

RF TEST REPORT

Product Name: Broadband Digital Transmission System

Model Name: NFT2ax, LGW-0015

FCC ID: 2BQVC-NFT2AX

Issued For : Ligowave Networks inc

1710 Cumberland Point Drive ste 1, Marietta, GA Post code: 30067
USA

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177,
Renmin West Road, Jinsha, Kengzi Street, Pingshan District,
Shenzhen, Guangdong, China

Report Number: LGT25G047RF04

Sample Received Date: Jul. 08, 2025

Date of Test: Jul. 08, 2025 ~ Jul. 21, 2025

Date of Issue: Jul. 21, 2025

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant: Ligowave Networks inc
Address: 1710 Cumberland Point Drive ste 1, Marietta, GA Post code: 30067
USA

Manufacturer: ShenZhen EZL Technology Co.,Ltd
Address: Room 301-D24, Xiangjiang Financial Building, No. 3046, Xinghai Avenue, Nanshan Street, Qianhai Shenzhen-Hong Kong Cooperation Zone, Shenzhen, China

Product Name: Broadband Digital Transmission System

Trademark: Ligowave

Model Name: NFT2ax, LGW-0015

Sample Status: Normal

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC Part 15.407, Subpart E ANSI C63.10-2013	PASS

Prepared by:

Zane Shan

Zane Shan
Engineer

Approved by:

Vita Li

Vita Li
Technical Director

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2 . GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3 . EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 RADIATED EMISSION AND (BANDEDGE) MEASUREMENT	18
4. POWER SPECTRAL DENSITY TEST	27
4.1 LIMIT	27
4.2 TEST PROCEDURE	27
4.3 DEVIATION FROM STANDARD	27
4.4 TEST SETUP	28
4.5 EUT OPERATION CONDITIONS	28
4.6 TEST RESULTS	28
5. BANDWIDTH MEASUREMENT	29
5.1 EMISSION BANDWIDTH (EBW) 26 BANDWID PROCEDURES / LIMIT	29
5.2 OCCUPIED BANDWIDTH (99%) TEST APPLIED PROCEDURES / LIMIT	30
5.3 MINIMUM EMISSION BANDWIDTH(6 DB) PROCEDURES / LIMIT	31
6. MAXIMUM CONDUCTED OUTPUT POWER	32
6.1 LIMIT	32
6.2 TEST PROCEDURE	32
6.3 DEVIATION FROM STANDARD	32
6.4 TEST SETUP	32
6.5 EUT OPERATION CONDITIONS	32
6.6 TEST RESULTS	32
7. CONDUCTED BANDEDGE	33
7.1 LIMIT	33
7.2 TEST PROCEDURE	33
7.3 DEVIATION FROM STANDARD	33

7.4 TEST SETUP	33
7.5 EUT OPERATION CONDITIONS	33
7.6 TEST RESULTS	33
8. AUTOMATICALLY DISCONTINUE TRANSMISSION	34
8.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	34
8.2 TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	34
9. ANTENNA REQUIREMENT	35
9.1 STANDARD REQUIREMENT	35
9.2 EUT ANTENNA	35
APPENDIX I - TEST RESULTS	36
DUTY CYCLE	36
MAXIMUM CONDUCTED OUTPUT POWER	57
-6DB BANDWIDTH	59
OCCUPIED CHANNEL BANDWIDTH	74
MAXIMUM POWER SPECTRAL DENSITY LEVEL	89
BAND EDGE	116
RESTRICT BAND	128
APPENDIX II - MEASUREMENT PHOTOS	155

Revision History

Rev.	Issue Date	Contents
00	Jul. 21, 2025	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

KDB 662911 D01 v02r01

Part 15.407, KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

FCC Part 15.407		
FCC standard	Test Item	Results
15.207	AC Conducted Emission	PASS
15.407 (a) /15.407 (e)	26dB/6dB &99% Bandwidth	PASS
15.407(a)	Maximum Conducted Output Power	PASS
15.407(b)/15.205/15.209	Radiated Emission And (bandedge Emissions) Measurement	PASS
15.407(a)	Power Spectral Density	PASS
15.407(c)	Automatically Discontinue Transmission	PASS
15.203/15.204	Antenna Requirement	PASS

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.
- (3) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.
- (4) The 802.11ax mode is investigated among different tones(26/52/106/242-tone RU channel), full resource units (RU), partial resourceunits. The partial RU has no higher power than full RU's, thus the full RU is chosen as main testconfiguration.

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.
Address:	Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China
Accreditation Certificate:	A2LA Certificate No.: 6727.01
	FCC Registration No.: 746540
	CAB ID: CN0136

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately **95 %**.

No.	Item	Uncertainty
1	Occupied Channel Bandwidth	$\pm 0.46\%$
2	RF Output Power, Conducted	$\pm 0.71\text{dB}$
3	Power Spectral Density, Conducted	$\pm 1.57\text{dB}$
4	Unwanted Emission, Conducted	$\pm 0.63\text{dB}$
5	Conducted emission	$\pm 2.80\text{dB}$
6	All Emissions, Radiated (0.009-30MHz)	$\pm 2.16\text{dB}$
7	All Emissions, Radiated (30MHz-1GHz)	$\pm 4.61\text{dB}$
8	All Emissions, Radiated (1GHz-18GHz)	$\pm 5.49\text{dB}$
9	Temperature	$\pm 0.5^\circ\text{C}$
10	Humidity	$\pm 2\%$
11	Duty Cycle	$\pm 2.3\%$

Note: The measurement uncertainty is not included in the test result.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name:	Broadband Digital Transmission System	
Trademark:	Ligowave	
Model Name:	NFT2ax	
Series Model:	LGW-0015	
Model Difference:	Only model name different.	
Product Description:	Operation Frequency:	IEEE 802.11a/n(HT20)/ ac(VHT20)/ax(HE20): 5.745GHz-5.825GHz IEEE 802.11a/n(HT40)/ac(VHT40)/ax(HE40): 5.755GHz-5.795GHz IEEE 802.11 ac(VHT80)/ax(HE80): 5.775GHz
	Modulation Type:	802.11a(OFDM): BPSK, QPSK, 16-QAM, 64-QAM 802.11n(OFDM): BPSK, QPSK, 16-QAM, 64-QAM 802.11ac (OFDM): BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM 802.11ax(OFDM, OFDMA): BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, 1024QAM
	Antenna Designation:	PCB Antenna
	Antenna Gain(dBi)	ANT 1: 5dBi ANT 2: 5dBi For MIMO mode: Directional gain=8.01 dBi
More details of EUT technical specification, please refer to the User Manual.		
Test Channel:	Please refer to the Note 3.	
Adapter:	Input: AC: 100-240V 50/60Hz 0.8A Output: DC 54.0V 0.55A 30.0W	
Hardware Version:	LGW-0015-02A	
Software Version:	N/A	
Connecting I/O Port(s):	Please refer to the Note 1.	

Note

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
2. The antenna information refers to the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

3. Operation Frequency of channel

5.745GHz-5.825GHz			
Channel	Frequency		
149	5745		
151	5755		
153	5765		
157	5785		
159	5795		
161	5805		
165	5825		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Carrier Frequency Channel

Channel List for 802.11a/n/ac/ax(20MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	--	--	--	--	--	--
157	5785	--	--	--	--	--	--
165	5825	--	--	--	--	--	--

Channel List for 802.11n/ac/ax (40MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	--	--	--	--	--	--
159	5795	--	--	--	--	--	--
--	--	--	--	--	--	--	--

Channel List for 802.11ac/ax (80MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
155	5775	--	--	--	--	--	--
--	--	--	--	--	--	--	--

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11a HT20 CH149&CH157&CH165	6 Mbps
Mode 2	TX IEEE 802.11n HT20 CH149&CH157&CH165	MCS 0
Mode 3	TX IEEE 802.11ac/ax VHT20 CH149&CH157&CH165	NSS1 MCS0
Mode 4	TX IEEE 802.11n HT40 CH151&CH159	MCS 0
Mode 5	TX IEEE 802.11ac/ax VHT40 CH151&CH159	NSS1 MCS0
Mode 6	TX IEEE 802.11ac/ax VHT80 CH155	NSS1 MCS0

Note: (1) The measurements are performed at the highest, middle, lowest available channels.
(2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
(3) We have be tested for all avaialble U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation.
(4) The battery is fully-charged during the radited and RF conducted test.
(5) All bandwidth modes have been tested, and the report only shown the worst mode data.

AC Conducted Emission

Test Case	
AC Conducted Emission	Mode 7: TX Mode

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software Version	Test program: 5G WIFI U-NII-3		
CMD Command	Mode Or Modulation type	SISO Power setting	MIMO Power setting
	a	Default	-
	n20	Default	Default
	n40	Default	Default
	ac20	Default	Default
	ac40	Default	Default
	ac80	Default	Default
	ax20	Default	Default
	ax40	Default	Default
	ax80	Default	Default

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating
Adapter	FO SHAN GREAT POWER SUPPLY CO.,LTD	GRT-540055A-AT	N/A	Input: 100-240V 50/60Hz 0.8A Output: 54V, 0.55A

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
Laptop	Lenovo	ThinkBook 14 G3 ITL	N/A	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in «Length» column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2025.03.06	2026.03.05
LISN	COM-POWER	LI-115	02032	2025.03.05	2026.03.04
LISN	SCHWARZBECK	NNLK 8122	00160	2025.03.05	2026.03.04
Transient Limiter	CYBERTEK	EM5010A	E2250100049	2025.03.05	2026.03.04
Coaxial cables (9kHz-30MHz)	Juncoax	JMR600-NMNM-2M	N.A	2025.03.06	2026.03.05
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2025.03.10	2026.03.09
Testing Software	EMC-I_V1.4.0.3_SKET				

Radiated Test equipment					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2025.03.06	2026.03.05
Active loop Antenna	ETS	6502	00049544	2025.03.11	2028.03.10
Spectrum Analyzer	Keysight	N9010B	MY60242508	2025.03.05	2026.03.04
Trilog Broadband Antenna (30M-1G)	SCHWARZBECK	VULB 9168	2705	2024.05.17	2027.05.16
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2025.03.10	2028.03.09
Horn Antenna(18-40G)	SCHWARZBECK	BBHA 9170	685	2023.10.23	2026.10.22
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2025.03.06	2026.03.05
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2025.03.06	2026.03.05
Pre-amplifier(18-40G)	SCHWARZBECK	BBV 9721	9721-019	2024.10.21	2025.10.20
Coaxial cables (9kHz-1GHz)	Juncoax	JMR600-NMNM-8M	N.A	2025.03.06	2026.03.05
Coaxial cables (1GHz-18GHz)	TaiHe	UCD460B-NMSM-1M9	N.A	2025.03.06	2026.03.05
Coaxial cables (18GHz-40GHz)	Junkosha Inc.	MWX241-05000KMS KMS	N.A	2025.03.08	2026.03.07
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2024.08.05	2025.08.04
Antenna Tower	SAEMC	BK-4AT-BS-D	SK2021093008	N.A	N.A
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2025.03.10	2026.03.09
Testing Software	EMC-I_V1.4.0.3_SKET				

RF Conducted Test equipment					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
Signal Analyzer	Keysight	N9010B	MY60242508	2025.03.05	2026.03.04
Signal Analyzer	Keysight	N9020A	MY50530994	2025.03.05	2026.03.04
Signal Analyzer	R&S	FSV40-N	102245	2025.02.17	2026.02.16
Power Sensor	R&S	NRP8S	149.0006K02-104963-Ae	2025.03.06	2026.03.05
RF Automatic Test system	MW	MW100-RFCB	MW220324L G-33	2025.03.06	2026.03.05
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2025.03.05	2026.03.04

Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2024.08.05	2025.08.04
Attenuator	eastsheep	90db	N.A	2025.03.06	2026.03.05
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2025.03.10	2026.03.09
Digital multimeter	MASTECH	MS8261	MBGBC8305 3	2025.03.05	2026.03.04
DC source	Jiuyuan	QJ6010E	N.A	2025.03.09	2026.03.08
Testing Software			MTS8310_V2.0.0.0_MW		

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class B (dBuV)		Standard
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

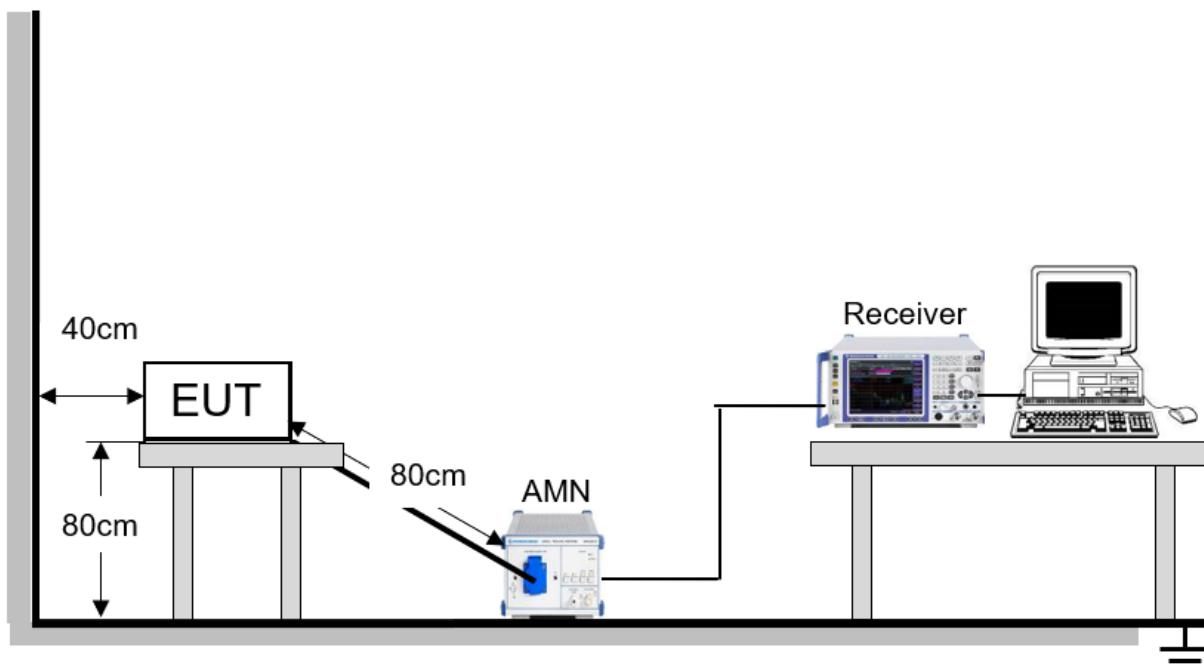
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of “ * ” marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

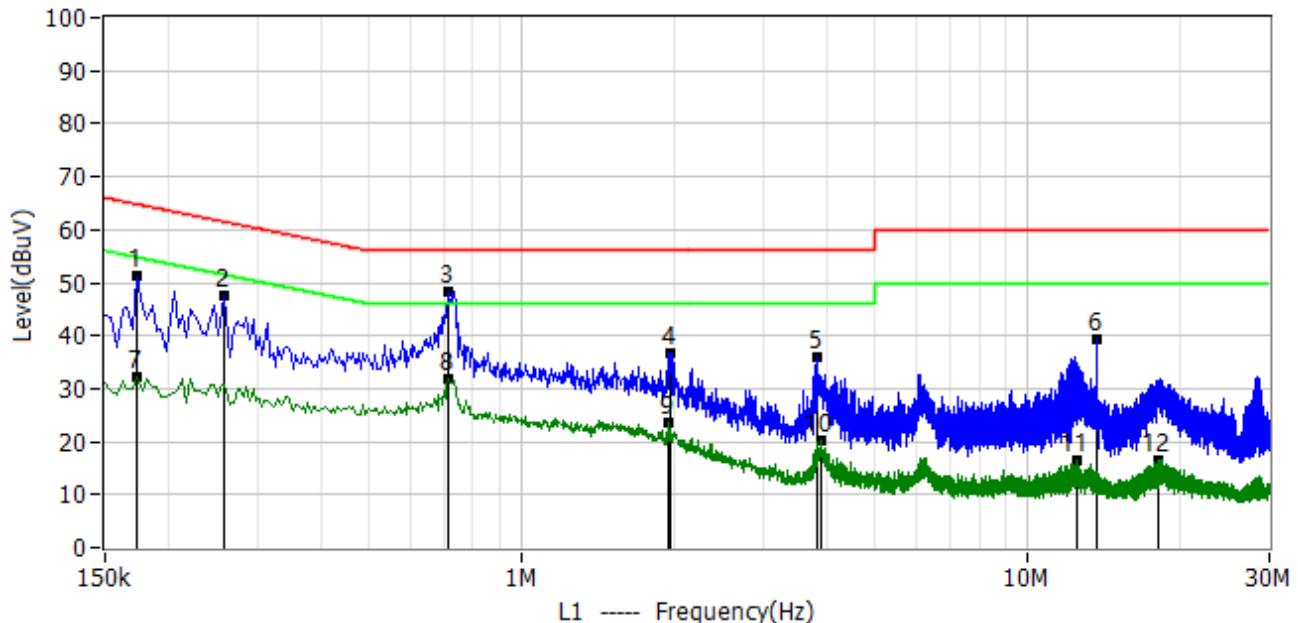

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

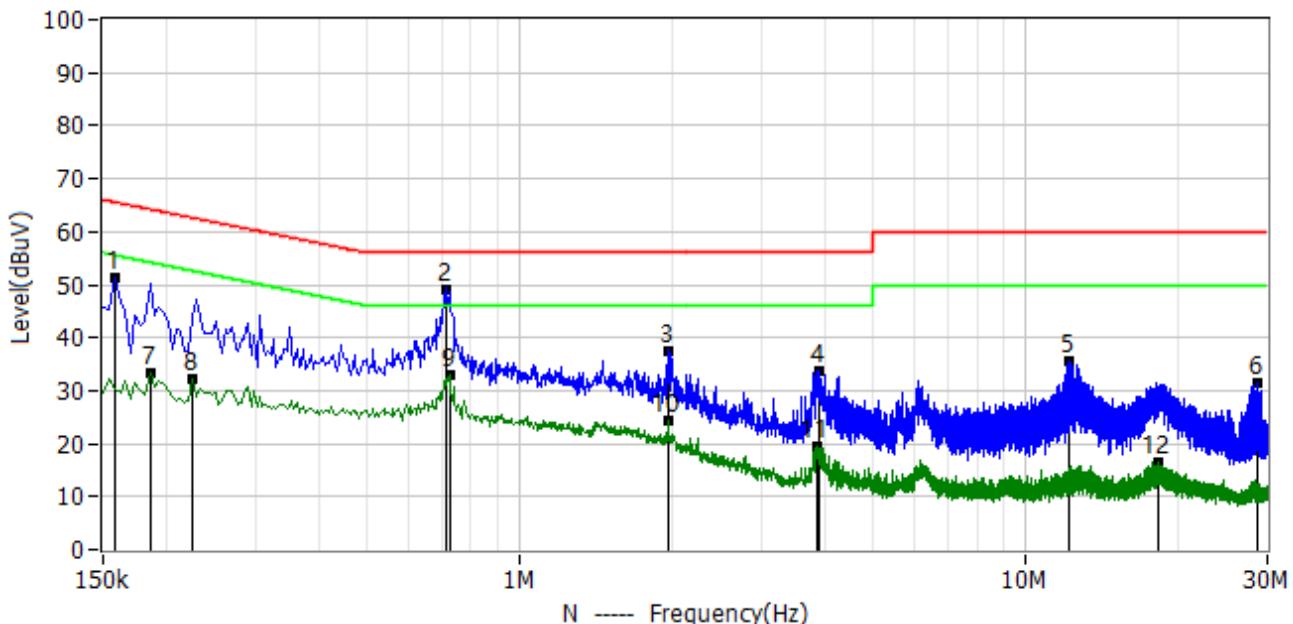
No deviation

3.1.4 TEST SETUP


3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS


Project: LGT25G047	Test Engineer: LiuH
EUT: Broadband Digital Transmission System	Temperature: 26.1°C
M/N: NFT2ax	Humidity: 53%RH
Test Voltage: AC 120V/60Hz	Test Data: 2025-07-11
Test Mode: TX 802.11a 5180	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	0.174	40.78	10.67	51.45	64.77	-13.32	QP	L1
2*	0.258	36.68	10.73	47.41	61.50	-14.09	QP	L1
3*	0.714	37.47	10.85	48.32	56.00	-7.68	QP	L1
4*	1.970	25.73	11.03	36.76	56.00	-19.24	QP	L1
5*	3.842	24.82	11.08	35.90	56.00	-20.10	QP	L1
6*	13.730	27.71	11.45	39.16	60.00	-20.84	QP	L1
7*	0.174	21.39	10.67	32.06	54.77	-22.71	AV	L1
8*	0.718	21.14	10.85	31.99	46.00	-14.01	AV	L1
9*	1.954	12.68	11.03	23.71	46.00	-22.29	AV	L1
10*	3.910	9.17	11.09	20.26	46.00	-25.74	AV	L1
11*	12.486	4.90	11.43	16.33	50.00	-33.67	AV	L1
12*	18.054	4.74	11.65	16.39	50.00	-33.61	AV	L1

Project: LGT25G047	Test Engineer: LiuH
EUT: Broadband Digital Transmission System	Temperature: 26.1°C
M/N: NFT2ax	Humidity: 53%RH
Test Voltage: AC 120V/60Hz	Test Data: 2025-07-11
Test Mode: TX 802.11a 5180	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	0.158	40.46	10.71	51.17	65.57	-14.40	QP	N
2*	0.714	38.34	10.91	49.25	56.00	-6.75	QP	N
3*	1.966	26.62	11.02	37.64	56.00	-18.36	QP	N
4*	3.886	22.83	11.06	33.89	56.00	-22.11	QP	N
5*	12.182	24.45	11.27	35.72	60.00	-24.28	QP	N
6*	28.638	19.68	11.76	31.44	60.00	-28.56	QP	N
7*	0.186	22.71	10.75	33.46	54.21	-20.75	AV	N
8*	0.226	21.58	10.77	32.35	52.60	-20.25	AV	N
9*	0.726	22.22	10.91	33.13	46.00	-12.87	AV	N
10*	1.966	13.39	11.02	24.41	46.00	-21.59	AV	N
11*	3.858	8.46	11.06	19.52	46.00	-26.48	AV	N
12*	18.258	4.95	11.69	16.64	50.00	-33.36	AV	N

3.2 RADIATED EMISSION AND (BANDEDGE) MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.407(b)7&15.205/209(a), then the limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15E.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Note: In case the emission radiated emission above 1000MHz fall within the restricted band the restricted frequency bands, the peak limit is 74 dBuV/m.

LIMITS OF EMISSIONS OUTSIDE OF THE FREQUENCY BANDS

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note: dBuV/m(at 3M) = EIRP(dBm) + 95.2.

Peak Limit = -27dBm/MHz + 95.2 = 68.2 dBuV/m.

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier harmonic (Peak/AV)
RB / VB (emission in restricted band)	1 MHz / 1 MHz, AV=1 MHz /3 MHz

For Band edge

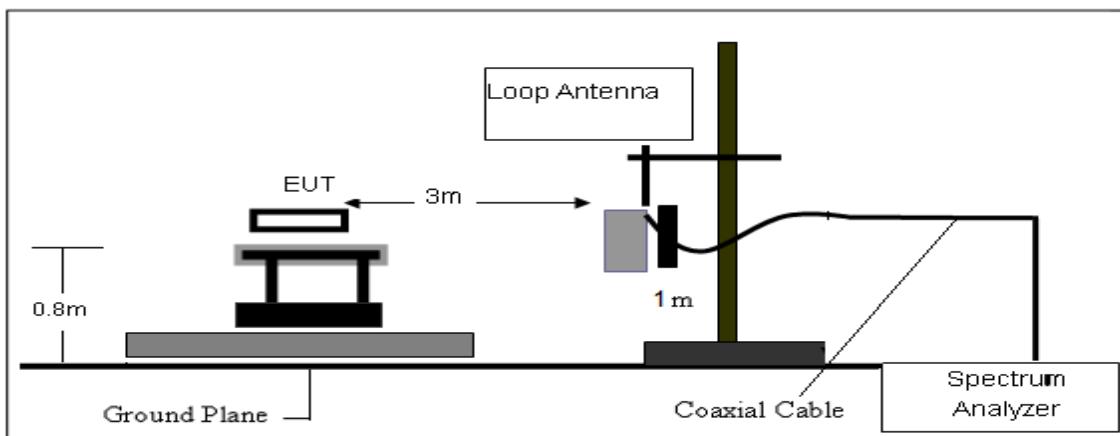
Spectrum Parameter	Setting
Detector	Peak
RB / VB (emission in restricted band)	1 MHz / 1 MHz, AV=1 MHz /3 MHz

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

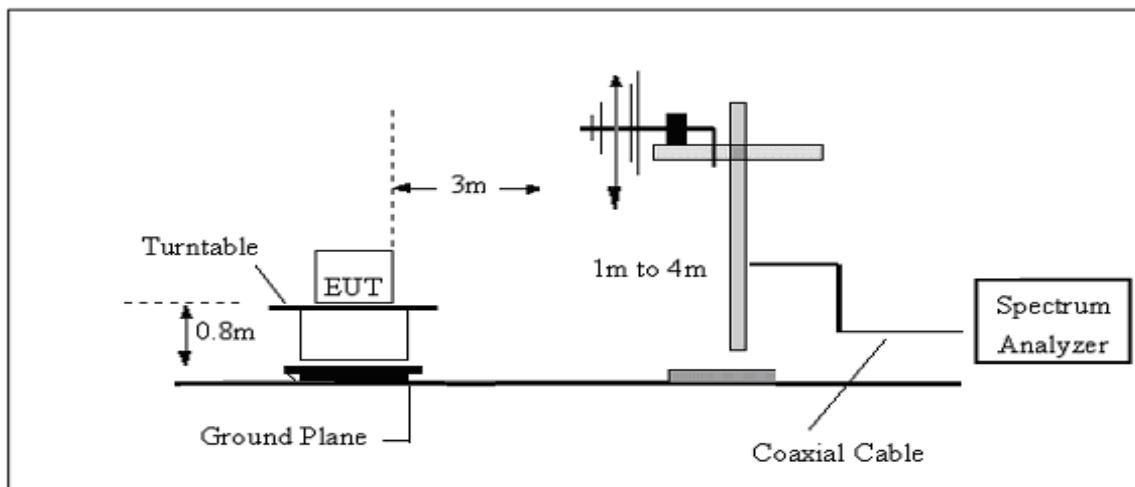
- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

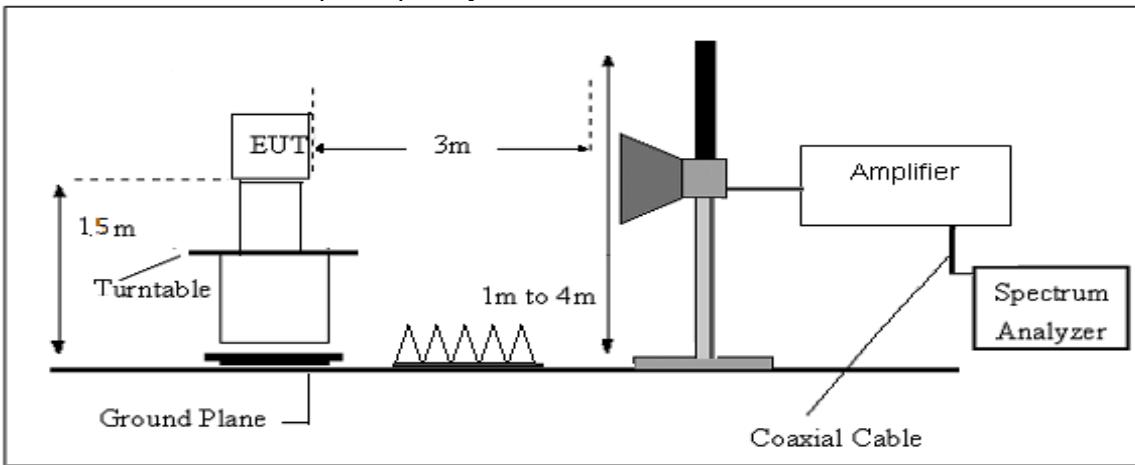

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.2 DEVIATION FROM TEST STANDARD

No deviation


3.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency (MHz)	FS (dB μ V/m)	RA (dB μ V/m)	AF (dB)	CL (dB)	AG (dB)	Factor (dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

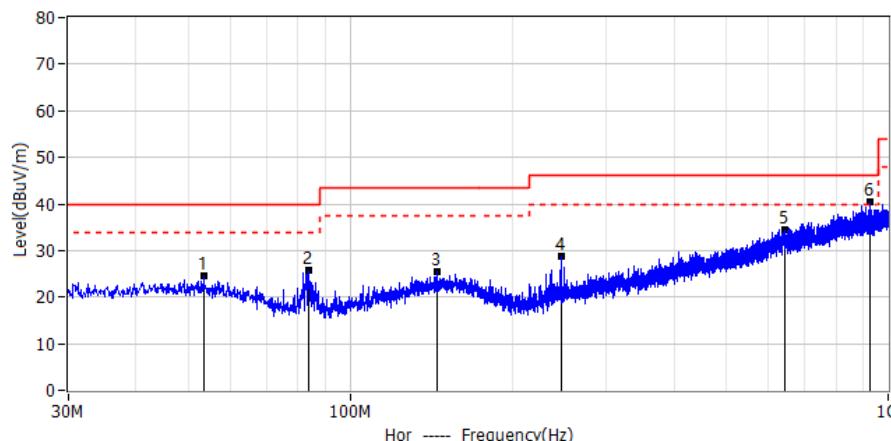
3.2.6 TEST RESULTS

Results of Radiated Emissions (9 KHz~30MHz)

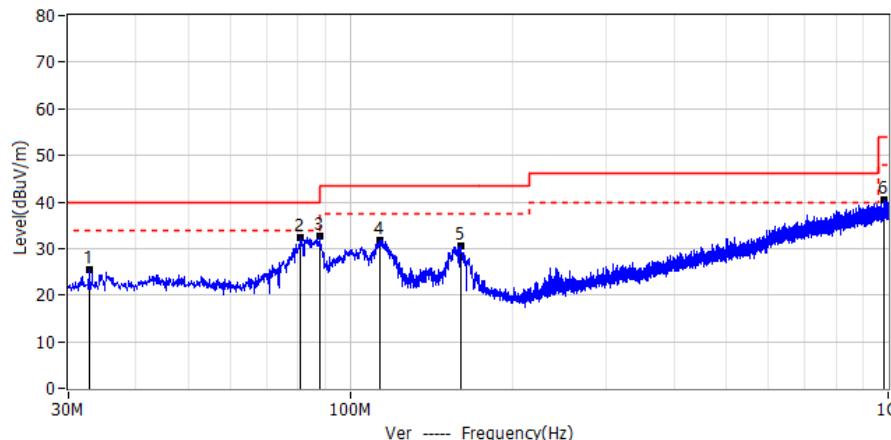
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Remark
1*	-	-	-	-	-	-	-	See Note

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.



Results of Radiated Emissions (30MHz~1000MHz)

Project: LGT25G047	Test Engineer: LiuH
EUT: Broadband Digital Transmission System	Temperature: 25.1°C
M/N: NFT2ax	Humidity: 55%RH
Test Voltage: AC 120V/60Hz	Test Data: 2025-07-09
Test Mode: TX 802.11a 5180	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	53.401	3.66	20.82	24.48	40.00	-15.52	QP	Hor
2*	83.835	9.05	16.81	25.86	40.00	-14.14	QP	Hor
3*	145.551	3.83	21.51	25.34	43.50	-18.16	QP	Hor
4*	247.401	8.65	20.12	28.77	46.00	-17.23	QP	Hor
5*	644.131	3.97	30.52	34.49	46.00	-11.51	QP	Hor
6*	922.643	6.11	34.42	40.53	46.00	-5.47	QP	Hor

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	32.789	5.67	19.67	25.34	40.00	-14.66	QP	Ver
2*	81.046	15.83	16.42	32.25	40.00	-7.75	QP	Ver
3*	87.715	16.05	16.61	32.66	40.00	-7.34	QP	Ver
4*	113.663	12.51	19.12	31.63	43.50	-11.87	QP	Ver
5*	160.829	8.77	21.82	30.59	43.50	-12.91	QP	Ver
6*	981.449	5.24	35.22	40.46	54.00	-13.54	QP	Ver

Results of Radiated Emissions (Above 1000MHz)

Band IV(5.725-5.85) GHz							
Frequency (MHz)	Reading (dB μ V)	Corrected Factor (dB)	Result (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector	Polarity
Low Channel (802.11/ 5745 MHz)							
3992.90	52.23	-6.89	45.34	74.00	-28.66	PK	Vertical
3992.90	42.82	-6.89	35.93	54.00	-18.07	AV	Vertical
3995.87	52.69	-6.89	45.80	74.00	-28.20	PK	Horizontal
3995.87	42.15	-6.89	35.26	54.00	-18.74	AV	Horizontal
8920.29	53.65	-3.80	49.85	68.20	-18.35	PK	Vertical
8920.29	43.10	-3.80	39.30	54.00	-14.70	AV	Vertical
8916.88	54.22	-3.80	50.42	68.20	-17.78	PK	Horizontal
8916.88	43.40	-3.80	39.60	54.00	-14.40	AV	Horizontal
11486.52	55.15	-2.92	52.23	74.00	-21.77	PK	Vertical
11486.52	44.60	-2.92	41.68	54.00	-12.32	AV	Vertical
11472.14	56.14	-2.92	53.22	74.00	-20.78	PK	Horizontal
11472.14	44.71	-2.92	41.79	54.00	-12.21	AV	Horizontal
13293.27	53.55	-0.35	53.20	74.00	-20.80	PK	Vertical
13293.27	44.77	-0.35	44.42	54.00	-9.58	AV	Vertical
13288.26	53.52	-0.35	53.17	74.00	-20.83	PK	Horizontal
13288.26	44.85	-0.35	44.50	54.00	-9.50	AV	Horizontal
Mid Channel (802.11/ 5785 MHz)							
3993.01	52.47	-6.89	45.58	74.00	-28.42	PK	Vertical
3993.01	42.55	-6.89	35.66	54.00	-18.34	AV	Vertical
3995.72	52.00	-6.89	45.11	74.00	-28.89	PK	Horizontal
3995.72	42.33	-6.89	35.44	54.00	-18.56	AV	Horizontal
8911.28	53.04	-3.80	49.24	68.20	-18.96	PK	Vertical
8911.28	43.63	-3.80	39.83	54.00	-14.17	AV	Vertical
8919.68	53.03	-3.80	49.23	68.20	-18.97	PK	Horizontal
8919.68	43.38	-3.80	39.58	54.00	-14.42	AV	Horizontal
11563.11	55.38	-2.92	52.46	74.00	-21.54	PK	Vertical
11563.11	44.90	-2.92	41.98	54.00	-12.02	AV	Vertical
11567.58	56.40	-2.92	53.48	74.00	-20.52	PK	Horizontal
11567.58	44.98	-2.92	42.06	54.00	-11.94	AV	Horizontal
13295.27	54.45	-0.35	54.10	74.00	-19.90	PK	Vertical
13295.27	44.54	-0.35	44.19	54.00	-9.81	AV	Vertical
13298.80	54.25	-0.35	53.90	74.00	-20.10	PK	Horizontal
13298.80	44.59	-0.35	44.24	54.00	-9.76	AV	Horizontal
High Channel (802.11/ 5825 MHz)							
3992.24	52.50	-6.89	45.61	74.00	-28.39	PK	Vertical
3992.24	43.24	-6.89	36.35	54.00	-17.65	AV	Vertical
3999.12	52.24	-6.89	45.35	74.00	-28.65	PK	Horizontal
3999.12	42.83	-6.89	35.94	54.00	-18.06	AV	Horizontal
8924.30	53.27	-3.80	49.47	68.20	-18.73	PK	Vertical
8924.30	43.08	-3.80	39.28	54.00	-14.72	AV	Vertical
8917.64	54.03	-3.80	50.23	68.20	-17.97	PK	Horizontal
8917.64	43.33	-3.80	39.53	54.00	-14.47	AV	Horizontal
11646.24	55.18	-2.92	52.26	74.00	-21.74	PK	Vertical
11646.24	44.23	-2.92	41.31	54.00	-12.69	AV	Vertical
11650.01	55.44	-2.92	52.52	74.00	-21.48	PK	Horizontal
11650.01	45.28	-2.92	42.36	54.00	-11.64	AV	Horizontal
13297.49	54.74	-0.35	54.39	74.00	-19.61	PK	Vertical
13297.49	44.85	-0.35	44.50	54.00	-9.50	AV	Vertical
13296.81	54.02	-0.35	53.67	74.00	-20.33	PK	Horizontal
13296.81	43.83	-0.35	43.48	54.00	-10.52	AV	Horizontal

Remark:

In frequency ranges 18~40GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.

3.2.7 TEST RESULTS(Band edge Requirements)

Band IV(5.725-5.85 GHz)							
Frequency (MHz)	Reading (dB μ V)	Corrected Factor (dB)	Result (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector	Polarity
802.11n BW20MHz							
5460	53.46	-8.27	45.19	74	-28.81	PK	Vertical
5460	43.39	-8.27	35.12	54	-18.88	AV	Vertical
5460	53.41	-8.27	45.14	74	-28.86	PK	Horizontal
5460	43.73	-8.27	35.46	54	-18.54	AV	Horizontal
7250	55.38	-6.33	49.05	74	-24.95	PK	Vertical
7250	44.31	-6.33	37.98	54	-16.02	AV	Vertical
7250	54.03	-6.33	47.70	74	-26.30	PK	Horizontal
7250	43.53	-6.33	37.20	54	-16.80	AV	Horizontal
802.11n BW40MHz							
5460	53.56	-8.27	45.29	74	-28.71	PK	Vertical
5460	43.32	-8.27	35.05	54	-18.95	AV	Vertical
5460	53.16	-8.27	44.89	74	-29.11	PK	Horizontal
5460	43.71	-8.27	35.44	54	-18.56	AV	Horizontal
7250	54.16	-6.33	47.83	74	-26.17	PK	Vertical
7250	44.88	-6.33	38.55	54	-15.45	AV	Vertical
7250	54.86	-6.33	48.53	74	-25.47	PK	Horizontal
7250	43.90	-6.33	37.57	54	-16.43	AV	Horizontal
802.11ac BW80MHz							
5460	53.58	-8.27	45.31	74	-28.69	PK	Vertical
5460	43.90	-8.27	35.63	54	-18.37	AV	Vertical
5460	53.79	-8.27	45.52	74	-28.48	PK	Horizontal
5460	42.80	-8.27	34.53	54	-19.47	AV	Horizontal
7250	55.35	-6.33	49.02	74	-24.98	PK	Vertical
7250	44.17	-6.33	37.84	54	-16.16	AV	Vertical
7250	54.64	-6.33	48.31	74	-25.69	PK	Horizontal
7250	44.23	-6.33	37.90	54	-16.10	AV	Horizontal

4. POWER SPECTRAL DENSITY TEST

4.1 LIMIT

1. For mobile and portable client devices in the 5.15-5.25 GHz band, , the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
3. For the band 5.725-5.850 GHz, the peak power spectral density shall not exceed 30 dBm in any 500KHz band. If transmitting antenna directional gain is greater than 6 dBi, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 TEST PROCEDURE

1. The setting follows Method SA-1 of FCC KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

For devices operating in the band, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (*i.e.*, 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW $\geq 1/T$, where T is defined in section II.B.I.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10 \log (500\text{kHz}/\text{RBW})$ to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add $10 \log (1\text{MHz}/\text{RBW})$ to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

For the measurement records, refer to the appendix I.

5. BANDWIDTH MEASUREMENT

5.1 EMISSION BANDWIDTH (EBW) 26 BANDWID PROCEDURES / LIMIT

The following procedure shall be used for measuring 26 bandwidth.

5.1.1 TEST PROCEDURE

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
2. Set RBW = approximately 1% of the emission bandwidth.
3. Set the VBW \geq RBW.
4. Detector = Peak.
5. Trace mode = max hold.
6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 TEST RESULTS

For the measurement records, refer to the appendix I.

5.2 OCCUPIED BANDWIDTH (99%) TEST APPLIED PROCEDURES / LIMIT

The following procedure shall be used for measuring (99 %) power bandwidth.

5.2.1 TEST PROCEDURE

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures v02r01.
- The following procedure shall be used for measuring (99 %) power bandwidth:
1. Set center frequency to the nominal EUT channel center frequency.
2. Set span = 1.5 times to 5.0 times the OBW.
3. Set RBW = 1 % to 5 % of the OBW
4. Set VBW $\geq 3 \cdot RBW$
5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
6. Use the 99 % power bandwidth function of the instrument (if available).
7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

5.2.2 DEVIATION FROM STANDARD

No deviation.

5.2.3 TEST SETUP

5.2.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5 TEST RESULTS

For the measurement records, refer to the appendix I.

5.3 MINIMUM EMISSION BANDWIDTH(6 DB) PROCEDURES / LIMIT

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth.

5.3.1 TEST PROCEDURE

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures v02r01.
 - a) Set RBW = 100 kHz.
 - b) Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
 - c) Detector = Peak.
 - d) Trace mode = max hold.
 - e) Sweep = auto couple.
 - f) Allow the trace to stabilize.
 - g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.2 DEVIATION FROM STANDARD

No deviation.

5.3.3 TEST SETUP

5.3.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.3.5 TEST RESULTS

For the measurement records, refer to the appendix I.

6. MAXIMUM CONDUCTED OUTPUT POWER

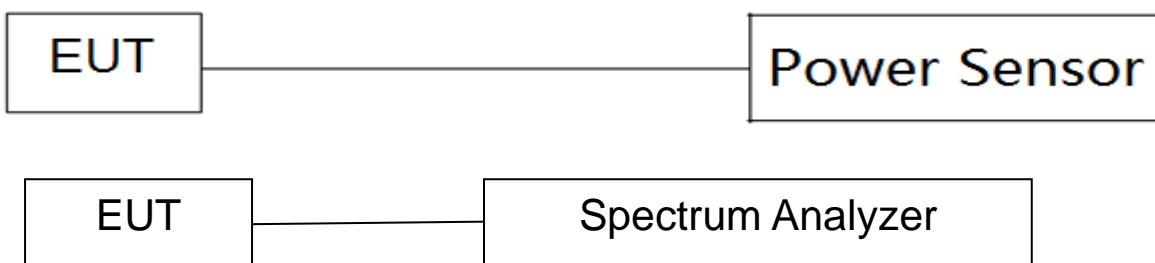
6.1 LIMIT

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz, If transmitting antennas of directional gain greater than 6 dBi are used.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used.

FCC Part15 (15.407) , Subpart E				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.407(a) (1) (iv)	Output Power	0.25 watt	5150-5250	PASS
		The lesser of 250 mW or $11 \text{ dBm} + 10 \log (26 \text{ dB emission bandwidth})$	5250-5350 5470-5725	
		1 watt	5725-5825	


6.2 TEST PROCEDURE

The EUT was directly connected to the Power Sensor&PC.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 5 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

For the measurement records, refer to the appendix I.

7. CONDUCTED BANDEDGE

7.1 LIMIT

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
 - a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;
 - b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
 - c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and
 - d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

7.2 TEST PROCEDURE

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
RB / VB (emission in restricted band)	1 MHz / 3 MHz
Offset	Ant Gain+Test system loss

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

For the measurement records, refer to the appendix I.

8. AUTOMATICALLY DISCONTINUE TRANSMISSION

8.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

8.2 TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

Part 15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

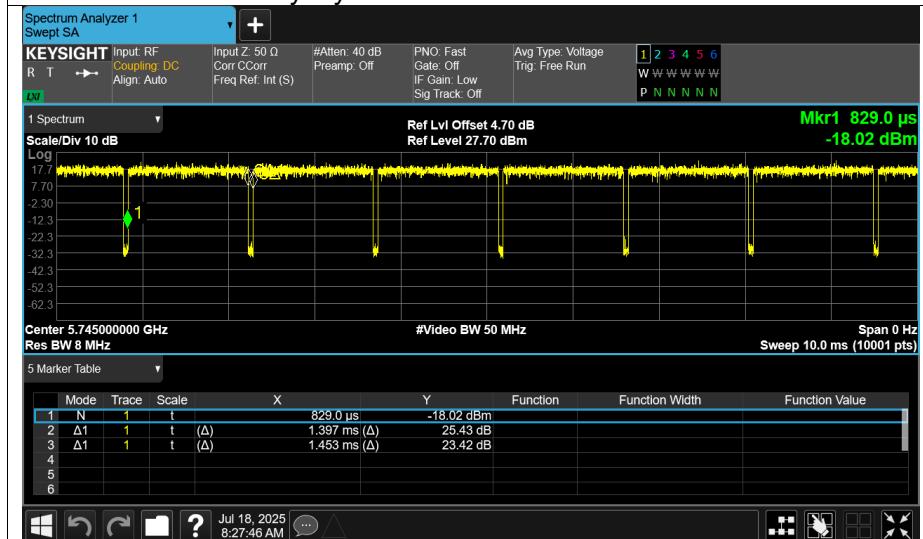
9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

APPENDIX I - TEST RESULTS

Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	On Time (ms)	Period (ms)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	a	5745	Ant1	1.397	1.453	96.15	0.17	0.72
NVNT	a	5785	Ant1	1.397	1.453	96.15	0.17	0.72
NVNT	a	5825	Ant1	1.397	1.453	96.15	0.17	0.72
NVNT	a	5745	Ant2	1.397	1.453	96.15	0.17	0.72
NVNT	a	5785	Ant2	1.397	1.453	96.15	0.17	0.72
NVNT	a	5825	Ant2	1.397	1.453	96.15	0.17	0.72
NVNT	n20	5745	Ant1	1.308	1.364	95.89	0.18	0.76
NVNT	n20	5785	Ant1	1.308	1.364	95.89	0.18	0.76
NVNT	n20	5825	Ant1	1.309	1.365	95.9	0.18	0.76
NVNT	n20	5745	Ant2	1.304	1.361	95.81	0.19	0.77
NVNT	n20	5785	Ant2	1.304	1.36	95.88	0.18	0.77
NVNT	n20	5825	Ant2	1.304	1.361	95.81	0.19	0.77
NVNT	n20	5745	MIMO	2.564	2.62	97.86	0.09	0.39
NVNT	n20	5785	MIMO	2.564	2.62	97.86	0.09	0.39
NVNT	n20	5825	MIMO	2.564	2.621	97.83	0.1	0.39
NVNT	n40	5755	Ant1	0.648	0.705	91.91	0.37	1.54
NVNT	n40	5795	Ant1	0.649	0.705	92.06	0.36	1.54
NVNT	n40	5755	Ant2	0.648	0.705	91.91	0.37	1.54
NVNT	n40	5795	Ant2	0.649	0.705	92.06	0.36	1.54
NVNT	n40	5755	MIMO	0.649	0.705	92.06	0.36	1.54
NVNT	n40	5795	MIMO	0.648	0.705	91.91	0.37	1.54
NVNT	ac20	5745	Ant1	0.481	0.537	89.57	0.48	2.08
NVNT	ac20	5785	Ant1	0.48	0.537	89.39	0.49	2.08
NVNT	ac20	5825	Ant1	0.48	0.536	89.55	0.48	2.08
NVNT	ac20	5745	Ant2	0.48	0.537	89.39	0.49	2.08
NVNT	ac20	5785	Ant2	0.48	0.537	89.39	0.49	2.08
NVNT	ac20	5825	Ant2	0.481	0.537	89.57	0.48	2.08
NVNT	ac20	5745	MIMO	0.48	0.537	89.39	0.49	2.08
NVNT	ac20	5785	MIMO	0.481	0.537	89.57	0.48	2.08
NVNT	ac20	5825	MIMO	0.481	0.537	89.57	0.48	2.08
NVNT	ac40	5755	Ant1	0.26	0.317	82.02	0.86	3.85
NVNT	ac40	5795	Ant1	0.26	0.317	82.02	0.86	3.85
NVNT	ac40	5755	Ant2	0.261	0.317	82.33	0.84	3.83
NVNT	ac40	5795	Ant2	0.26	0.317	82.02	0.86	3.85
NVNT	ac40	5755	MIMO	0.261	0.317	82.33	0.84	3.83
NVNT	ac40	5795	MIMO	0.26	0.316	82.28	0.85	3.85
NVNT	ac80	5775	Ant1	0.149	0.205	72.68	1.39	6.71
NVNT	ac80	5775	Ant2	0.148	0.205	72.2	1.41	6.76
NVNT	ac80	5775	MIMO	0.148	0.205	72.2	1.41	6.76
NVNT	ax20	5745	Ant1	0.429	0.485	88.45	0.53	2.33
NVNT	ax20	5785	Ant1	0.429	0.486	88.27	0.54	2.33
NVNT	ax20	5825	Ant1	0.429	0.486	88.27	0.54	2.33
NVNT	ax20	5745	Ant2	0.429	0.486	88.27	0.54	2.33
NVNT	ax20	5785	Ant2	0.429	0.485	88.45	0.53	2.33
NVNT	ax20	5825	Ant2	0.429	0.485	88.45	0.53	2.33
NVNT	ax20	5745	MIMO	0.429	0.486	88.27	0.54	2.33
NVNT	ax20	5785	MIMO	0.429	0.485	88.45	0.53	2.33
NVNT	ax20	5825	MIMO	0.429	0.485	88.45	0.53	2.33
NVNT	ax40	5755	Ant1	0.425	0.481	88.36	0.54	2.35



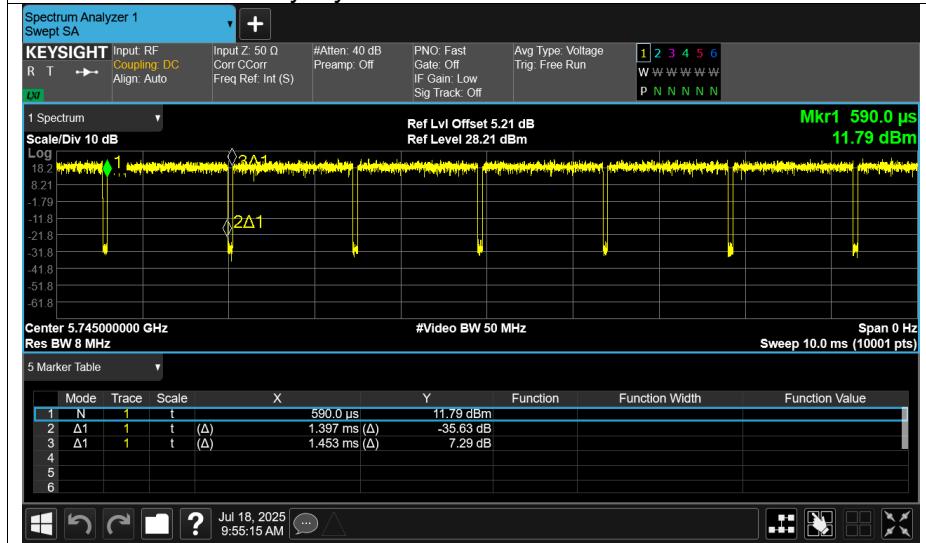
NVNT	ax40	5795	Ant1	0.425	0.481	88.36	0.54	2.35
NVNT	ax40	5755	Ant2	0.425	0.482	88.17	0.55	2.35
NVNT	ax40	5795	Ant2	0.425	0.481	88.36	0.54	2.35
NVNT	ax40	5755	MIMO	0.425	0.481	88.36	0.54	2.35
NVNT	ax40	5795	MIMO	0.425	0.482	88.17	0.55	2.35
NVNT	ax80	5775	Ant1	0.412	0.468	88.03	0.55	2.43
NVNT	ax80	5775	Ant2	0.411	0.468	87.82	0.56	2.43
NVNT	ax80	5775	MIMO	0.411	0.468	87.82	0.56	2.43



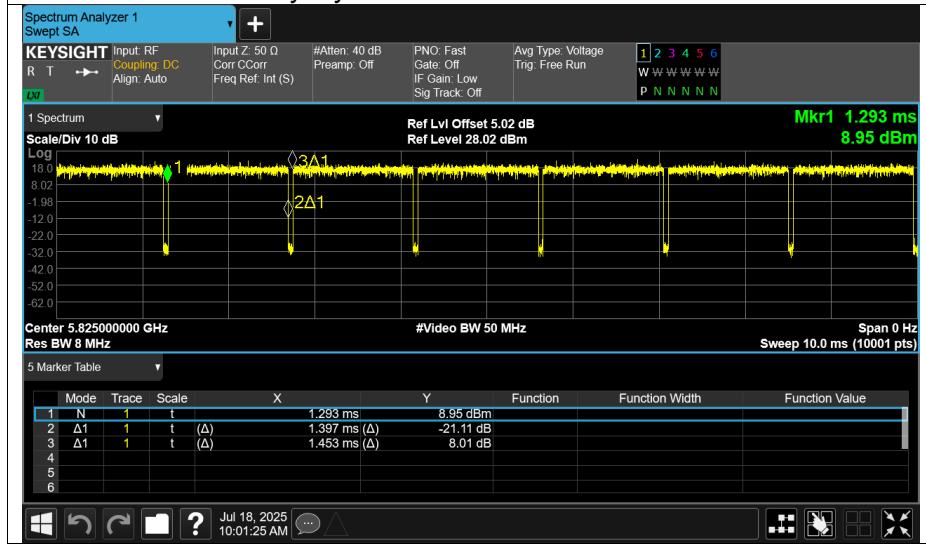
Test Graphs

Duty Cycle NVNT a 5745MHz Ant1

Duty Cycle NVNT a 5785MHz Ant1



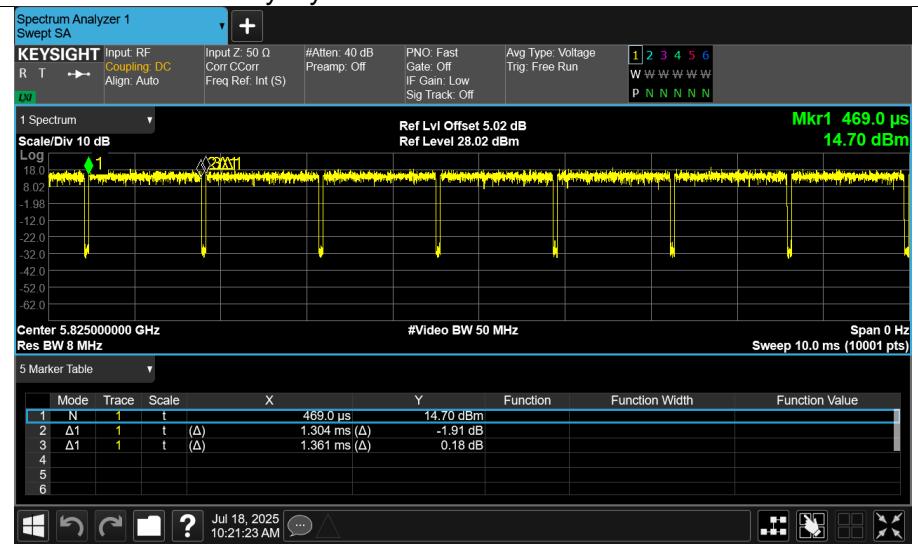
Duty Cycle NVNT a 5825MHz Ant1


Duty Cycle NVNT a 5745MHz Ant2



Duty Cycle NVNT a 5785MHz Ant2

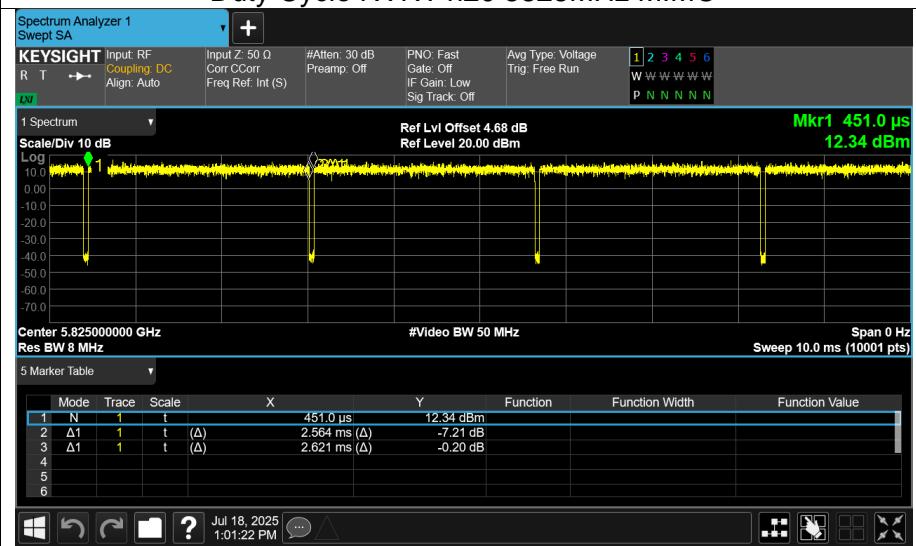

Duty Cycle NVNT a 5825MHz Ant2


Duty Cycle NVNT n20 5745MHz Ant2

Duty Cycle NVNT n20 5785MHz Ant2

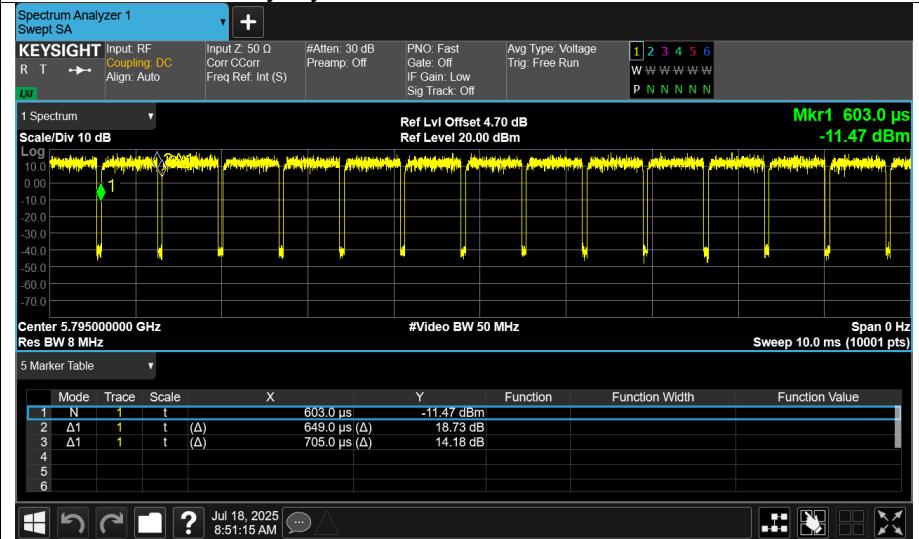


Duty Cycle NVNT n20 5825MHz Ant2

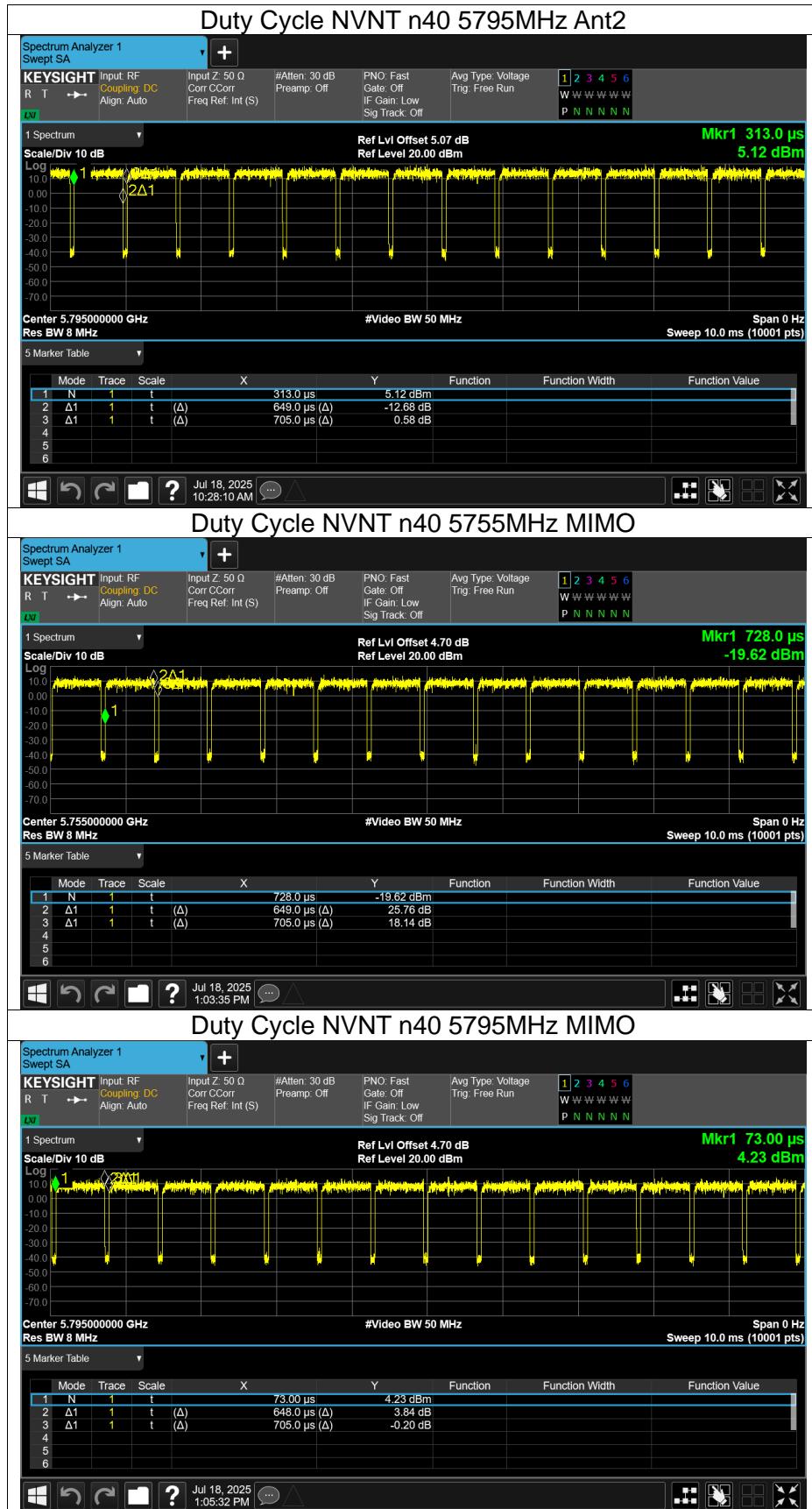

Duty Cycle NVNT n20 5745MHz MIMO

Duty Cycle NVNT n20 5785MHz MIMO

Duty Cycle NVNT n20 5825MHz MIMO

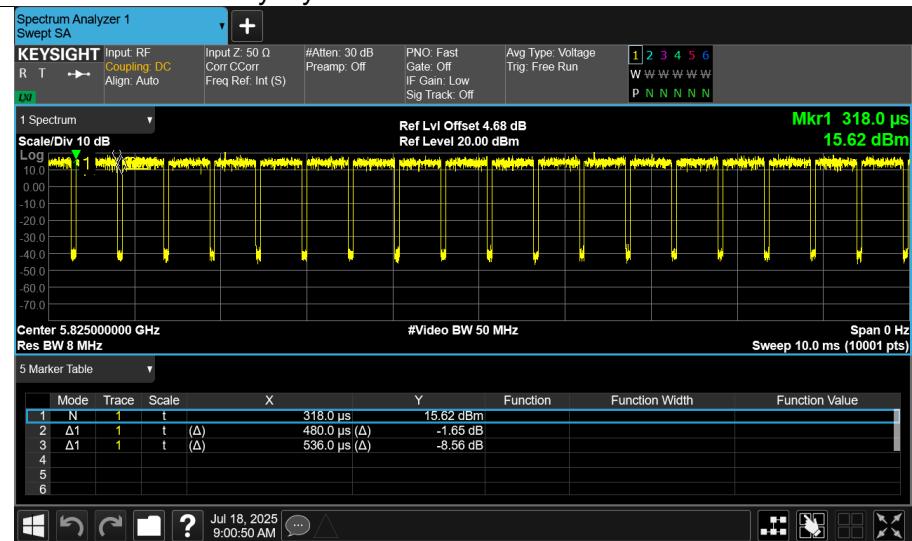


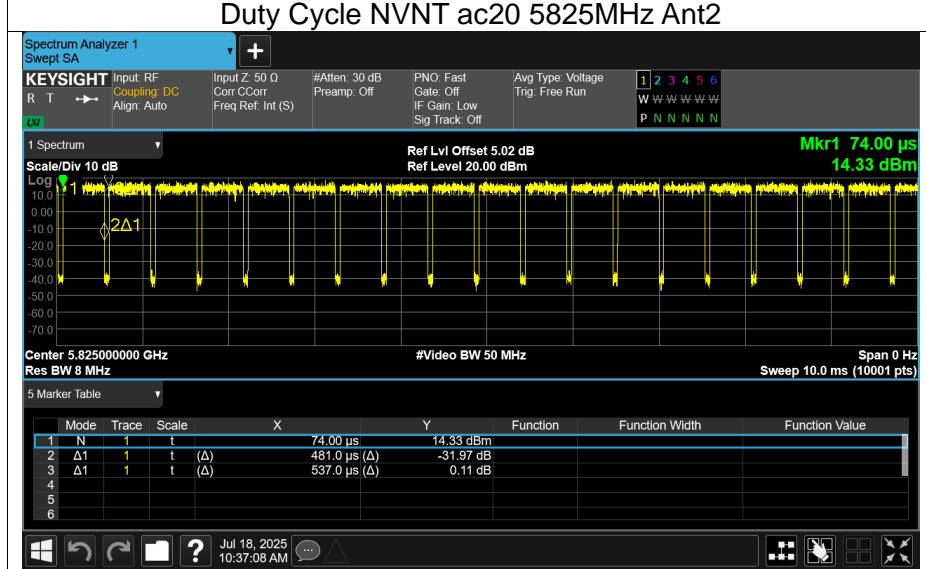
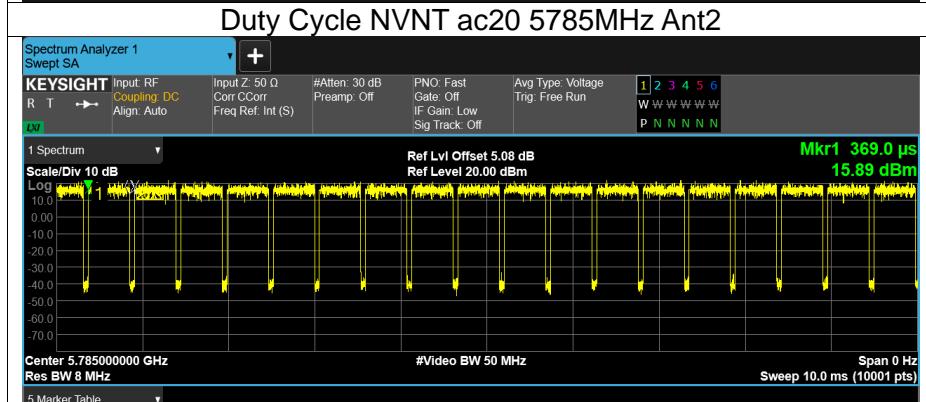
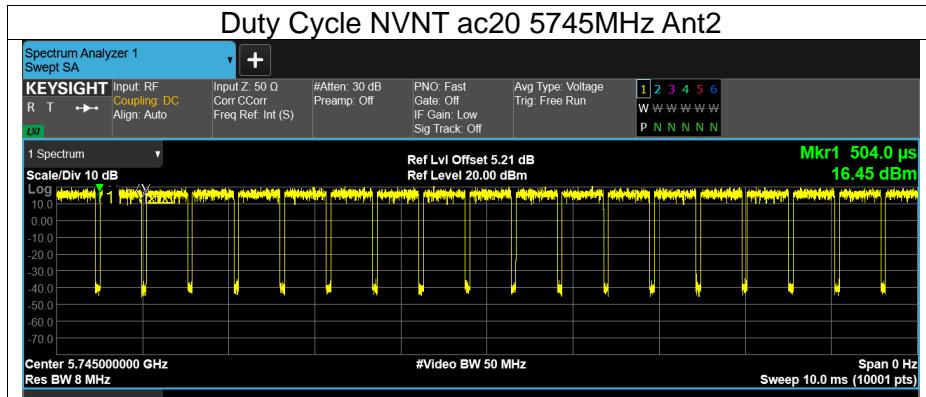
Duty Cycle NVNT n40 5755MHz Ant1



Duty Cycle NVNT n40 5795MHz Ant1

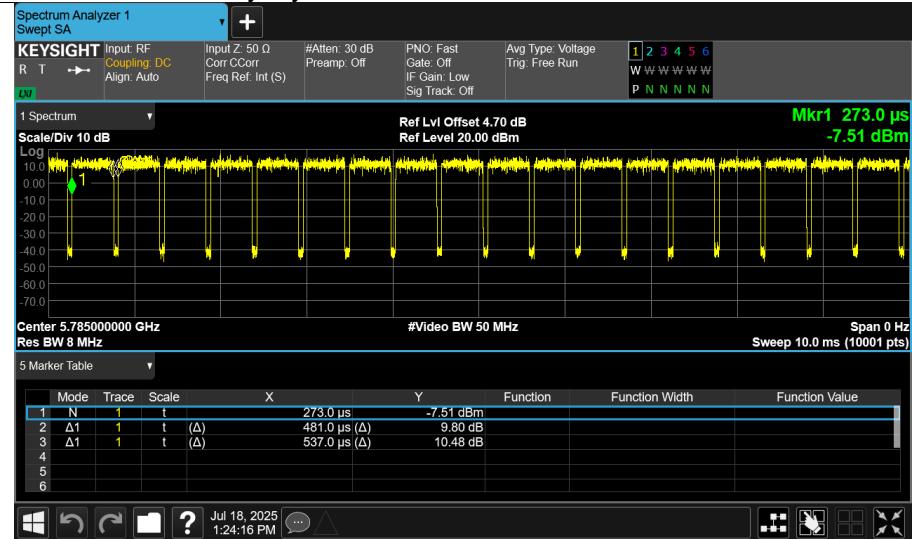
Duty Cycle NVNT n40 5755MHz Ant2


Duty Cycle NVNT ac20 5745MHz Ant1

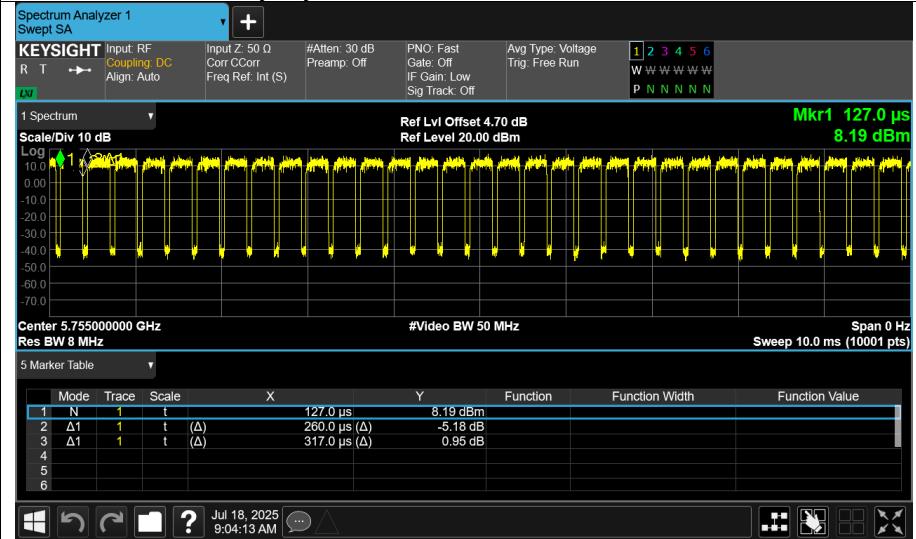
Duty Cycle NVNT ac20 5785MHz Ant1

Duty Cycle NVNT ac20 5825MHz Ant1

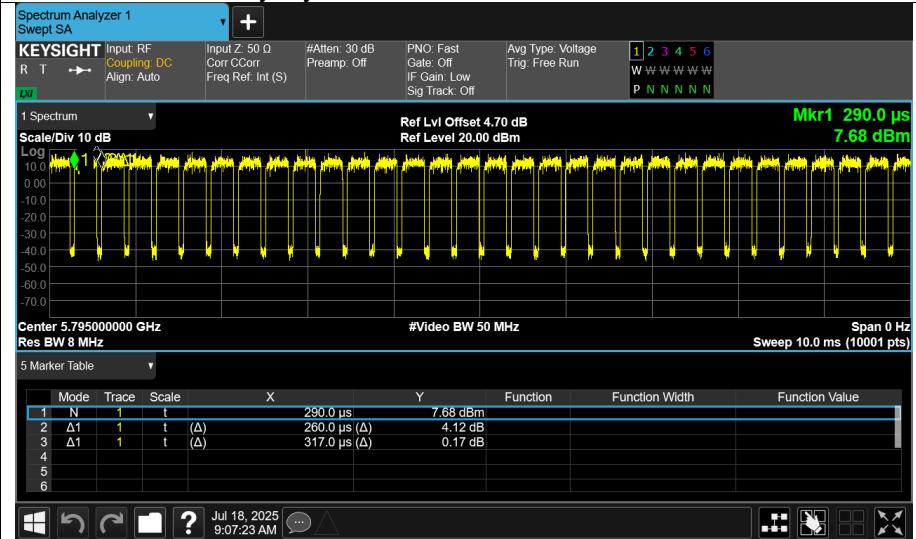


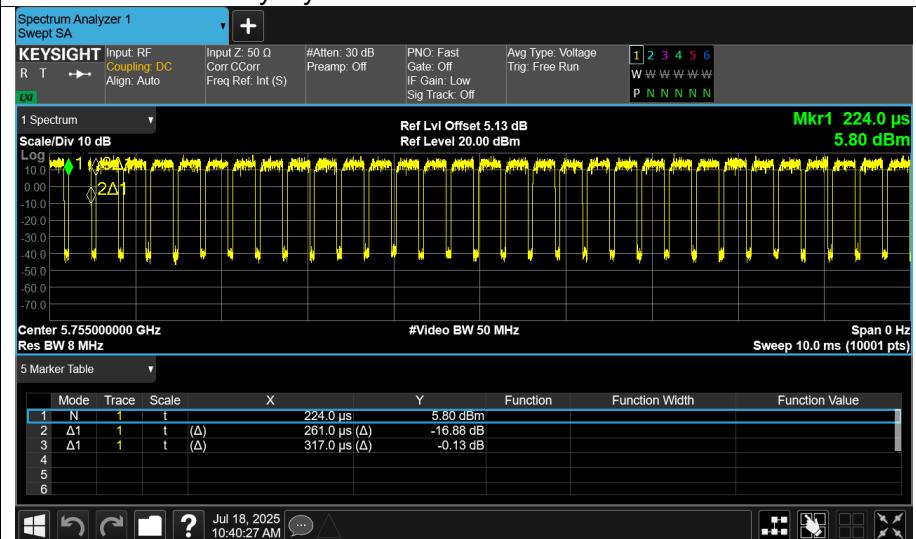
Duty Cycle NVNT ac20 5745MHz MIMO

Duty Cycle NVNT ac20 5785MHz MIMO

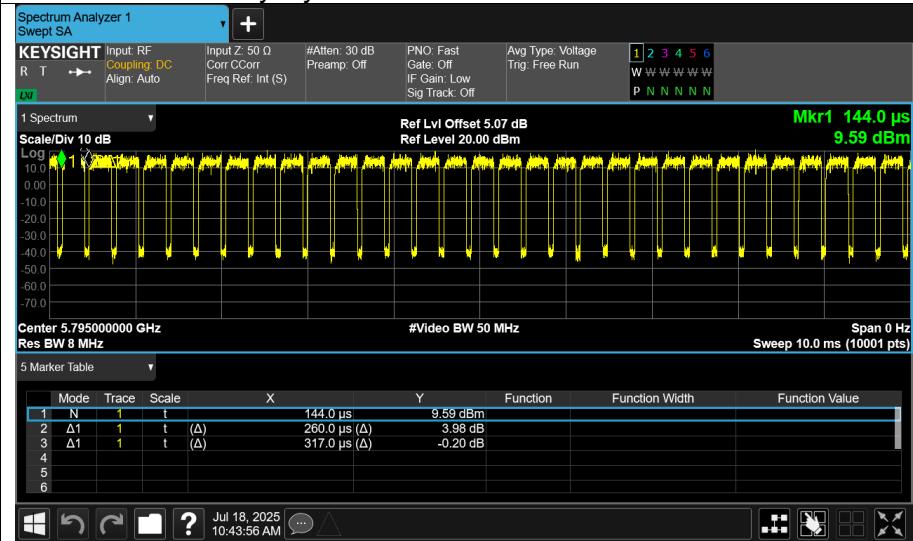


Duty Cycle NVNT ac20 5825MHz MIMO

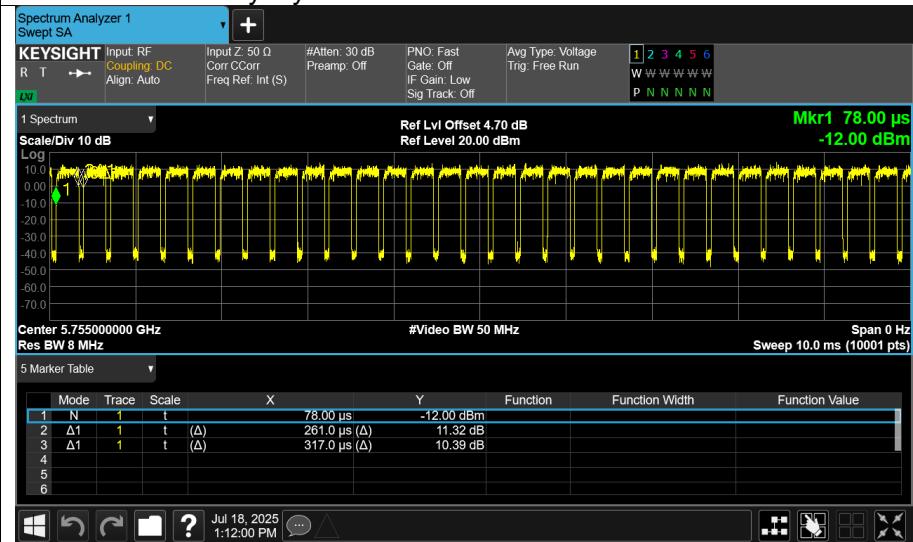


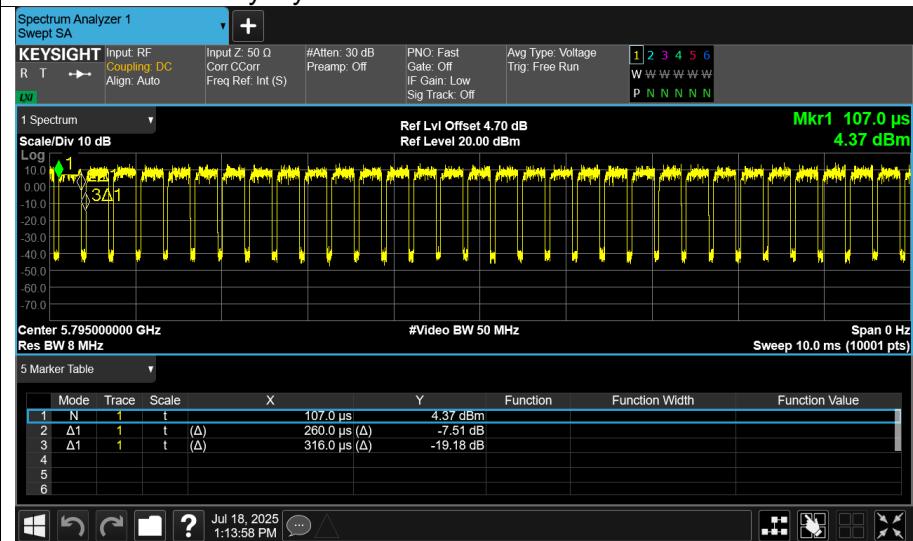

Duty Cycle NVNT ac40 5755MHz Ant1

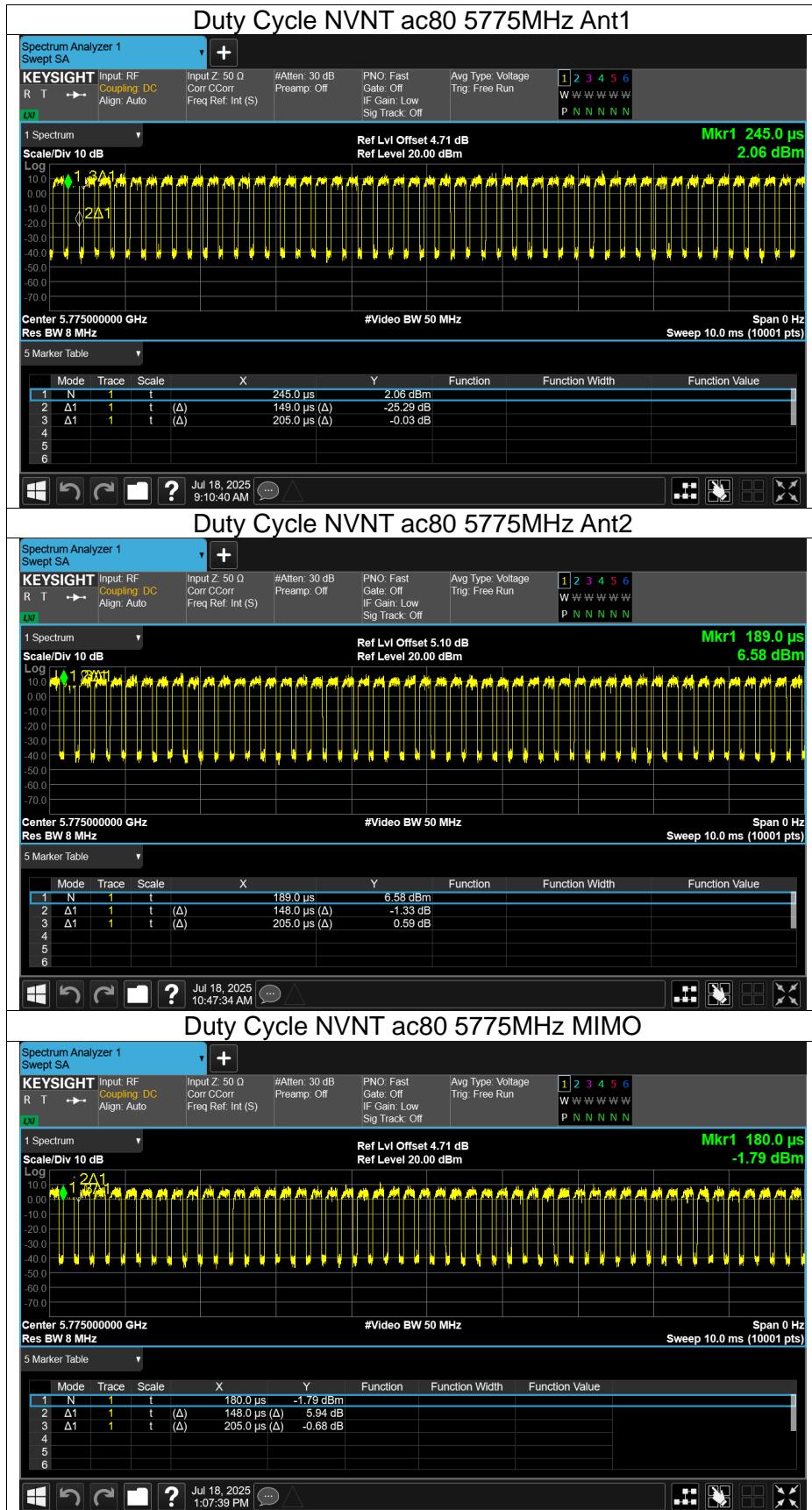
Duty Cycle NVNT ac40 5795MHz Ant1

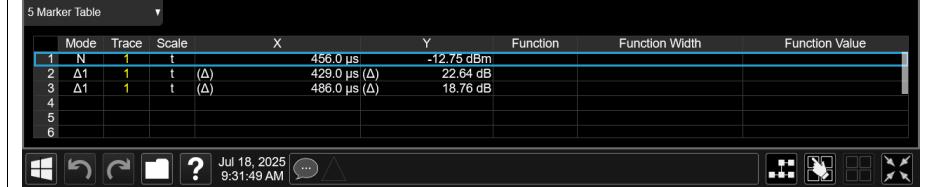
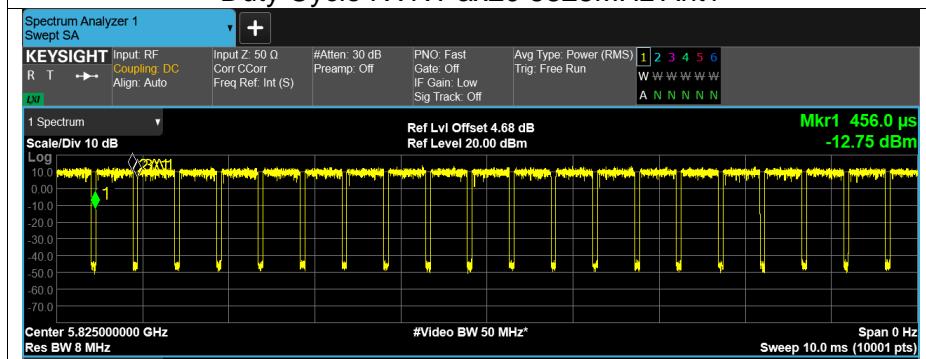
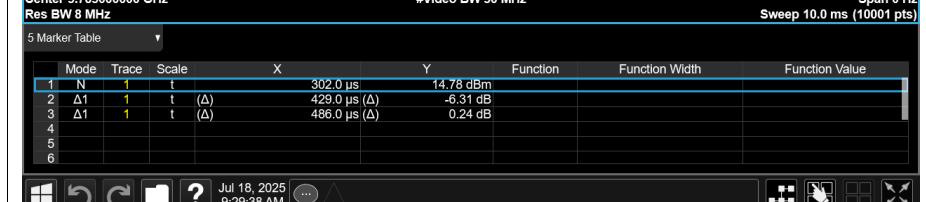
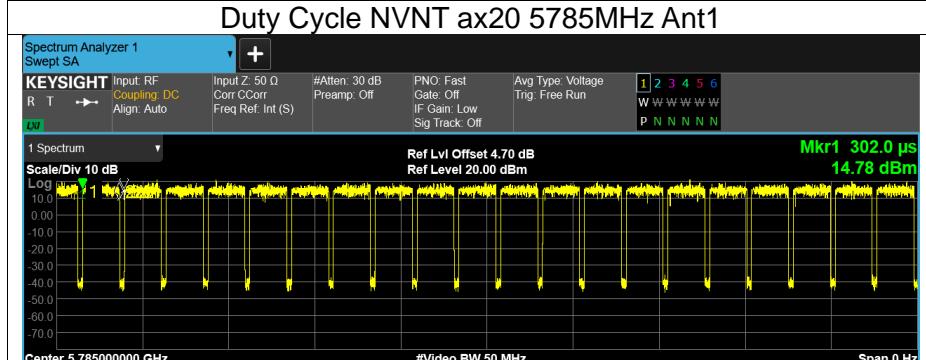
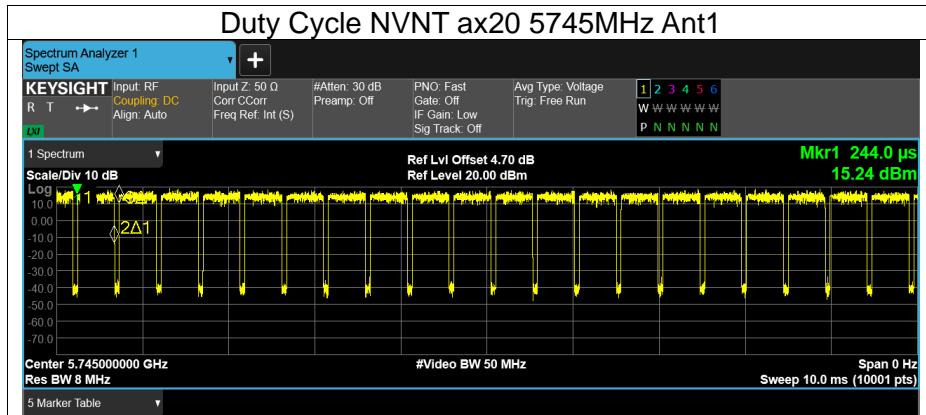


Duty Cycle NVNT ac40 5755MHz Ant2

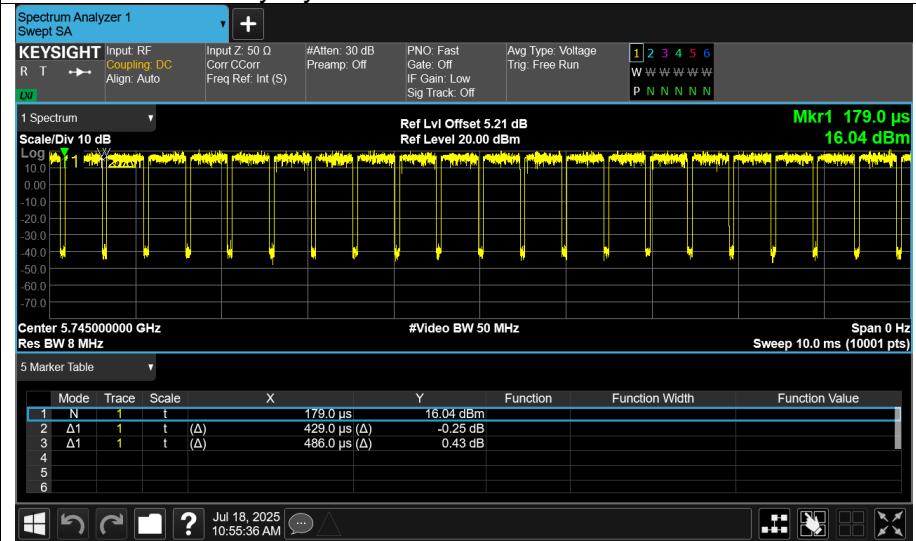


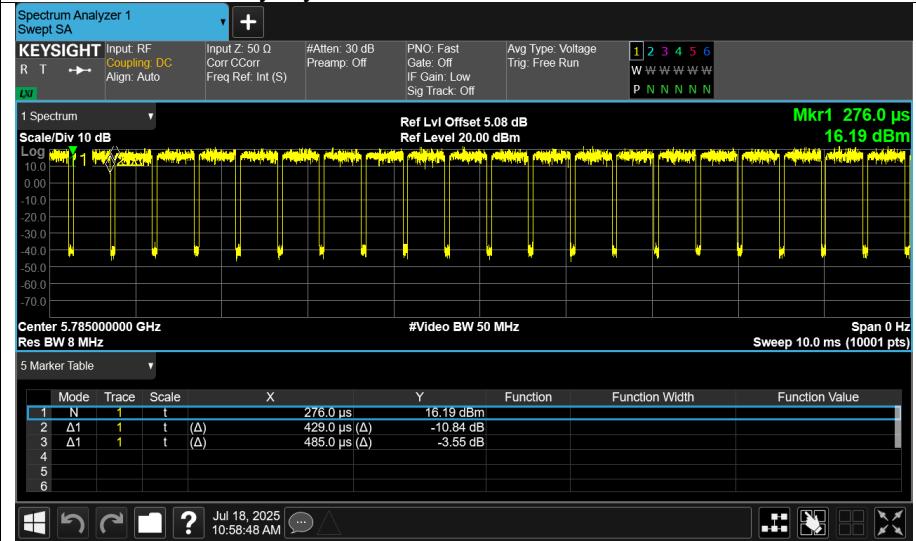

Duty Cycle NVNT ac40 5795MHz Ant2

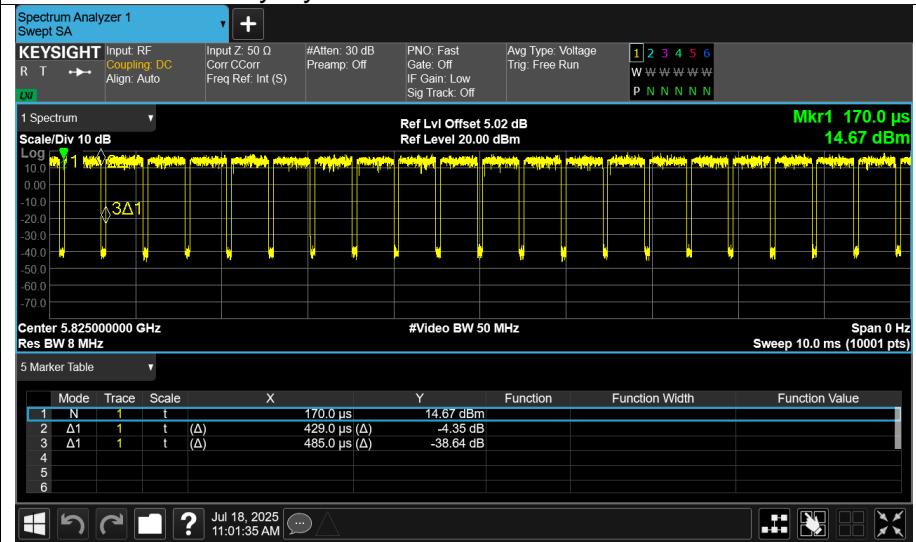







Duty Cycle NVNT ac40 5755MHz MIMO

Duty Cycle NVNT ac40 5795MHz MIMO



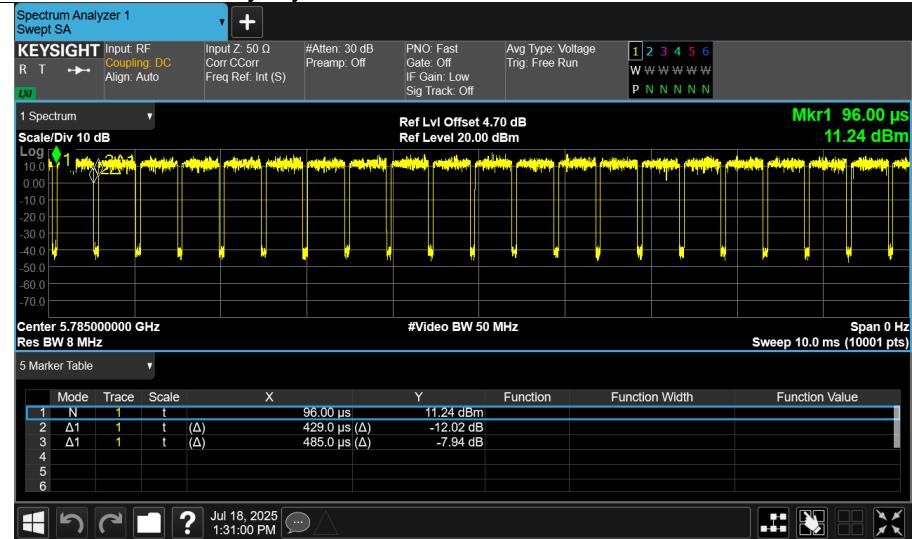


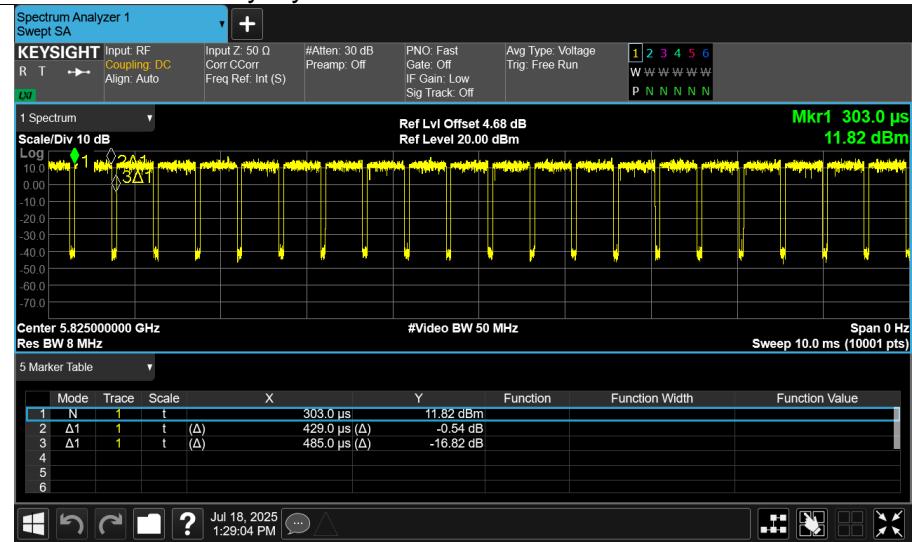

Duty Cycle NVNT ax20 5745MHz Ant2

Duty Cycle NVNT ax20 5785MHz Ant2



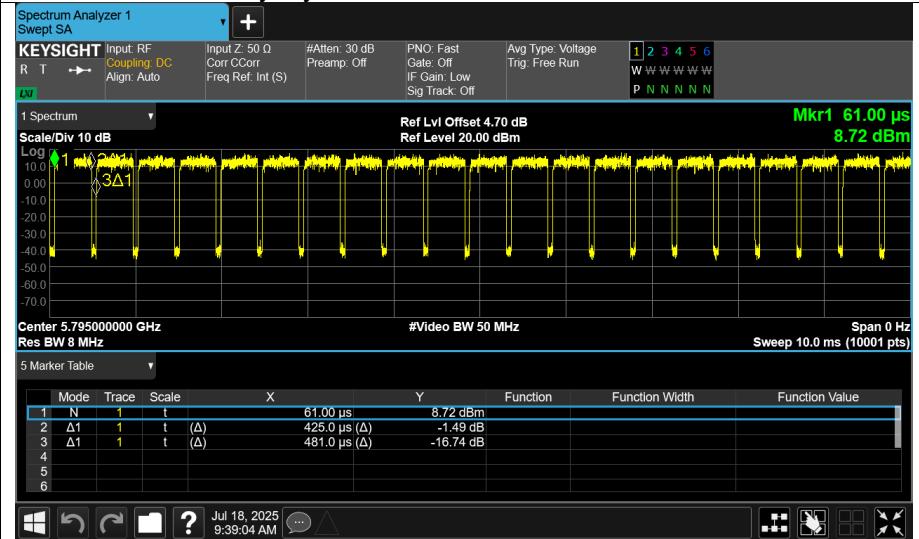
Duty Cycle NVNT ax20 5825MHz Ant2

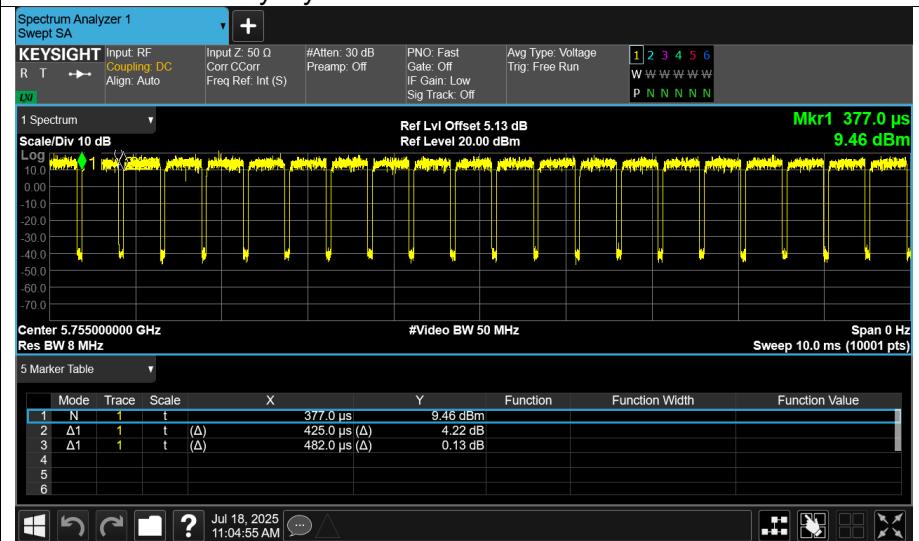



Duty Cycle NVNT ax20 5745MHz MIMO

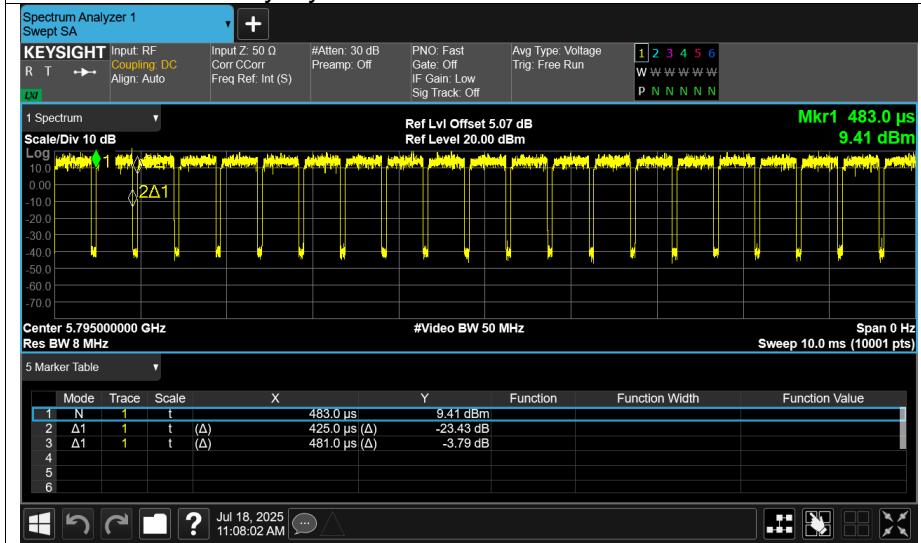
Duty Cycle NVNT ax20 5785MHz MIMO

Duty Cycle NVNT ax20 5825MHz MIMO




Duty Cycle NVNT ax40 5755MHz Ant1

Duty Cycle NVNT ax40 5795MHz Ant1



Duty Cycle NVNT ax40 5755MHz Ant2

Duty Cycle NVNT ax40 5795MHz Ant2

Duty Cycle NVNT ax40 5755MHz MIMO

Duty Cycle NVNT ax40 5795MHz MIMO

