

Report No.: AiTSZ-250728011FW1

5. SAR measurement variabilit

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Report No.: AiTSZ-250728011FW1

6. SAR Measurement Uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

7. RF Exposure Positions

7.1. Generic device

The SAR evaluation shall be performed for surface of the DUT that are accessible during intended use, as indicated in Figure 7.1. Adjust the distance between the device surface and the flat phantom to 0mm.

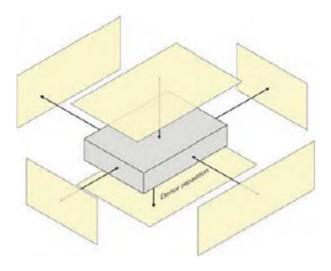
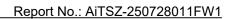
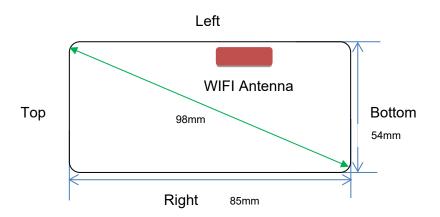



Figure 7.1 – Test positions for generic device

8. RF Output Power


8.1. Wi-Fi Output Power

Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	1	2412	18.00	17.51
802.11b	6	2437	18.00	17.03
	11	2462	18.00	17.23
	1	2412	18.00	17.70
802.11g	6	2437	18.00	17.49
	11	2462	18.00	17.49
	1	2412	18.00	17.60
802.11n HT20	6	2437	18.00	17.32
	11	2462	18.00	17.47
	3	2422	18.00	17.50
802.11n HT40	6	2437	18.00	17.36
	9	2452	18.00	17.28

Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	36	5180	15.50	14.99
802.11a	40	5200	15.50	15.38
	48	5240	15.50	15.04
	36	5180	16.50	16.23
802.11n HT20	40	5200	16.50	14.92
	48	5240	16.50	16.03
802.11n HT40	38	5190	13.00	12.48
	46	5230	13.00	12.80

9. Antenna Location

Rear View

Antenna information:

Distance of The Antenna to the EUT surface and edge (mm)							
Antennas	Front Side	Back Side	Top Side	Bottom Side	Left Side	Right Side	
WLAN	5	5	37	28	5	42	

Note: When the minimum separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Page 29 of 70 Report No.: AiTSZ-250728011FW1

10. SAR Measurement Results

< WLAN 2.4G >

Test Position of	Test			Value ′kg)	Power	Conducted	Tune-up	Scaled SAR		
Body with 0mm	channel 	Mode			Drift	power	power	1g	Date	Plot
	/Freq.		1g	10g	(±5%)	(dBm)	(dBm)	(W/Kg)		
Front Side	1/2412	802.11b	0.168	0.099	0.28	17.51	18.00	0.188	2025/7/28	
Back Side	1/2412	802.11b	0.255	0.155	1.35	17.51	18.00	0.285	2025/7/28	2#
Back Side	1/2412	802.11g	0.250	0.151	0.28	17.70	18.00	0.268	2025/7/28	
Left Side	1/2412	802.11b	0.150	0.087	-1.22	17.51	18.00	0.168	2025/7/28	
Right Side	1/2412	802.11b	0.100	0.048	-2.44	17.51	18.00	0.112	2025/7/28	
Top Side	1/2412	802.11b	0.055	0.023	-1.89	17.51	18.00	0.062	2025/7/28	
Bottom Side	1/2412	802.11b	0.132	0.071	2.04	17.51	18.00	0.148	2025/7/28	

< WLAN 5.2G >

- WLAN 5.2G										
Test Position of	Test channel	Mode		Value /kg)	Power Drift	Conducted	Tune-up	Scaled SAR	Date	Plot
Body with 0mm	/Freq.	Mode	1g	10g	(±5%)	(dBm)	(dBm)	1g (W/Kg)	Bate	1100
Front Side	36/5180	802.11n HT20	0.198	0.110	-3.85	16.23	16.50	0.211	2025/7/29	
Back Side	36/5180	802.11n HT20	0.329	0.167	-1.39	16.23	16.50	0.350	2025/7/29	1#
Left Side	36/5180	802.11n HT20	0.168	0.095	2.12	16.23	16.50	0.179	2025/7/29	
Right Side	36/5180	802.11n HT20	0.113	0.055	2.67	16.23	16.50	0.120	2025/7/29	
Top Side	36/5180	802.11n HT20	0.068	0.032	-1.89	16.23	16.50	0.072	2025/7/29	
Bottom Side	36/5180	802.11n HT20	0.148	0.088	2.94	16.23	16.50	0.157	2025/7/29	

Report No.: AiTSZ-250728011FW1

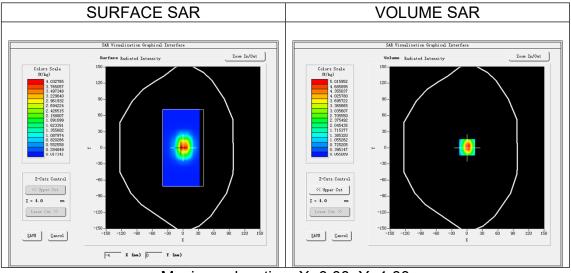
Appendix A. Photo documentation

Refer to appendix Test Setup photo-SAR

Page 31 of 70 Report No.: AiTSZ-250728011FW1

Appendix B. System Check Plots

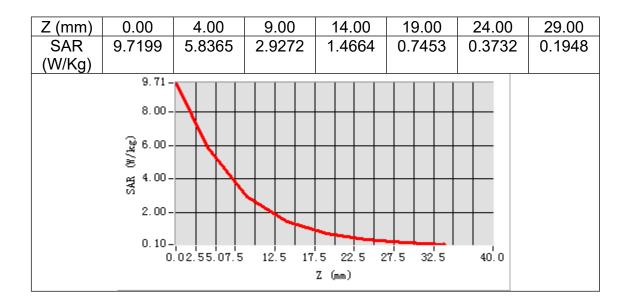
Table of contents	
MEASUREMENT 1 System Performance Check - 2450MHz	
MEASUREMENT 2 System Performance Check - 5200MHz	

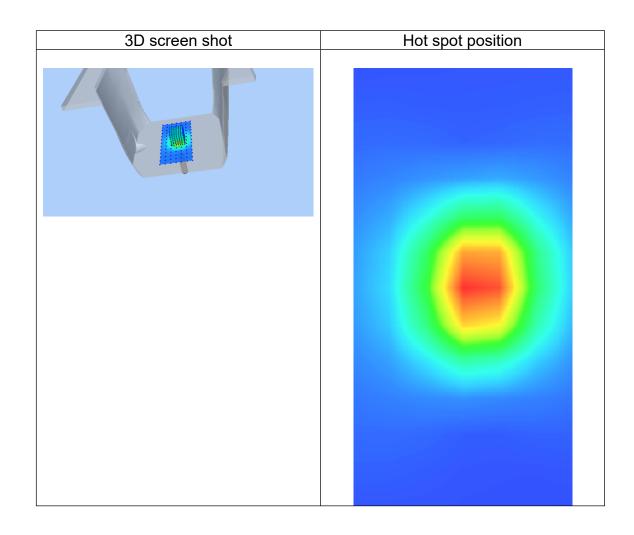

Date of measurement: 28/7/2025

A. Experimental conditions.

7 t. Experimental conditions.	
<u>Area Scan</u>	dx=12mm dy=12mm, h= 5.00 mm
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	Dipole
<u>Band</u>	<u>CW2450</u>
<u>Channels</u>	<u>Middle</u>
Signal	CW (Crest factor: 1.0)
ConvF	2.38

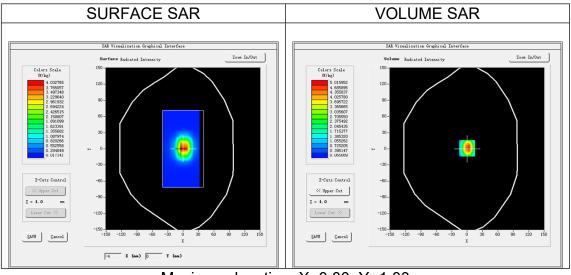
B. SAR Measurement Results


<u>``</u>	T WEGGGI CITICITE I TOGGILO	
	Frequency (MHz)	2450.000000
	Relative permittivity (real part)	40.408511
	Relative permittivity (imaginary part)	13.399264
	Conductivity (S/m)	1.823789
	Variation (%)	-1.250000



Maximum location: X=0.00, Y=1.00 SAR Peak: 8.14 W/kg

SAR 10g (W/Kg)	2.359425
SAR 1g (W/Kg)	5.183642
Horizontal validation criteria:	14.65
minimum distance (mm)	
Vertical validation criteria: SAR ratio	50.15
M2/M1 (%)	

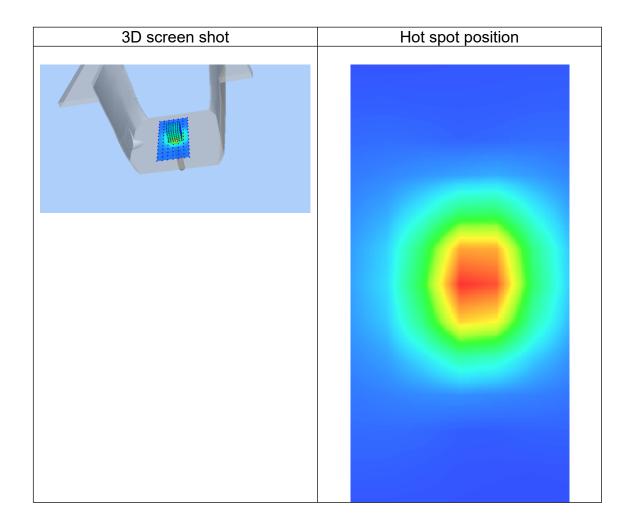

Date of measurement: 29/7/2025

A. Experimental conditions.

Area Scan	dx=10mm dy=10mm, h= 2.00 mm
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Dipole
Band	CW5200
Channels	Middle
Signal	CW (Crest factor: 1.0)
ConvF	2.30

B. SAR Measurement Results

T Wedsarement results	
Frequency (MHz)	5200.000000
Relative permittivity (real part)	37.400000
Relative permittivity (imaginary part)	16.129999
Conductivity (S/m)	4.510778
Variation (%)	-4.570000



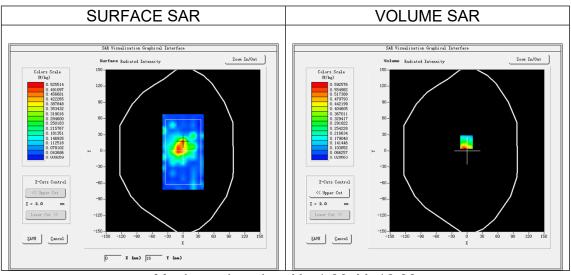
Maximum location: X=0.00, Y=1.00 SAR Peak: 15.14 W/kg

SAR 10g (W/Kg)	5.212361
SAR 1g (W/Kg)	14.712032
Horizontal validation criteria:	14.64
minimum distance (mm)	
Vertical validation criteria: SAR ratio	50.65
M2/M1 (%)	

Z (m m)	0.0	2.0	4.0 0	6.0 0	8.0 0	10. 00	12. 00	14. 00	16. 00	18. 00	20. 00	22. 00
SA R (W/ Kg)	37. 854	22. 366	11. 328	5.6 635	2.8 201	1.4 084	0.7 174	0.3 602	0.1 802	0.1 035	0.0 580	0.0 366
			00-	4	6 8	10 12 Z (14 16 (mm)	18 20) 22 2	4 26		

Appendix C. SAR Test Plots

Table of contents			
MEASUREMENT 1 WLAN 5.2G Body			
MEASUREMENT 2 WLAN 2.4G Body			

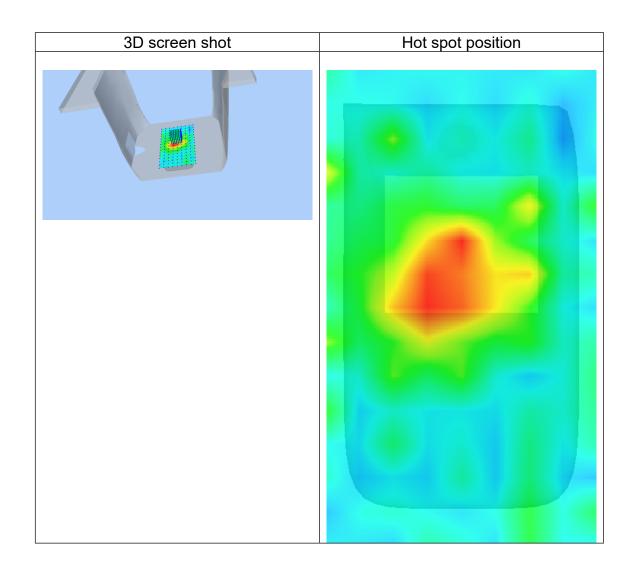

Date of measurement: 29/7/2025

A. Experimental conditions.

Area Scan	dx=10mm dy=10mm, h= 2.00 mm		
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm		
Phantom	Validation plane		
Device Position	Body		
Band	IEEE 802.11n U-NII		
Channels	Low		
Signal	IEEE802.n (Crest factor: 1.0)		
ConvF	2.30		

B. SAR Measurement Results

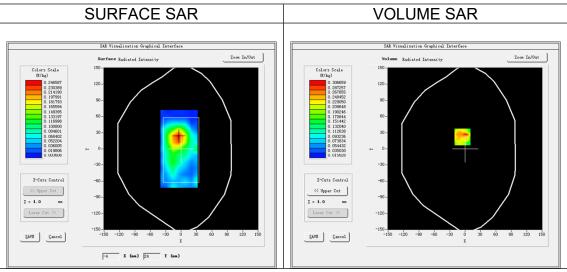
t Wodod off of toodic				
Frequency (MHz)	5180.000000			
Relative permittivity (real part)	36.000000			
Relative permittivity (imaginary part)	16.128888			
Conductivity (S/m)	4.641536			
Variation (%)	-1.390000			



Maximum location: X=-1.00, Y=16.00 SAR Peak: 0.78 W/kg

SAR 10g (W/Kg)	0.166659
SAR 1g (W/Kg)	0.328813
Horizontal validation criteria:	14.60
minimum distance (mm)	
Vertical validation criteria: SAR ratio	31.36
M2/M1 (%)	

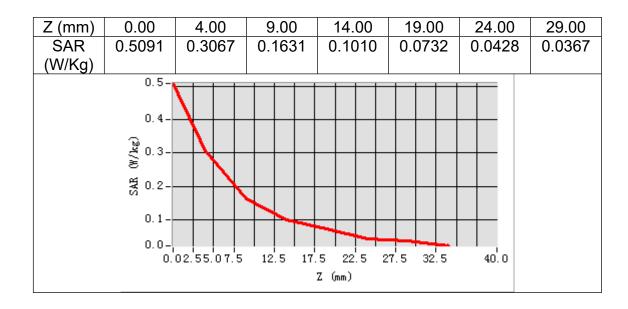
Z (m m)	0.0	2.0	4.0 0	6.0	8.0	10. 00	12. 00	14. 00	16. 00	18. 00	20. 00	22. 00
SA R (W/ Kg)	0.9 144	0.5 998	0.1 881	0.3 605	0.0 762	0.2 057	0.0 777	0.1 395	0.0 606	0.1 009	0.0 511	0.0 697
		0.9 0.8 0.6 0.4 0.4 0.2		4 6	8 1	0 12 Z (n	14 16 nm)	18 20	22 2	4 26		

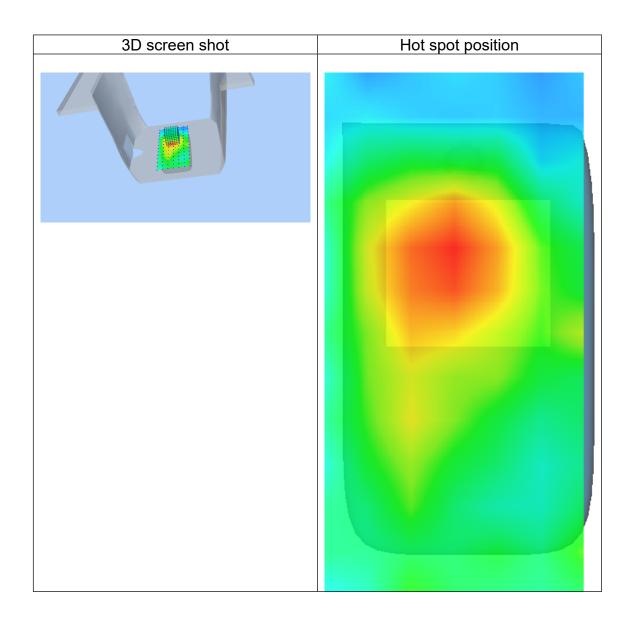

Date of measurement: 28/7/2025

A. Experimental conditions.

Area Scan	dx=12mm dy=12mm, h= 5.00 mm		
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm		
Phantom	Validation plane		
Device Position	Body		
Band	IEEE 802.11b ISM		
Channels	Low		
Signal	IEEE802.b (Crest factor: 1.0)		
ConvF	2.38		

B. SAR Measurement Results


\ WCasarcinent (\Csaits			
Frequency (MHz)	2412.000000		
Relative permittivity (real part)	39.224000		
Relative permittivity (imaginary part)	13.205000		
Conductivity (S/m)	1.769470		
Variation (%)	1.350000		



Maximum location: X=-5.00, Y=22.00 SAR Peak: 0.51 W/kg

SAR 10g (W/Kg)	0.155147
SAR 1g (W/Kg)	0.254811
Horizontal validation criteria:	14.58
minimum distance (mm)	
Vertical validation criteria: SAR ratio	53.18
M2/M1 (%)	

Page 41 of 70 Report No.: AiTSZ-250728011FW1

Appendix D. Calibration Certificate

Table of contents		
E Field Probe - EPGO0523-403		
2450 MHz Dipole - SN 03/15 DIP 2G450-352		
5000-6000 MHz Dipole - SN 03/14 WGA33		

COMOSAR E-Field Probe Calibration Report

Ref: ACR.307.3.24.BES.A

Report No.: AiTSZ-250728011FW1

GUANGDONG ASIA HONGKE TEST TECHNOLOGY CO., LTD

NO.1/F,BUILDING B1, JUNFENG INDUSTRIAL PARK, CHONGQING ROAD, HEPING COMMUNITY, FUHAIHAI STREET, BAO'AN DISTRICT,SHENZHEN, GUANGDONG 518055, P.R.CHINA

MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 39/21 EPGO0523-403

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 09/11/2024

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Ref: ACR.307.3.24.BES.A

Report No.: AiTSZ-250728011FW1

	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	09/10/2024	1
Checked by :	Jérôme Luc	Technical Manager	09/10/2024	JS
Approved by :	Yann Toutain	Laboratory Director	09/11/2024	Gann TOUTANN

	Customer Name			
Distribution:	Shenzhen			
Distribution .	Asia Hongke			

Name	Date	Modifications
Jérôme Luc	9/11/2024	Initial release

Ref: ACR. 307.3.24.BES.A

Report No.: AiTSZ-250728011FW1

TABLE OF CONTENTS

Device Under Test4

2	Proc	luct Description4		
	2.1	General Information	4	
3				
	3.1	Linearity	4	
	3.2	Sensitivity	4	
	3.3	Lower Detection Limit	5	
	3.4	Isotropy		
	3.1	Boundary Effect	5	
4	Mea	Measurement Uncertainty6		
5	5 Calibration Measurement Results			
	5.1	Sensitivity in air	6	
	5.2	Linearity	7	
	5.3	Sensitivity in liquid		
	5.4	Isotropy	9	
6	List	of Equipment		

Ref. ACR.307.3.24.BES.A

Report No.: AiTSZ-250728011FW1

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 39/21 EPGO0523-403	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.199 M Ω	
	Dipole 2: R2=0.218 M Ω	
	Dipole 3: R3=0.210 M Ω	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Ref: ACR. 307.3.24.BES.A

Report No.: AiTSZ-250728011FW1

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm steo}$ along lines that are approximately normal to the surface:

$$\mathrm{SAR}_{\mathrm{uncertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2d_{\mathrm{step}}} \, \frac{\left(e^{-d_{\mathrm{be}}/(\delta \beta)}\right)}{\delta/2} \quad \text{for } \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \, \mathrm{mm}$$

where

SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect

 d_{be} is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 $\Delta_{ ext{sted}}$ is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., *δ*≈ 14 mm at 3 GHz;

△SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).