

In Collaboration with

s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

<http://www.caict.ac.cn>

10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc dc)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc dc)	WLAN	8.61	± 9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc dc)	WLAN	8.89	± 9.6 %
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc dc)	WLAN	8.82	± 9.6 %
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc dc)	WLAN	8.73	± 9.6 %
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc dc)	WLAN	8.86	± 9.6 %
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc dc)	WLAN	8.70	± 9.6 %
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc dc)	WLAN	8.56	± 9.6 %
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc dc)	WLAN	8.69	± 9.6 %
10706	AAC	IEEE 802.11ax (40MHz, MCS11, 90pc dc)	WLAN	8.66	± 9.6 %
10707	AAC	IEEE 802.11ax (40MHz, MCS0, 99pc dc)	WLAN	8.32	± 9.6 %
10708	AAC	IEEE 802.11ax (40MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6 %
10709	AAC	IEEE 802.11ax (40MHz, MCS2, 99pc dc)	WLAN	8.33	± 9.6 %
10710	AAC	IEEE 802.11ax (40MHz, MCS3, 99pc dc)	WLAN	8.29	± 9.6 %
10711	AAC	IEEE 802.11ax (40MHz, MCS4, 99pc dc)	WLAN	8.39	± 9.6 %
10712	AAC	IEEE 802.11ax (40MHz, MCS5, 99pc dc)	WLAN	8.67	± 9.6 %
10713	AAC	IEEE 802.11ax (40MHz, MCS6, 99pc dc)	WLAN	8.33	± 9.6 %
10714	AAC	IEEE 802.11ax (40MHz, MCS7, 99pc dc)	WLAN	8.26	± 9.6 %
10715	AAC	IEEE 802.11ax (40MHz, MCS8, 99pc dc)	WLAN	8.45	± 9.6 %
10716	AAC	IEEE 802.11ax (40MHz, MCS9, 99pc dc)	WLAN	8.30	± 9.6 %
10717	AAC	IEEE 802.11ax (40MHz, MCS10, 99pc dc)	WLAN	8.48	± 9.6 %
10718	AAC	IEEE 802.11ax (40MHz, MCS11, 99pc dc)	WLAN	8.24	± 9.6 %
10719	AAC	IEEE 802.11ax (80MHz, MCS0, 90pc dc)	WLAN	8.81	± 9.6 %
10720	AAC	IEEE 802.11ax (80MHz, MCS1, 90pc dc)	WLAN	8.87	± 9.6 %
10721	AAC	IEEE 802.11ax (80MHz, MCS2, 90pc dc)	WLAN	8.76	± 9.6 %
10722	AAC	IEEE 802.11ax (80MHz, MCS3, 90pc dc)	WLAN	8.55	± 9.6 %
10723	AAC	IEEE 802.11ax (80MHz, MCS4, 90pc dc)	WLAN	8.70	± 9.6 %
10724	AAC	IEEE 802.11ax (80MHz, MCS5, 90pc dc)	WLAN	8.90	± 9.6 %
10725	AAC	IEEE 802.11ax (80MHz, MCS6, 90pc dc)	WLAN	8.74	± 9.6 %
10726	AAC	IEEE 802.11ax (80MHz, MCS7, 90pc dc)	WLAN	8.72	± 9.6 %
10727	AAC	IEEE 802.11ax (80MHz, MCS8, 90pc dc)	WLAN	8.66	± 9.6 %
10728	AAC	IEEE 802.11ax (80MHz, MCS9, 90pc dc)	WLAN	8.65	± 9.6 %
10729	AAC	IEEE 802.11ax (80MHz, MCS10, 90pc dc)	WLAN	8.64	± 9.6 %
10730	AAC	IEEE 802.11ax (80MHz, MCS11, 90pc dc)	WLAN	8.67	± 9.6 %
10731	AAC	IEEE 802.11ax (80MHz, MCS0, 99pc dc)	WLAN	8.42	± 9.6 %
10732	AAC	IEEE 802.11ax (80MHz, MCS1, 99pc dc)	WLAN	8.46	± 9.6 %
10733	AAC	IEEE 802.11ax (80MHz, MCS2, 99pc dc)	WLAN	8.40	± 9.6 %
10734	AAC	IEEE 802.11ax (80MHz, MCS3, 99pc dc)	WLAN	8.25	± 9.6 %
10735	AAC	IEEE 802.11ax (80MHz, MCS4, 99pc dc)	WLAN	8.33	± 9.6 %
10736	AAC	IEEE 802.11ax (80MHz, MCS5, 99pc dc)	WLAN	8.27	± 9.6 %
10737	AAC	IEEE 802.11ax (80MHz, MCS6, 99pc dc)	WLAN	8.36	± 9.6 %
10738	AAC	IEEE 802.11ax (80MHz, MCS7, 99pc dc)	WLAN	8.42	± 9.6 %
10739	AAC	IEEE 802.11ax (80MHz, MCS8, 99pc dc)	WLAN	8.29	± 9.6 %
10740	AAC	IEEE 802.11ax (80MHz, MCS9, 99pc dc)	WLAN	8.48	± 9.6 %
10741	AAC	IEEE 802.11ax (80MHz, MCS10, 99pc dc)	WLAN	8.40	± 9.6 %
10742	AAC	IEEE 802.11ax (80MHz, MCS11, 99pc dc)	WLAN	8.43	± 9.6 %
10743	AAC	IEEE 802.11ax (160MHz, MCS0, 90pc dc)	WLAN	8.94	± 9.6 %
10744	AAC	IEEE 802.11ax (160MHz, MCS1, 90pc dc)	WLAN	9.16	± 9.6 %
10745	AAC	IEEE 802.11ax (160MHz, MCS2, 90pc dc)	WLAN	8.93	± 9.6 %
10746	AAC	IEEE 802.11ax (160MHz, MCS3, 90pc dc)	WLAN	9.11	± 9.6 %
10747	AAC	IEEE 802.11ax (160MHz, MCS4, 90pc dc)	WLAN	9.04	± 9.6 %
10748	AAC	IEEE 802.11ax (160MHz, MCS5, 90pc dc)	WLAN	8.93	± 9.6 %
10749	AAC	IEEE 802.11ax (160MHz, MCS6, 90pc dc)	WLAN	8.90	± 9.6 %
10750	AAC	IEEE 802.11ax (160MHz, MCS7, 90pc dc)	WLAN	8.79	± 9.6 %
10751	AAC	IEEE 802.11ax (160MHz, MCS8, 90pc dc)	WLAN	8.82	± 9.6 %
10752	AAC	IEEE 802.11ax (160MHz, MCS9, 90pc dc)	WLAN	8.81	± 9.6 %
10753	AAC	IEEE 802.11ax (160MHz, MCS10, 90pc dc)	WLAN	9.00	± 9.6 %
10754	AAC	IEEE 802.11ax (160MHz, MCS11, 90pc dc)	WLAN	8.94	± 9.6 %

In Collaboration with

s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

<http://www.caict.ac.cn>

10755	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	$\pm 9.6\%$
10756	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	$\pm 9.6\%$
10757	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	$\pm 9.6\%$
10758	AAC	IEEE 802.11ax (160MHz, MCS3, 99pc dc)	WLAN	8.69	$\pm 9.6\%$
10759	AAC	IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN	8.58	$\pm 9.6\%$
10760	AAC	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	$\pm 9.6\%$
10761	AAC	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	$\pm 9.6\%$
10762	AAC	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	$\pm 9.6\%$
10763	AAC	IEEE 802.11ax (160MHz, MCS8, 99pc dc)	WLAN	8.53	$\pm 9.6\%$
10764	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	$\pm 9.6\%$
10765	AAC	IEEE 802.11ax (160MHz, MCS10, 99pc dc)	WLAN	8.54	$\pm 9.6\%$
10766	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	$\pm 9.6\%$
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	$\pm 9.6\%$
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	$\pm 9.6\%$
10769	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	$\pm 9.6\%$
10770	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	$\pm 9.6\%$
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	$\pm 9.6\%$
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	$\pm 9.6\%$
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	$\pm 9.6\%$
10774	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	$\pm 9.6\%$
10775	AAC	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	$\pm 9.6\%$
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	$\pm 9.6\%$
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	$\pm 9.6\%$
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	$\pm 9.6\%$
10780	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	$\pm 9.6\%$
10781	AAC	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	$\pm 9.6\%$
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	$\pm 9.6\%$
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	$\pm 9.6\%$
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	$\pm 9.6\%$
10785	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	$\pm 9.6\%$
10786	AAC	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	$\pm 9.6\%$
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	$\pm 9.6\%$
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	$\pm 9.6\%$
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	$\pm 9.6\%$
10790	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	$\pm 9.6\%$
10791	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	$\pm 9.6\%$
10792	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	$\pm 9.6\%$
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	$\pm 9.6\%$
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	$\pm 9.6\%$
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	$\pm 9.6\%$
10796	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	$\pm 9.6\%$
10797	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	$\pm 9.6\%$
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	$\pm 9.6\%$
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	$\pm 9.6\%$
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	$\pm 9.6\%$
10802	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	$\pm 9.6\%$
10803	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	$\pm 9.6\%$
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	$\pm 9.6\%$
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10812	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	$\pm 9.6\%$
10817	AAD	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	$\pm 9.6\%$
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	$\pm 9.6\%$
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	$\pm 9.6\%$
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	$\pm 9.6\%$
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	$\pm 9.6\%$

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2117
 E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	$\pm 9.6\%$
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	$\pm 9.6\%$
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	$\pm 9.6\%$
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	$\pm 9.6\%$
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	$\pm 9.6\%$
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	$\pm 9.6\%$
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	$\pm 9.6\%$
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	$\pm 9.6\%$
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	$\pm 9.6\%$
10833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	$\pm 9.6\%$
10834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	$\pm 9.6\%$
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	$\pm 9.6\%$
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	$\pm 9.6\%$
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	$\pm 9.6\%$
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	$\pm 9.6\%$
10840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	$\pm 9.6\%$
10841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	$\pm 9.6\%$
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	$\pm 9.6\%$
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	$\pm 9.6\%$
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	$\pm 9.6\%$
10856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	$\pm 9.6\%$
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	$\pm 9.6\%$
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	$\pm 9.6\%$
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	$\pm 9.6\%$
10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	$\pm 9.6\%$
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	$\pm 9.6\%$
10863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	$\pm 9.6\%$
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	$\pm 9.6\%$
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	$\pm 9.6\%$
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	$\pm 9.6\%$
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	$\pm 9.6\%$
10870	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	$\pm 9.6\%$
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	$\pm 9.6\%$
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	$\pm 9.6\%$
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	$\pm 9.6\%$
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	$\pm 9.6\%$
10875	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	$\pm 9.6\%$
10876	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	$\pm 9.6\%$
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	$\pm 9.6\%$
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	$\pm 9.6\%$
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	$\pm 9.6\%$
10880	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	$\pm 9.6\%$
10881	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	$\pm 9.6\%$
10882	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	$\pm 9.6\%$
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	$\pm 9.6\%$
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	$\pm 9.6\%$
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	$\pm 9.6\%$
10886	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	$\pm 9.6\%$
10887	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	$\pm 9.6\%$
10888	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	$\pm 9.6\%$
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	$\pm 9.6\%$
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	$\pm 9.6\%$
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	$\pm 9.6\%$
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	$\pm 9.6\%$
10897	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	$\pm 9.6\%$
10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	$\pm 9.6\%$

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2117
 E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

10899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	$\pm 9.6\%$
10900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10902	AAD	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10906	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	$\pm 9.6\%$
10907	AAD	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	$\pm 9.6\%$
10908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	$\pm 9.6\%$
10909	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	$\pm 9.6\%$
10910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	$\pm 9.6\%$
10911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	$\pm 9.6\%$
10912	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	$\pm 9.6\%$
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	$\pm 9.6\%$
10914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	$\pm 9.6\%$
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	$\pm 9.6\%$
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	$\pm 9.6\%$
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	$\pm 9.6\%$
10918	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	$\pm 9.6\%$
10919	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	$\pm 9.6\%$
10920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	$\pm 9.6\%$
10921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	$\pm 9.6\%$
10922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	$\pm 9.6\%$
10923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	$\pm 9.6\%$
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	$\pm 9.6\%$
10925	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	$\pm 9.6\%$
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	$\pm 9.6\%$
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	$\pm 9.6\%$
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	$\pm 9.6\%$
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	$\pm 9.6\%$
10930	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	$\pm 9.6\%$
10931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	$\pm 9.6\%$
10932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	$\pm 9.6\%$
10933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	$\pm 9.6\%$
10934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	$\pm 9.6\%$
10935	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	$\pm 9.6\%$
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	$\pm 9.6\%$
10937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	$\pm 9.6\%$
10938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	$\pm 9.6\%$
10939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	$\pm 9.6\%$
10940	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	$\pm 9.6\%$
10941	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	$\pm 9.6\%$
10942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	$\pm 9.6\%$
10943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	$\pm 9.6\%$
10944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	$\pm 9.6\%$
10945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	$\pm 9.6\%$
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	$\pm 9.6\%$
10947	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	$\pm 9.6\%$
10948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	$\pm 9.6\%$
10949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	$\pm 9.6\%$
10950	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	$\pm 9.6\%$
10951	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	$\pm 9.6\%$
10952	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	$\pm 9.6\%$
10953	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	$\pm 9.6\%$
10954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	$\pm 9.6\%$
10955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	$\pm 9.6\%$
10956	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	$\pm 9.6\%$
10957	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	$\pm 9.6\%$

In Collaboration with

s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
10960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6 %
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	± 9.6 %
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	± 9.6 %
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.6 %
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 %
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.6 %
10978	AAA	ULLA BDR	ULLA	1.16	± 9.6 %
10979	AAA	ULLA HDR4	ULLA	8.58	± 9.6 %
10980	AAA	ULLA HDR8	ULLA	10.32	± 9.6 %
10981	AAA	ULLA HDRp4	ULLA	3.19	± 9.6 %
10982	AAA	ULLA HDRp8	ULLA	3.43	± 9.6 %
10983	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	± 9.6 %
10984	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10985	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	± 9.6 %
10986	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	± 9.6 %
10987	AAC	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	± 9.6 %
10988	AAB	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	± 9.6 %
10989	AAC	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	± 9.6 %
10990	AAB	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	± 9.6 %
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	± 9.6 %
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	± 9.6 %
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	± 9.6 %
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	± 9.6 %
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	± 9.6 %
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	± 9.6 %
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	± 9.6 %
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	± 9.6 %
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	± 9.6 %
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	± 9.6 %
11013	AAB	IEEE 802.11be (320MHz, MCS1, 99pc duty cycle)	WLAN	8.47	± 9.6 %
11014	AAB	IEEE 802.11be (320MHz, MCS2, 99pc duty cycle)	WLAN	8.45	± 9.6 %
11015	AAB	IEEE 802.11be (320MHz, MCS3, 99pc duty cycle)	WLAN	8.44	± 9.6 %
11016	AAB	IEEE 802.11be (320MHz, MCS4, 99pc duty cycle)	WLAN	8.44	± 9.6 %
11017	AAB	IEEE 802.11be (320MHz, MCS5, 99pc duty cycle)	WLAN	8.41	± 9.6 %
11018	AAB	IEEE 802.11be (320MHz, MCS6, 99pc duty cycle)	WLAN	8.40	± 9.6 %
11019	AAB	IEEE 802.11be (320MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
11020	AAB	IEEE 802.11be (320MHz, MCS8, 99pc duty cycle)	WLAN	8.27	± 9.6 %
11021	AAB	IEEE 802.11be (320MHz, MCS9, 99pc duty cycle)	WLAN	8.46	± 9.6 %
11022	AAB	IEEE 802.11be (320MHz, MCS10, 99pc duty cycle)	WLAN	8.36	± 9.6 %
11023	AAB	IEEE 802.11be (320MHz, MCS11, 99pc duty cycle)	WLAN	8.09	± 9.6 %
11024	AAB	IEEE 802.11be (320MHz, MCS12, 99pc duty cycle)	WLAN	8.42	± 9.6 %
11025	AAB	IEEE 802.11be (320MHz, MCS13, 99pc duty cycle)	WLAN	8.37	± 9.6 %
11026	AAB	IEEE 802.11be (320MHz, MCS0, 99pc duty cycle)	WLAN	8.39	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Client: 7layers

Certificate No: 24J02Z000853

CALIBRATION CERTIFICATE

Object D750V3 - SN: 1200

Calibration Procedure(s) FF-Z11-003-01
 Calibration Procedures for dipole validation kits

Calibration date: November 7, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	17-May-24 (CTTL, No. J24X04107)	May-25
Power sensor NRP6A	101369	17-May-24 (CTTL, No. J24X04107)	May-25
Reference Probe EX3DV4	SN 7517	21-Feb-24(CTTL-SPEAG, No. 24J02Z80008)	Feb-25
DAE4	SN 1588	13-Sep-24(CTTL-SPEAG, No. 24J02Z000713)	Sep-25
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

Calibrated by:	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Jun	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: November 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.7 \pm 6 %	0.90 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.42 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.55 W/kg \pm 18.7 % (k=2)

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5Ω- 5.04jΩ
Return Loss	- 25.2dB

General Antenna Parameters and Design

Electrical Delay (one direction)	0.939 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

DASY5 Validation Report for Head TSL

Date: 2024-11-07

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1200

Communication System: UID 0, CW; Frequency: 750 MHz

Medium parameters used: $f = 750$ MHz; $\sigma = 0.903$ S/m; $\epsilon_r = 41.65$; $\rho = 1000$ kg/m³

Phantom section: Right Section

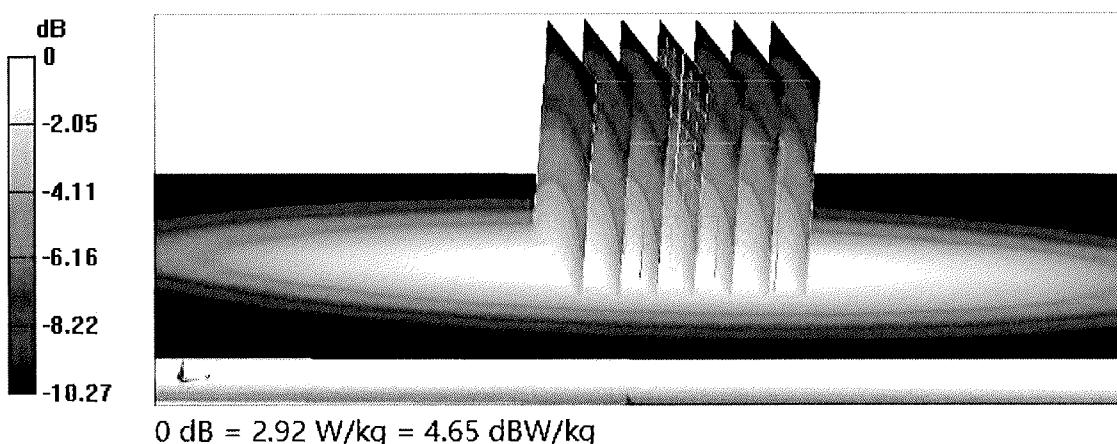
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7517; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 2024-02-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1588; Calibrated: 2024-09-13
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.97 V/m; Power Drift = -0.01 dB

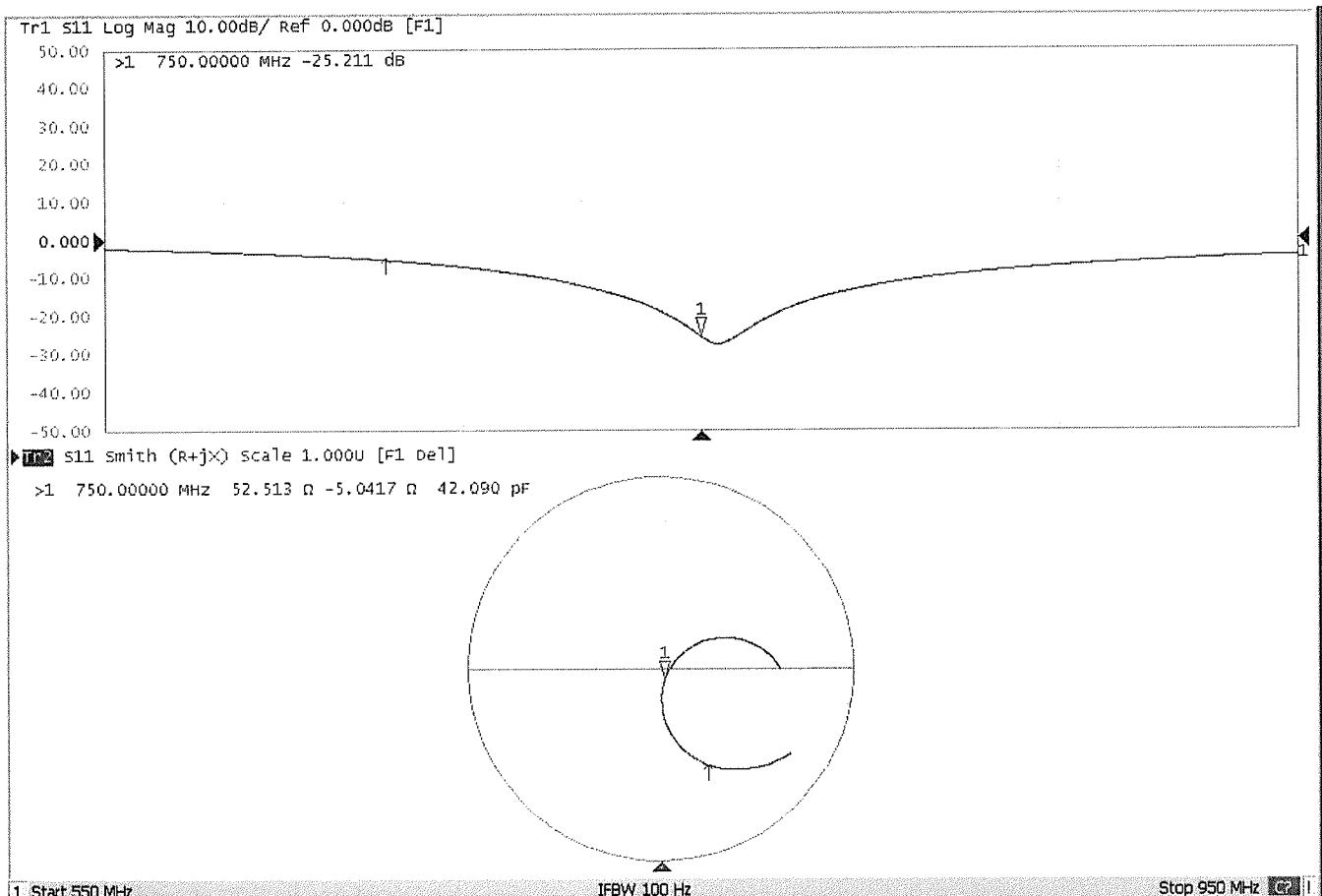

Peak SAR (extrapolated) = 3.39 W/kg

SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.4 W/kg

Smallest distance from peaks to all points 3 dB below = 17 mm

Ratio of SAR at M2 to SAR at M1 = 63.5%

Maximum value of SAR (measured) = 2.92 W/kg


In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Impedance Measurement Plot for Head TSL

Client

7layers

Certificate No: 24J02Z000854

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d265

Calibration Procedure(s) FF-Z11-003-01
 Calibration Procedures for dipole validation kits

Calibration date: November 4, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	17-May-24 (CTTL, No. J24X04107)	May-25
Power sensor NRP6A	101369	17-May-24 (CTTL, No. J24X04107)	May-25
Reference Probe EX3DV4	SN 7517	21-Feb-24(CTTL-SPEAG, No. 24J02Z80008)	Feb-25
DAE4	SN 1588	13-Sep-24(CTTL-SPEAG, No. 24J02Z000713)	Sep-25
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Jun	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: November 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.6 \pm 6 %	0.92 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.63 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.33 W/kg \pm 18.7 % (k=2)

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4Ω- 1.88jΩ
Return Loss	- 32.1dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.304 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

DASY5 Validation Report for Head TSL

Date: 2024-11-04

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d265

Communication System: UID 0, CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.916$ S/m; $\epsilon_r = 41.57$; $\rho = 1000$ kg/m³

Phantom section: Right Section

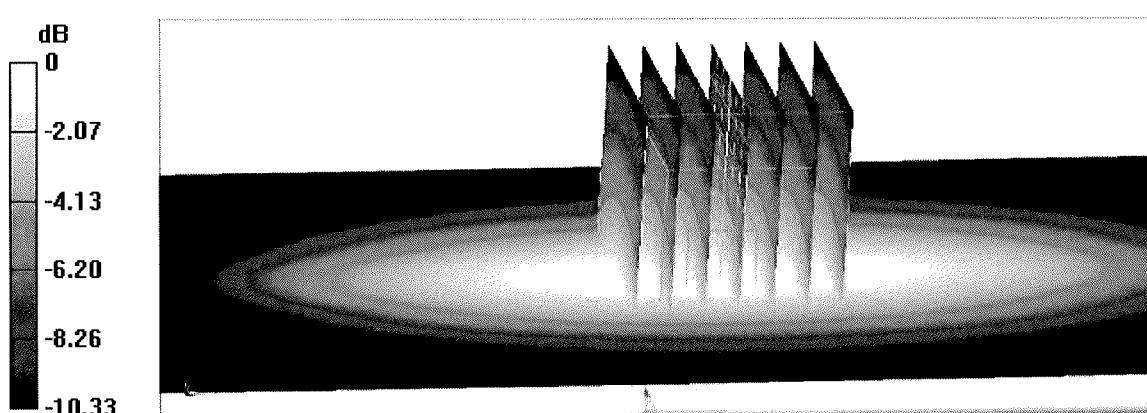
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7517; ConvF(9.85, 9.85, 9.85) @ 835 MHz; Calibrated: 2024-02-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1588; Calibrated: 2024-09-13
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.33 V/m; Power Drift = -0.01 dB

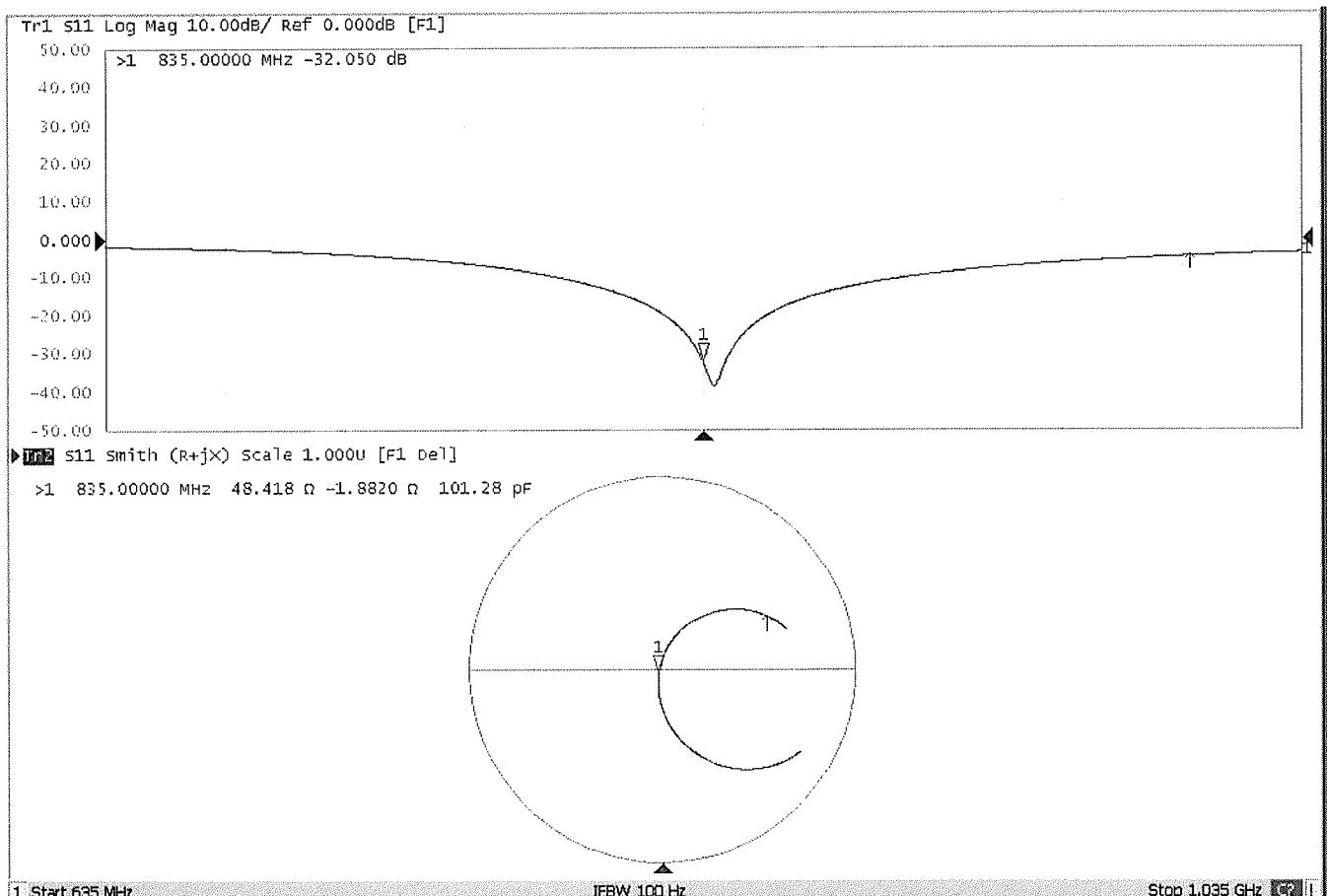

Peak SAR (extrapolated) = 3.87 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.6 W/kg

Smallest distance from peaks to all points 3 dB below = 17.5 mm

Ratio of SAR at M2 to SAR at M1 = 63.5%

Maximum value of SAR (measured) = 3.35 W/kg


In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Impedance Measurement Plot for Head TSL

In Collaboration with

S p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client **7layers**Certificate No: **24J02Z000855**

CALIBRATION CERTIFICATE

Object D900V2 - SN: 1d111

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: November 6, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	17-May-24 (CTTL, No. J24X04107)	May-25
Power sensor NRP6A	101369	17-May-24 (CTTL, No. J24X04107)	May-25
Reference Probe EX3DV4	SN 7517	21-Feb-24(CTTL-SPEAG, No. 24J02Z80008)	Feb-25
DAE4	SN 1588	13-Sep-24(CTTL-SPEAG, No. 24J02Z000713)	Sep-25
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Jun	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: November 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.3 \pm 6 %	0.96 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	10.8 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.98 W/kg \pm 18.7 % (k=2)

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2Ω- 4.46jΩ
Return Loss	- 26.8dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.321 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

DASY5 Validation Report for Head TSL

Date: 2024-11-06

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d111

Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 900$ MHz; $\sigma = 0.963$ S/m; $\epsilon_r = 41.27$; $\rho = 1000$ kg/m³

Phantom section: Right Section

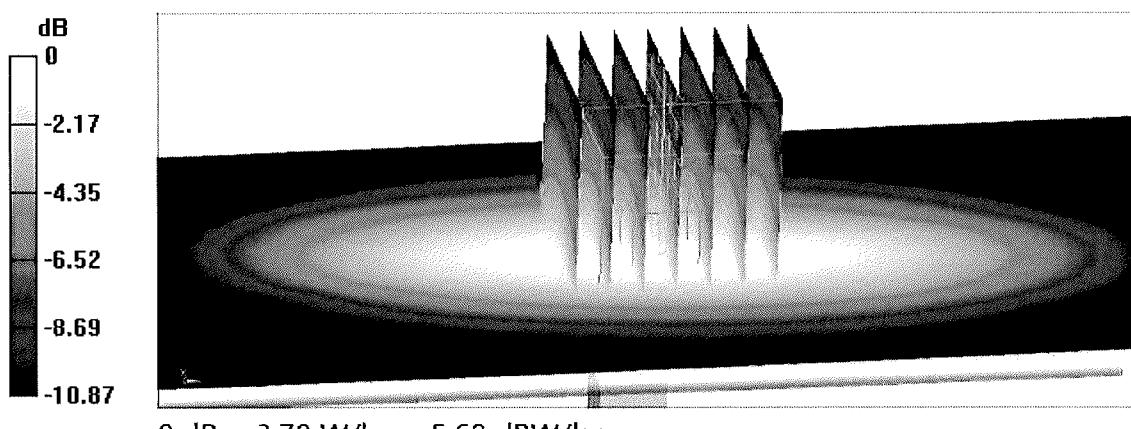
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7517; ConvF(9.35, 9.35, 9.35) @ 900 MHz; Calibrated: 2024-02-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1588; Calibrated: 2024-09-13
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.81 V/m; Power Drift = 0.00 dB

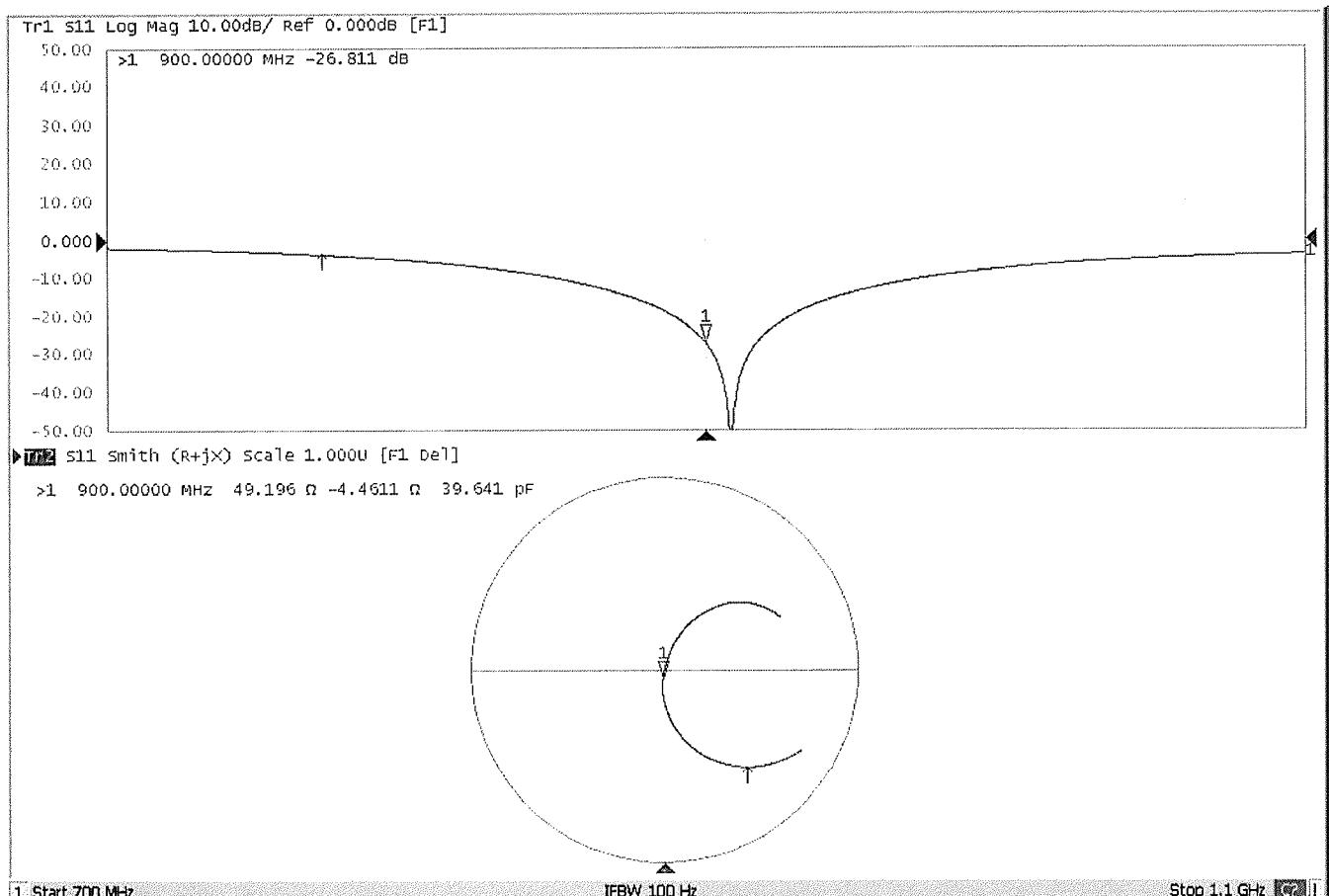

Peak SAR (extrapolated) = 4.30 W/kg

SAR(1 g) = 2.69 W/kg; SAR(10 g) = 1.74 W/kg

Smallest distance from peaks to all points 3 dB below = 15.1 mm

Ratio of SAR at M2 to SAR at M1 = 63.1%

Maximum value of SAR (measured) = 3.70 W/kg


In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Impedance Measurement Plot for Head TSL

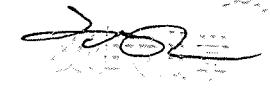
Client **7layers**

Certificate No: 24J02Z000856

CALIBRATION CERTIFICATE

Object **D1750V2 - SN: 1176**

Calibration Procedure(s) **FF-Z11-003-01**
 Calibration Procedures for dipole validation kits


Calibration date: **November 6, 2024**

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	17-May-24 (CTTL, No. J24X04107)	May-25
Power sensor NRP6A	101369	17-May-24 (CTTL, No. J24X04107)	May-25
Reference Probe EX3DV4	SN 7517	21-Feb-24(CTTL-SPEAG, No. 24J02Z80008)	Feb-25
DAE4	SN 1588	13-Sep-24(CTTL-SPEAG, No. 24J02Z000713)	Sep-25
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Jun	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: November 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.1 \pm 6 %	1.38 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.7 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.5 W/kg \pm 18.7 % (k=2)

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6Ω- 2.87jΩ
Return Loss	- 30.7dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.135 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>**DASY5 Validation Report for Head TSL**

Date: 2024-11-06

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1176

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.384$ S/m; $\epsilon_r = 41.11$; $\rho = 1000$ kg/m³

Phantom section: Right Section

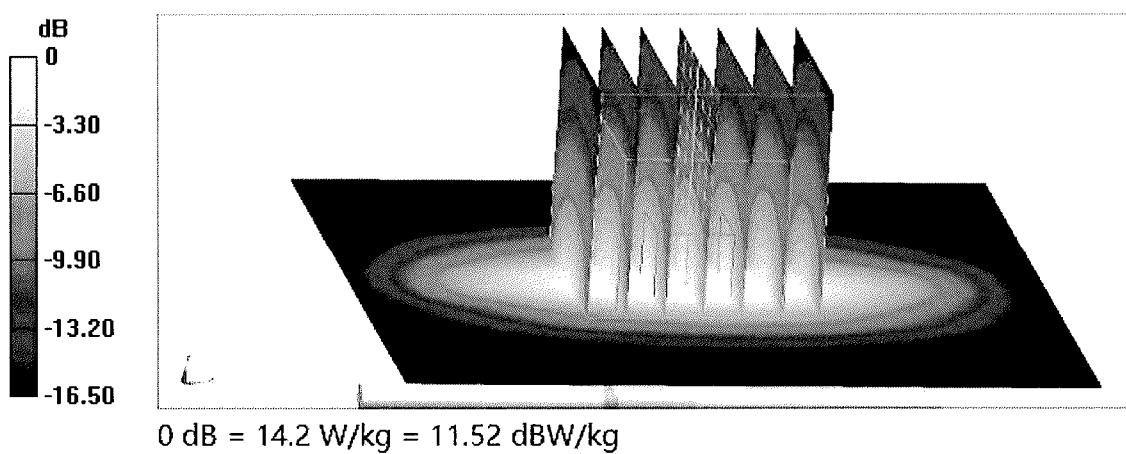
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7517; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2024-02-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1588; Calibrated: 2024-09-13
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.34 V/m; Power Drift = -0.03 dB

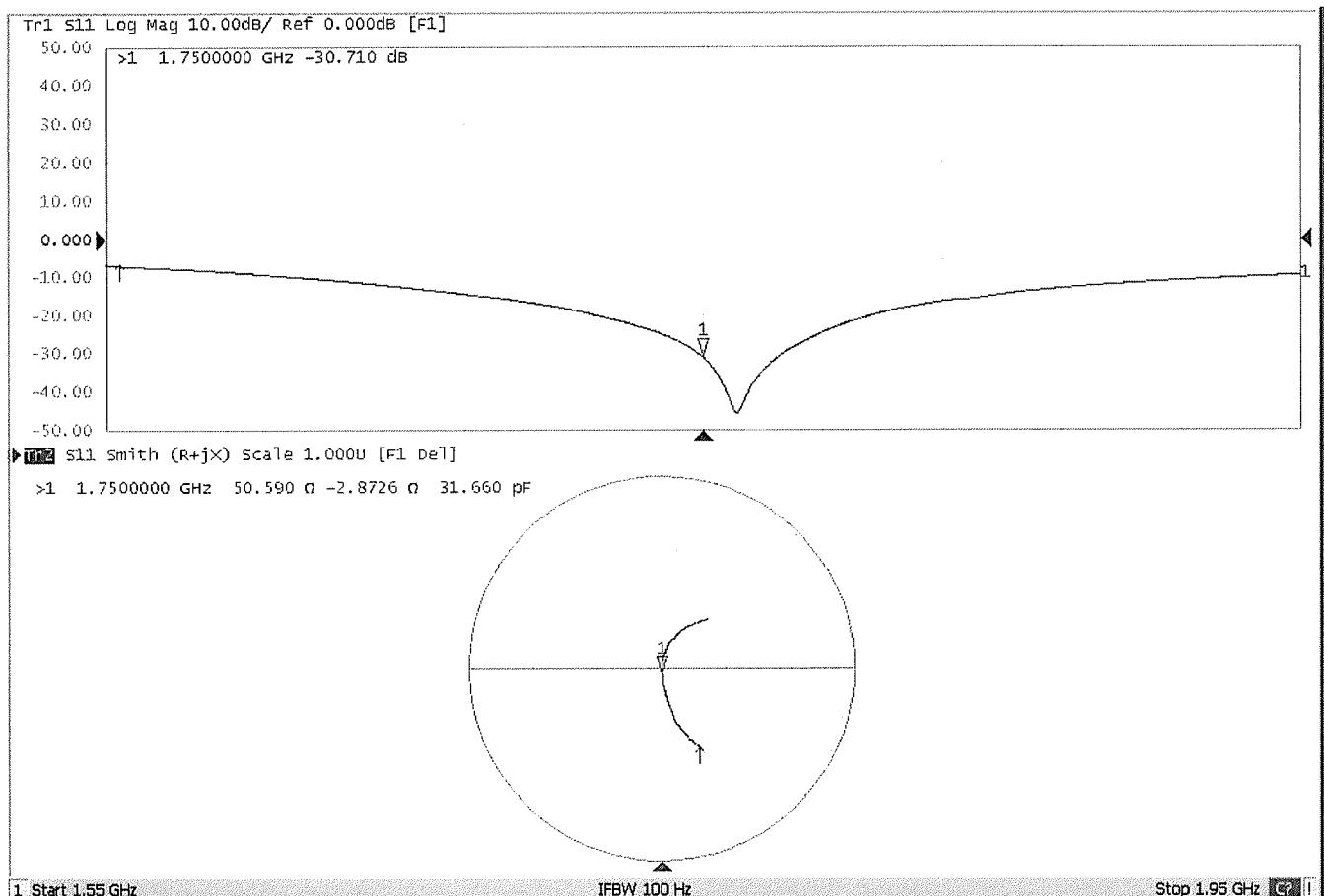

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.87 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mm

Ratio of SAR at M2 to SAR at M1 = 54.8%

Maximum value of SAR (measured) = 14.2 W/kg


In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Impedance Measurement Plot for Head TSL

In Collaboration with

s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191
Tel: +86-10-62304633-2117
E-mail: ctll@chinattl.com http://www.caict.ac.cn

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client: 7layers

Certificate No: 24J02Z000857

CALIBRATION CERTIFICATE

Object D1950V3 - SN: 1229

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: November 7, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	17-May-24 (CTTL, No. J24X04107)	May-25
Power sensor NRP6A	101369	17-May-24 (CTTL, No. J24X04107)	May-25
Reference Probe EX3DV4	SN 7517	21-Feb-24(CTTL-SPEAG, No. 24J02Z80008)	Feb-25
DAE4	SN 1588	13-Sep-24(CTTL-SPEAG, No. 24J02Z000713)	Sep-25
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Jun	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: November 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

s d e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1950 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	40.7 \pm 6 %	1.39 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.8 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg \pm 18.7 % (k=2)

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinatl.com <http://www.caict.ac.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.3Ω+ 2.24jΩ
Return Loss	- 28.9dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.098 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

DASY5 Validation Report for Head TSL

Date: 2024-11-07

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1950 MHz; Type: D1950V2; Serial: D1950V2 - SN: 1229

Communication System: UID 0, CW; Frequency: 1950 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1950$ MHz; $\sigma = 1.385$ S/m; $\epsilon_r = 40.68$; $\rho = 1000$ kg/m³

Phantom section: Right Section

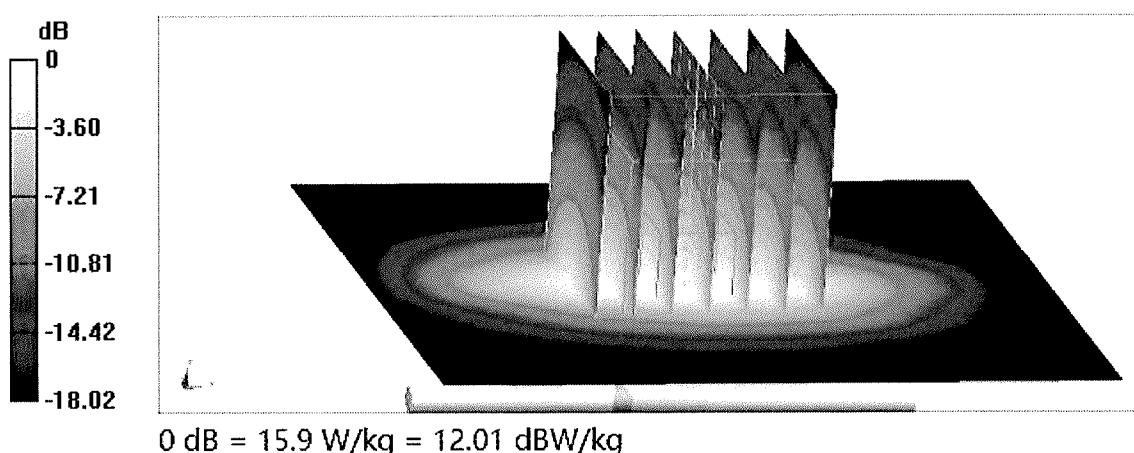
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7517; ConvF(7.95, 7.95, 7.95) @ 1950 MHz; Calibrated: 2024-02-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1588; Calibrated: 2024-09-13
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = 0.00 dB

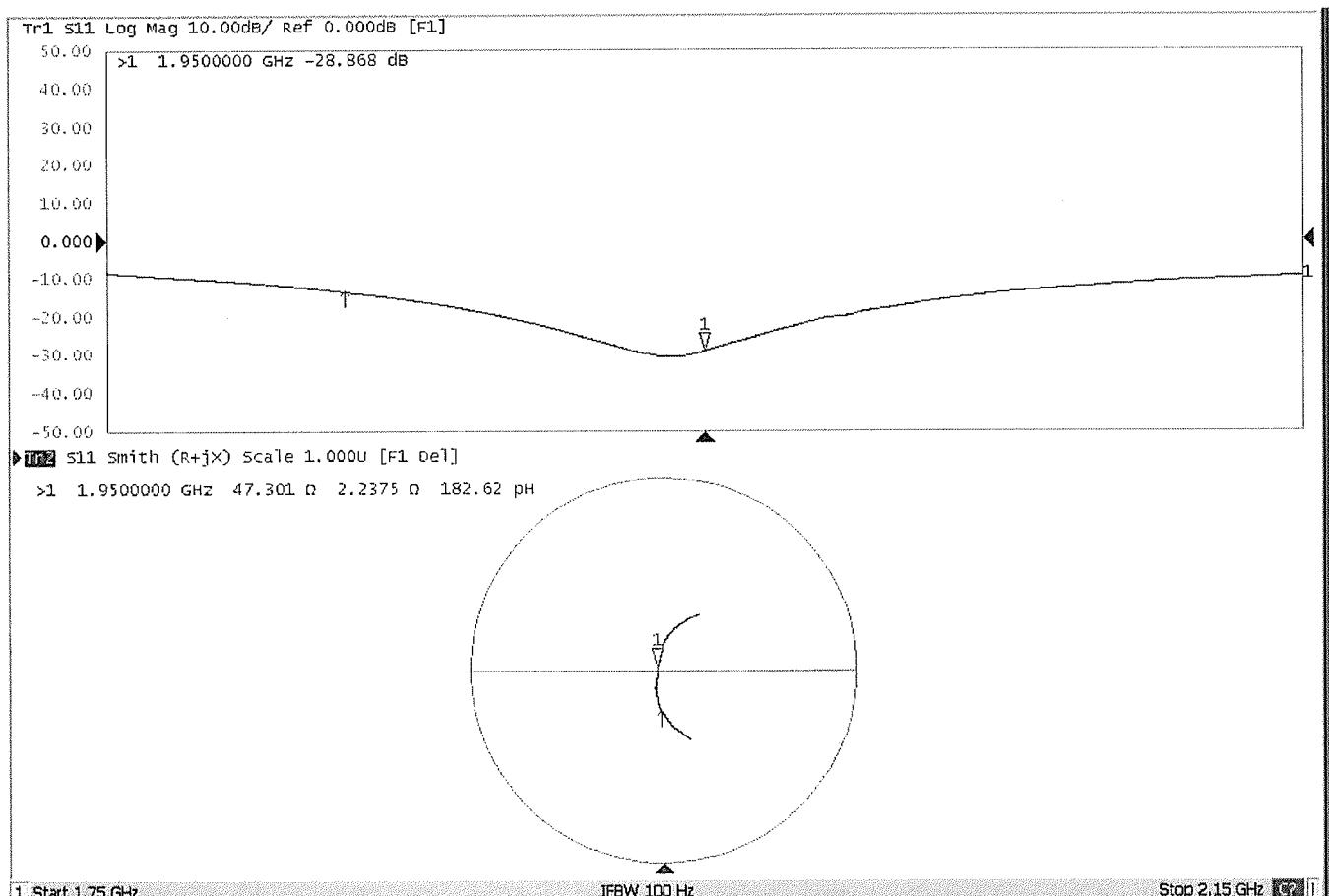

Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.18 W/kg

Smallest distance from peaks to all points 3 dB below = 9.1 mm

Ratio of SAR at M2 to SAR at M1 = 53.3%

Maximum value of SAR (measured) = 15.9 W/kg


In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Impedance Measurement Plot for Head TSL

In Collaboration with

S p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client: 7layers

Certificate No: 24J02Z000858

CALIBRATION CERTIFICATE

Object D2300V2 - SN: 1110

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: November 7, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	17-May-24 (CTTL, No. J24X04107)	May-25
Power sensor NRP6A	101369	17-May-24 (CTTL, No. J24X04107)	May-25
Reference Probe EX3DV4	SN 7517	21-Feb-24(CTTL-SPEAG, No. 24J02Z80008)	Feb-25
DAE4	SN 1588	13-Sep-24(CTTL-SPEAG, No. 24J02Z000713)	Sep-25
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Jun	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: November 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	39.3 \pm 6 %	1.65 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	49.1 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg \pm 18.7 % (k=2)

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.9Ω+ 3.82jΩ
Return Loss	- 27.1dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.071 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

DASY5 Validation Report for Head TSL

Date: 2024-11-07

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1110

Communication System: UID 0, CW; Frequency: 2300 MHz

Medium parameters used: $f = 2300$ MHz; $\sigma = 1.648$ S/m; $\epsilon_r = 39.33$; $\rho = 1000$ kg/m³

Phantom section: Right Section

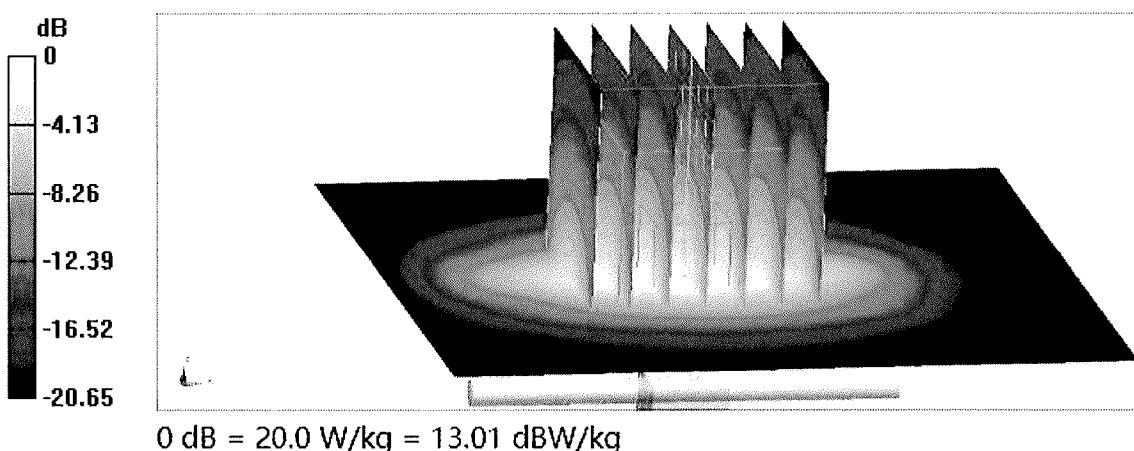
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7517; ConvF(7.66, 7.66, 7.66) @ 2300 MHz; Calibrated: 2024-02-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1588; Calibrated: 2024-09-13
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.1 V/m; Power Drift = -0.03 dB

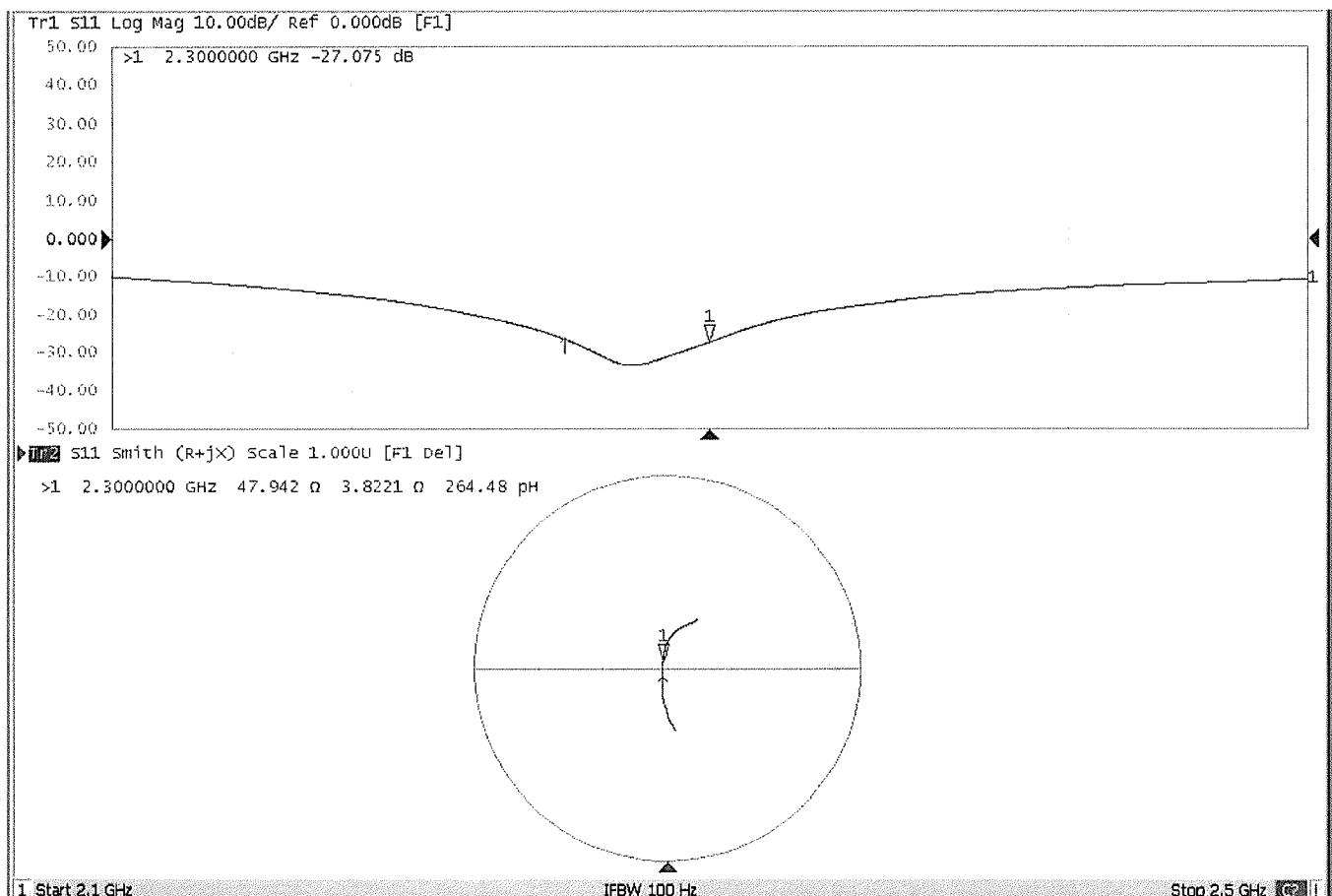

Peak SAR (extrapolated) = 24.4 W/kg

SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.78 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 50.7%

Maximum value of SAR (measured) = 20.0 W/kg


In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Impedance Measurement Plot for Head TSL

In Collaboration with

S p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191
Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com <http://www.caict.ac.cn>

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client 7layers

Certificate No: 24J02Z000859

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 1048

Calibration Procedure(s) FF-Z11-003-01
Calibration Procedures for dipole validation kits

Calibration date: November 6, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	17-May-24 (CTTL, No. J24X04107)	May-25
Power sensor NRP6A	101369	17-May-24 (CTTL, No. J24X04107)	May-25
Reference Probe EX3DV4	SN 7517	21-Feb-24(CTTL-SPEAG, No. 24J02Z80008)	Feb-25
DAE4	SN 1588	13-Sep-24(CTTL-SPEAG, No. 24J02Z000713)	Sep-25
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Jun	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: November 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	40.1 \pm 6 %	1.81 mho/m \pm 6 %
Head TSL temperature change during test	<1.0 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.3 W/kg \pm 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg \pm 18.7 % (k=2)

In Collaboration with

S p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.4Ω+ 9.16jΩ
Return Loss	- 20.2dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.059 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

DASY5 Validation Report for Head TSL

Date: 2024-11-06

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 1048

Communication System: UID 0, CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.809$ S/m; $\epsilon_r = 40.08$; $\rho = 1000$ kg/m³

Phantom section: Right Section

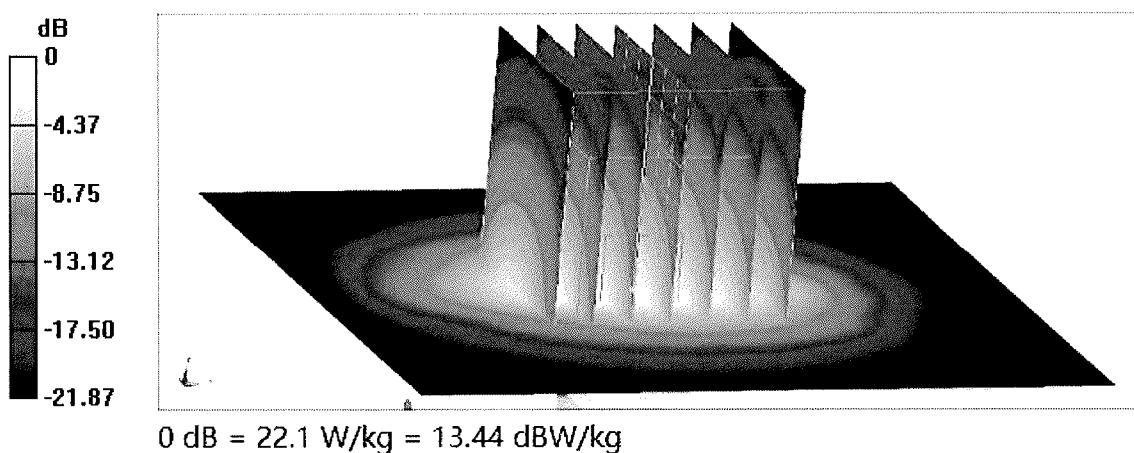
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7517; ConvF(7.37, 7.37, 7.37) @ 2450 MHz; Calibrated: 2024-02-21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1588; Calibrated: 2024-09-13
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.2 V/m; Power Drift = 0.00 dB

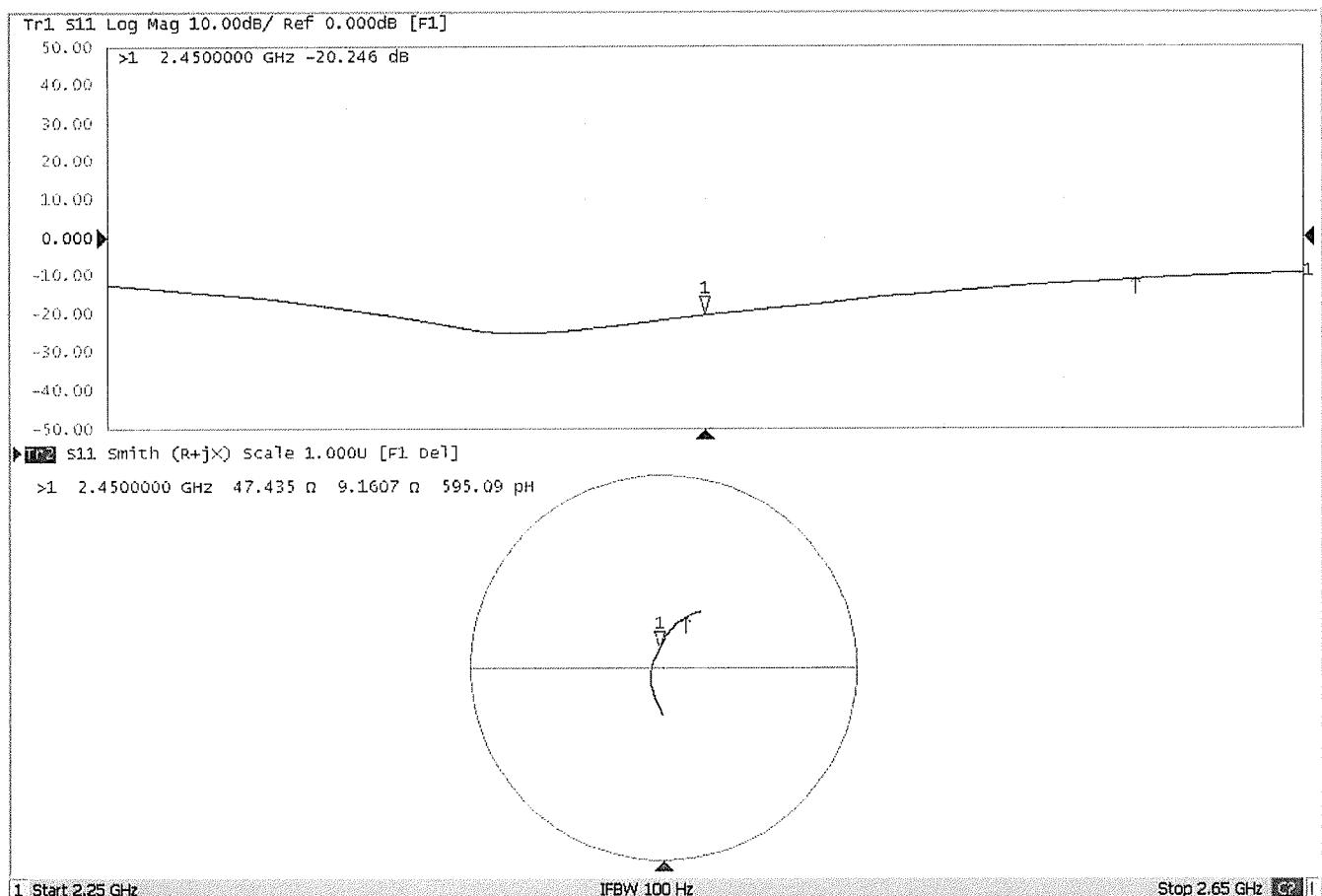

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.14 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.5%

Maximum value of SAR (measured) = 22.1 W/kg


In Collaboration with

s p e a g
CALIBRATION LABORATORY

CAICT

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Impedance Measurement Plot for Head TSL

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client

7-Layers (Auden)

Accreditation No.: **SCS 0108**

Certificate No: **D2550V2-1022_Sep22**

CALIBRATION CERTIFICATE

Object **D2550V2 - SN:1022**

Calibration procedure(s) **QA CAL-05.v11**
 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: **September 22, 2022**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	31-Aug-22 (No. DAE4-601_Aug22)	Aug-23

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Sven Kühn	Technical Manager	

Issued: September 23, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	1.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω - 4.0 $j\Omega$
Return Loss	- 27.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 22.09.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1022

Communication System: UID 0 - CW; Frequency: 2550 MHz

Medium parameters used: $f = 2550$ MHz; $\sigma = 1.95$ S/m; $\epsilon_r = 37.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

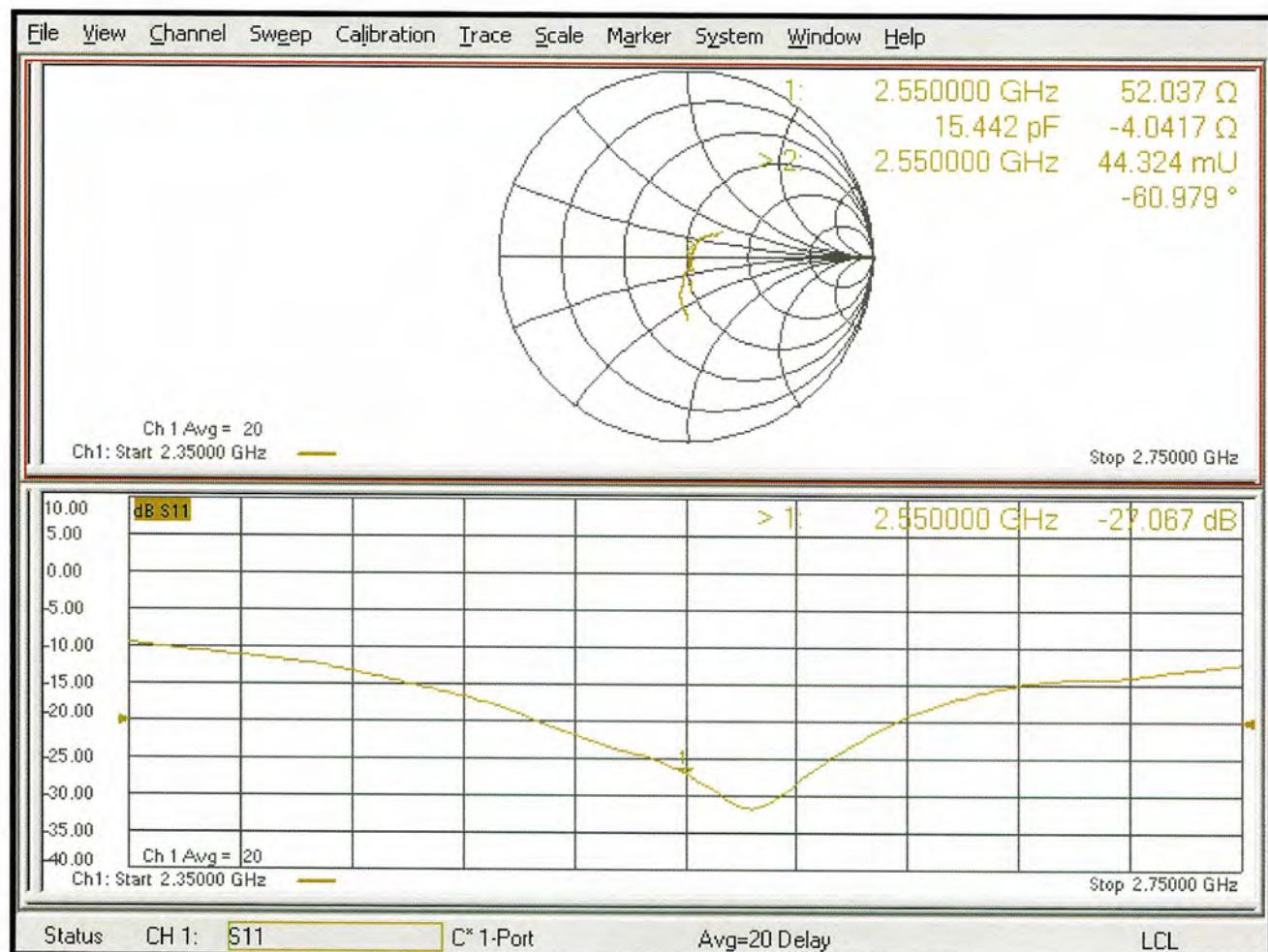
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 113.1 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.13 W/kg


Smallest distance from peaks to all points 3 dB below = 9 mm

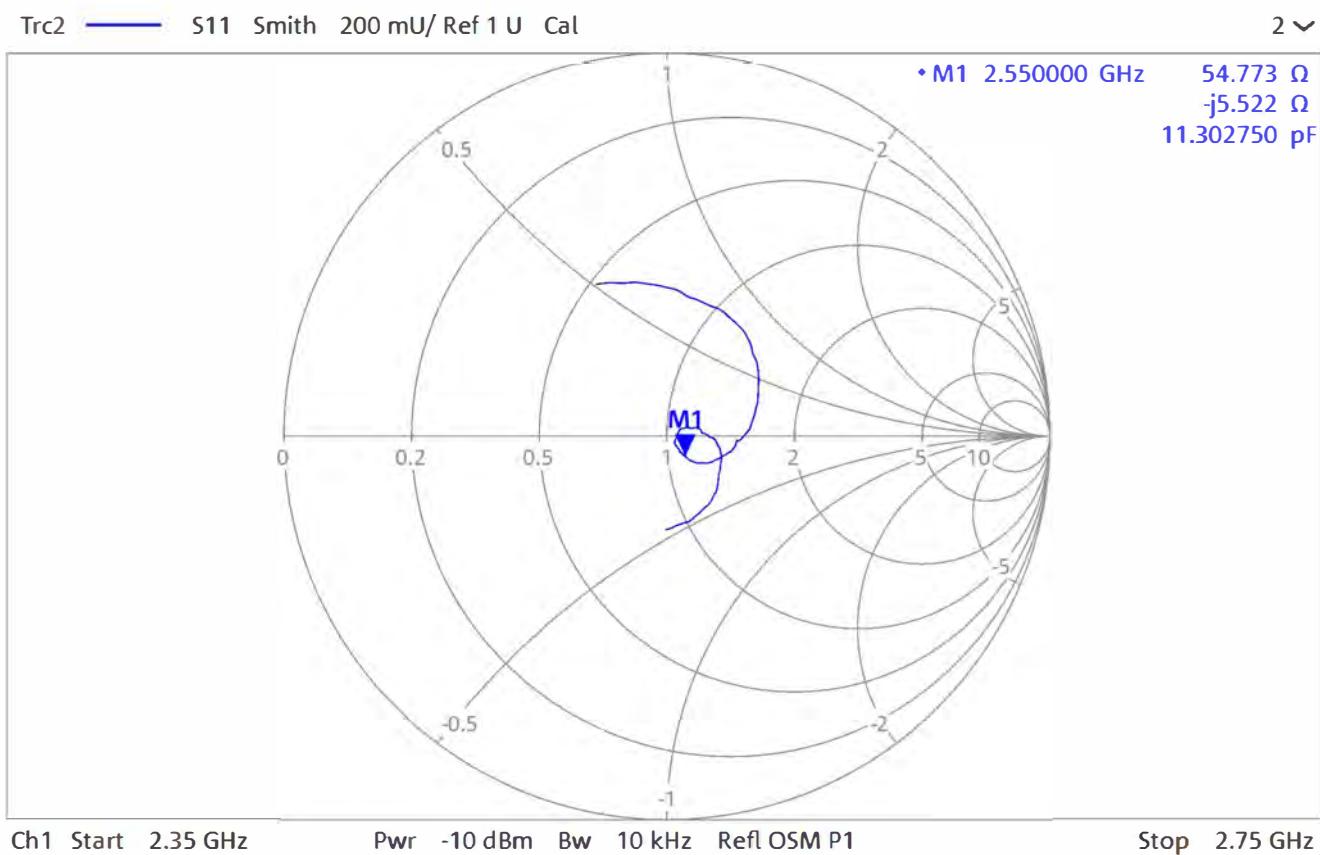
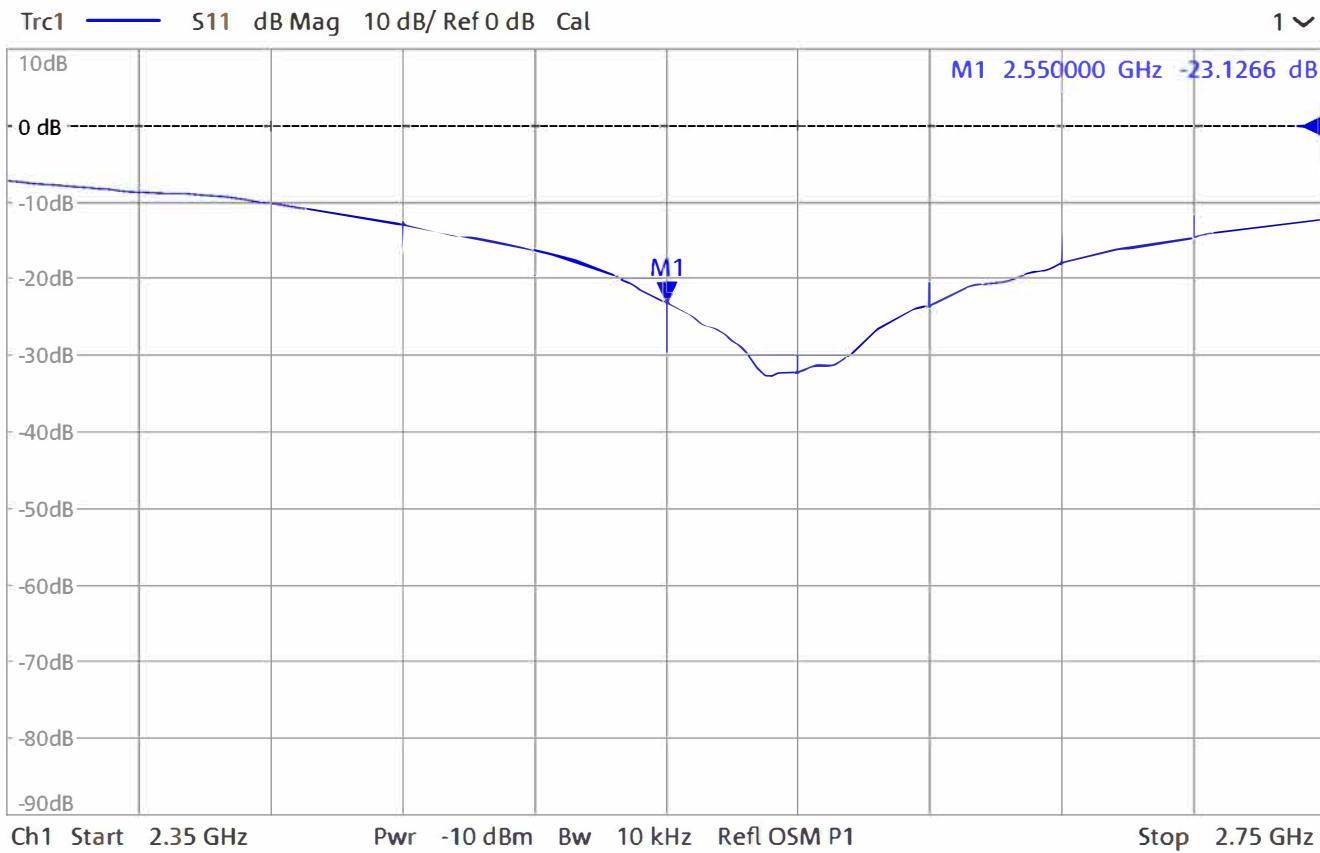
Ratio of SAR at M2 to SAR at M1 = 49%

Maximum value of SAR (measured) = 22.6 W/kg

Impedance Measurement Plot for Head TSL

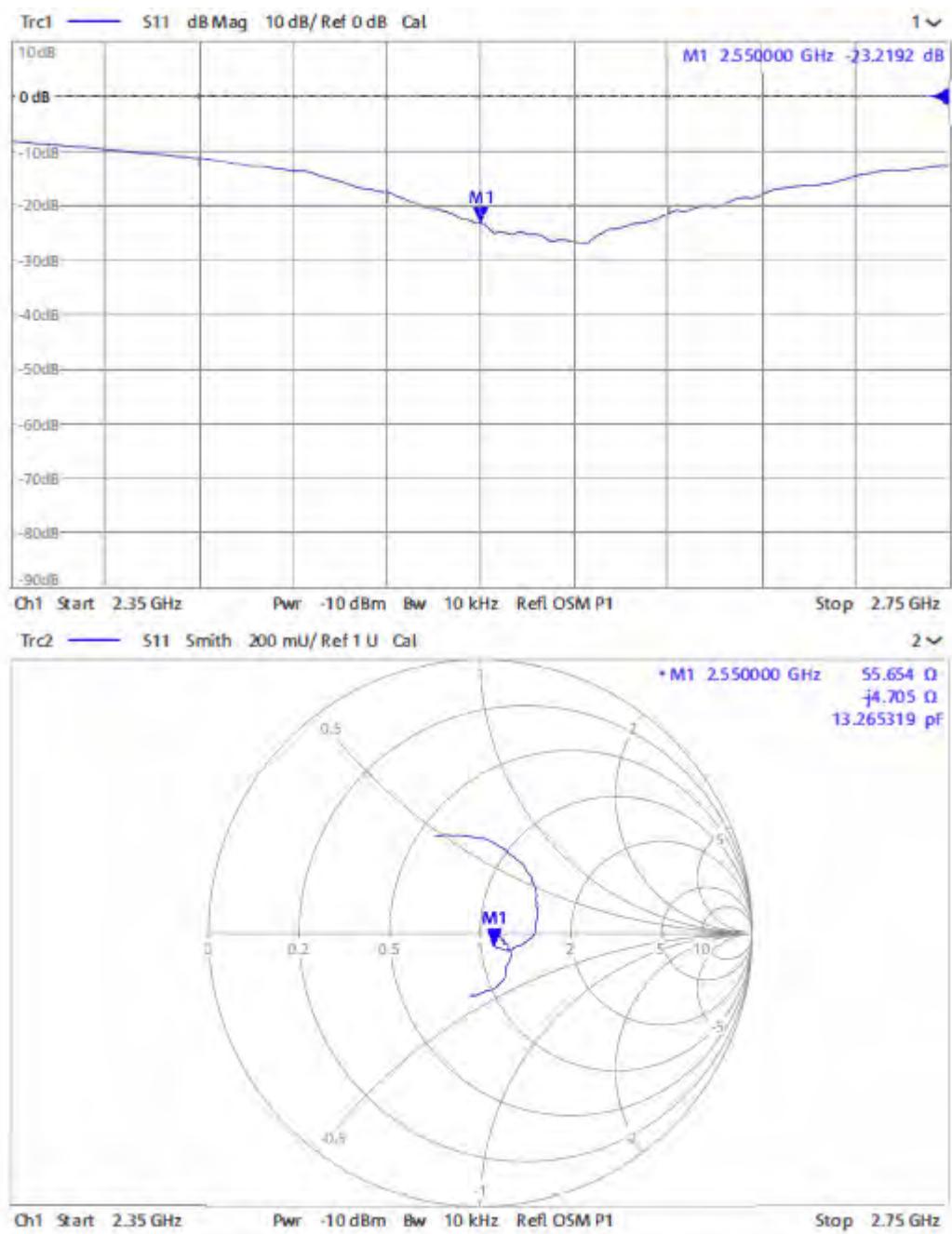
D2550V2 - SN: 1022 Extended Dipole Calibrations

Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.



D2550V2 - SN: 1022						
2550MHz Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
9.22.2022	-27.1		52		-4	
9.21.2023	-23.13	-14.65	54.77	2.77	-5.52	-1.52
9.20.2024	-23.22	-14.32	55.65	3.65	-4.71	-0.71

<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.


<Dipole Verification Data>

Head 2550MHz _2023.09.21

<Dipole Verification Data>

Head 2550MHz _2024.09.20

BUREAU
VERITAS

FCC SAR Test Report

Certificate #6613.01

Appendix D. Conducted RF Output Power Table

The detailed power table are shown as follows.

WCDMA Default Power

Band	WCDMA II			WCDMA II	WCDMA IV			WCDMA IV	WCDMA V			WCDMA V
TX Channel	9262	9400	9538	Max. Tune-up Power (dBm)	1312	1413	1513	Max. Tune-up Power (dBm)	4132	4182	4233	Max. Tune-up Power (dBm)
Rx Channel	9662	9800	9938		1537	1638	1738		4357	4407	4458	
Frequency (MHz)	1852.4	1880	1907.6		1712.4	1732.6	1752.6		826.4	836.4	846.6	
RMC 12.2K	22.62	22.66	22.64	23.50	22.54	22.55	22.57	23.50	23.00	23.02	23.07	23.50
HSDPA Subtest-1	22.06	22.32	22.26	23.00	21.94	22.03	21.91	23.00	22.42	22.62	22.57	23.00
HSDPA Subtest-2	22.04	22.14	22.18	23.00	21.92	21.91	22.09	23.00	22.58	22.36	22.63	23.00
HSDPA Subtest-3	21.72	21.64	21.50	22.50	21.62	21.59	21.69	22.50	21.98	21.90	22.15	22.50
HSDPA Subtest-4	21.62	21.54	21.74	22.50	21.40	21.45	21.73	22.50	22.14	22.08	22.13	22.50
DC-HSDPA Subtest-1	22.16	22.16	22.24	23.00	22.00	21.95	22.21	23.00	22.36	22.48	22.53	23.00
DC-HSDPA Subtest-2	22.24	22.12	22.14	23.00	22.20	22.17	21.93	23.00	22.60	22.54	22.65	23.00
DC-HSDPA Subtest-3	21.76	21.54	21.52	22.50	21.56	21.51	21.73	22.50	22.16	21.92	22.15	22.50
DC-HSDPA Subtest-4	21.62	21.76	21.72	22.50	21.58	21.41	21.65	22.50	22.00	22.04	22.05	22.50
HSUPA Subtest-1	22.24	22.24	22.00	23.00	21.94	21.97	22.15	23.00	22.66	22.36	22.63	23.00
HSUPA Subtest-2	21.04	21.04	21.20	22.50	20.96	21.13	21.21	22.50	21.40	21.54	21.41	22.50
HSUPA Subtest-3	21.68	21.62	21.52	22.50	21.46	21.43	21.57	22.50	21.90	21.86	22.19	22.50
HSUPA Subtest-4	21.16	21.16	21.00	22.50	21.04	20.93	21.21	22.50	21.60	21.46	21.63	22.50
HSUPA Subtest-5	22.04	22.16	22.16	23.00	22.14	21.99	21.91	23.00	22.38	22.40	22.53	23.00
HSPA+ Subtest-1	21.76	21.78	21.68	22.50	21.64	21.43	21.73	22.50	22.08	21.96	21.91	22.50

WCDMA Default Power

LTE Band 2											
BW	Modulation	RB Size	RB Offset	Low	Mid	High	3GPP MPR	Max. Tilt-up	3GPP MPR	Max. Tilt-up	3GPP MPR
		Channel	Frequency (MHz)	RBs	RBs	RBs	RBs	RBs	(dBm)	(dBm)	(dBm)
20M	QPSK	1	0	21.97	21.94	21.95	0	23.5			
		1	50	22.30	22.21	22.17	0	23.5			
		1	99	22.01	21.99	21.98	0	23.5			
		50	0	21.19	21.15	21.04	1	22.5			
		50	25	21.20	21.23	21.27	1	22.5			
	16QAM	50	50	21.28	21.25	21.27	1	22.5			
		1	0	21.09	21.06	21.07	1	22.5			
		100	0	21.18	21.15	21.01	1	22.5			
		1	50	21.07	21.14	21.04	1	22.5			
		1	50	21.26	21.22	21.16	1	22.5			
	64QAM	1	99	21.21	21.21	21.04	1	22.5			
		50	0	20.26	20.11	20.00	2	21.5			
		50	25	20.24	20.18	20.18	2	21.5			
		50	50	20.14	20.11	19.96	2	21.5			
		100	0	20.19	20.07	19.96	2	21.5			
15M	QPSK	1	0	20.10	20.15	20.13	2	21.5			
		1	50	20.32	20.18	20.07	2	21.5			
		1	99	20.11	20.06	19.97	2	21.5			
		50	0	19.91	19.89	19.87	3	20.5			
		50	25	19.13	19.08	19.05	3	20.5			
	16QAM	50	50	19.09	19.00	18.96	3	20.5			
		100	0	19.14	19.08	19.07	3	20.5			
		1	0	20.12	20.03	19.95	2	21.5			
		1	50	20.12	20.03	19.97	2	21.5			
		1	74	21.07	21.11	20.92	1	22.5			
	64QAM	36	0	21.05	21.14	20.93	1	22.5			
		36	19	21.22	21.13	21.13	1	22.5			
		36	39	21.25	21.16	20.97	1	22.5			
		75	0	21.11	21.00	21.00	1	22.5			
		1	0	21.03	21.03	20.99	1	22.5			
10M	QPSK	1	0	21.29	21.26	21.21	2	21.5			
		1	74	21.05	21.06	21.04	2	21.5			
		25	0	21.05	21.14	21.03	1	22.5			
		25	12	21.11	21.11	21.08	1	22.5			
		25	25	21.22	21.14	21.04	1	22.5			
	16QAM	50	0	21.05	21.10	20.87	1	22.5			
		1	0	21.06	21.04	20.91	1	22.5			
		1	24	21.11	21.07	21.04	1	22.5			
		1	49	21.08	21.06	20.91	1	22.5			
		25	0	21.04	21.07	20.98	2	21.5			
	64QAM	25	12	21.11	21.08	20.93	2	21.5			
		25	25	20.13	20.05	19.81	2	21.5			
		50	0	20.05	20.02	19.91	2	21.5			
		1	0	20.05	20.10	20.09	2	21.5			
		1	24	20.24	20.16	19.98	2	21.5			
5M	QPSK	1	0	21.92	21.89	21.91	0	23.5			
		1	24	22.20	22.09	22.10	0	23.5			
		1	49	21.87	21.88	21.88	0	23.5			
		25	0	21.04	21.07	20.98	1	22.5			
		25	12	21.11	21.08	20.98	1	22.5			
	16QAM	25	25	21.22	21.14	21.04	1	22.5			
		50	0	21.05	21.10	20.87	1	22.5			
		1	0	21.06	21.04	20.99	2	21.5			
		1	49	20.08	20.02	19.84	2	21.5			
		25	0	19.80	19.10	19.03	3	20.5			
	64QAM	25	12	19.00	18.97	18.97	3	20.5			
		25	25	18.95	18.96	18.77	3	20.5			
		50	0	19.09	19.03	19.03	3	20.5			
		1	0	19.03	19.03	19.03	3	20.5			
		1	24	19.24	19.19	19.01	3	20.5			
3M	QPSK	1	0	21.88	21.81	21.80	0	23.5			
		1	12	21.77	21.77	21.77	0	23.5			
		1	24	21.88	21.94	21.85	0	23.5			
		12	0	21.13	21.01	20.91	1	22.5			
		12	6	21.20	21.12	21.18	1	22.5			
	16QAM	12	1	21.06	20.99	20.92	1	22.5			
		12	13	21.18	21.08	21.00	1	22.5			
		25	0	21.11	21.11	21.00	1	22.5			
		1	0	21.06	20.99	20.92	2	21.5			
		1	24	21.10	21.09	20.98	1	22.5			
	64QAM	12	0	20.20	20.09	19.93	2	21.5			
		12	6	20.14	20.17	20.17	2	21.5			
		12	13	20.09	20.05	19.82	2	21.5			
		25	0	20.08	20.03	19.84	2	21.5			
		1	0	20.03	20.03	19.82	2	21.5			
1.4M	QPSK	1	0	21.85	21.83	21.84	0	23.5			
		1	7	22.18	22.15	22.13	0	23.5			
		1	14	21.97	21.97	21.86	0	23.5			
		8	0	21.10	21.20	21.03	1	22.5			
		8	3	21.02	21.11	21.03	1	22.5			
	16QAM	8	7	21.09	21.09	21.09	1	22.5			
		15	0	20.95	20.93	20.99	1	22.5			
		1	0	20.97	21.04	20.94	1	22.5			
		1	24	21.09	21.09	20.93	1	22.5			
		1	49	20.92	20.92	20.84	2	21.5			
	64QAM	1	0	19.99	19.99	19.96	3	20.5			
		1	24	19.91	20.01	20.07	2	21.5			
		12	0	19.03	19.04	19.11	3	20.5			
		12	6	18.97	19.06	19.05	3	20.5			
		12	13	19.09	18.99	18.85	3	20.5			
	QPSK	15	0	19.09	18.95	18.92	3	20.5			
		1	0	20.97	21.04	20.91	1	22.5			
		1	7	21.15	21.20	21.12	1	22.5			
		1	14	21.11	21.08	21.01	1	22.5			
		1	24	20.16	20.04	19.89	2	21.5			
1.4M	QPSK	1	0	21.86	21.83	21.84	0	23.5			
		1	2	22.00	21.97	21.94	0	23.5			
		1	5	21.61	21.56	21.49	0	23.5			
		3	0	21.96	21.92	21.76	0	23.5			
		3	1	22.06	21.98	21.89	0	23.5			
	16QAM	3	3	22.07	22.03	21.82	0	23.5			
		6	0	21.13	21.10	20.89	1	22.5			
		6	1	21.09	21.06	20.86	1	22.5			
		6	5	21.09	21.16	21.07	1	22.5			
		1	2	20.97	20.96	20.88	1	22.5			
	64QAM	1	5	21.07	21.10	20.92	1	22.5			
		3	0	20.20	20.28	20.75	1	22.5			
		3	1	21.01	20.97	20.84	1	22.5			
		3	3	20.99	20.89	20.69	1	22.5			
		6	0	20.09	19.95	19.85	2	21.5			
1.4M	QPSK	1	0	21.89	21.86	21.84	0	23.5			
		1	2	22.02	21.99	21.96	0	23.5			</td

LTE Band 7											
BW	Modulation	RB Size		RB Offset		Low		Mid		High	
		Frequency (MHz)	2860	2858	2856	2854	2852	2850	2848	2846	2842
20M	QPSK	1	0	21.88	21.97	22.12	0	23			
		1	50	22.25	22.25	22.39	0	23			
		1	99	22.14	22.24	22.27	0	23			
		50	0	21.17	21.34	21.29	1	22			
		50	50	21.12	21.22	21.21	1	22			
	16QAM	50	50	21.12	21.15	21.23	1	22			
		100	0	21.21	21.22	21.24	1	22			
		1	50	21.22	21.23	21.29	1	22			
		1	50	21.21	21.26	21.31	1	22			
		1	99	21.20	21.24	21.31	1	22			
64QAM	QPSK	50	0	20.21	20.19	20.26	2	21			
		50	50	20.20	20.24	20.26	2	21			
		50	50	20.20	20.24	20.29	1	21			
		100	0	20.25	20.19	20.27	2	21			
		1	0	20.30	20.19	20.29	2	21			
	16QAM	1	50	20.43	20.52	20.53	2	21			
		1	99	20.11	20.08	20.19	2	21			
		50	0	19.94	19.93	19.95	3	20			
		50	25	19.89	19.92	19.95	3	20			
		50	50	19.21	19.22	19.24	3	20			
15M	QPSK	100	0	19.17	19.27	19.30	3	20			
		1	50	20.43	20.52	20.53	2	21			
		1	99	20.11	20.08	20.19	2	21			
		50	0	19.94	19.93	19.95	3	20			
		50	25	19.89	19.92	19.95	3	20			
	16QAM	50	50	19.21	19.22	19.24	3	20			
		1	74	21.96	21.13	21.26	1	22			
		36	0	21.02	21.25	21.24	1	22			
		36	19	21.12	21.18	21.24	1	22			
		36	39	21.10	21.01	21.16	1	22			
64QAM	QPSK	75	0	21.12	21.12	21.22	1	22			
		1	0	21.08	21.16	21.24	1	22			
		1	37	21.09	21.19	21.19	1	21			
		1	74	21.16	21.13	21.26	1	22			
		36	0	20.08	20.05	20.20	2	21			
	16QAM	36	19	20.28	20.27	20.27	2	21			
		36	39	20.05	20.10	20.15	2	21			
		75	0	20.08	20.13	20.16	2	21			
		1	0	20.08	20.13	20.16	2	21			
		1	37	20.02	20.49	20.39	1	21			
15M	QPSK	1	74	20.00	20.06	20.06	2	21			
		36	0	19.05	19.17	19.19	3	20			
		36	19	19.08	19.15	19.11	3	20			
		36	39	19.11	19.16	19.16	3	20			
		75	0	19.12	19.13	19.22	2	20			
	16QAM	1	0	21.11	21.09	21.16	1	22			
		1	24	21.06	21.25	21.27	1	22			
		1	49	21.18	21.16	21.21	1	22			
		1	99	20.07	20.06	20.15	2	21			
		1	49	20.34	20.37	20.52	2	21			
10M	QPSK	1	0	20.07	20.06	20.21	2	21			
		1	24	20.34	20.37	20.52	2	21			
		1	49	20.34	20.37	20.52	2	21			
		1	99	20.07	20.06	20.21	2	21			
		1	99	20.07	20.06	20.21	2	21			
	16QAM	25	0	20.10	20.14	20.13	2	21			
		25	12	20.04	20.25	20.24	2	21			
		25	26	21.03	21.06	21.09	1	22			
		50	0	21.00	21.11	21.09	1	22			
		1	0	21.11	21.09	21.16	1	22			
5M	QPSK	1	0	21.06	21.25	21.27	1	22			
		1	24	22.15	22.25	22.39	0	23			
		1	49	22.10	22.23	22.24	0	23			
		1	99	21.10	21.14	21.17	1	22			
		25	12	21.10	21.14	21.17	1	22			
	16QAM	25	26	21.03	21.06	21.09	1	22			
		50	0	21.00	21.11	21.09	1	22			
		1	0	21.11	21.09	21.16	1	22			
		1	24	21.06	21.16	21.21	1	22			
		1	49	21.06	21.16	21.21	1	22			
5M	QPSK	1	0	20.07	20.06	20.21	2	21			
		1	24	20.07	20.06	20.21	2	21			
		1	49	20.07	20.06	20.21	2	21			
		1	99	20.07	20.06	20.21	2	21			
		1	99	20.07	20.06	20.21	2	21			
	16QAM	25	0	19.05	19.20	19.21	3	20			
		12	0	19.05	19.20	19.21	3	20			
		12	6	19.10	19.21	19.10	3	20			
		12	13	19.10	19.19	19.13	3	20			
		25	0	19.14	19.23	19.21	3	20			

LTE Band 12											
BW	Modulation	RB Size		RB Offset		Low		Mid		High	
		Frequency (MHz)	2304	2302	2300	2308	2306	2304	2302	2300	2308
10M	QPSK	1	0	22.09	22.08	22.07	22.06	22.05	22.04	22.03	22.02
		1	24	22.01	22.01	22.01	22.01	22.01	22.01	22.01	22.01
		1	49	22.01	21.95	21.89	21.83	21.77	21.71	21.65	21.59
		25	0	21.97	21.93	21.89	21.85	21.81	21.77	21.73	21.69
		25	12	20.97	20.91	20.85	20.79	20.73	20.67	20.61	20.55
	16QAM	25	26	20.91	20.85	20.79	20.73	20.67	20.61	20.55	20.49
		50	0	21.96	21.94	21.92	21.90	21.88	21.86	21.84	21.82
		50	25	21.96	21.94	21.92	21.90	21.88	21.86	21.84	21.82
		50	50	21.96	21.94	21.92	21.90	21.88	21.86	21.84	21.82
		1	0	21.94	21.92	21.90	21.88	21.86	21.84	21.82	21.80
5M	QPSK	1	0	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
		1	2	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
		1	4	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
		3	0	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
		3	1	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
	16QAM	3	1	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
		3	3	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
		6	0	21.99	21.99	21.99	21.99	21.99	21.99	21.99	21.99
		6	2	21.99	21.99	21.99	21.99	21.99	21.99	21.99	21.99
		6	4	21.99	21.99	21.99</td					

LTE Band 17											
BW	MCS Index	RB Size	RB Offset	Low	Mid	High	3GPP	Max	3GPP	Max	Time-up
		Channel	70188	70190	70191	70192	(dB)	MPR	Time-up	(dB)	(dBm)
10M	QPSK	1	0	22.63	22.68	22.65	0	23.5			
		1	24	22.72	22.74	22.73	0	23.5			
		1	49	22.53	22.61	22.54	0	23.5			
		25	0	21.73	21.87	21.85	1	22.5			
		25	12	21.74	21.75	21.76	1	22.5			
	16QAM	1	24	21.79	21.79	21.76	1	22.5			
		50	0	21.95	21.99	21.71	1	22.5			
		50	12	21.70	21.83	21.84	1	22.5			
		50	24	21.59	21.77	21.76	1	22.5			
		50	49	21.62	21.68	21.73	1	22.5			
64QAM	QPSK	25	0	20.73	20.77	20.65	2	21.5			
		25	12	20.70	20.72	20.63	2	21.5			
		25	24	20.75	20.72	20.76	3	21.5			
		25	49	20.75	20.78	20.76	3	21.5			
		50	0	20.73	20.78	20.72	2	21.5			
	16QAM	1	0	20.81	20.81	20.82	2	21.5			
		1	24	21.04	20.95	20.91	2	21.5			
		1	49	20.87	20.89	20.89	2	21.5			
		25	0	19.83	19.83	19.83	3	20.5			
		25	12	19.73	19.80	19.84	3	20.5			
3M	QPSK	25	24	19.82	19.77	19.80	3	20.5			
		25	49	19.79	19.65	19.71	3	20.5			
		50	0	21.81	21.84	21.60	1	22.5			
		50	12	21.54	21.69	21.61	1	22.5			
		50	24	21.45	21.66	21.51	0	22.5			
	16QAM	12	0	21.61	21.85	21.76	1	22.5			
		12	6	21.68	21.77	21.73	1	22.5			
		12	13	21.69	21.75	21.68	1	22.5			
		25	0	20.61	20.68	20.59	2	21.5			
		25	12	20.69	20.69	20.71	1	21.5			
64QAM	QPSK	1	0	19.69	19.61	19.75	3	20.5			
		1	24	20.55	20.64	20.65	1	22.5			
		12	0	20.65	20.71	20.59	2	21.5			
		12	6	20.75	20.70	20.72	2	21.5			
		12	13	20.65	20.68	20.75	2	21.5			
	16QAM	25	0	19.71	19.62	19.67	3	20.5			
		25	12	19.89	19.92	19.92	3	20.5			
		25	24	19.81	19.78	19.75	3	20.5			
		25	49	19.72	19.73	19.73	3	20.5			
		50	0	19.71	19.62	19.67	3	20.5			

LTE Band 38											
BW	Modulation	RB Size	RB Offset	Low	Mid	High	3GPP	Max	3GPP	Max	Time-up
		Channel	37918	37919	37920	37921	(dB)	MPR	Time-up	(dB)	(dBm)
20M	QPSK	1	0	22.21	22.22	22.22	0	23.5			
		1	50	22.43	22.45	22.39	0	23.5			
		1	99	21.89	22.00	21.91	0	23.5			
		50	0	21.28	21.32	21.25	1	22.5			
		50	24	21.26	21.29	21.26	1	22.5			
	16QAM	50	50	21.27	21.28	21.24	1	22.5			
		100	0	21.32	21.30	21.27	1	22.5			
		1	0	21.27	21.24	21.12	1	22.5			
		1	50	21.12	21.20	21.17	1	22.5			
		1	99	21.11	21.15	21.10	1	22.5			
15M	QPSK	50	24	20.24	20.37	20.35	2	21.5			
		50	50	20.25	20.38	20.41	2	21.5			
		50	50	20.34	20.40	20.46	3	21.5			
		100	0	20.39	20.45	20.33	2	21.5			
		1	0	19.68	19.82	19.73	2	21.5			
	16QAM	1	50	19.99	20.14	20.09	2	21.5			
		1	99	19.68	19.71	19.69	2	21.5			
		50	0	19.70	19.74	19.65	3	20.5			
		50	24	19.37	19.39	19.30	3	20.5			
		50	50	19.30	19.34	19.31	3	20.5			
5M	QPSK	50	0	19.39	19.42	19.32	3	20.5			
		1	0	22.14	22.15	22.14	0	23.5			
		1	50	22.37	22.40	22.35	0	23.5			
		1	99	21.80	21.96	21.84	0	23.5			
		1	14	21.74	21.85	21.80	0	23.5			
	16QAM	36	0	21.15	21.31	21.15	1	22.5			
		36	19	21.12	21.18	21.19	1	22.5			
		36	3	21.17	21.15	21.17	1	22.5			
		75	0	21.25	21.34	21.16	1	22.5			
		75	12	21.23	21.27	21.02	1	22.5			
5M	QPSK	1	0	22.14	22.15	22.14	0	23.5			
		1	24	22.39	22.40	22.35	0	23.5			
		1	49	21.80	21.96	21.84	0	23.5			
		25	0	21.19	21.26	21.15	1	22.5			
		25	12	21.11	21.13	21.05	1	22.5			
	16QAM	25	24	21.12	21.10	21.05	1	22.5			
		50	0	21.30	21.24	21.23	1	22.5			
		1	0	21.21	21.12	21.11	1	22.5			
		1	24	21.03	21.15	21.13	1	22.5			
		1	49	20.99	21.01	21.04	1	22.5			
5M	QPSK	25	0	20.16	20.29	20.20	2	21.5			
		25	12	20.17	20.29	20.20	2	21.5			
		25	24	20.23	20.35	20.20	2	21.5			
		50	0	20.36	20.32	20.25	2	21.5			
		50	12	20.38	20.34	20.31	3	20.5			
	16QAM	50	0	19.80	19.83	19.63	2	21.5			
		1	0	19.91	20.11	19.99	2	21.5			
		1	49	19.63	19.56	19.68	2	21.5			
		25	0	19.35	19.37	19.34	3	20.5			
		25	12	19.37	19.34	19.36	3	20.5			
5M	QPSK	25	0	19.38	19.33	19.27	3	20.5			
		1	0	21.22	21.14	20.99	1	22.5			
		1	24	21.22	21.20	21.17	1	22.5			
		12	0	21.22	21.20	21.24	1	22.5			
		12	13	21.21	21.20	21.24	1	22.5			
	16QAM	25	0	21.22	21.34	21.18	1	22.5			
		1	0	21.22	21.14	20.99	1	22.5			
		1	24	21.22	21.09	21.06	2	21.5			
		1	49	21.09	20.91	20.04	2	21.5			
		12	0	20.19	20.35	20.23	2	21.5			
5M	QPSK	12	6	20.27	20.38	20.21	2	21.5			
		12	13	20.22	20.29	20.25	2	21.5			
		25	0	20.25	20.33	20.25	2	21.5			
		1	0	19.80</td							

LTE Band 41														
BW	Modulation	RB Size		RB Offset	Low		Mid		High		3DPP		Max. MPR (dBm)	Time-up (dBm)
		Chains	RBs		RBs	RBs	RBs	RBs	RBs	RBs	RBs	RBs		
20M	QPSK	1	0	21.52	21.51	21.87	21.82	21.83	0	23.5				
		1	50	21.89	21.83	22.05	22.04	22.03	0	23.5				
		1	99	21.59	21.57	21.74	21.73	21.65	0	23.5				
		50	0	20.88	20.77	20.97	20.86	20.91	1	22.5				
		1	20	20.84	20.73	21.03	21.02	20.95	1	22.5				
	16QAM	50	0	20.84	20.73	20.94	20.89	20.88	1	22.5				
		100	0	20.79	20.75	20.99	20.94	20.85	1	22.5				
		1	50	20.79	20.85	20.91	20.86	20.76	1	22.5				
		1	99	20.82	20.71	20.98	20.85	20.91	1	22.5				
		50	0	19.84	19.85	20.03	19.95	20.01	2	21.5				
	64QAM	50	0	20.84	20.73	20.94	20.89	20.88	2	21.5				
		100	0	20.84	20.73	20.99	20.86	20.82	2	21.5				
		1	50	19.83	19.82	19.81	19.83	19.84	2	21.5				
		1	99	19.85	19.82	19.75	19.64	19.61	2	21.5				
		100	0	19.83	19.89	19.87	19.82	19.82	3	20.5				
15M	QPSK	1	0	20.79	20.73	20.91	20.86	20.76	1	22.5				
		1	50	20.84	20.78	20.92	20.87	20.82	1	22.5				
		1	99	20.83	20.77	20.91	20.86	20.82	1	22.5				
		36	0	20.77	20.83	20.82	20.83	20.86	1	22.5				
		36	0	19.92	19.89	19.89	19.92	19.92	2	21.5				
	16QAM	36	0	19.87	19.81	20.01	20.06	20.82	1	22.5				
		36	0	19.88	19.87	20.01	20.06	20.68	1	22.5				
		75	0	20.72	20.88	20.86	20.91	20.79	1	22.5				
		1	0	20.84	20.78	20.91	20.89	20.64	1	22.5				
		1	50	20.84	20.78	20.91	20.89	20.65	1	22.5				
	64QAM	36	0	19.92	19.87	19.87	19.95	19.92	2	21.5				
		36	0	19.89	19.89	19.89	19.87	19.89	3	20.5				
		36	0	18.89	18.89	19.01	19.00	19.95	3	20.5				
		36	0	18.78	18.90	18.88	18.87	18.85	3	20.5				
		75	0	18.87	19.03	18.93	18.93	18.94	3	20.5				
10M	QPSK	1	0	21.52	21.72	21.78	21.76	21.71	0	23.5				
		1	24	21.76	21.90	21.99	22.03	21.98	0	23.5				
		1	49	21.54	21.61	21.71	21.59	21.61	0	23.5				
		25	0	20.80	20.90	20.82	20.94	20.88	1	22.5				
		25	0	19.92	19.89	20.01	19.96	19.98	2	21.5				
	16QAM	25	0	20.79	20.90	20.82	20.93	20.83	1	22.5				
		50	0	20.67	20.92	20.88	20.94	20.74	1	22.5				
		1	0	20.74	20.79	20.85	20.87	20.66	1	22.5				
		1	24	20.81	20.91	20.93	20.97	20.88	1	22.5				
		1	49	20.83	20.79	20.75	20.63	20.57	1	22.5				
	64QAM	25	0	19.96	19.96	19.96	19.96	19.95	2	21.5				
		25	0	19.87	19.87	19.87	19.88	19.87	3	20.5				
		50	0	19.99	20.00	20.02	19.95	19.87	2	21.5				
		1	0	19.92	19.92	19.94	19.97	19.94	2	21.5				
		1	24	19.96	19.99	19.73	19.61	19.57	2	21.5				
5M	QPSK	1	0	21.51	21.75	21.80	21.79	21.78	0	23.5				
		1	12	21.52	21.76	21.81	21.79	21.77	0	23.5				
		1	24	21.62	21.65	21.63	21.59	21.60	0	23.5				
		12	0	20.82	20.93	20.84	20.91	20.87	1	22.5				
		12	6	20.77	20.96	20.89	20.92	20.84	1	22.5				
	16QAM	12	0	20.68	20.83	20.78	20.78	20.7	1	22.5				
		12	12	20.68	20.83	20.78	20.78	20.7	1	22.5				
		12	24	20.57	20.89	20.64	20.62	20.52	1	22.5				
		12	0	19.84	19.91	19.97	19.95	19.91	2	21.5				
		12	6	19.94	20.01	20.06	19.99	19.95	2	21.5				
	64QAM	12	0	19.88	19.87	19.07	19.11	19.08	3	20.5				
		12	12	19.88	19.86	19.83	19.88	19.85	3	20.5				
		12	24	19.55	19.51	19.98	19.52	19.56	2	21.5				
		25	0	18.88	19.06	19.06	19.02	19.04	3	20.5				
		25	0	18.88	18.86	18.93	18.88	18.86	3	20.5				
3M	QPSK	1	0	21.51	21.75	21.80	21.79	21.78	0	23.5				
		1	12	21.52	21.76	21.81	21.79	21.77	0	23.5				
		1	24	21.62	21.65	21.63	21.59	21.60	0	23.5				
		12	0	20.82	20.93	20.84	20.91	20.87	1	22.5				
		12	6	20.77	20.96	20.89	20.92	20.84	1	22.5				
	16QAM	12	0	20.68	20.83	20.78	20.78	20.7	1	22.5				
		12	12	20.68	20.83	20.78	20.78	20.7	1	22.5				
		12	24	20.57	20.89	20.64	20.62	20.52	1	22.5				
		12	0	19.84	19.91	19.97	19.95	19.91	2	21.5				
		12	6	19.94	20.01	20.06	19.99	19.95	2	21.5				
	64QAM	12	0	19.88	19.87	19.07	19.11	19.08	3	20.5				
		12	12	19.88	19.86	19.83	19.88	19.85	3	20.5				
		12	24	19.55	19.51	19.98	19.52	19.56	2	21.5				
		25	0	18.88	19.06	19.06	19.02	19.04	3	20.5				
		25	0	18.88	18.86	18.93	18.88	18.86	3	20.5				
1.4M	QPSK	1	0	22.10	22.40	22.44	22.40	22.39	0	23.5				
		1	7	22.40	22.44	22.48	22.44	22.41	0	23.5				
		1	14	22.16	22.46	22.50	22.46	22.43	0	23.5				
		6	0	21.48	21.48	21.48	21.48	21.65	1	22.5				
		6	7	21.44	21.44	21.44	21.44	21.41	1	22.5				
	16QAM	1	0	21.19	21.37	21.45	21.37	21.64	1	22.5				
		1	14	21.20	21.36	21.36	21.36	21.35	1	22.5				
		6	0	20.43	20.39	20.48	20.48	21.05	2	21.5				
		6	7	20.43	20.43	20.46	20.46	21.36	2	21.5				
		15	0	20.39	20.36	20.50	20.50	20.50	2	21.5				
	64QAM	1	0	20.34	20.26	20.44	20.44	21.17	1	22.5				
		1	7	20.36	20.46	20.80	20.80	21.39	1	22.5				
		1	14	20.30	20.17	20.39	20.39	21.36	2</td					

Default Power

2.4GHz WLAN		Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit
2.4GHz WLAN	802.11b 1Mbps	1	2412	16.01	17.00	
		6	2437	15.54	17.00	
		11	2462	15.85	17.00	
	802.11g 6Mbps	1	2412	13.55	14.00	
		6	2437	13.21	14.00	
		11	2462	13.50	14.00	
	802.11n-HT20 MCS0	1	2412	12.65	13.00	
		6	2437	12.70	13.00	
		11	2462	12.93	13.00	
	802.11n-HT40 MCS0	3	2422	12.86	13.00	
		6	2437	12.92	13.00	
		9	2452	12.81	13.00	

BT		Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit
BLE	1M	0	2402	4.66	6.00	
		19	2440	6.30	7.00	
		39	2480	5.58	6.00	
	2M	1	2404	4.01	6.00	
		19	2440	6.15	7.00	
		38	2478	5.19	6.00	
	S2	0	2402	4.20	6.00	
		19	2440	5.63	6.00	
		39	2480	4.84	6.00	
	S8	0	2402	4.05	6.00	
		19	2440	6.12	7.00	
		39	2480	4.71	6.00	
BR/EDR	GFSK	0	2402	9.12	10.00	
		39	2441	9.43	10.00	
		78	2480	9.85	10.00	
	DQPSK	0	2402	6.38	7.00	
		39	2441	6.32	7.00	
		78	2480	6.57	7.00	
	8DPSK	0	2402	4.48	6.00	
		39	2441	4.63	6.00	
		78	2480	5.83	6.00	

BUREAU
VERITAS

FCC SAR Test Report

Certificate #6613.01

Appendix E. Photographs of EUT and Setup