

FCC Part 15C Test Report FCC ID: 2BQSX-F18B

Report No.: DLE-250618002R

Applicant: Shenzhen Chuangbo Da Technology Co., Ltd.

Address: 309, Building B1, Hongwan Maker Center, No. 4233 Bao'an Avenue, Gushu Community,

Xixiang Street, Bao'an District, Shenzhen, China

Manufacturer: Shenzhen Chuangbo Da Technology Co., Ltd.

Address: 309, Building B1, Hongwan Maker Center, No. 4233 Bao'an Avenue, Gushu Community,

Xixiang Street, Bao'an District, Shenzhen, China

EUT: Finder Tag

Trade Mark: N/A

Model Number: F18B, F18A, F18C, F18D, F18E

Date of Receipt: Jun. 09, 2025

Test Date: Jun. 09, 2025 ~ Jun. 30, 2025

Date of Report: Jun. 30, 2025

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1

Address: Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen,

China

Applicable FCC PART 15 C 15.247 Standards: ANSI C63.10:2013

Test Result: Pass

Report Number: DLE-250618002R

Prepared by(Engineer): Ken Tan

Reviewer(Supervisor): Jack Bu

Approved(Manager): Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 1 of 2

Table of Contents

Page

Report No.: DLE-250618002R

1. SUMMARY OF TEST RESULTS	4
1.1 MEASUREMENT UNCERTAINTY	
2. GENERAL INFORMATION	
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 DESCRIPTION OF TEST MODES	6
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	7
2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	7
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	8
3. EMC EMISSION TEST	10
3.1 CONDUCTED EMISSION MEASUREMENT	10
3.1.1 POWER LINE CONDUCTED EMISSION Limits	10
3.1.2 TEST PROCEDURE	10
3.1.3 DEVIATION FROM TEST STANDARD	
3.1.4 TEST SETUP	11
3.1.5 EUT OPERATING CONDITIONS	
3.1.6 TEST RESULTS	
3.2 RADIATED EMISSION MEASUREMENT	
3.2.1 RADIATED EMISSION LIMITS	
3.2.2 TEST PROCEDURE	13
3.2.4 TEST SETUP	13
3.2.5 EUT OPERATING CONDITIONS	13
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	
3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)	16
3.2.8 TEST RESULTS (1GHZ~25GHZ)	18
3.3 RADIATED BAND EMISSION MEASUREMENT	
3.3.1 TEST REQUIREMENT:	
3.3.2 TEST PROCEDURE	19
3.3.3 DEVIATION FROM TEST STANDARD	19
3.3.5 EUT OPERATING CONDITIONS	20 20
3.4 CONDUCTED BAND EDGE EMISSION&CONDUCTED SPURIOUS EMIS	
3.4 CONDUCTED BAND EDGE EMISSION&CONDUCTED SPURIOUS EMIS	
MEASUREMENT	
3.4.1 APPLICABLE STANDARD	22
3.4.2 TEST PROCEDURE	
3.4.3 DEVIATION FROM STANDARD	22

Table of Contents

Report No.: DLE-250618002R

Page

	22
<u>, , , , , , , , , , , , , , , , , , , </u>	22
	23
	23
	_
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	23
	- 7
	24
	24 24
	22
	25 25
	25
	25
V	26
D. Com	26
	27
	27

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Judgment	Remark			
15.207	Conducted Emission	N/A	× 0		
15.205, 15.209, 15.247(d)	Radiated Spurious Emission	PASS			
15.205, 15.247(d)	Band Edge Emission& Conducted Spurious Emissions	PASS	N - et		
15.247(b)	Peak Output Power	PASS			
15.247(a)(2)	6dB Bandwidth	PASS			
15.247(e)	Power Spectral Density	PASS	- ot		
15.203	Antenna Requirement	PASS	, cox		

Report No.: DLE-250618002R

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Test lab: Shenzhen DL Testing Technology Co., Ltd.

101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1

Address: Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen,

China

FCC Test Firm Registration Number: 854456

Designation Number: CN1307 IC Registered No.: 27485 CAB ID.: CN0118

1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$ providing a level of confidence of approximately 95 %

No.	Item	Uncertainty
1	Conducted Emission Test	±2.56dB
2	RF power,conducted	±0.42dB
3	Spurious emissions,conducted	±2.76dB
4	All emissions,radiated(<1G)	±3.65dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%
8	6dB Bandwidth	±0.2MHz
9	Power Spectral Density	±2.45dBm

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 4 of 27

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name:	Finder Tag
Trademark	N/A
Model No.:	F18B, F18A, F18C, F18D, F18E
Model Difference	All the same except the model number.
Sample ID:	DLE-250618002-001#
Operation Frequency:	2402~2480MHz
Channel numbers:	40 Channels
Modulation technology:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	0.17 dBi
Power Supply:	DC 3V from Button Battery Model: CR2032 Capacity: DC 3V/240mA

Report No.: DLE-250618002R

Note:

- 1.For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. The EUT's all information provided by client.
- 3. The EUT only supports 2 MHz.

	, Contraction of	0)/	BLE Cha	nnel List	·) - eit	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	10	2422	20	2442	30	2462
O 1	2404	ু11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	9 23 x	2448	_ 33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
_	2418	_× 18	2438	28	2458	38	2478
09	2420	Ø 19	2440	29	2460	39	2480

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 5 of 27

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Report No.: DLE-250618002R

Pretest Mode		Description		
Mode 1	O. Co.	CH00	O. Co.	
Mode 2	Or Col	CH19		
Mode 3	× OV cett	CH39	× 0 - 68	, ,

For Conducted Emission						
Final Test Mode			Description	n		
Mode 1	, , , , , , , , , , , , , , , , , , ,	O ^V	CH00	, C x 0		
Mode 2	O, Co,		CH19	O, Ce,		
Mode 3	Or Cer		CH39	X OV COR		

For Radiated Emission								
Final Test Mode		Description						
Mode 1	OV - et	CH00	0\/	-01	\Diamond			
Mode 2	2,00	CH19						
Mode 3	V Co	CH39			X			

Note: 1. The measurements are performed at the highest, middle, lowest available channels.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 6 of 27

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

E-1 EUT

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: DLE-250618002R

Item	Equipment	Model/Type No.	Series No.		Note
E-1	Finder Tag	F18B	N/A	0	EUT ,
~0	× , , , ,	0 -00	,) X.	0 600
,0	× O cel	,	x. O	60	

Item	Shielded Type	Ferrite Core	Length	Note	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		CO		S

Note:

(1) For detachable type I/O cable should be specified the length in cm in Length a column.

2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

Max output power Setting						
Test software Version	Test program: BT_Tool					
Mode	CH00	CH19	CH39			
Data Rate	2Mbps	2Mbps	2Mbps			

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 7 of 27

Report No.: DLE-250618002R

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 6db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Nov. 01, 2024	Oct. 31, 2025
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Nov. 01, 2024	Oct. 31, 2025
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Nov. 01, 2024	Oct. 31, 2025
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Nov. 01, 2024	Oct. 31, 2025
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Nov. 01, 2024	Oct. 31, 2025
6	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Nov. 01, 2024	Oct. 31, 2025
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Nov. 01, 2024	Oct. 31, 2025
8 <	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Nov. 01, 2024	Oct. 31, 2025
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Nov. 01, 2024	Oct. 31, 2025
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Nov. 01, 2024	Oct. 31, 2025
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Nov. 01, 2024	Oct. 31, 2025
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Nov. 01, 2024	Oct. 31, 2025
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Nov. 01, 2024	Oct. 31, 2025
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Nov. 01, 2024	Oct. 31, 2025
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Nov. 01, 2024	Oct. 31, 2025
16	D.C. Power Supply	LongWei	PS-305D	010964729	Nov. 01, 2024	Oct. 31, 2025
17	Power Meter	Ceyear	2438PA/PB	. 10	Nov. 01, 2024	Oct. 31, 2025
18	Peak/continuous wave power probe	Ceyear	81702F		Nov. 01, 2024	Oct. 31, 2025

Conduction Test equipment

2							
2	Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
	1.	843 Shielded Room	YIHENG	843 Room	843	Nov. 05, 2023	Nov. 04, 2026
	2	EMI Receiver	R&S	ESR	101421	Nov. 01, 2024	Oct. 31, 2025
	3	LISN	R&S	ENV216	102417	Nov. 01, 2024	Oct. 31, 2025
	4	843 Cable 1#	ChengYu	CE Cable	001	Nov. 01, 2024	Oct. 31, 2025

Peak Output Power Test Equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Power Meter	Agilent	E4419B	230480	Nov. 01, 2024	Oct. 31, 2025
2	RF Cable	Rosenberger	MWX322	MY50510202	Nov. 01, 2024	Oct. 31, 2025
3	10dB Attenuator	Rosenberger	2AS102-K10S3	N/A	Nov. 01, 2024	Oct. 31, 2025

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 8 of 27

Other	N	Manufacturer	N/a -1 - 1	Coffee
Item	Name FMC Conduction Test System	Manufacturer FALA	Model E7 EMC	Software version
1 2	EMC conduction Test System	FALA	EZ_EMC EZ EMC	EMC-CON 3A1.1 FA-03A2
3	EMC radiation test system	MAIWEI	MTS8310	2.0.0.0
4	RF test system RF communication test system	MAIWEI	MTS8200	2.0.0.0
	Con the Contract of the Contra			Col.

OL. Cort

Report No.: DLE-250618002R

epor-Dicert Dicert Dr. Cork Or Cert OL. Cert Or Cet Test Report Email: service@dl-cert.com Page 9 of 27 Tel: 400-688-3552 Web:www.dl-cert.com Ceix

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits

(Frequency Range 150KHz-30MHz)

Report No.: DLE-250618002R

FREQUENCY (MHz)	Limit (dE	Standard	
FREQUENCT (MIDZ)	Quasi-peak	Average	Standard
0.15 -0.50	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

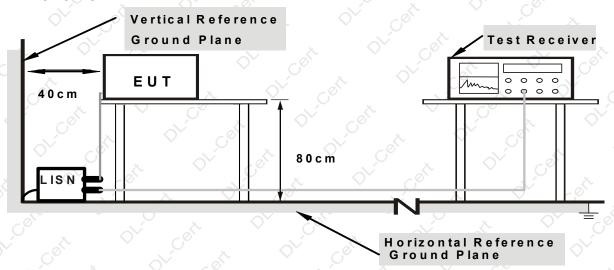
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	∑ 60°10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


3.1.3 DEVIATION FROM TEST STANDARD

No deviation

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 10 of 27

3.1.4 TEST SETUP

Report No.: DLE-250618002R

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

The EUT is powered by a built-in battery, This item is not applicable.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 11 of 27

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

table bolett flag to be follotted.	7			
Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	003		
216~960	200	3,000		
Above 960	500	3 0		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	EDEOLIENCY (MUz)	Limit (dBuV	/m) (at 3M)
	FREQUENCY (MHz)	PEAK	AVERAGE
Y	Above 1000	74 (54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	25GHz
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting			
Attenuation	Auto			
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP			
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP			
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP			

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 12 of 27

3.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

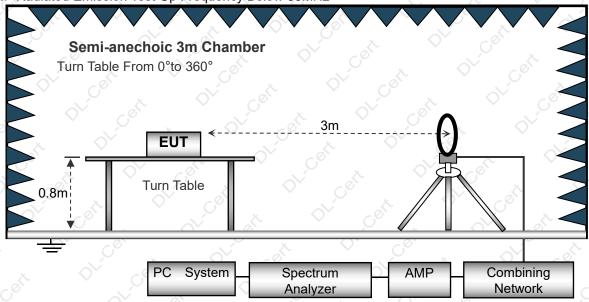
a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: DLE-250618002R

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 13 of 2'

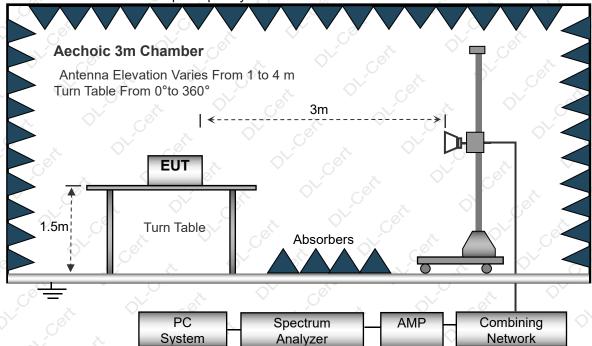
Semi-anechoic 3m Chamber
Antenna Elevation Varies From 1 to 4 m
Turn Table From 0°to 360°

Turn Table

Spectrum

Analyzer

AMP


Combining

Network

PC

System

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 14 of 27

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

Temperature:	20℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3V
Test Mode :	Mode 1	Polarization :	

Report No.: DLE-250618002R

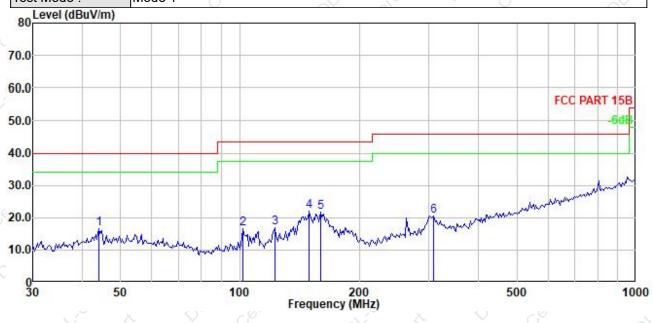
	Freq.	Reading	Limit	Margin	State
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	⇔ C.	>	~~~	Contraction of the contraction o	PASS
_&	O ^V	ceit -	~.··	0 -Cer	PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.


Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 15 of 27

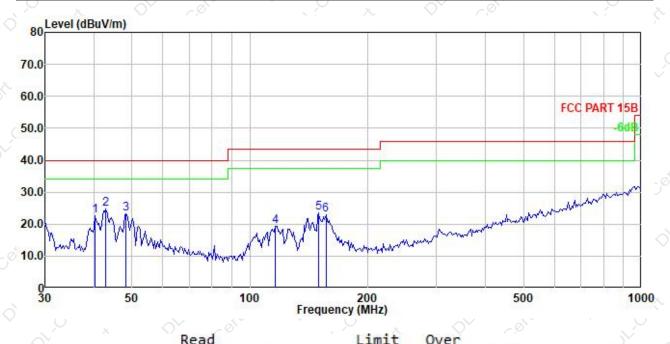
3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

All the modes were tested, the data of the worst mode 1 was recorded in the following pages, and the others modulation methods do not exceed the limits.

Temperature:	26℃		Relative Humidity	r: 54%	
Pressure:	1010 hPa	Q, C _Q	Polarization :	Horizontal	O, Co,
Test Voltage :	DC 3V	0)	CONT.	, Co	0
Test Mode :	Mode 1			O, Co,	

	Freq	Level	Level	Factor	Line	3.74.74	Pol/Phase	Remark	
	MHz	dBuV	dBuV/m	dB/m	dBuV/m	dB	-		
1	44.154	28.99	16.63	-12.36	40.00	-23.37	Horizontal	QP	
2	101.893	31.74	16.75	-14.99	43.50	-26.75	Horizontal	QP	
3	122.319	30.12	16.94	-13.18	43.50	-26.56	Horizontal	QP	
4	148.917	33.13	21.94	-11.19	43.50	-21.56	Horizontal	QP	
5	159.759	32.67	21.76	-10.91	43.50	-21.74	Horizontal	QP	
6	307.105	30.01	20.66	-9.35	46.00	-25.34	Horizontal	QP	

Remark:


Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 16 of 27

Temperature:	26℃		Relative Humidity:	54%
Pressure:	1010 hPa	, C x	Polarization :	Vertical
Test Voltage :	DC 3V	O, Co,		x O, Ce,
Test Mode :	Mode 1	OV cel	, , , , , o	x or cert

			rever	Level	Factor	Line	Limit	Pol/Phase	Remark	
	87	MHz	dBuV	dBuV/m	dB/m	dBuV/m	dB		10	
1	L	40.299	34.97	22.58	-12.39	40.00	-17.42	Vertical	QP	
2	2	42.931	37.22	24.85	-12.37	40.00	-15.15	Vertical	QP	
3	3	48.378	35.84	23.39	-12.45	40.00	-16.61	Vertical	QP	
4	1	116.448	33.02	19.46	-13.56	43.50	-24.04	Vertical	QP	
5	5	149.968	34.57	23.51	-11.06	43.50	-19.99	Vertical	QP	
6	5	156.426	33.92	22.96	-10.96	43.50	-20.54	Vertical	QP	

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 17 of 27

Report No.: DLE-250618002R

3.2.8 TEST RESULTS (1GHZ~25GHZ)

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Type
. /	X	Q (S			requency:		(0)		7 7
V	4804	75.12	52.12	2.78	27.38	53.16	74.00	-20.84	PK
V	4804	60.28	52.12	2.78	27.38	38.32	54.00	-15.68	AV
V	7206	76.28	52.16	3.08	27.41	54.61	74.00	-19.39	Pk
· V	7206	59.95	52.16	3.08	27.41	38.28	54.00	-15.72	AV
V	16132	65.06	52.12	7.36	41.52	61.82	74.00	-12.18	PK
ΘΉ	4804	75.17	52.12	2.78	27.38	53.21	74.00	-20.79	Pk
Н	4804	60.28	52.16	2.78	27.41	38.31	54.00	-15.69	AV
, H	7206	76.28	52.16	3.08	27.41	54.61	74.00	-19.39	Pk
VΗ	7206	59.95	52.12	3.08	27.38	38.29	54.00	~-15.71	AV
H	16132	64.67	51.53	7.36	41.52	62.02	74.00	-11.98	PK
		X	op	eration f	requency:2	2440		CO	
₹ V	4880	75.14	52.23	2.86	27.44	53.21	74.00	-20.79	Pk
V	4880	60.22	52.23	2.86	27.44	38.29	54.00	-15.71	AV
V	7320	76.27	52.26	3.12	27.49	54.62	74.00	-19.38	Pk
V	7320	59.99	52.26	3.12	27.49	38.34	54.00	-15.66	AV
V	16132	65.06	52.23	7.36	41.52	61.71	74.00	-12.29	PK
Н	4882	75.17	52.23	2.86	27.44	53.24	74.00	-20.76	Pk
Н	4882	60.28	52.26	2.86	27.49	38.37	54.00	-15.63	AV
Н	7323	76.28	52.26	3.12	27.49	54.63	74.00	-19.37	Pk
₹H	7323	59.95	52.23	3.12	27.44	38.28	54.00	-15.72	AV
ΘΉ	16132	64.69	51.53	7.36	41.52	62.04	74.00	-11.96	PK
C	2		, op	eration f	requency:2	2480		O.	CO
V	4960	75.19	51.74	2.93	27.46	53.84	74.00	-20.16	Pk
V	4960	60.25	51.74	2.93	27.46	38.90	54.00	-15.10	AV
٧	7440	74.94	49.98	3.15	27.52	55.63	74.00	-18.37	Pk
V	7440	57.64	49.98	3.15	27.52	38.33	54.00	-15.67	AV
V	16132	65.06	51.53	7.36	41.52	62.41	74.00	-11.59	PK
H	4960	75.17	51.74	2.93	27.46	53.82	74.00	-20.18	Pk
ÇH	4960	60.28	51.74	2.93	27.46	38.93	54.00	-15.07	AV
Н	7440	76.28	49.98	3.15	27.52	56.97	74.00	-17.03	Pk
H	7440	57.85	49.98	3.15	27.52	38.54	54.00	-15.46	AV
Н	16132	64.63	51.53	7.36	41.52	61.98	74.00	-12.02	PK

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 18 of 27

Report No.: DLE-250618002R

3.3 RADIATED BAND EMISSION MEASUREMENT 3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)					
	FREQUENCT (WITZ)	PEAK	AVERAGE				
Ī	Above 1000	74	54				

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	2300MHz				
Stop Frequency	2520				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average				

3.3.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 19 of 27

Report No.: DLE-250618002R

3.3.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz Aechoic 3m Chamber Antenna Elevation Varies From 1 to 4 m Turn Table From 0°to 360° 3m **EUT** 1.5m Turn Table Absorbers PC AMP Combining Spectrum Network System Analyzer

3.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 20 of 27

3.3.6 TEST RESULT

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Type
c.0			х ор	eration f	requency:	2402	X	O.	C8)
V	2390.00	76.77	52.12	2.73	27.38	54.76	74.00	-19.24	PK
V	2390.00	66.27	52.12	2.73	27.38	44.26	54.00	-9.74	AV
V	2400.00	78.05	52.16	2.78	27.41	56.08	74.00	-17.92	PK
V	2400.00	65.70	52.16	2.78	27.41	43.73	54.00	-10.27	AV
H	2390.00	77.56	52.12	2.73	27.38	55.55	74.00	-18.45	PK
ÇĤ.	2390.00	65.68	52.12	2.73	27.38	43.67	54.00	-10.33	AV
H	2400.00	77.27	52.16	2.78	27.41	55.30	74.00	-18.70	PK
H	2400.00	66.35	52.16	2.78	27.41	44.38	54.00	-9.62	O AV

Report No.: DLE-250618002R

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Type
	\bigcirc	CO'	ор	eration t	frequency:	2480	5		
N _O	2483.50	76.27	52.12	2.73	27.38	54.26	74.00	-19.74	PK
V	2483.50	66.76	52.12	2.73	27.38	44.75	54.00	-9.25	AV
V	2500.00	77.76	52.16	2.78	27.41	55.79	74.00	-18.21	PK
V	2500.00	65.63	52.16	2.78	27.41	43.66	54.00	-10.34	AV
Н	2483.50	76.25	52.12	2.73	27.38	54.24	74.00	-19.76	PK
Ĥ	2483.50	65.27	52.12	2.73	27.38	43.26	54.00	-10.74	Ø AV
Н	2500.00	76.07	52.16	2.78	27.41	54.10	74.00	-19.90	PK
H,O	2500.00	67.05	52.16	2.78	27.41	45.08	54.00	-8.92	AV
-									V

Remark:

- Emission Level = Meter Reading + Factor, Margin= Emission Level Limit
 If peak below the average limit, the average emission was no test.
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 21 of 27

3.4 CONDUCTED BAND EDGE EMISSION&CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.247 (d)	C
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

Report No.: DLE-250618002R

3.4.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.4.2 TEST PROCEDURE

Using the following spectrum analyzer setting: Set the RBW = 100KHz. Set the VBW = 300KHz. Sweep time = auto couple. Detector function = peak. Trace mode = max hold. Allow trace to fully stabilize.

3.4.3 DEVIATION FROM STANDARD

No deviation.

3.4.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

3.4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.4.6 TEST RESULTS

Pass

Please refer to Appendix I BLE Test Data.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 22 of 27

4. PEAK OUTPUT POWER

4.1 APPLIED PROCEDURES / LIMIT

į	FCC Part15 (15.247) , Subpart C								
	Section	Test Item	Limit	Frequency Range (MHz)	Result				
	15.247 (b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS				

Report No.: DLE-250618002R

4.1.1 TEST PROCEDURE

The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

EUT		Power Meter
		1 Ower Meter

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

Pass

Please refer to Appendix I BLE Test Data.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 23 of 27

5. POWER SPECTRAL DENSITY TEST

5.1 APPLIED PROCEDURES / LIMIT

Š		FCC Part	15 (15.247) , Subp	art C	
Ç	Section	Test Item	Limit	Frequency Range (MHz)	Result
) ~	15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

Report No.: DLE-250618002R

Spectrum Parameters	Setting
Attenuation	Auto A
Span Frequency	= the frequency band of operation
RB	RBW ≥ 3kHz
VB	VBW ≥ 3RBW
Detector	power averaging (rms) or sample detector (when rms not available).
Trace	rms/average
Sweep Time	Auto

5.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM
\$ 550 C.C. 250	ANALYZER

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 TEST RESULTS

Pass

Please refer to Appendix I BLE Test Data.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 24 of 27

6. 6DB BANDWIDTH TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range(MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

Report No.: DLE-250618002R

6.1.1 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥RBW
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

EUT	SPECTRUM
0.0000000000000000000000000000000000000	ANALYZER

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 TEST RESULTS

Pass

Please refer to Appendix I BLE Test Data.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 25 of 27

7. ANTENNA REQUIREMENT

7.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Report No.: DLE-250618002R

7.2 EUT ANTENNA

The EUT antenna is PCB Antenna, It comply with the standard requirement.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 26 of 27

8. TEST SEUUP PHOTO

Reference to the appendix for details.

9. EUT PHOTO

Reference to the appendix for details.

**** END OF REPORT ****

Report No.: DLE-250618002R

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 27 of 27