

FCC TEST REPORT

(PART 27)

Applicant:	Jiangyin Xinxinzhihuo Technology Co., Ltd.			
Address:	Room 302, Building 1, No.2, Binjiang West Road, Jiangyin City, China			
Manufacturer or Supplier:	Jiangyin Xinxinzhihuo Technolo	gy Co., Ltd.		
Address:	Room 302, Building 1, No.2, Bir	njiang West Road, Jiangyin City, China		
Product:	LTE Module			
Brand Name:	芯芯之火			
Model Name:	FX095-G1			
FCC ID	2BQML2025FX095G1			
Date of tests	Jun. 10, 2025 ~ Jul. 11, 2025			
The tests have be	The tests have been carried out according to the requirements of the following standard:			
 FCC Part 27 ANSI/TIA/EIA FCC Part 2	ANSI/TIA/EIA-603-D			
CONCLUSION: The submitted sample was found to COMPLY with the test requirement				
Prepared by Hanwen Xu Engineer / Mobile Department Approved by Peibo Sun Manager / Mobile Department				
Ru Hannen		Simpei bo		
	ate: Jul. 11, 2025	Date: Jul. 11, 2025		
This report is governed by, and i	incorporates by reference, the Conditions of Testing as post	ed at the date of issuance of this report at http://www.bureauveritas.com/home/about-		

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.business/cps/about-us/temps-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing, You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

1.	SUM	MARY OF TEST RESULTS	5
	1.1	MEASREMENT UNCERTAINTY	7
		FEST SITE AND INSTRUMENTS	
2	GEN	ERAL INFORMATION	10
	2.1	GENERAL DESCRIPTION OF EUT	10
	2.2	CONFIGURATION OF SYSTEM UNDER TEST DESCRIPTION OF SUPPORT UNITS	13
	2.3 I 2.4	TEST ITEM AND TEST CONFIGURATION	14
	2.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	10
_			
3.		TTYPES AND RESULTS	
	3.1	DUTPUT POWER MEASUREMENT	
	3.1.1		
	3.1.2		
	3.1.3		
	3.1.4		22
		FREQUENCY STABILITY MEASUREMENT	
	3.2.1		
	3.2.2		
	3.3.3		
	3.2.3		32
		OCCUPIED BANDWIDTH MEASUREMENT	
	3.3.1		
	3.3.2		
	3.3.3		
	3.3.4		
		BAND EDGE MEASUREMENT	
	3.4.1		
	3.4.2		
	3.4.3		
	3.4.4		
		CONDUCTED SPURIOUS EMISSIONS	
	3.5.1		
	3.5.2		
	3.5.3	· · · - · ·	
	3.5.4	TEST RESULTSRADIATED EMISSION MEASUREMENT	36
	3.6.1 3.6.2		
	3.6.2		
	3.6.4		
	3.6.5		
		PEAK TO AVERAGE RATIO	
	3.7.1		
	3.7.1		
	3.7.2		
	3.7.3		
4		RMATION ON THE TESTING LABORATORIES	
5	MOD	IFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	79
6	APP	ENDIX	80
		ND 13	
	LIEBA	נו שאו	100
		· ·	

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech
District, Suzhou City, Anhui Province, China

PEAK-TO-AVERAGE RATIO(CCDF)	155
TEST RESULT	155
TEST GRAPHS	156
26DB BANDWIDTH AND OCCUPIED BANDWIDTH	160
TEST RESULT	160
TEST GRAPHS	160
BAND EDGE	163
TEST RESULT	
TEST GRAPHS	163
CONDUCTED SPURIOUS EMISSION	
TEST RESULT	168
TEST GRAPHS	168
FREQUENCY STABILITY	172
TEST RESULT	172

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-QSU2506090109RF03	Original release	Jul. 11, 2025

1. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 27 & PART 2			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	TEST LAB*
§2.1046	Conducted Output Power	Compliance	А
§27.50(c)(10) §27.50(b)(10)	Effective Radiated Power (Band 12) (Band 17) (Band 13)	Compliance	А
§27.50(d)(4) §27.50(h)(2)	Equivalent Isotropically Radiated Power (Band 7)	Compliance	А
§2.1055 §27.54	Frequency Stability	Compliance	А
§2.1049	Occupied Bandwidth	Compliance	А
\$2.1051 \$27.53(c)(2) \$27.53(g) \$27.53(h) \$27.53(m)(4)	Conducted Band Edge Measurements (Band 7) (Band 12) (Band 13)	Compliance	А
\$2.1051 \$27.53(g) \$27.53(c)(2) \$27.53(f) \$27.53(h) \$27.53(m)(4)	Conducted Spurious Emissions (Band 7) (Band 12) (Band 13)	Compliance	А
\$2.1053 \$27.53(c)(2) \$27.53(f) \$27.53(g) \$27.53(h) \$27.53(m)(4)	\$27.53(c)(2) \$27.53(f) \$27.53(g) \$27.53(h) Radiated Spurious Emissions (Band 7) (Band 12) (Band 13)		А
§27.50	Peak to average ratio*	Compliance	Α

^{*} Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01.

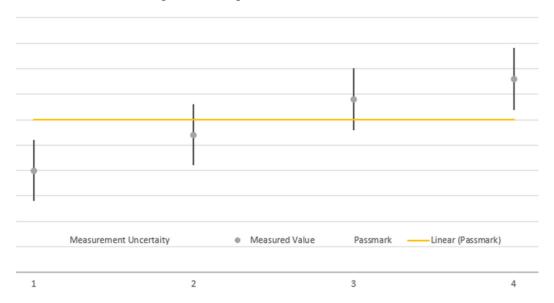
*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Accredited Test Lab Cert 6613.01


The FCC Site Registration No. is 434559; The Designation No. is CN1325.

1.1 MEASREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
Frequency Stability	±76.97Hz
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions & Radiated Power (30MHz~1GHz)	±4.98dB
Radiated emissions & Radiated Power (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Band Edge Measurements	±4.70dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

1.2 TEST SITE AND INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,23	Aug.29,25
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Vector Signal Generator	R&S	SMBV100B	102176	Mar.29,24	Mar.28,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ- EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ- EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESR26	101734	Mar.28,24	Mar.27,26
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Jul.05,23	Jul.04,25
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Jul.04,25	Jul.03,27
Horn Antenna	ETS- LINDGREN	3117	227836	Aug.22,23	Aug.21,25
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Mar.22,25	Mar.21,27
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,25	Feb.21,27
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Test Software	EMC32	EMC32	N/A	N/A	N/A
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,23	Aug.30,25
Hygrothermograph	DELI	20210528	SZ014	Mar.18,25	Mar.17,27
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 7.00M	N/A	N/A	N/A
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.26,25	Apr.25,26
CABLE	R&S	W12.14	N/A	Apr.26,25	Apr.25,26
CABLE	R&S	J12J103539-00-1	SEP-03-20- 069	Apr.26,25	Apr.25,26
CABLE	R&S	J12J103539-00-1	SEP-03-20- 070	Apr.26,25	Apr.25,26
Temperature Chamber	votsch	VT4002	5856607810 0050	May.30,24	May.29,26

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

NOTE:

- 1. The calibration interval of the above test instruments is 12/ 24/ 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA. The test was performed in 3m Semi-anechoic Chamber and RF Oven Room.
- 2. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

2.1 GENERAL DESCRIPTION OF EUT			
PRODUCT*	LTE Module		
BRAND NAME*	芯芯之火		
MODEL NAME*	FX095-G1		
NOMINAL VOLTAGE*	3.8Vdc		
MODULATION TECHNOLOGY	LTE	QPSK,16QAM	
	LTE Band 7 Channel Bandwidth: 5MHz	2502.5MHz ~ 2567.5MHz	
	LTE Band 7 Channel Bandwidth: 10MHz	2505MHz ~ 2565MHz	
	LTE Band 7 Channel Bandwidth: 15MHz	2507.5MHz ~ 2562.5MHz	
	LTE Band 7 Channel Bandwidth: 20MHz	2510MHz ~ 2560MHz	
FREQUENCY RANGE	LTE Band 12 Channel Bandwidth: 1.4MHz	699.7MHz ~ 715.3MHz	
	LTE Band 12 Channel Bandwidth: 3MHz	700.5MHz ~ 714.5MHz	
	LTE Band 12 Channel Bandwidth: 5MHz	701.5MHz ~ 713.5MHz	
	LTE Band 12 Channel Bandwidth: 10MHz	704MHz ~ 711MHz	
	LTE Band 13 Channel Bandwidth: 5MHz	779.5MHz ~ 784.5MHz	
	LTE Band 13 Channel Bandwidth: 10MHz	782MHz	
	LTE Band 7 Channel Bandwidth: 5MHz	210.38mW	
	LTE Band 7 Channel Bandwidth: 10MHz	214.29mW	
MAX. EIRP/ERP POWER	LTE Band 7 Channel Bandwidth: 15MHz	214.29mW	
	LTE Band 7 Channel Bandwidth: 20MHz	215.28mW	
	LTE Band 12 Channel Bandwidth: 1.4MHz	64.57mW	
	LTE Band 12 Channel Bandwidth: 3MHz	64.71mW	
	LTE Band 12 Channel Bandwidth: 5MHz	63.83mW	
	LTE Band 12 Channel Bandwidth: 10MHz	65.46mW	

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

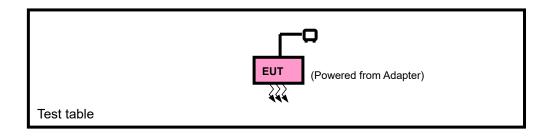
VERITAS Test Report No.: PSU-QSU2506090109RF03			
	LTE Band 13 Channel Bandwidth: 5MHz		
	LTE Band 13 Channel Bandwidth: 10MHz	67.30mW	
	LTE David 7	QPSK: 4M50G7D	
	LTE Band 7 Channel Bandwidth: 5MHz	16QAM: 4M49W7D	
	LTE Band 7	QPSK:8M98G7D	
	Channel Bandwidth: 10MHz	16QAM: 4M96W7D	
	LTE Band 7	QPSK: 13M5G7D	
	Channel Bandwidth: 15MHz	16QAM: 4M98W7D	
	LTE Band 7	QPSK: 18M0G7D	
	Channel Bandwidth: 20MHz	16QAM: 5M01W7D	
	LTE Band 12	QPSK: 1M09G7D	
EMISSION DESIGNATOR	Channel Bandwidth: 1.4MHz	16QAM: 1M09W7D	
	LTE Band 12 Channel Bandwidth: 3MHz	QPSK: 2M69G7D	
		16QAM: 2M68W7D	
	LTE Band 12 Channel Bandwidth: 5MHz	QPSK: 4M50G7D	
		16QAM: 4M50W7D	
	LTE Band 12 Channel Bandwidth: 10MHz	QPSK: 8M97G7D	
		16QAM: 4M96W7D	
	LTE Band 13 Channel Bandwidth: 5MHz	QPSK: 4M50G7D	
		16QAM: 4M49W7D	
	LTE Band 13 Channel Bandwidth: 10MHz	QPSK: 8M96G7D	
		16QAM: 4M96W7D	
	LTE BAND7	0.1dBi	
ANTENNA GAIN*	LTE BAND12	-2dBi	
	LTE BAND13	-1.7dBi	
ANTENNA TYPE*	Fixed External Antenna		
HW VERSION*	FX095-G1_GLOBAL_V1.0		
SW VERSION*	V4100LCB10004R00C0008		
I/O PORTS*	Refer to user's manual		
Huarui 7layers High Technology	Tower N. Innovation Center, 88 Zuvi Roa	T 100 (0557) 000 4000	

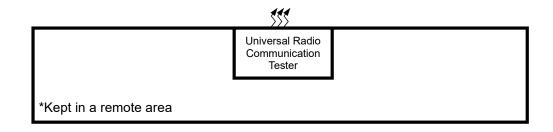
Huarui 7layers High Technology (Suzhou) Co., Ltd.

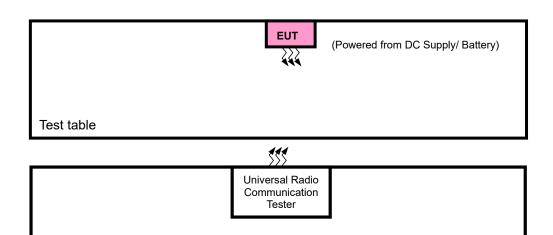
Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

CABLE SUPPLIED*	N/A
EXTREME TEMPERATURE*	-35 ~75°C
EXTREME VOLTAGE*	3.4~4.5V

NOTE:


- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receivers.


MODULATION MODE	TX FUNCTION	
LTE	1TX/1RX	


4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in the test report.

2.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

*Kept in a remote area

2.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

2.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on Y-plane for EIRP and Z-axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION
Α	EUT + Adapter with LTE link
В	EUT + DC Supply with LTE link

			LTE BAND	7 MODE			
EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	CHANNEL BANDWIDTH	MODULATION	MODE	
		20775 to 21425	20775, 21100, 21425	5MHz	QPSK, 16QAM	1 RB / 0 RB offset	
	5100	20800 to 21400	20800, 21100, 21400	10MHz	QPSK, 16QAM	1 RB / 0RB offset	
A	EIRP	20825 to 21375	20825, 21100, 21375	15MHz	QPSK, 16QAM	1 RB / 0 RB offset	
		20850 to 21350	20850, 21100, 21350	20MHz	QPSK, 16QAM	1 RB / 0 RB offset	
В	FREQUENCY STABILITY	20800, 21400	20800, 21400	10MHz	QPSK	100 RB / 0 RB offset	
		20775 to 21425	20775, 21100, 21425	5MHz	QPSK, 16QAM	25 RB / 0 RB offset	
_	OCCUPIED BANDWIDTH	OCCUPIED	20800 to 21400	20800, 21100, 21400	10MHz	QPSK, 16QAM	50 RB / 0 RB offset
A		20825 to 21375	20825, 21100, 21375	15MHz	QPSK, 16QAM	75 RB / 0 RB offset	
		20850 to 21350	20850, 21100, 21350	20MHz	QPSK, 16QAM	100 RB / 0 RB offset	
Α	PEAK TO AVERAGE RATIO	20850 to 21350	20850, 21100, 21350	20MHz	QPSK, 16QAM	1 RB / 0 RB offset 100 RB / 0 RB offset	
		20775 to	20775	5MHz	QPSK, 16QAM	1 RB / 0 RB offset 25 RB / 0 RB offset	
		21425	21425	5MHz	QPSK, 16QAM	1 RB / 24 RB offset 25 RB / 0 RB offset	
		20800 to	20800	10MHz	QPSK, 16QAM	1 RB / 0 RB offset 50 RB / 0 RB offset	
		21400	21400	10MHz	QPSK, 16QAM	1 RB / 49 RB offset 50 RB / 0 RB offset	
Α	BAND EDGE		20825	15MHz	QPSK, 16QAM	1 RB / 0 RB offset	
		20825 to	20023	1 SIVII IZ	QI SIX, IOQAW	75 RB / 0 RB offset	
		21375	21375	15MHz	QPSK, 16QAM	1 RB / 74 RB offset 75 RB / 0 RB offset	
						1 RB / 0 RB offset	
		20850 to	20850	20MHz	QPSK, 16QAM	100 RB / 0 RB offset	
		21350	21350	20MHz	QPSK, 16QAM	1 RB / 99 RB offset	

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

						100 RB / 0 RB offset
		20775 to 21425	20775, 21100, 21425	5MHz	QPSK	1 RB / 0 RB offset
	CONDCUDETED	20800 to 21400	20800, 21100, 21400	10MHz	QPSK	1 RB / 0RB offset
A	EMISSION	20825 to 21375	20825, 21100, 21375	15MHz	QPSK	1 RB / 0 RB offset
		20850 to 21350	20850, 21100, 21350	20MHz	QPSK	1 RB / 0 RB offset
	RADIATED EMISSION	20775 to 21425	21100	5MHz	QPSK	1 RB / 0 RB offset
		20800 to 21400	21100	10MHz	QPSK	1 RB / 0 RB offset
A		20825 to 21375	21100	15MHz	QPSK	1 RB / 0 RB offset
		20850 to 21350	20850, 21100, 21350	20MHz	QPSK	1 RB / 0 RB offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

	LTE BAND 12 MODE										
EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	CHANNEL BANDWIDTH	MODULATION	MODE					
A		23017 to 23173	23017, 23095 , 23173	1.4MHz	QPSK, 16QAM	1 RB / 0 RB offset					
	ERP	23025 to 23165	23025, 23095 ,23165	3MHz	QPSK, 16QAM	1 RB / 0 RB offset					
	LIN	23035 to 23155	23035, 23095 ,23155	5MHz	QPSK, 16QAM	1 RB / 0 RB offset					
		23060 to 23130	23060, 23095 ,23130	10MHz	QPSK, 16QAM	1 RB / 0 RB offset					
В	FREQUENCY STABILITY	23060 to 23130	23060, 23095 ,23130	10MHz	QPSK	50 RB / 0 RB offset					
		23017 to 23173	23017, 23095 , 23173	1.4MHz	QPSK, 16QAM	6 RB / 0 RB offset					
•	OCCUPIED	23025 to 23165	23025, 23095 ,23165	3MHz	QPSK, 16QAM	15 RB / 0 RB offset					
Α	BANDWIDTH	23035 to 23155	23035, 23095 ,23155	5MHz	QPSK, 16QAM	25 RB / 0 RB offset					
		23060 to 23130	23060, 23095 ,23130	10MHz	QPSK, 16QAM	50 RB / 0 RB offset					
Α	PEAK TO AVERAGE RATIO	23060 to 23130	23060, 23095 ,23130	10MHz	QPSK, 16QAM	1 RB / 0 RB offset 50 RB / 0 RB offset					
			23017	1.4MHz	QPSK, 16QAM	1 RB / 0 RB offset 6 RB / 0 RB offset					
		23017 to 23173	23173	1.4MHz	QPSK, 16QAM	1 RB / 5 RB offset 6 RB / 0 RB offset					
		23025 to 23165	23025	3MHz	QPSK, 16QAM	1 RB / 0 RB offset					
						15 RB / 0 RB offset					
			23165	3MHz	QPSK, 16QAM	1 RB / 14 RB offset 15 RB / 0 RB offset					
A	BAND EDGE		23035	5MHz	QPSK, 16QAM	1 RB / 0 RB offset 25 RB / 0 RB offset					
		23035 to 23155	00455	SMI I-	ODOK 400AM	1 RB / 24 RB offset					
			23155	5MHz	QPSK, 16QAM	25 RB / 0 RB offset					
			23060	10MHz	QPSK, 16QAM	1 RB / 0 RB offset 50 RB / 0 RB offset					
		23060 to 23130	23130	10MHz	QPSK, 16QAM	1 RB / 49 RB offset					
						50 RB / 0 RB offset					
Α	CONDCUDETED		23017, 23095, 23173	1.4MHz	QPSK	1 RB / 0 RB offset					
	EMISSION	23025 to 23165	23025, 23095 ,23165	3MHz	QPSK	1 RB / 0 RB offset					

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

VERTIAS	•					
		23035 to 23155	23035, 23095 ,23155	5MHz	QPSK	1 RB / 0 RB offset
		23060 to 23130	23060, 23095 ,23130	10MHz	QPSK	1 RB / 0 RB offset
	RADIATED EMISSION	23017 to 23173	23095	1.4MHz	QPSK	1 RB / 0 RB offset
Α.		23025 to 23165	23095	3MHz	QPSK	1 RB / 0 RB offset
Α		23035 to 23155	23095	5MHz	QPSK	1 RB / 0 RB offset
		23060 to 23130	23060,23095,23130	10MHz	QPSK	1 RB / 0 RB offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

		L	TE BAND 13 M	ODE				
EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	CHANNEL BANDWIDTH	MODULATION	MODE		
Α	ERP	23205 to 23255	23205, 23230, 23255	5MHz	QPSK,16QAM	1 RB / 0 RB offset		
A	ERF	23230	23230	10MHz	QPSK,16QAM	1 RB / 0 RB offset		
В	FREQUENCY STABILITY	23205 to 23255	23205, 23230, 23255	5MHz	QPSK	50 RB / 0 RB offset		
_	OCCUPIED	23205 to 23255	23205, 23230, 23255	5MHz	QPSK,16QAM	25 RB / 0 RB offset		
A	BANDWIDTH	23230	23230	10MHz	QPSK,16QAM	50 RB / 0 RB offset		
A	PEAK TO AVERAGE RATIO	23205 to 23255	23205, 23230, 23255	5MHz	QPSK,16QAM	1 RB / 0 RB offset 50 RB / 0 RB offset		
	BAND EDGE		23205 to	23205	5MHz	QPSK,16QAM	1 RB / 0 RB offset 25 RB / 0 RB offset	
A		23255	23255	5MHz	QPSK,16QAM	1 RB / 24 RB offset 25 RB / 0 RB offset		
					23230	23230	10MHz	QPSK,16QAM
	CONDCUDETED	23205 to 23255	23205, 23230, 23255	5MHz	QPSK	1 RB / 0 RB offset		
A	EMISSION	23230	23230	10MHz	QPSK	1 RB / 0 RB offset		
	RADIATED	23205 to 23255	23230	5MHz	QPSK	1 RB / 0 RB offset		
A	EMISSION	23230	23230	10MHz	QPSK	1 RB / 0 RB offset		

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

TEST CONDITION									
TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY						
ERP/EIRP	ERP/EIRP 23deg. C, 70%RH		Hanwen Xu						
FREQUENCY STABILITY	23deg. C, 70%RH	DC 3.4V/ 3.8V/ 4.5V By Source	Hanwen Xu						
OCCUPIED BANDWIDTH	23deg. C, 70%RH	DC 3.8Vdc By Adapter	Hanwen Xu						
BAND EDGE	23deg. C, 70%RH	DC 3.8Vdc By Adapter	Hanwen Xu						
CONDCUDETED EMISSION	23deg. C, 70%RH	DC 3.8Vdc By Adapter	Hanwen Xu						
RADIATED EMISSION	23deg. C, 70%RH	AC 120V/60Hz	Hanwen Xu						
PEAK TO AVERAGE RATIO	23deg. C, 70%RH	DC 3.8Vdc By Adapter	Hanwen Xu						

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

2.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2

FCC 47 CFR Part 27

KDB 971168 D01 Power Meas License Digital Systems v03r01

ANSI/TIA/EIA-603-D

ANSI/TIA/EIA-603-E

ANSI C63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

3. TEST TYPES AND RESULTS

3.1 OUTPUT POWER MEASUREMENT

3.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 27.50(h)(2) that "User stations are limited to 2 watts" and 27.50(i) specific that "Peak transmit power must be measure over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage."

Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1-watt EIRP.

According to the specific rule Part 27.50(c)(10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698–746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.

Part 27.50(b)(10): Portable stations (hand-held devices) transmitting in the 746–757 MHz, 776–788 MHz, and 805–806 MHz bands are limited to 3 watts ERP.

3.1.2 TEST PROCEDURES

EIRP MEASUREMENT:

Per KDB 971168 D01 Power Meas License Digital Systems v03r01 or subclause 5.2.5.5 of ANSI C63.26-2015, the relevant equation for determing the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

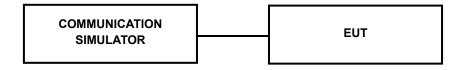
ERP or EIRP = P_{Meas} + G_T - L_C

Where:

ERP or EIRP = effective radiated power or equivalent isotropically radiated power, respectively

(expressed in the same units as P_{Meas}, typically dBW or dBm);

P_{Meas} = measured transmitter output power or PSD, in dBm or dBW;


 G_T = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

Lc = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

CONDUCTED POWER MEASUREMENT:

- a. The EUT was set up for the maximum power with LTE link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED OUTPUT POWER (dBm)

				LTE Band 7		
Band/BW	Modulation	RB	RB	Low CH 20775	Mid CH 21100	High CH 21425
Barra/BVV	Woddiation	Size	offset	Frequency 2502.5 MHz	Frequency 2535 MHz	Frequency 2567.5 MHz
		1	0	22.20	23.13	23.05
		1	12	21.89	22.13	22.47
		1	24	21.59	22.24	22.16
	QPSK	12	0	21.71	22.43	22.54
		12	6	21.77	22.45	22.49
		12	13	21.77	22.36	22.42
7/ 5		25	0	21.39	22.01	22.55
1/ 5		1	0	21.67	22.21	22.71
		1	12	21.43	21.32	22.12
		1	24	21.20	21.47	21.78
	16QAM	12	0	21.74	21.88	22.43
		12	6	21.64	21.87	22.45
		12	13	21.63	21.82	22.32
		25	0	21.74	21.95	22.39
				Low	Mid	High
Band/BW	Modulation	RB	RB	CH 20800	CH 21100	CH 21400
BarrayBVV	Modulation	Size	offset	Frequency	Frequency	Frequency
			_	2505 MHz	2535 MHz	2565 MHz
		1	0	22.25	23.21	23.01
		1	24	21.87	22.18	22.34
		1	49	21.57	22.37	22.16
	QPSK	25	0	21.77	22.44	22.53
		25	12	21.69	22.45	22.51
		25	25	21.74	22.46	22.53
7/ 10		50	0	21.45	21.98	22.62
		1	0	21.73	22.15	22.69
		1	24	21.38	21.24	22.01
		1	49	21.24	21.40	21.74
	16QAM	25	0	21.67	21.91	22.49
		25	12	21.65	21.83	22.47
		25	25	21.61	21.89	22.33
		50	0	21.73	21.97	22.49

LTE Band 7										
Band/BW	Modulation	RB	RB	Low CH 20825	Mid CH 21100	High CH 21375				
Dallu/DVV		Size	offset	Frequency 2507.5 MHz	Frequency 2535 MHz	Frequency 2562.5 MHz				
		1	0	22.18	23.21	23.12				
		1	37	21.83	22.16	22.33				
7/ 15	QPSK	1	74	21.58	22.35	22.18				
		36	0	21.74	22.37	22.44				
		36	19	21.74	22.40	22.53				

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

VERITAS	•		•			
		36	39	21.74	22.47	22.53
		75	0	21.50	21.95	22.66
		1	0	21.71	22.22	22.78
		1	37	21.37	21.23	22.09
		1	74	21.24	21.39	21.73
	16QAM	36	0	21.69	21.84	22.44
		36	19	21.69	21.81	22.41
		36	39	21.67	21.80	22.37
		75	0	21.80	21.96	22.46
				Low	Mid	High
Band/BW	Modulation	RB	RB	CH 20850	CH 21100	CH 21350
Barra/BVV		Size	offset	Frequency 2510 MHz	Frequency 2535 MHz	Frequency 2560 MHz
		1	0	22.30	23.23	23.15
		1	50	21.90	22.25	22.48
		1	99	21.72	22.38	22.20
	QPSK	50	0	21.81	22.52	22.58
		50	25	21.84	22.53	22.57
		50	50	21.80	22.50	22.55
7/ 20		100	0	21.53	22.04	22.70
11 20		1	0	21.82	22.23	22.84
		1	50	21.51	21.33	22.15
		1	99	21.34	21.50	21.86
	16QAM	50	0	21.82	21.94	22.52
		50	25	21.78	21.93	22.49
		50	50	21.75	21.92	22.47
		100	0	21.86	21.98	22.53

VENTIAS			I	_TE Band 12		
Band/BW	Modulation	RB	RB	Low CH 23017	Mid CH 23095	High CH 23173
		Size	offset	Frequency 699.7 MHz	Frequency 707.5 MHz	Frequency 715.3 MHz
		1	0	21.64	22.25	22.10
		1	2	22.12	22.20	22.14
		1	5	21.80	21.55	21.99
	QPSK	3	0	21.37	22.17	21.81
		3	1	22.07	21.96	21.81
		3	3	22.00	22.05	21.97
12/ 1.4		6	0	21.75	21.77	21.37
12/ 1.4		1	0	21.36	21.26	21.17
		1	2	21.35	21.25	21.20
		1	5	21.25	21.18	20.83
	16QAM	3	0	21.22	21.28	20.88
		3	1	21.12	21.26	21.05
		3	3	21.15	21.19	21.05
		6	0	21.39	21.53	21.29
Band/BW	Modulation	RB	RB	Low CH 23025	Mid CH 23095	High CH 23165
		Size	offset	Frequency 700.5 MHz	Frequency 707.5 MHz	Frequency 714.5 MHz
		1	0	21.59	22.26	22.09
		1	7	22.13	22.19	22.05
		1	14	21.81	21.57	21.88
	QPSK	8	0	21.36	21.47	21.08
		8	3	21.31	21.31	21.23
		8	7	21.35	21.35	21.30
12/ 3		15	0	21.72	21.82	21.31
12/ 3		1	0	21.35	21.31	21.09
		1	7	21.26	21.27	21.32
		1	14	21.29	21.23	20.90
	16QAM	8	0	20.49	20.51	20.20
		8	3	20.54	20.66	20.40
		8	7	20.54	20.56	20.27
		15	0	21.44	21.59	21.20

VERITAS			I	_TE Band 12		
Band/BW	Modulation	RB Size	RB offset	Low CH 23035	Mid CH 23095	High CH 23155
		Size	onset	Frequency 701.5 MHz	Frequency 707.5 MHz	Frequency 713.5 MHz
		1	0	21.62	22.18	22.07
		1	12	22.20	22.11	22.15
		1	24	21.84	21.45	21.87
	QPSK	12	0	21.40	21.39	21.12
		12	6	21.36	21.28	21.11
		12	13	21.26	21.41	21.26
12/ 5		25	0	21.72	21.76	21.33
12/ 5		1	0	21.25	21.25	21.14
		1	12	21.32	21.36	21.18
		1	24	21.24	21.20	20.84
	16QAM	12	0	20.57	20.54	20.18
		12	6	20.45	20.61	20.36
		12	13	20.43	20.53	20.29
		25	0	21.42	21.51	21.28
Band/BW	Modulation	RB	RB	Low CH 23060	Mid CH 23095	High CH 23130
Danu/DVV	Wodulation	Size off	offset	Frequency 704 MHz	Frequency 707.5 MHz	Frequency 711 MHz
		1	0	21.71	22.31	22.21
		1	24	22.27	22.25	22.20
		1	49	21.93	21.58	22.00
	QPSK	25	0	21.49	21.48	21.18
		25	12	21.42	21.40	21.25
		25	25	21.40	21.45	21.35
12/ 10		50	0	21.80	21.91	21.41
12/ 10		1	0	21.37	21.40	21.22
		1	24	21.41	21.38	21.33
		1	49	21.35	21.30	20.97
	16QAM	25	0	20.60	20.61	20.31
		25	12	20.56	20.67	20.43
		25	25	20.57	20.60	20.38
		50	0	21.54	21.61	21.35

	LTE Band 13								
Band/BW	Modulation	RB Size	RB offset	Low CH 23205 Frequency 779.5 MHz	Mid CH 23230 Frequency 782.0 MHz	High CH 23255 Frequency 784.5 MHz			
		1	0	21.87	22.07	22.00			
		1	12	21.98	22.06	21.93			
		1	24	21.95	22.04	22.01			
	QPSK	12	0	21.44	21.41	21.41			
		12	6	21.49	21.43	21.38			
		12	13	21.40	21.52	21.52			
13/ 5		25	0	21.48	21.46	21.48			
		1	0	21.08	21.14	20.89			
	16QAM	1	12	21.50	21.55	21.31			
		1	24	21.27	21.29	21.34			
		12	0	20.53	20.53	20.46			
		12	6	20.62	20.61	20.49			
		12	13	20.47	20.67	20.58			
		25	0	20.94	20.93	20.93			
Band/BW	Modulation	RB Size	RB offset	1	Mid CH 23230 Frequency	I			
				1	782.0 MHz	/			
		1	0	1	22.13	1			
		1	24	1	22.09	1			
		1	49	1	22.11	/			
	QPSK	25	0	1	21.53	/			
		25	12	1	21.56	/			
		25	25	/	21.57	/			
13/ 10		50	0	/	21.61	/			
13/ 10		1	0	1	21.15	1			
		1	24	1	21.58				
		1	49	1	21.44	1			
	16QAM	25	0	1	20.67				
		25	12	1	20.70	1			
		25	25	1	20.71	1			
		50	0	/	21.07	/			

EIRP

		LTE B	AND 7					
5MHz QPSK								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)		
20775	2502.5	22.20	0.1	22.30	169.82	2		
21100	2535	23.13	0.1	23.23	210.38	2		
21425	2567.5	23.05	0.1	23.15	206.54	2		

	5MHz 16QAM									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)				
20775	2502.5	21.74	0.1	21.84	152.76	2				
21100	2535	22.21	0.1	22.31	170.22	2				
21425	2567.5	22.71	0.1	22.81	190.99	2				

	10MHz QPSK									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)				
20800	2505	22.25	0.1	22.35	171.79	2				
21100	2535	23.21	0.1	23.31	214.29	2				
21400	2565	23.01	0.1	23.11	204.64	2				

	10MHz 16QAM									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _τ -L _c (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)				
20800	2505	21.73	0.1	21.83	152.41	2				
21100	2535	22.15	0.1	22.25	167.88	2				
21400	2565	22.69	0.1	22.79	190.11	2				

	15MHz QPSK									
Channel	Frequency (MHz)	Conducted Power (dBm)	Gτ-Lc (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)				
20825	2507.5	22.18	0.1	22.28	169.04	2				
21100	2535	23.21	0.1	23.31	214.29	2				
21375	2562.5	23.12	0.1	23.22	209.89	2				

	15MHz 16QAM									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)				
20825	2507.5	21.80	0.1	21.90	154.88	2				
21100	2535	22.22	0.1	22.32	170.61	2				
21375	2562.5	22.78	0.1	22.88	194.09	2				

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

	20MHz QPSK									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)				
20850	2510	22.30	0.1	22.40	173.78	2				
21100	2535	23.23	0.1	23.33	215.28	2				
21350	2560	23.15	0.1	23.25	211.35	2				

	20MHz 16QAM									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)				
20850	2510	21.86	0.1	21.96	157.04	2				
21100	2535	22.23	0.1	22.33	171.00	2				
21350	2560	22.84	0.1	22.94	196.79	2				

	LTE BAND 12								
	1.4MHz QPSK								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23017	699.7	22.12	-2	17.97	62.66	3			
23095	707.5	22.25	-2	18.10	64.57	3			
23173	715.3	22.14	-2	17.99	62.95	3			

	1.4MHz 16QAM								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23017	699.7	21.39	-2	17.24	52.97	3			
23095	707.5	21.53	-2	17.38	54.70	3			
23173	715.3	21.29	-2	17.14	51.76	3			

	3MHz QPSK								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23025	700.5	22.13	-2	17.98	62.81	3			
23095	707.5	22.26	-2	18.11	64.71	3			
23165	714.5	22.09	-2	17.94	62.23	3			

	3MHz 16QAM								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23025	700.5	21.44	-2	17.29	53.58	3			
23095	707.5	21.59	-2	17.44	55.46	3			
23165	714.5	21.32	-2	17.17	52.12	3			

VERTIAG										
	5MHz QPSK									
Channel	Frequency (MHz)	Conducted Power (dBm)	G _τ -L _c (dB)	ERP (dBm)	ERP (mW)	Limit (W)				
23035	701.5	22.20	-2	18.05	63.83	3				
23095	707.5	22.18	-2	18.03	63.53	3				
23155	713.5	22.15	-2	18.00	63.10	3				

	5MHz 16QAM								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23035	701.5	21.42	-2	17.27	53.33	3			
23095	707.5	21.51	-2	17.36	54.45	3			
23155	713.5	21.28	-2	17.13	51.64	3			

	10MHz QPSK								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23060	704	22.27	-2	18.12	64.86	3			
23095	707.5	22.31	-2	18.16	65.46	3			
23130	711	22.21	-2	18.06	63.97	3			

	10MHz 16QAM								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23060	704	21.54	-2	17.39	54.83	3			
23095	707.5	21.61	-2	17.46	55.72	3			
23130	711	21.35	-2	17.20	52.48	3			

REMARKS: ERP Output Power (dBm) = EIRP (dBm) -2.15(dB).

LTE BAND 13

	5MHz QPSK								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23205	779.5	21.98	-1.7	18.13	65.01	3			
23230	782	22.07	-1.7	18.22	66.37	3			
23255	784.5	22.01	-1.7	18.16	65.46	3			

	5MHz 16QAM								
Channel	Frequency (MHz)	Conducted Power (dBm)	G _T -L _C (dB)	ERP (dBm)	ERP (mW)	Limit (W)			
23205	779.5	21.50	-1.7	17.65	58.21	3			
23230	782	21.55	-1.7	17.70	58.88	3			
23255	784.5	21.34	-1.7	17.49	56.10	3			

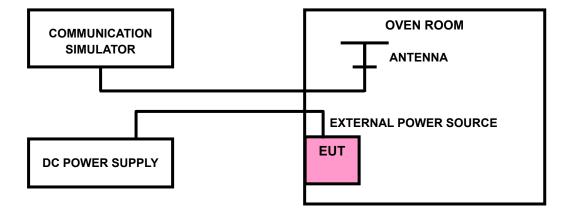
	10MHz QPSK							
Channel Frequency Conducted Power G _T -L _C ERP ERP Limit (MHz) (dBm) (dB) (dBm) (mW) (W)								
23230	782	22.13	-1.7	18.28	67.30	3		

	10MHz 16QAM							
Channel	Channel Frequency Conducted Power G _T -L _C ERP ERP Limit (MHz) (dBm) (dB) (dBm) (mW) (W)							
23230	782	21.58	-1.7	17.73	59.29	3		

REMARKS: ERP Output Power (dBm) = EIRP (dBm) -2.15(dB).

3.2 FREQUENCY STABILITY MEASUREMENT

3.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT


The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

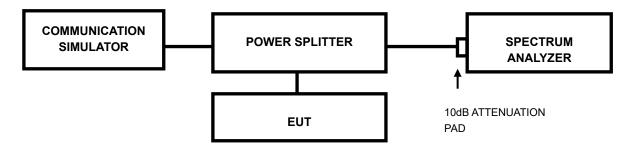
3.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

3.3.3 TEST SETUP

Please Refer to Appendix of this test report.


Note: VL = Low voltage(3.4V); VN/NV = Normal voltage(3.8V); VH = High

voltage(4.5V); NT = Normal temperature (25°C)

3.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 %of the total mean power of a given emission.

3.3.2 TEST SETUP

3.3.3 TEST PROCEDURES

- a. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

3.3.4 TEST RESULTS

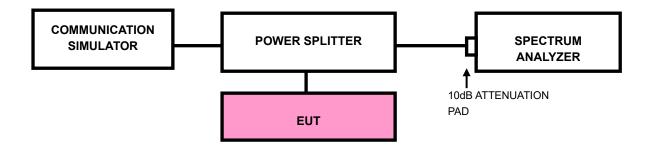
Please Refer to Appendix of this test report.

3.4 BAND EDGE MEASUREMENT

3.4.1 LIMITS OF BAND EDGE MEASUREMENT

According to FCC 27.53(g) specified that For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

According to FCC 27.53(h) specified that For operations in the 1710-1755 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.


According to FCC 27.53(m)(4) specified that For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. For mobile digital stations, in the 1-megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed.

47 CFR 27.53(c)(2): On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

47 CFR 27.53(f): For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

3.4.2 TEST SETUP

- a) All measurements were done at low and high operational frequency range
- b) Connect the transmitter to the spectrum analyzer via coaxial cable while ensuring proper impedance matching.
- c) Tune the analyzer to the nominal center frequency of the emission bandwidth (EBW)
- d) .Set the resolution bandwidth (RBW) ≥ 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- e) Beyond the 1MHz band from the band edge, RBW=1MHz was used.
- f) Set the video bandwidth (VBW) to $\ge 3 \times RBW$.
- g) Select the average power (RMS) display detector.
- h) Set the number of measurement points to ≥ 1001 .
- i) Use auto-coupled sweep time.
- j) Perform the measurement over an interval of time when the transmission is continuous and at its maximum power level.
- k) The RF fundamental frequency should be excluded against the limit line in the operating frequency band and use RBW is 10KHz or 100KHz.
- I) Record the max trace plot into the test report.

3.4.4 TEST RESULTS

Please Refer to Appendix of this test report.

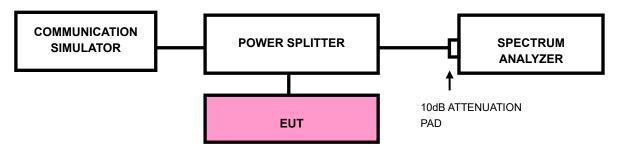
3.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

According to FCC 27.53(g) specified that For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

According to FCC 27.53(h) specified that For operations in the 1710-1755 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

According to FCC 27.53(m)(4) specified that For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. For mobile digital stations, in the 1-megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed.

47 CFR 27.53(c)(2): On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;


47 CFR 27.53(f): For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

3.5.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 9kHz up to a frequency including its 10th harmonic. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

3.5.3 TEST SETUP

3.5.4 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

Please Refer to Appendix of this test report.

3.6 RADIATED EMISSION MEASUREMENT

3.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to FCC 27.53(g) specified that For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

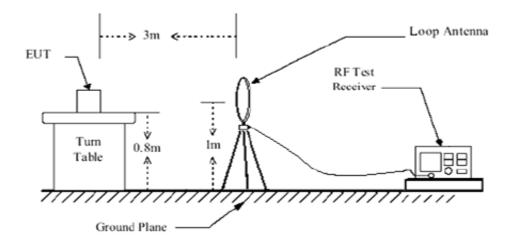
According to FCC 27.53(h) specified that For operations in the 1710-1755 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

According to FCC 27.53(m)(4) specified that For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. For mobile digital stations, in the 1-megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed.

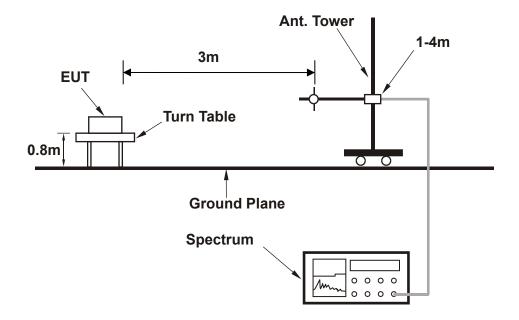
47 CFR 27.53(c)(2): On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

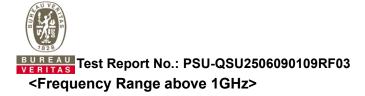
47 CFR 27.53(f): For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

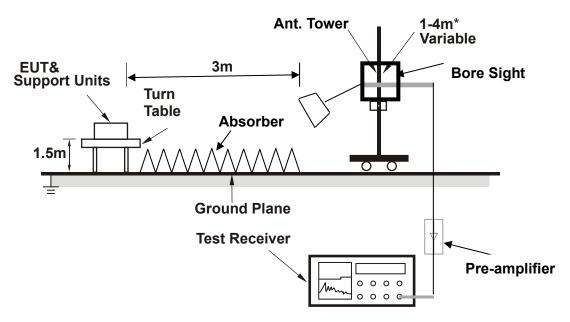
3.6.2 TEST PROCEDURES


- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G.
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.

NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.


3.6.3 DEVIATION FROM TEST STANDARD

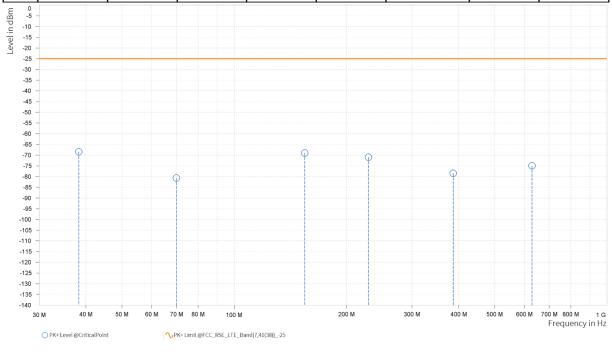

No deviation


< Frequency Range below 30MHz >

< Frequency Range 30MHz~1GHz >

Note: Above 1G is a directional antenna depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

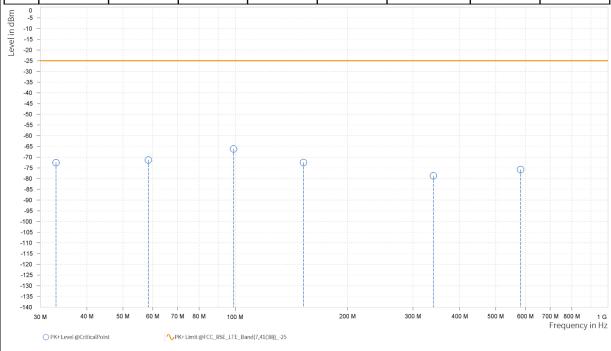

3.6.5 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA

LTE Band 7 CHANNEL BANDWIDTH: 20MHz / QPSK									
MODE	TX channel 21100	FREQUENCY RANGE	30MHz~1GHz						
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ						
TESTED BY	Hanwen Xu								

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	38.300	-68.44	-25.00	43.44	-0.15	Н	146.2	1.00
1	69.950	-80.67	-25.00	55.67	-10.52	Н	355.1	2.00
1	154.600	-68.95	-25.00	43.95	-14.00	Н	202.5	1.00
1	229.150	-70.91	-25.00	45.91	0.81	Н	314.8	1.00
1	386.600	-78.45	-25.00	53.45	0.41	Н	90.1	1.00
2	629.392	-74.96	-25.00	49.96	0.76	Н	103.3	1.00



MODE	TX channel 21100	FREQUENCY RANGE	30MHz~1GHz
ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	INPUT POWER	120Vac 60HZ
TESTED BY	Hanwen Xu		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

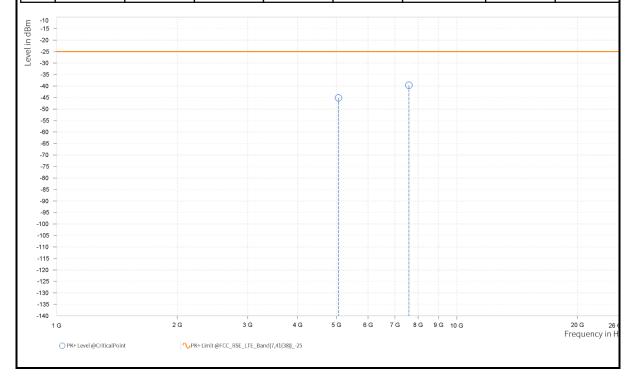
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	33.050	-72.54	-25.00	47.54	-6.35	V	0.9	2.00
1	58.500	-71.37	-25.00	46.37	-3.44	V	201.3	1.00
1	99.000	-66.14	-25.00	41.14	5.05	V	101.3	2.00
1	152.500	-72.50	-25.00	47.50	-11.91	V	145	1.00
1	340.250	-78.70	-25.00	53.70	-0.38	V	355	2.00
2	582.917	-75.81	-25.00	50.81	-0.21	V	271.8	1.00

ABOVE 1GHz

Note: For higher frequency, the emission is too low to be detected.

					LTE Ba	nd 7				
	NNEL DWIDTH		5MHz / QPSK			MODE		TX channel 21100		
FREC	QUENCY RA	NGE	Abo	ve 1000MH	Z	ENVIRONI CONDITIO		23deg. C, 70)%RH	
NPU	T POWER		120\	Vac 60HZ		TESTED B	Υ	Hanwen Xu		
	Α	NTEN	NA P	OLARITY 8	& TEST DIS	TANCE: HC	RIZONTAL	AT 3 M		
Rg	Frequency [MHz]	PK Lev [dBr	el	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
4	5,066.000	-46.	77	-25.00	21.77	23.80	Н	67.9	2.00	
5	7,599.000	-39.	77	-25.00	14.77	27.56	Н	304.9	1.00	
Egp -10 -10 -20						G	Φ			

	NNEL DWIDTH		5МІ	Hz / QPSK		МО	DE			TX channel 2	21100	
FREG	QUENCY RA	NGE	Above 1000MHz			ENVIRONMENTAL CONDITIONS			ITAL	23deg. C, 70%RH		
INPU	T POWER		120Vac 60HZ			TES	TED BY	1		Hanwen Xu		
		ANTE	NNA	POLARITY	& TEST I	DIST	ANCE:	VE	RTICAL A	Г 3 М		
Rg	Frequency [MHz]	PK- Leve [dBn	el	PK+ Limit [dBm]	PK+ Margin [dB]	Co	rrection [dB]	F	Polarization	Azimuth [deg]	Antenna Height [m]	
4	5,066.000	-43.1	0	-25.00	18.10		24.26	T	V	116.6	2.00	
5	7,598.000	-37.2	26	-25.00	12.26		27.34	T	V	275.1	1.00	
-10s -10s -10s -10s -10s -10s -10s -10s						9		0				
-130 -135 -140												
	1 G		2 G	3 G	4 G	5 G	6G 7		8G 9G 10G		20 G	


PK+ Limit @FCC_RSE_LTE_Band{7,41(38)}_-25

OPK+ Level @CriticalPoint

CHANNEL BANDWIDTH	10MHz / QPSK	MODE	TX channel 21100						
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH						
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu						
ANTEN	ANTENNA DOLADITY & TEST DISTANCE, HODIZONITAL AT A M								

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	5,061.000	-45.14	-25.00	20.14	23.87	Н	97.5	1.00
5	7,592.000	-39.65	-25.00	14.65	27.52	Н	254.6	1.00

-120 — -125 — -130 — -135 — -140

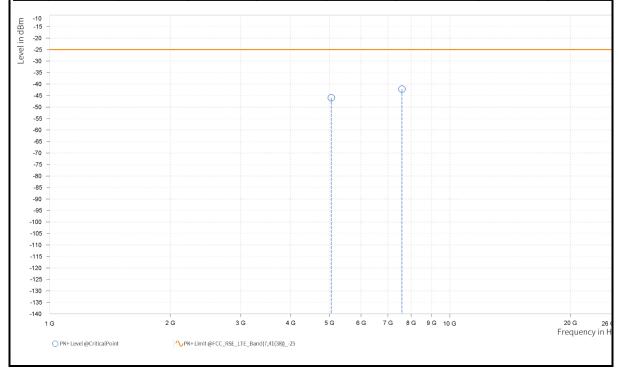
1 G

O PK+ Level @CriticalPoint

2 G

PK+ Limit @FCC_RSE_LTE_Band{7,41(38)}_-25

BUREAU Test Report No.: PSU-QSU2506090109RF03


CHAI BANI	NNEL DWIDTH		101	ИHz / QPSk	(МО	DE		ΤX	TX channel 21100		
FREC	QUENCY RA	NGE	Above 1000MHz				/IRONMEN	TAL	230	deg. C, 70%	RH	
INPU	T POWER		120	Vac 60HZ		TES	STED BY		На	nwen Xu		
		ANTEN	ANI	POLARITY	& TES	T DI	STANCE: V	ERTICAL	AT	3 M		
Rg	Frequency [MHz]	PK+ Leve [dBm	ı	PK+ Limit [dBm]	PK+ Marg [dB	in	Correction [dB]	Polarizati	on	Azimuth [deg]	Antenna Height [m]	
4	5,061.500	-45.3	1	-25.00	20.3	1	24.30	V		96.1	1.00	
5	7,592.000	-30.5	6	-25.00	5.56	6	27.30	V		246.8	1.00	
## 100 1-100							Φ	0				

20 G 26 c Frequency in H

CHANNEL BANDWIDTH	15MHz / QPSK	MODE	TX channel 21100
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	5,056.500	-45.95	-25.00	20.95	23.92	Н	96.9	1.00
5	7,585.500	-42.20	-25.00	17.20	27.48	Н	261	1.00

	NNEL DWIDTH		15N	1Hz / QPSK		MODE		TX channel	21100	
FREC	UENCY RA	NGE	Above 1000MHz			ENVIRONM CONDITION		23deg. C, 70%RH		
NPU	T POWER		120Vac 60HZ			TESTED BY	1	Hanwen Xu		
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
Rg	Frequency [MHz]	PK- Leve [dBr	el	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
4	5,056.500	-42.8	32	-25.00	17.82	24.34	V	116.6	2.00	
5	7,585.000	-32.0)2	-25.00	7.02	27.26	v	251	1.00	
Egp 1-15 - 15 - 120 - 125 - 130 - 135 - 13							φ			
-130 - -135 - -140	G		2 G	3 G	4 G	5G 6G 7G	8G 9G 10G		20 G Frequei	

	NNEL DWIDTH		20N	IHz / QPSK		MODE		TX channel 2	20850	
FREC	QUENCY RA	NGE	Abo	ve 1000MH	Z	ENVIRONM CONDITION		23deg. C, 70%RH		
INPU	T POWER		120	Vac 60HZ		TESTED BY	7	Hanwen Xu		
	Δ	NTEN	NA P	OLARITY & TEST DISTANCE: HORIZONTA				AT 3 M		
Rg	Frequency [MHz]	PK Lev [dB	el	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
4	5,002.500	-44.	20	-25.00	19.20	23.67	Н	95.4	1.00	
5	7,503.000	-37.	10	-25.00	12.10	27.41	Н	55.2	2.00	
-10						φ	Q			
-120 -125 -130										
-135 -140										

4 G

5 G

3 G

◆PK+ Limit @FCC_RSE_LTE_Band{7,41(38)}_-25

6G 7G 8G 9G 10G

2 G

1 G

OPK+ Level @CriticalPoint

20 G 26 Frequency in H

	NEL OWIDTH		20N	1Hz / QPSK		MODE			TX channel	20850
REQ	UENCY RA	NGE	Abo	ve 1000MH	z	ENVIE	_	IENTAL NS	23deg. C, 7	0%RH
NPU ⁻	T POWER		120	Vac 60HZ		TEST	ED B	Y	Hanwen Xu	
		ANTE	NNA	POLARITY	' & TEST [DISTAN	CE: V	ERTICAL A	Г 3 М	
Rg	Frequency [MHz]	PK- Leve [dBr	el	PK+ Limit [dBm]	PK+ Margin [dB]	Corre [d		Polarization	Azimuth [deg]	Antenna Height [m]
4	5,002.000	-41.8	35	-25.00	16.85	23.	88	V	115.3	2.00
5	7,504.000	-33.3	35	-25.00	8.35	27.	39	V	357.8	1.00
Egg -10 -15 - 10 - 10 - 115 - 120 - 130 - 135 -								Φ		
-140	G		2 G	3 G	4 G	5 G 6				20 G 2

-135 -140

1 G

OPK+ Level @CriticalPoint

BUREAU Test Report No.: PSU-QSU2506090109RF03

	NNEL DWIDTH		20N	IHz / QPSK		MODE		TX channel 2	21100
FREC	QUENCY RA	NGE	Abo	ve 1000MH	Z	ENVIRONM CONDITION		23deg. C, 70)%RH
INPU	T POWER		120	Vac 60HZ		TESTED BY	1	Hanwen Xu	
	Δ	NTEN	NA P	OLARITY 8	RIZONTAL A	AT 3 M			
Rg	Frequency [MHz]	PK Lev [dBı	el	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	5,052.500	-45.	34	-25.00	20.34	23.97	Н	97.6	1.00
5	7,578.000	-35.	35	-25.00	10.35	27.48	Н	312.7	1.00
⊂ -10					,				
Level in dBm -15 -25 -30 -30	_								
.⊑ -20	-								
	-								
-35	-						φ		
-40	-								
-45	-					φ			
-50									
-55									
-60 -65									
-70									
-75									
-80	_								
-85									
-90									
-95									
-100	-								
-105	-								
-110	+								
-115	-								
-120	+								
-125	-								
-130	+								

3 G

◆PK+ Limit @FCC_RSE_LTE_Band{7,41(38)}_-25

2 G

4 G

5 G

6 G

7G 8G 9G 10G

20 G 26 Frequency in F

CHAN BANE	INEL WIDTH		20N	1Hz / QPSK		MODE		TX channel	21100
FREQ	UENCY RA	NGE	Abo	ve 1000MH	Z	ENVIRONM CONDITION		23deg. C, 7	0%RH
NPU ⁻	Γ POWER		120	Vac 60HZ		TESTED BY	Υ	Hanwen Xu	
		ANTE	NNA	POLARITY	& TEST D	ISTANCE: V	ERTICAL AT	3 M	
Rg	Frequency [MHz]	PK- Leve [dBr	el	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	5,052.000	-41.0)4	-25.00	16.04	24.38	V	113.8	2.00
5	7,579.000	-29.2	23	-25.00	4.23	27.27	v	310.6	1.00
Ege 1-10						Φ	Φ		
-140	G		2 G	3 G	4 G	5G 6G 7G	8G 9G 10G		20 G 2

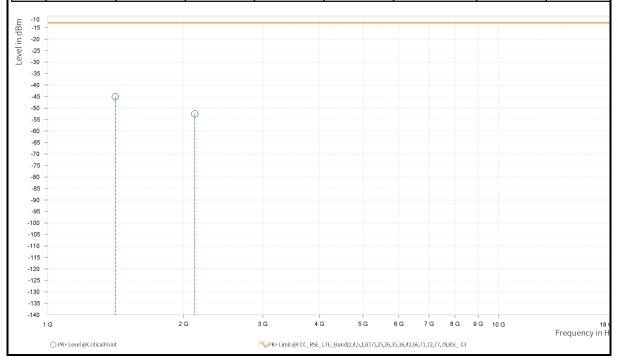
	NEL OWIDTH		20M	Hz / QPSK		МО	DE					TX channel 2	21350	
REQ	UENCY RA	NGE	Abo	ve 1000MH:	Z		/IRON NDITIO			٩L	2	23deg. C, 70)%RH	
NPU ⁻	T POWER		120\	Vac 60HZ		TES	STED E	3Y				Hanwen Xu		
	Δ	NTEN	NA P	OLARITY 8	TEST D	STAI	NCE: H	10	RIZO	DN.	TAL A	T 3 M		
Rg	Frequency [MHz]	PK Lev [dBr	el	PK+ Limit [dBm]	PK+ Margin [dB]	Со	rrectio	n	Pola	ariz	ation	Azimuth [deg]	Anten Heigl [m]	ht
4	5,102.000	-46.8	B1	-25.00	21.81		23.43			Н		96.2	1.00)
5	7,653.000	-35.	74	-25.00	10.74		27.89	\neg		Н		304.9	1.00)
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩						9			φ					
-130 - -135 - -140														
	G		2 G	3 G	4 G	5 G	6 G	7 G	8 G	9 G	10 G		20 G Frequency	2

CHAN BAND	NEL DWIDTH		20N	1Hz / QPSK		MODE		TX channel	21350
FREQ	UENCY RA	NGE	Abo	ve 1000MH	Z	ENVIRON CONDITION		23deg. C, 7	0%RH
NPU ⁻	T POWER		120	Vac 60HZ		TESTED E	BY	Hanwen Xu	
		ANTE	NNA	POLARITY	& TEST D	ISTANCE:	VERTICAL A	Г 3 М	
Rg	Frequency [MHz]	PK- Leve [dBr	el	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	5,102.500	-41.2	21	-25.00	16.21	23.95	V	111.8	2.00
5	7,653.500	-32.0)5	-25.00	7.05	27.74	v	221.4	1.00
■ Bull -10 -10						0	φ		
-140	G		2 G	3 G	4 G	5G 6G 7	G 8G 9G 10G		20 G 2

					LTE B	BAN	D 12						
	NNEL DWIDTH		1.41	MHz / QPSk	(МС	ODE			ТХ	(cha	annel 23	095
FREC	QUENCY RA	NGE	Abo	ve 1000MH	Z		IVIRONME ONDITIONS		_	23	deg	. C, 70%	БRН
NPU	T POWER		120	Vac 60HZ		TE	STED BY			На	nwe	en Xu	
	Α	NTEN	NA P	OLARITY 8	k TEST	DIS	TANCE: H	ORIZ	ONTA	LA	Г3	M	
Rg	Frequency [MHz]	PK- Leve [dBr	el	PK+ Limit [dBm]	PK+ Margi [dB]	n	Correction [dB]	Pol	arizat	ion		zimuth [deg]	Antenna Height [m]
2	1,414.000	-37.9	99	-13.00	24.99)	13.83		Н		:	287.2	1.00
2	2,120.600	-53.5	55	-13.00	40.55	5	19.01		Н		;	324.7	2.00
■ Bull -10 -20 - 25 - 30 - 25 - 30 - 45 - 50 - 55 - 60 - 65 - 70 - 75 - 80 - 95 - 100 - 105 - 110 - 115 - 120 - 125 - 1	G			Φ									
-130 - -135 - -140													

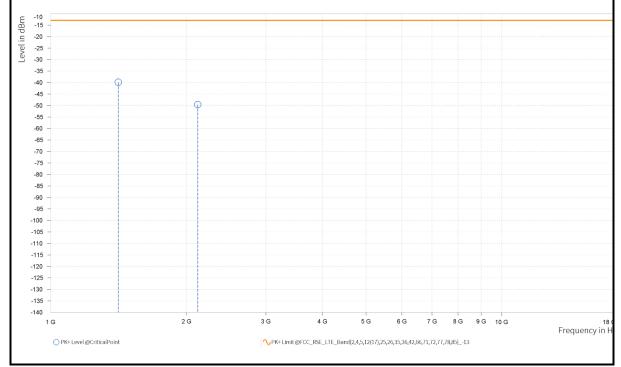
OPK+ Level @CriticalPoint

 $\fbox{ $^{\bullet}$ PK+ Limit @FCC_RSE_LTE_Band \{2,4,5,12(17),25,26,35,36,42,66,71,72,77,78,85\}_-13 }$


	CHANNEL BANDWIDTH			1.4MHz / QPSK			DE		TX channel 23095			
I	FREQUENCY RANGE			$I \Delta h \alpha v \Delta 1000MHz$			ENVIRONMENTAL CONDITIONS			23deg. C, 70%RH		
I	INPUT POWER			120Vac 60HZ			STED BY		На	nwen Xu		
			ANTENN	IA POLARITY	& TES	T DI	STANCE: V	ERTICAL A	AT 3	3 M		
	Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margi [dB]	in	Correction [dB]	Polarizatio	ation Azimuth He			

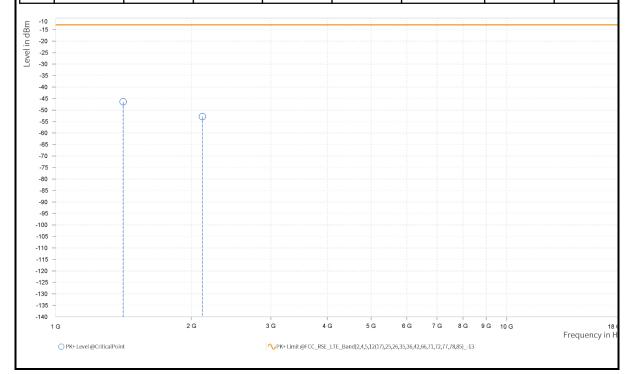
CHANNEL BANDWIDTH	3MHz / QPSK	MODE	TX channel 23095
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,412.500	-45.10	-13.00	32.10	13.78	Н	231.3	1.00
2	2,118.450	-52.56	-13.00	39.56	19.01	Н	1	1.00



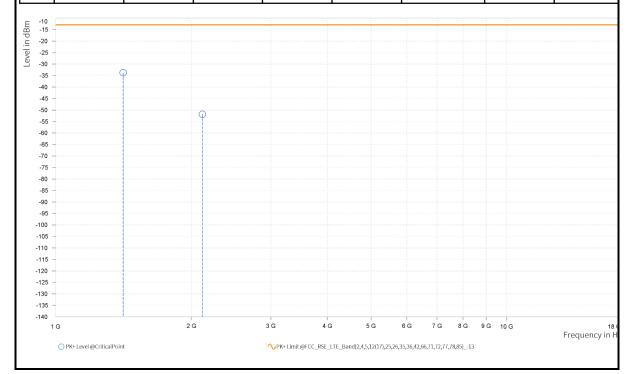
CHANNEL BANDWIDTH	3MHz / QPSK	MODE	TX channel 23095
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu
	=		

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,412.500	-39.85	-13.00	26.85	13.46	V	11.2	2.00
2	2,118.450	-49.56	-13.00	36.56	19.62	V	345.2	1.00

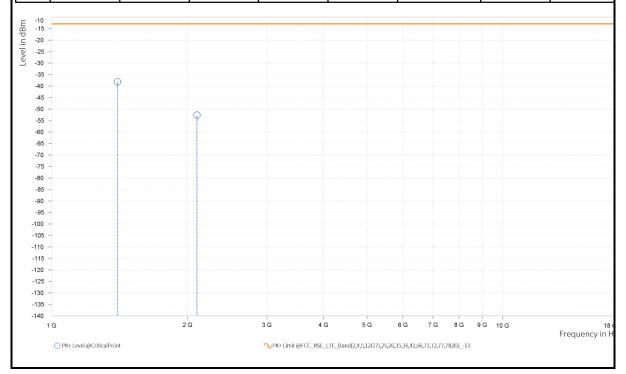
CHANNEL BANDWIDTH	5MHz / QPSK	MODE	TX channel 23095	
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu	

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,410.500	-46.39	-13.00	33.39	13.71	Н	235.5	1.00
2	2,115.750	-52.81	-13.00	39.81	18.99	Н	348.1	1.00

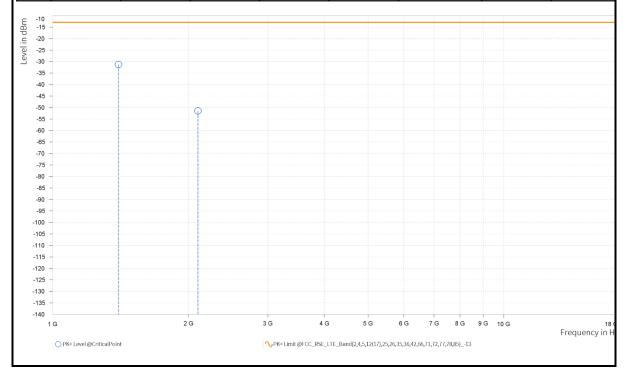


CHANNEL BANDWIDTH	5MHz / QPSK	MODE	TX channel 23095	
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu	

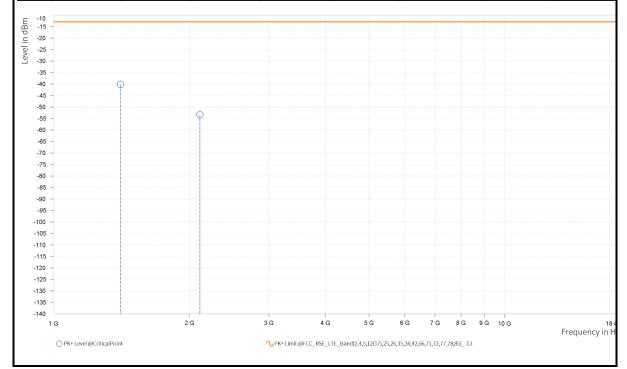
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,410.500	-33.75	-13.00	20.75	13.53	V	35.2	1.00
2	2,115.750	-51.83	-13.00	38.83	19.63	٧	359	2.00

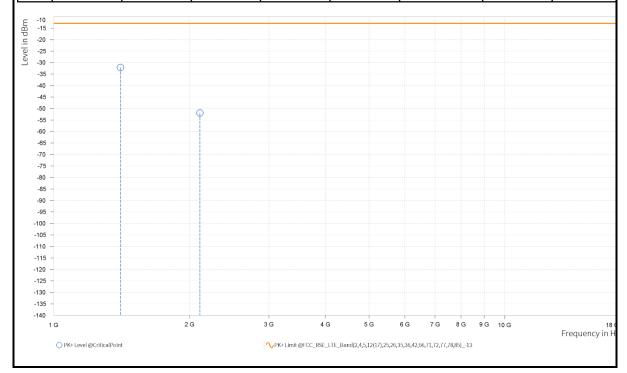
CHANNEL BANDWIDTH	10MHz / QPSK	MODE	TX channel 23060	
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu	


R	g	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2	1,399.000	-38.10	-13.00	25.10	13.26	Н	235.4	1.00
2	2	2,098.500	-52.64	-13.00	39.64	18.51	Н	35.2	1.00

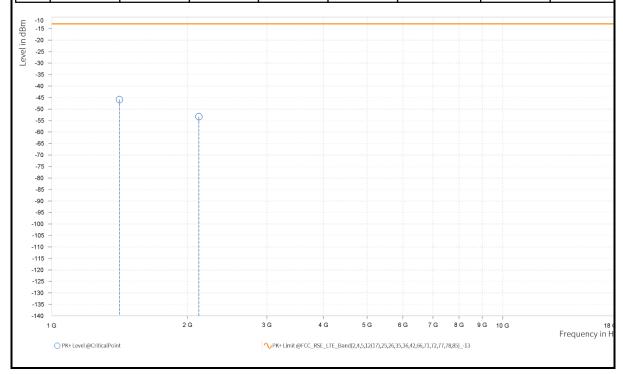
CHANNEL BANDWIDTH	10MHz / QPSK	MODE	TX channel 23060	
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu	
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M				


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,399.000	-31.30	-13.00	18.30	13.69	V	359	2.00
2	2,098.500	-51.50	-13.00	38.50	19.51	V	359	2.00

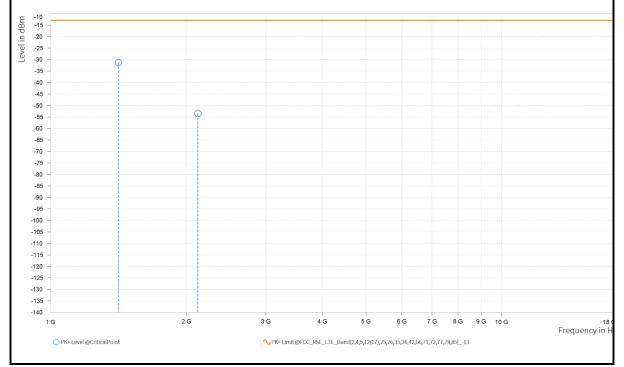
CHANNEL BANDWIDTH	10MHz / QPSK	MODE	TX channel 23095	
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu	


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,406.000	-40.16	-13.00	27.16	13.52	Н	229.8	1.00
2	2,109.000	-53.33	-13.00	40.33	18.95	Н	181	2.00

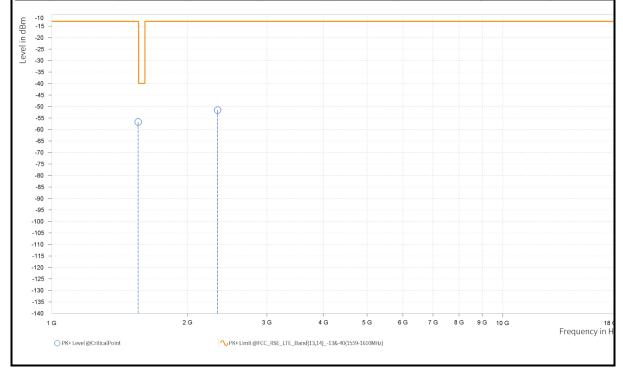
CHANNEL BANDWIDTH	10MHz / QPSK	MODE	TX channel 23095			
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH			
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu			
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,406.500	-32.18	-13.00	19.18	13.63	٧	1	1.00
2	2,109.000	-51.94	-13.00	38.94	19.65	V	179.6	1.00

CHANNEL BANDWIDTH	10MHz / QPSK	MODE	TX channel 23130	
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu	


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,413.000	-45.87	-13.00	32.87	13.80	Н	34.6	1.00
2	2,119.500	-53.31	-13.00	40.31	19.02	Н	124.5	2.00

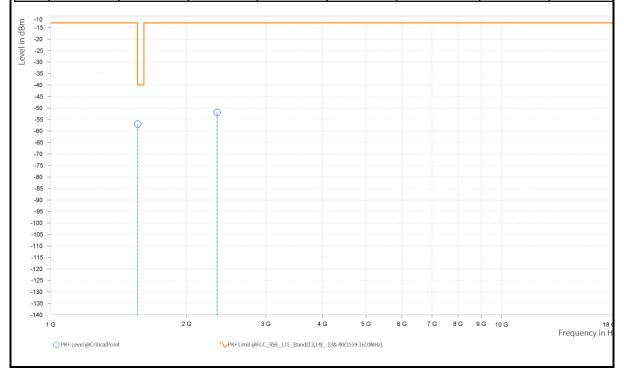
CHANNEL BANDWIDTH	10MHz / QPSK	MODE	TX channel 23130					
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH					
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								


Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,413.500	-31.34	-13.00	18.34	13.43	٧	26.8	2.00
2	2,119.500	-53.44	-13.00	40.44	19.62	V	293.5	1.00

LTE B13									
CHANNEL BANDWIDTH	5MHz / QPSK	MODE	TX channel 23205						
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH						
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu						

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,554.500	-56.71	-13.00	43.71	12.80	Н	117.4	2.00
3	2,331.750	-51.54	-13.00	38.54	19.34	Н	191.6	1.00

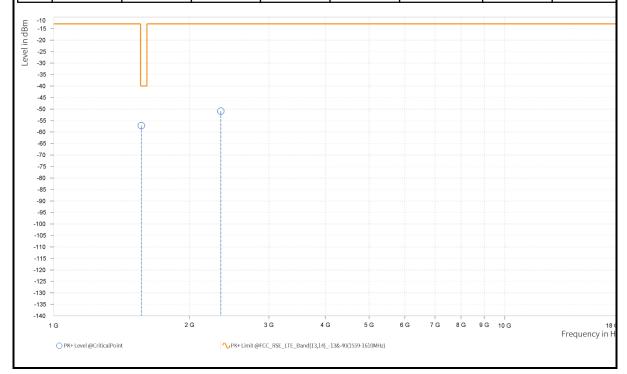
	CHANNEL BANDWIDTH		5MH	5MHz / QPSK			DDE		тх	TX channel 23205		
FREG	QUENCY RA	NGE	Above 1000MHz ENVIRONMENTAL CONDITIONS 23deg. C, 70			_			leg. C, 70%	%RH		
INPU	T POWER		120	Vac 60HZ		TE	STED BY		Har	nwen Xu		
		ANTE	NNA	POLARITY	' & TES1	ΓDI	STANCE: \	/ERTICAL	AT 3	М		
Rg Frequency [MHz] Property [dB			el	PK+ Limit [dBm]	PK+ Margi [dB]		Correction [dB]	Polarization		Azimuth [deg]	Antenna Height [m]	
2	1,555.000	-50.8	35	-13.00	37.85	5	14.13	v		331.8	1.00	
3	2,331.750	-50.9)4	-13.00	37.94		19.95	v		359	1.00	
-15 -20 -25 -30 -25 -30 -35 -35 -40 -45 -50 -55 -50 -55 -50 -55 -50 -100 -15 -100 -115 -120 -125 -120 -125 -125 -120 -125		φ		Φ								
-130 - -135 -												
	1 G		2 0	3	3 G	4 G	5 G	6G 7G 8	G 9 G	10 G	1 Frequency in	


\tag{PK+ Limit @FCC_RSE_LTE_Band(13,14}_-13&-40(1559-1610MHz)

O PK+ Level @CriticalPoint

CHANNEL BANDWIDTH	5MHz / QPSK	MODE	TX channel 23230	
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu	

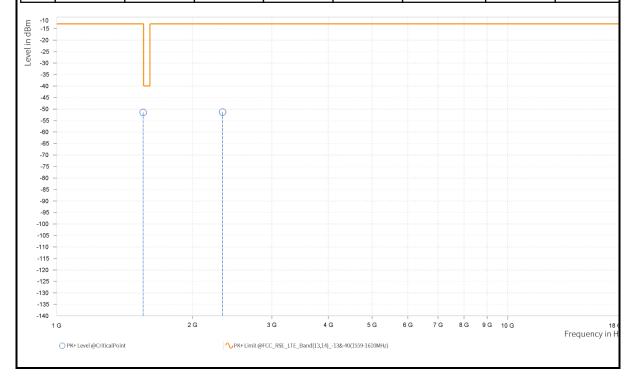
Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,559.500	-57.02	-40.00	17.02	12.73	Н	351.4	1.00
3	2,339.250	-51.87	-13.00	38.87	19.58	Н	356.2	1.00



	NNEL DWIDTH		5MH:	5MHz / QPSK			MODE			7	TX channel 23230		
FREG	QUENCY RA	NGE	Abov	re 1000MH	Z		IVIRONME ONDITIONS		L	2	23de	g. C, 70%	SRH
NPU	T POWER		120V	/ac 60HZ		TE	STED BY			F	lanv	ven Xu	
		ANTE	NNA F	POLARITY	& TES	T DI	STANCE:	VER1	ΓΙCΑΙ	L A	T 3 I	М	
Rg	Frequency [MHz]	PK- Leve [dBn	əl	PK+ Limit [dBm]	PK- Marg [dB	in	Correction [dB]	Pol	Polarization		1 /	Azimuth [deg]	Antenna Height [m]
2	1,560.000	-46.9	0	-40.00	6.90)	14.12		٧			118.1	2.00
3	2,339.250	-51.4	13	-13.00	38.4	3	19.98		٧			359	2.00
■ Bull -10 -20 -25 -30 -30 -35 -40 -45 -55 -55 -55 -55 -50 -75 -80 -95 -100 -115 -112 -125 -130 -135 -13		φ		Φ									
-140 1	1 G		2 G		3 G	4 G	5 G	6 G	7 G	8 G	9 G	10 G	1 Frequency in

CHANNEL BANDWIDTH	5MHz / QPSK	MODE	TX channel 23255	
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH	
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu	

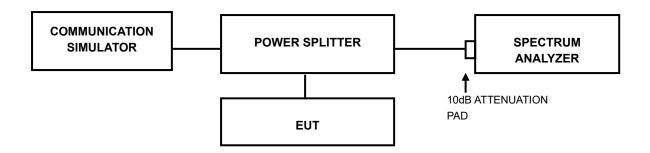
F	₹g	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
	2	1,564.500	-57.20	-40.00	17.20	12.68	Н	359	2.00
	3	2,346.750	-50.89	-13.00	37.89	19.81	Н	357.8	1.00



CHANNEL BANDWIDTH FREQUENCY RANGE			5MHz / QPSK Above 1000MHz			MODE				TX channel 23255		
						ENVIRONMENTAL CONDITIONS			23	23deg. C, 70%RH		
INPU	Γ POWER		120Vac 60HZ			TESTED BY			Ha	anwen Xu		
		ANTE	NNA I	A POLARITY & TEST DISTANCE: VERT				/ERTICA	L AT 3 M			
Rg	g Frequency PK Lev [MHz] [dBi		el Limit		PK+ Margi [dB]	n Correction [dB]		Polarization		Azimuth [deg]	Antenna Height [m]	
2	1,564.500	-50.0	8	-40.00	10.08		14.10	V		1	2.00	
3	2,346.750	-51.0)5	-13.00	38.05		20.01	V		358.2	1.00	
Egn -10 - 10 - 10 - 115 - 120 - 125 - 130 - 135		· ·		φ								
-140 1	G	i	2 G		3 G	4 G	5 G	6G 7G	8 G	9 G 10 G	18 Frequency in	

CHANNEL BANDWIDTH	10MHz / QPSK	MODE	TX channel 23230					
FREQUENCY RANGE	Above 1000MHz	ENVIRONMENTAL CONDITIONS	23deg. C, 70%RH					
INPUT POWER	120Vac 60HZ	TESTED BY	Hanwen Xu					

Rg	Frequency [MHz]	PK+ Level [dBm]	PK+ Limit [dBm]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	1,555.000	-51.46	-13.00	38.46	12.79	Н	352.9	1.00
3	2,332.500	-51.33	-13.00	38.33	19.37	Н	0.9	2.00



CHANNEL BANDWIDTH		10MHz / QPSK Above 1000MHz			MODE ENVIRONMENTAL CONDITIONS				T	TX channel 23230 23deg. C, 70%RH			
REQUENCY RANGE									23				
NPU	T POWER		120Vac 60HZ			TESTED BY				Н	anv	ven Xu	
		ANTE	NNA	POLARITY	' & TEST	DIS	STANCE:	VEF	RTICAL	. AT	3 N	И	
Rg Frequency Lev		PK- Leve [dBn	el Limit		PK+ Margin [dB]		Correction [dB]		Polarization		A	Azimuth [deg]	Antenna Height [m]
2	1,555.000	-49.6	66	-13.00	36.66	,	14.13		٧			309	1.00
3	2,332.500	-49.0	4	-13.00	36.04		19.96	T	V		T	108.8	2.00
-35404550556075808590105110115120125 -		φ		Φ									
-130 - -135 -													
-140 1	G	'	2 G		3 G	4 G	5 G	6 G	7 G	8 G	9 G	10 G	1

3.7.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

3.7.2 TEST SETUP

3.7.3 TEST PROCEDURES

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

3.7.4 TEST RESULTS

Please Refer to Appendix of this test report.

4 INFORMATION ON THE TESTING LABORATORIES

We, Huarui 7layers High Technology (Suzhou) Co., Ltd., were founded in 2020 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Huarui 7Layers High Technology (Suzhou) Co., Ltd. Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Accredited Test Lab Cert 6613.01

If you have any comments, please feel free to contact us at the following:

Suzhou EMC/RF Lab:

Tel: +86 (0557) 368 1008

5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

6 Appendix

LTE Band 7

Peak-to-Average Ratio(CCDF)

Test Result

Band	Bandwidth	Modulation	Channel	RB Configuration	Result(dB)	Limit(dB)	Verdict
Band7	20MHz	QPSK	20850	1RB#0	5.13	13	PASS
Band7	20MHz	QPSK	20850	100RB#0	5.79	13	PASS
Band7	20MHz	QPSK	21100	1RB#0	5.01	13	PASS
Band7	20MHz	QPSK	21100	100RB#0	5.68	13	PASS
Band7	20MHz	QPSK	21350	1RB#0	5.50	13	PASS
Band7	20MHz	QPSK	21350	100RB#0	5.75	13	PASS
Band7	20MHz	16QAM	20850	1RB#0	5.67	13	PASS
Band7	20MHz	16QAM	20850	27RB#0	6.46	13	PASS
Band7	20MHz	16QAM	21100	1RB#0	5.69	13	PASS
Band7	20MHz	16QAM	21100	27RB#0	6.38	13	PASS
Band7	20MHz	16QAM	21350	1RB#0	6.11	13	PASS
Band7	20MHz	16QAM	21350	27RB#0	6.61	13	PASS

Test Graphs

