

Report on the FCC and IC Testing of the Latai GmbH

Model: Dustlight 23003.3

In accordance with FCC 47 CFR and ISED
RSS-GEN and ISED RSS-102

Prepared for: Latai GmbH
Agnes-Pockels Bogen 1
80992 München
Germany

FCC ID: 2BQIB-DL230033
IC: 34240-DL230033

Product Service

Add value.
Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Date: 2025-07-24

Document Number: TR-713379663-03 | Revision 1

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Alexander Deese	2025-07-24	 SIGN-ID 1061691
Authorised Signatory	Matthias Stumpe	2025-07-29	 SIGN-ID 1062360

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

Engineering Statement:

This measurement shown in this report was made in accordance with the procedures described on test pages.
All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR and
ISED RSS-102 and RSS-GEN.

The sample tested was found to comply with the requirements in the tested parts

Laboratory Accreditation DAkkS Reg. No. D-PL-11321-11-03 DAkkS Reg. No. D-PL-11321-11-04	Laboratory recognition Registration No. BNetzA-CAB-16/21-15	Industry Canada test site registration 3050A-2
--	--	---

Executive Statement:

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 1:2023 and
ISED RSS-102 Issue 6: 2023 and ISED RSS-Gen:2018 + A1:2019 + A2:2021 in the tested parts

DISCLAIMER AND COPYRIGHT

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question. It does not imply a general statement regarding the quality of products from regular production. For further details please see Testing, Certification, Validation and Verification Regulations, chapter A-3.3.

© 2025 TÜV SÜD Product Service.

Trade Register Munich
HRB 85742
VAT ID No. DE129484267
Information pursuant to Section 2(1)
DL-InfoV (Germany) at
www.tuev-sued.com/imprint

Managing Directors:
Wolfgang Hübl (Sprecher / CEO)
Karl Meier
Patrick van Welij

Phone: +49 (0) 9421 56 82-0
Fax: +49 (0) 9421 56 82-199
www.tuvsud.com

TÜV SÜD Product Service GmbH
Äußere Frühlingstraße 45
94315 Straubing
Germany

Content

1	Report Summary	2
1.1	Modification Report	2
1.2	Introduction	2
1.3	Brief Summary of Results.....	3
1.4	Product Information.....	4
1.5	Test Configuration	5
1.6	Modes of Operation.....	5
1.7	Deviations from Standard.....	5
1.8	EUT Modifications Record.....	5
1.9	Test Location.....	6
2	Test Details	7
2.1	RF Exposure Exemption	7
3	Photographs of Test Setups	12

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Revision	Description of changes	Date of Issue
0	First Issue	2025-07-16
1	Model Number corrected. Manufacturer corrected. Software version corrected. Marking plate updated.	2025-07-24

Table 1: Report of Modifications

1.2 Introduction

Applicant	Latai GmbH
Manufacturer	Latai GmbH Agnes-Pockels-Bogen 1 80992 München Germany
Model Number(s)	Dustlight 23003.3
Serial Number(s)	---
Hardware Version(s)	1
Software Version(s)	2.11.1
Parts of the system	---
Number of Samples Tested	1
Test Specification(s) /	FCC 47 CFR, Part 1, § 1.1307: 2023 and
Issue / Date	ISED RSS-102, Issue 6: 2023
Test Plan/Issue/Date	---
Order Number	2025-11083 / 025921
Date	2025-07-04
Date of Receipt of EUT	2025-07-09
Start of Test	2025-07-09
Finish of Test	2025-07-09
Name of Engineer(s)	Alexander Deese
Related Document(s)	ANSI C63.10:2013 KDB 447498 D04 v01

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR, Part 1, § 1.1307 and ISED RSS-102 is shown below.

Section	Specification Clause	Test Description	Result
2.1	(b)(3)	RF Exposure Exemption	Pass

Table 2: Results according to FCC 47 CFR, Part 1, § 1.1307(b)(3)

Section	Specification Clause	Test Description	Result
2.1	6.3	RF Exposure Exemption	Pass

Table 3: Results according to ISED RSS-102

1.4 Product Information

1.4.1 Technical Description

The EUT is a Measurement Device with BLE

Supply Voltage: 3.7 V
Supply Frequency: DC, battery supplied
Highest clock frequency: 240 MHz

If the EUT contains intentional radiating modules:

(Highest) Clock Frequencies 2483.5 MHz
of modules:
FCC IDs of modules: 2BQIB-DL230033
IC IDs of modules: 34240-DL230033

1.5 Test Configuration

The EUT was 3.7 V / DC battery supplied. The device was connected to the Dustlight app provided by the applicant via BLE.

1.6 Modes of Operation

Connected via BLE. The applicant set an output power of 3dBm in the device's software.

1.7 Deviations from Standard

1.8 EUT Modifications Record

The table below details modifications made to the EUT during the test program.
The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	Not Applicable	Not Applicable

Table 4

1.9 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
RF Exposure	Alexander Deese

Office Address:

Äußere Frühlingstraße 45
94315 Straubing
Germany

2 Test Details

2.1 RF Exposure Exemption

2.1.1 Specification Reference

47 CFR, Part 1, § 1.1307(b)(3)
RSS-102, Issue 6 (2023-12-15)

2.1.2 Equipment under Test and Modification State

Dustlight 23003.3; S/N ---; Modification state 0

2.1.3 Date of Test

2025-07-09

2.1.4 Environmental Conditions

Ambient Temperature	25 °C
Relative Humidity	40 %

2.1.5 Specification Limits

47 CFR, Part 1, § 1.1307(b)(3)

- (i) For single RF sources (i.e. any single fixed RF source, mobile device, or portable device, as defined in paragraph(b)(2) of this section): A single RF source is exempt if:
 - (A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
 - (B) Or the available maximum time-averaged power or effective radiate power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by

$$P_{th}(\text{mW}) = \begin{cases} ERP_{20\text{cm}} (d/20\text{ cm})^x, & d \leq 20\text{ cm}; \\ ERP_{20\text{cm}}, & 20\text{ cm} < d \leq 40\text{ cm} \end{cases}$$

where

$$x = -\log_{10} \left(\frac{60}{ERP_{20\text{cm}} \sqrt{f}} \right); f \text{ in GHz}$$

and

$$ERP_{20\text{cm}}(\text{mW}) = \begin{cases} 2040 f, & 0.3 \text{ GHz} \leq f < 1.5 \text{ GHz} \\ 3060, & 1.5 \text{ GHz} \leq f \leq 6 \text{ GHz} \end{cases}$$

d = the test separation distance (cm);

- (C) Or using the table below and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value described for that frequency. For the exemption in the table to apply, R must be at least $\lambda/2\pi$ where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF source frequency (MHz)	Threshold ERP (Watts)
0.3 – 1.34	$1920 R^2$
1.34 – 30	$3450 R^2/f^2$
30 – 300	$3.83 R^2$
300 – 1500	$0.0128 R^2 f^2$
1500 – 100000	$19.2 R^2$

- (ii) For multiple RF sources: Multiple RF sources are exempt if:
 - (A) The available maximum time-averaged power of each source is no more than 1 mW and there is a separation distance of 2 cm between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1 mW during the time-averaging period, in which case they may be treated as a single source (separation is not required). This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(i)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(i)(A).
 - (B) In case of fixed RF sources operating in the same time-averaging period, or of multiple or portable RF sources within a device in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^a \frac{P_i}{P_{th,i}} + \sum_{j=1}^b \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^c \frac{Evaluated_k}{ExposureLimit_k} \leq 1$$

RSS-102, section 6.3

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the table below:

f (MHz)	Exemption Limits (mW) at separation distance of									
	≤ 5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥ 50 mm
≤ 300	45	116	139	163	189	216	246	280	319	362
450	32	71	87	104	124	147	175	208	248	296
835	21	32	41	54	72	96	129	172	228	298
1900	6	10	18	33	57	92	138	194	257	323
2450	3	7	16	32	56	89	128	170	209	245
3500	2	6	15	29	50	72	94	114	134	158
5800	1	5	13	23	32	41	54	74	102	128

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for route evaluation are multiplied by a factor of 5. For limb-worn devices where the 10 grams value applies, the exemption limits for routine evaluation are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implant device is defined as the higher of the conducted or e.i.r.p. to determine whether the device is exempt from the SAR evaluation.

2.1.6 Test Method

Measurements were taken with a spectrum analyzer and following parameters:

RBW 1 MHz; Detector RMS

Exemption calculation according to a test distance of 0 cm.

2.1.7 Test Results

47 CFR

Evaluation according to 47 CFR, Part 1, § 1.1307(b)(3)(i)(A)

Frequency [MHz]	Maximum Output Power EIRP [dBm]	Maximum Output Power ERP [dBm]	Maximum Output Power ERP [mW]	Exemption Limit [mW]	Margin
2440	-1.78	-3.93	0.405	1	0.595

RSS-102

Evaluation according to RSS 102, section 6.3

Frequency [MHz]	Maximum Output Power EIRP [dBm]	Maximum Output Power EIRP [mW]	Exemption Limit [mW]	Margin
2440	-1.78	0.664	3.055	2.391

2.1.8 Test Location and Test Equipment

The test was carried out in fully anechoic room no. 2:

<i>Instrument</i>	<i>Manufacturer</i>	<i>Type No</i>	<i>TE No</i>	<i>Calibration Period (months)</i>	<i>Calibration Due</i>
Signal and Spectrum Analyser	Rohde & Schwarz	FSW43	53496	12	2026-04-30
Double ridged horn antenna	Rohde & Schwarz	HF907	40089	24	2026-11-30
RF matrix	TÜV SÜD PS	Relax RF Matrix	19801	24	2027-04-30
Fully anechoic room	Albatross	Cabin no. 2	19312	---	---

Table 5

3 Photographs of Test Setups

Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to IEC/IEEE 62209-1528 and CISPR16-4-2: 2011 + A1 + A2 + Cor1 (U_{CISPR}). This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

<i>Radio Interference Emission Testing</i>		<i>kp</i>	<i>Expanded Uncertainty</i>
<i>Test Name</i>			
Conducted Voltage Emission			
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB	
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB	
100 kHz to 200 MHz (50Ω/5µH AMN)	2	± 3.6 dB	
Discontinuous Conducted Emission			
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB	
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB	
Conducted Current Emission			
9 kHz to 200 MHz	2	± 3.5 dB	
Magnetic Field strength			
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB	
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB	
Radiated Emission			
30 MHz to 300 MHz	2	± 4.9 dB	
300 MHz to 1 GHz	2	± 5.0 dB	
1 GHz to 6 GHz	2	± 4.6 dB	
Test distance 10 m			
30 MHz to 300 MHz	2	± 4.9 dB	
300 MHz to 1 GHz	2	± 4.9 dB	
The expanded uncertainty reported according to CISPR16-4-2: 2011 + A1 + A2 + Cor1 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$			

Table 5 Measurement uncertainty based on CISPR 16-4-2

<i>Radio Interference Emission Testing</i>		
<i>Test Name</i>	<i>kp</i>	<i>Expanded Uncertainty</i>
Occupied Bandwidth	2	± 5 %
Conducted Power		
9 kHz ≤ f < 30 MHz	2	± 1.0 dB
30 MHz ≤ f < 1 GHz	2	± 1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	± 2.5 dB
1 MS/s power sensor (TS8997)	2	± 1.5 dB
Occupied Bandwidth	2	± 5 %
Power Spectral Density	2	± 3.0 dB
Radiated Power		
9 kHz ≤ f < 26.5 GHz	2	± 5.6 dB
26.5 GHz ≤ f < 60 GHz	2	± 8.0 dB
60 GHz ≤ f < 325 GHz	2	± 10 dB
Conducted Spurious Emissions	2	± 3.0 dB
Radiated Spurious Emissions	2	± 6.0 dB
Voltage		
DC	2	± 1.0 %
AC	2	± 2.0 %
Time (automatic)	2	± 5 %
Frequency	2	± 10 ⁻⁷

The expanded uncertainty reported according to ETSI TR 100 028:2001 is based on a standard uncertainty multiplied by a coverage factor of $kp = 2$, providing a level of confidence of $p = 95.45\%$

Table 6 Measurement uncertainty based on ETSI TR 100 028