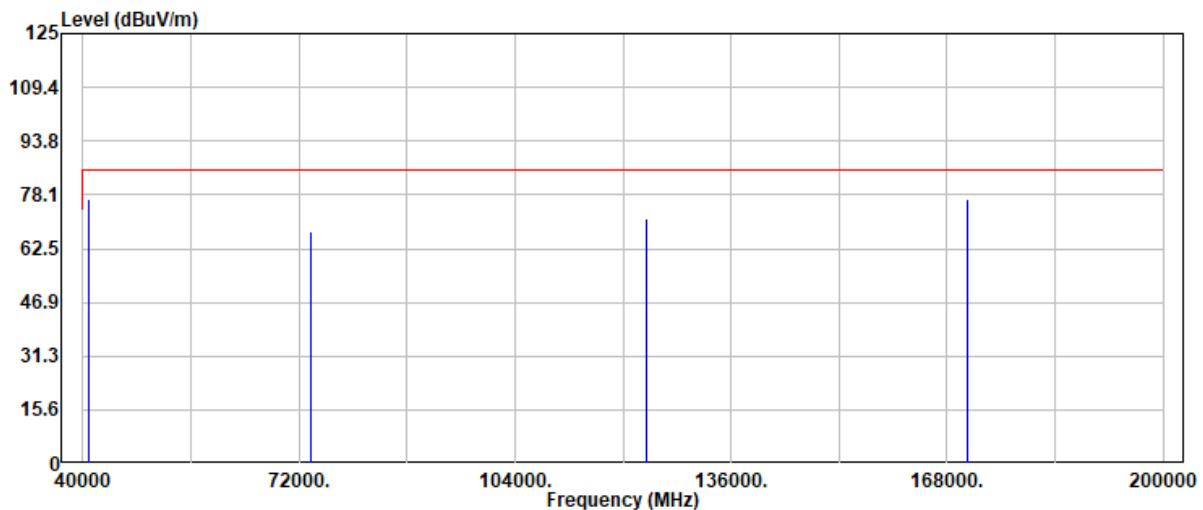
Remark:

1. Actual FS (dBuV/m) = Factor + Spectrum Reading Level
2. Margin (dB) = Actual FS – Limit
3. measurement distance: 3m@1-18G、3m@18-40G
4. Factor: Antenna factor+Cable loss -amp gain @1-40GHz
5. The measurement result is PK, but it also meets the RMS limit value.

Project No : TM-2505000349P
Operation Band : Radar
Frequency : 61.706 GHz
Operation Mode : TX
EUT Pol : H
Setting :

Test Date : 2025-06-30
Temp./Humi. : 25.3/54
Antenna Pol. : HORIZONTAL
Engineer : Tony.Chao
Test Chamber : 966A

Freq MHz	Read Level dBuV	Read Factor dB	Actual FS dBuV/m	Limit @3m dBuV/m	Margin dB	Detector Mode
4591.00	38.64	3.04	41.68	74.00	-32.32	Peak
20000.00	48.04	-2.09	45.95	74.00	-28.05	Peak
20000.00	44.43	-2.09	42.34	54.00	-11.66	Average
28799.00	50.18	2.62	52.80	74.00	-21.20	Peak
28799.00	48.08	2.62	50.70	54.00	-3.30	Average


Remark:

1. Actual FS (dBuV/m) = Factor + Spectrum Reading Level
2. Margin (dB) = Actual FS – Limit
3. measurement distance: 3m@1-18G 、3m@18-40G
4. Factor: Antenna factor+Cable loss -amp gain @1-40GHz
5. The measurement result is PK, but it also meets the RMS limit value.

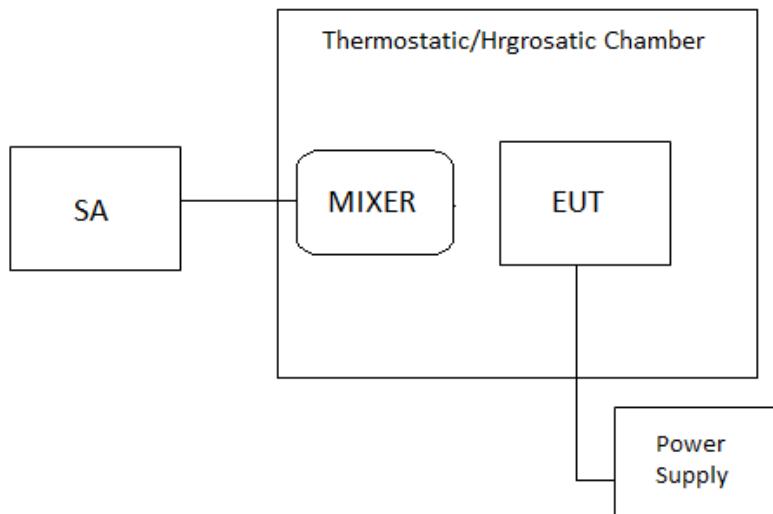
40GHz~200GHz

Project No : TM-2505000349P
Operation Band : Radar
Frequency : 61.706 GHz
Operation Mode : TX
EUT Pol : H
Setting :

Test Date : 2025-06-30
Temp./Humi. : 25.3/54
Antenna Pol. : Horizontal
Engineer : Tony.Chao
Test Chamber : 966A

Freq	Read Level	Actual Factor	FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
40800.00	22.23	54.48	76.71	85.31	-8.60	Peak
73860.00	19.56	47.87	67.43	85.31	-17.88	Peak
123412.00	16.88	54.31	71.19	85.31	-14.12	Peak
170960.00	16.92	59.81	76.73	85.31	-8.58	Peak

Remark:


1. Actual FS (dBuV/m) = Factor + Spectrum Reading Level
2. Margin (dB) = Actual FS – Limit
3. Factor = antenna factor+cable loss+mixer loss+ distance factor [20LOG(D/3)]
4. Measurement distance: 0.5m@40-60G, 0.5m@60-90G, 0.2m@90-140G, 0.2m@140-200G
5. After pre-scanning, the worst mode (Pol: H) is recorded in the report.

7.5 FREQUENCY STABILITY

LIMIT

According to FCC 15.255(f), Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Test Configuration

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST RESULTS

Compliance

Test Data

Temperature: 21.8 ~ 25°C **Test date:** June 20 ~ July 14, 2025
Humidity: 49 ~ 62% RH **Tested by:** Marco Chan

Temperature(°C)	Voltage(Vdc)	FL(GHz)	FH(GHz)	Limit Range(GHz)	Test Result
50	5	60.143248253	60.864876825	57~71	PASS
40	5	60.146703288	61.865155386		PASS
30	5	60.143635365	61.865315694		PASS
20	5	60.138783873	61.864314990		PASS
10	5	60.138579865	61.864423354		PASS
0	5	60.135784346	61.864789802		PASS
-10	5	60.137993690	61.865331852		PASS
-20	5	60.135472542	61.865609203		PASS
Temperature(°C)	Voltage(Vdc)	FL(GHz)	FH(GHz)	Limit Range(GHz)	Test Result
25	5.75	60.134514260	61.864215243	57~71	PASS
25	5	60.132974689	61.863457854		PASS
25	4.25	60.136605601	61.864279475		PASS

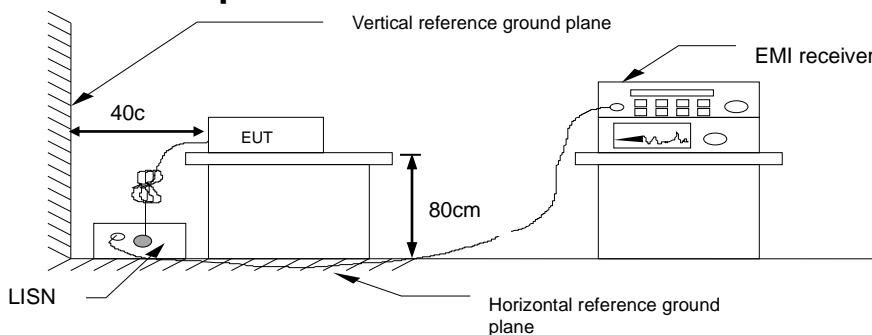
Note: The extreme voltage and extreme temperature is specified by the manufacturer

7.6 AC POWER LINE CONDUCTED EMISSION

7.6.1 Test Limit

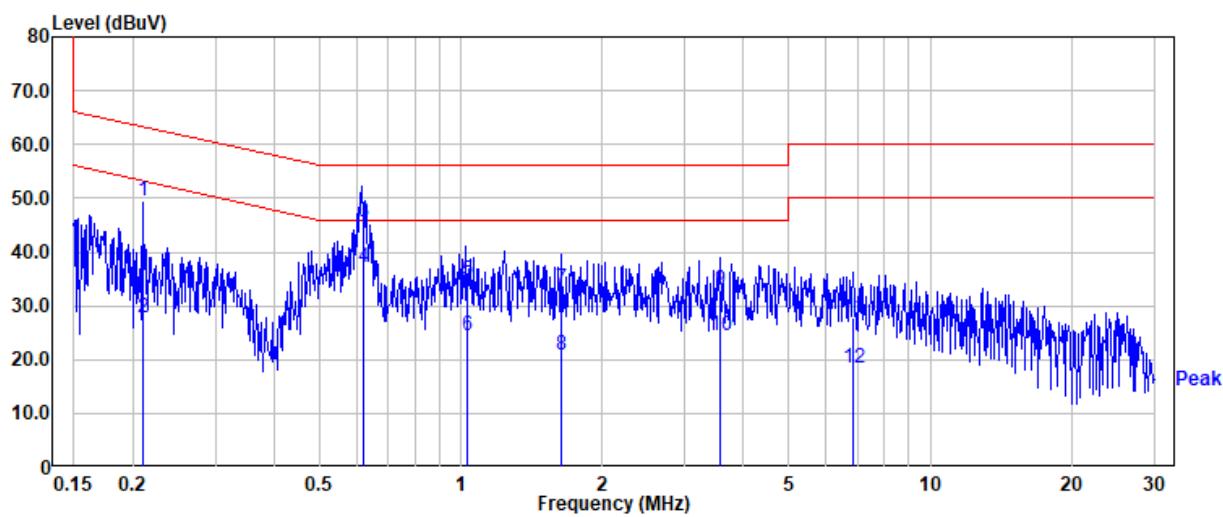
According to §15.207(a),

Frequency Range (MHz)	Limits(dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50


* Decreases with the logarithm of the frequency.

7.6.2 Test Procedure

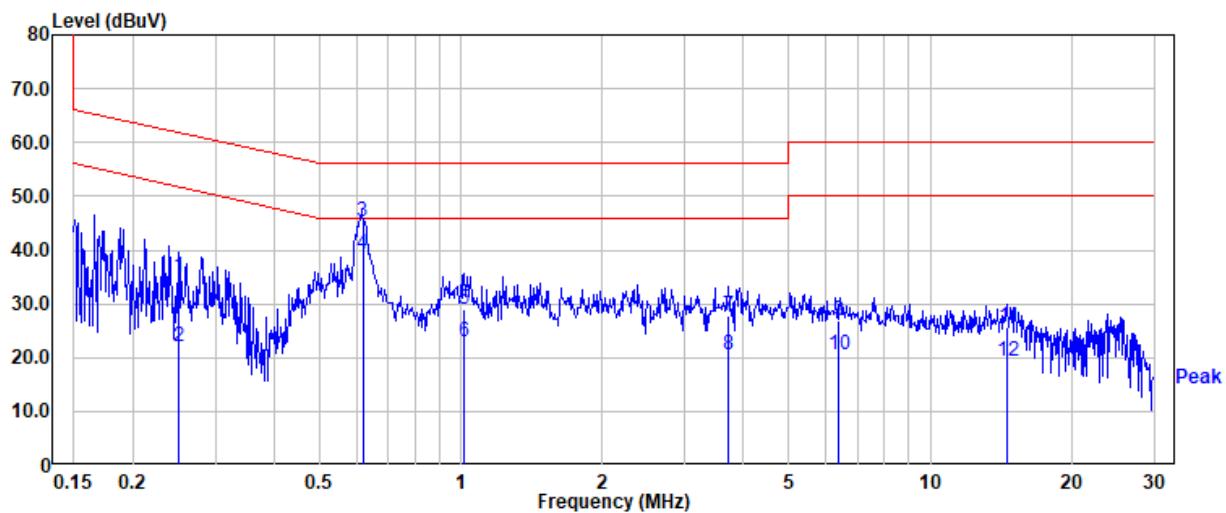
Test method Refer as ANSI C63.10-2020+Cor.1-2023,


1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
2. EUT connected to the line impedance stabilization network (LISN)
3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. Recorded Line for Neutral and Line.

7.6.3 Test Setup

7.6.4 Test Result

Project No	:	TM-2505000349P	Test Date	:	2025-07-21
Operation Band	:	60-64GHz	Temp./Humi.	:	25°C / 65%
Test Chamber	:	Conduction	Engineer	:	David.Li
Probe	:	Line	Test Voltage	:	AC 120V/60Hz
Note	:				



Freq	Read Level	Actual Factor	Actual FS	Limit	Margin	Detector Mode
MHz	dBuV	dB	dBuV	dBuV	dB	PK/QP/AV
0.211	49.47	0.08	49.55	63.19	-13.64	QP
0.211	27.62	0.08	27.70	53.19	-25.49	Average
0.620	45.51	0.07	45.58	56.00	-10.42	QP
0.620	36.94	0.07	37.01	46.00	-8.99	Average
1.032	34.70	0.08	34.78	56.00	-21.22	QP
1.032	24.31	0.08	24.39	46.00	-21.61	Average
1.636	33.23	0.10	33.33	56.00	-22.67	QP
1.636	20.85	0.10	20.95	46.00	-25.05	Average
3.572	32.75	0.13	32.88	56.00	-23.12	QP
3.572	24.34	0.13	24.47	46.00	-21.53	Average
6.864	27.70	0.19	27.89	60.00	-32.11	QP
6.864	18.33	0.19	18.52	50.00	-31.48	Average

Note: 1. Actual FS= Spectrum Read Level + Factor

Note: 2. Margin= Actual FS - Limit

Project No : TM-2505000349P Test Date : 2025-07-21
Operation Band : 60-64GHz Temp./Humi. : 25°C / 65%
Test Chamber : Conduction Engineer : David.Li
Probe : Neutral Test Voltage : AC 120V/60Hz
Note :

Freq	Read Level	Actual Factor	Actual FS	Limit	Margin	Detector Mode
MHz	dBuV	dB	dBuV	dBuV	dB	PK/QP/AV
0.250	35.03	0.09	35.12	61.75	-26.63	QP
0.250	22.02	0.09	22.11	51.75	-29.64	Average
0.619	45.19	0.09	45.28	56.00	-10.72	QP
0.619	39.04	0.09	39.13	46.00	-6.87	Average
1.013	29.03	0.10	29.13	56.00	-26.87	QP
1.013	22.79	0.10	22.89	46.00	-23.11	Average
3.728	27.71	0.16	27.87	56.00	-28.13	QP
3.728	20.38	0.16	20.54	46.00	-25.46	Average
6.401	26.64	0.20	26.84	60.00	-33.16	QP
6.401	20.32	0.20	20.52	50.00	-29.48	Average
14.620	25.47	0.30	25.77	60.00	-34.23	QP
14.620	19.07	0.30	19.37	50.00	-30.63	Average

Note: 1. Actual FS= Spectrum Read Level + Factor

Note: 2. Margin= Actual FS - Limit

- End of Test Report -