

Radio Testing of the  
SpectraWAVE Inc  
Model: HyperVue Imaging System

In accordance with:  
FCC 47 CFR Part 15.225  
ISED RSS-210 Issue 11, June 2024

SpectraWave Inc  
12 Oak Park Dr.  
Bedford, MA 01730



America

Add value.  
Inspire trust.

## COMMERCIAL-IN-CONFIDENCE

Date: July 2025

Document Number: 0721011606 Issue 01 | Version Number: 01

### SIGNATURE

A handwritten signature in blue ink that appears to read "Ferdinand Custodio".

| NAME               | JOB TITLE                                     | RESPONSIBLE FOR      | ISSUE DATE    |
|--------------------|-----------------------------------------------|----------------------|---------------|
| Ferdinand Custodio | Senior EMC Test Engineer / Wireless Team Lead | Authorized Signatory | July 01, 2025 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

### EXECUTIVE SUMMARY

A sample of this product was tested and found to be in compliance with FCC 47 CFR Part 15.225 and ISED RSS-210



#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America.  
© TÜV SÜD.

#### ACCREDITATION

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.



## Contents

|          |                                                                                            |           |
|----------|--------------------------------------------------------------------------------------------|-----------|
| <b>1</b> | <b>Report Summary</b>                                                                      | <b>3</b>  |
| 1.1      | Report Modification Record.....                                                            | 3         |
| 1.2      | Introduction.....                                                                          | 3         |
| 1.3      | Scope of Testing .....                                                                     | 4         |
| 1.4      | Summary of Results.....                                                                    | 4         |
| 1.5      | Product Information .....                                                                  | 5         |
| 1.6      | Deviations from the Standard.....                                                          | 6         |
| 1.7      | EUT Modification Record .....                                                              | 6         |
| 1.8      | Test Location .....                                                                        | 6         |
| <b>2</b> | <b>Test Details</b>                                                                        | <b>7</b>  |
| 2.1      | Antenna Requirements.....                                                                  | 7         |
| 2.2      | 20 dB Bandwidth .....                                                                      | 9         |
| 2.3      | Emission Mask .....                                                                        | 11        |
| 2.4      | Radiated Spurious Emissions .....                                                          | 14        |
| 2.5      | Occupied Bandwidth .....                                                                   | 18        |
| 2.6      | Frequency Tolerance .....                                                                  | 20        |
| 2.7      | AC Conducted Emissions .....                                                               | 23        |
| <b>3</b> | <b>Measurement Uncertainty</b>                                                             | <b>27</b> |
| 3.1      | Conducted Measurements - 150 kHz – 30 MHz, 50 ohm / 50µH LISN .....                        | 27        |
| 3.2      | Radiated Emissions Measurements – Below 30 MHz at a distance of 3 m (alternate site) ..... | 27        |
| 3.3      | Radiated Emissions Measurements - 30 MHz – 1000 MHz at a distance of 3 m.....              | 28        |
| 3.4      | Radiated Emissions Measurements - 30 MHz – 1000 MHz at a distance of 3 m.....              | 29        |
| <b>4</b> | <b>Diagram of Test Setups</b>                                                              | <b>30</b> |
| <b>5</b> | <b>Accreditation, Disclaimers and Copyright.....</b>                                       | <b>34</b> |



## 1 Report Summary

### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

**Table 1.5.1-1 – Modification Record**

| Issue | Description of Change | Date of Issue |
|-------|-----------------------|---------------|
| 1     | First Issue           | 01 July 2025  |

### 1.2 Introduction

|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Applicant                     | SpectraWave Inc                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Manufacturer                  | SpectraWave Inc                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Applicant's Email Address     | vwalimbe@spectrawave.com                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Model Number(s)               | HyperVue                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Serial Number(s)              | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Number of Samples Tested      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Specification/Issue/Date | <ul style="list-style-type: none"><li>FCC Part 15 Subpart C §15.225 (October 1, 2024).</li><li>KDB 996369 D04 Module Integration Guide V01. Modular Transmitter Integration Guide— Guidance for Host Product Manufacturers.</li><li>IC RSS-210 Issue 11 June 2024 – License-Exempt Radio Apparatus: Category I Equipment.</li><li>IC RSS-Gen Issue 5 Amendment 2 February 2021 - General Requirements for Compliance of Radio Apparatus.</li></ul> |
| Order Number                  | 721008289                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date of Receipt of EUT        | 21 June 2025                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Start of Test                 | 21 June 2025                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Finish of Test                | 28 June 2025                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Related Document(s)           | ANSI C63.10 2013<br>Product test plan : 56204_Evaluation_Plan_20221101A                                                                                                                                                                                                                                                                                                                                                                            |



### 1.3 Scope of Testing

To perform certification testing to confirm that the wireless device(s) meet the requirements of the applicable standards and guidance documents (KDB 558074 D01).

### 1.4 Summary of Results

A summary of the tests carried out in accordance with the specifications shown below.

**Table 1.5.1-1 – Summary of Results**

| Test Name                               | Name of Tester(s) | Results / Comments |
|-----------------------------------------|-------------------|--------------------|
| Antenna Requirements                    | Joe Salvador      | Pass               |
| 20dB Bandwidth                          | Joe Salvador      | Pass               |
| Emission Mask                           | Joe Salvador      | Pass               |
| Spurious Radiated Emissions             | Joe Salvador      | Pass               |
| Occupied Bandwidth                      | Joe Salvador      | Pass               |
| Frequency Tolerance (13.56 MHz TX only) | Joe Salvador      | Pass               |
| AC Conducted Emissions                  | Joe Salvador      | Pass               |

**Table 1.5.1-2 – Test Accreditation**

| Report Section | Specification Clause |                      | Test Description                        | Accreditation | Base Standard    |
|----------------|----------------------|----------------------|-----------------------------------------|---------------|------------------|
| 2.1            | 15.203               | RSS-GEN 6.8          | Antenna Requirements                    | A2LA          | FCC Part 15.203  |
| 2.2            | 15.215(c)            | RSS-Gen 6.7          | 20dB Bandwidth                          | A2LA          | ANSI C63.10:2013 |
| 2.3            | §15.225(a)(b)(c)     | RSS-210 B.6(a)(b)(c) | Emission Mask                           | A2LA          | ANSI C63.10:2013 |
| 2.4            | §15.209              | RSS-210 B.6(d)       | Spurious Radiated Emissions             | A2LA          | ANSI C63.10:2013 |
| 2.5            | 15.215(c)            | RSS-Gen 6.7          | Occupied Bandwidth                      | A2LA          | ANSI C63.10:2013 |
| 2.6            | 15.225(e)            | RSS-210 B.6          | Frequency Tolerance (13.56 MHz TX only) | A2LA          | ANSI C63.10:2013 |
| 2.7            | §15.207(a)           | RSS-Gen 7.2          | AC Conducted Emissions                  | A2LA          | ANSI C63.10:2013 |



## 1.5 Product Information

The Equipment Under Test (EUT) was the HyperVue Imaging System which is an Imagen platform that uses light to create high resolution deep OCT images and NIRS spectroscopic analysis of the coronary vessels. The RFID is in the controller only highlighted below.

A full description and detailed product specification details are available from the manufacturer.



Figure 1.5-1 – Front View of the EUT

Table 1.5-1 – Cable Descriptions

| Cable/Port | Description                                                  |
|------------|--------------------------------------------------------------|
| Cable      | Communication cable between Console and Umbilical Controller |
| Cable      | Communication cable between Console and Monitor              |



**Table 1.5-2 – Support Equipment Descriptions**

| Make/Model                       | Description                     |
|----------------------------------|---------------------------------|
| ELO Display ET1502LM-2UWA-1-WH-G | Display/Monitor                 |
| AC Adapter ATM065T-P120          | Display power supply AC adapter |

### 1.5.1 Modes of Operation

**Table 1.5.1-1 – Test Frequencies & Modes of Operation**

| Channel  | Frequency (MHz) |
|----------|-----------------|
| 1 (RFID) | 13.56           |

### 1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing

### 1.7 EUT Modification Record

The table below details modifications made to the EUT during the test program. The modifications incorporated during each test are recorded on the appropriate test pages.

**Table 1.5.1-1 – Modification Record**

| Modification State | Description of Modification fitted to EUT | Modification Fitted By | Date Modification Fitted |
|--------------------|-------------------------------------------|------------------------|--------------------------|
| 0                  | Initial State                             |                        |                          |

### 1.8 Test Location

TÜV SÜD conducted the following tests at our San Diego, CA Test Laboratory.  
Office address:

TÜV SÜD America  
10040 Mesa Rim Road  
San Diego, CA 92121  
USA



## 2 Test Details

### 2.1 Antenna Requirements

#### 2.1.1 Specification Reference

FCC 47 CFR Part 15 Subpart C, 15.203  
RSS-Gen 6.8

#### 2.1.2 Equipment Under Test and Modification State

S/N: N/A - Modification State 0

#### 2.1.3 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Note: Above statement is taken from FCC Part 15 Subpart C §15.203

**Table 2.1.3-1 – Antenna Used In EUT**

| Antenna Type | Connection Type | Antenna Gain                                           |
|--------------|-----------------|--------------------------------------------------------|
| NFC Chip     | PCB trace       | N/A (see antenna specifications on the following page) |

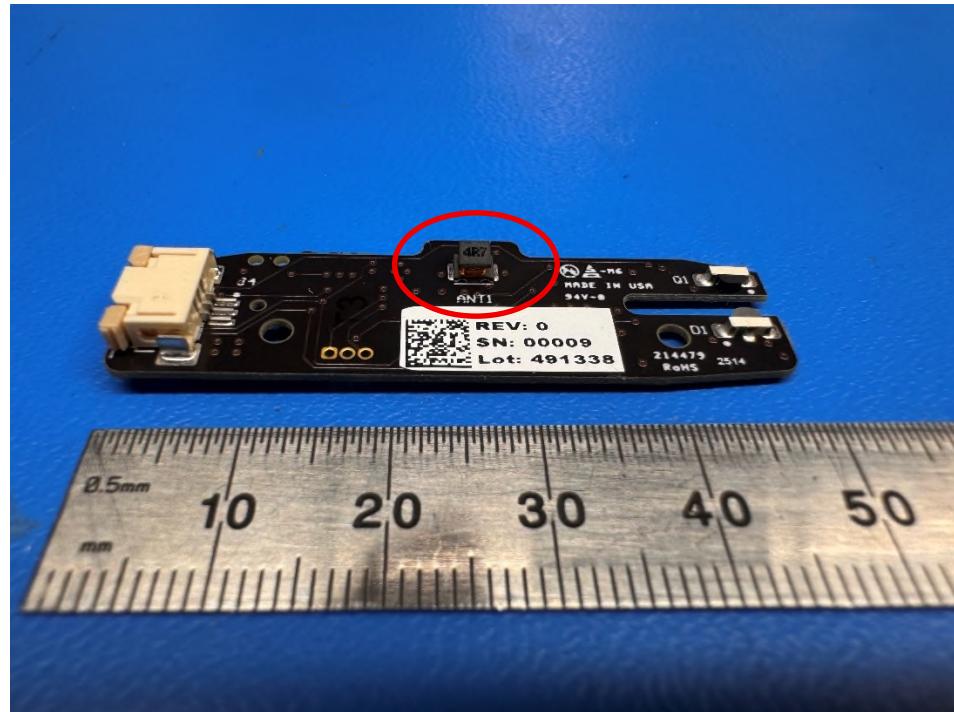



Figure 2 PCB assembly (Antenna right side)

Table-2.1.3-2 Antenna specifications

| Parameter                | Specification<br>Typical | Unit        |
|--------------------------|--------------------------|-------------|
| Bandwidth                | 1                        | MHz         |
| Operating Frequency      | 13.56                    | MHz         |
| VSWR (Typ.)              | 1.6                      |             |
| Inductance               | 7                        | µH@13.56MHz |
| Q-Factor                 | 11.3                     |             |
| DC Resistance            | 52.75 Ω                  | @13.56MHz   |
| Self-Resonance Frequency | 61.13                    | MHz         |
| Reading Distance         | 10~30                    | mm          |
| Impedance                | 50                       | Ω           |
| Polarization             | Linear                   | -           |



## 2.2 20 dB Bandwidth

### 2.2.1 Specification Reference

FCC Part 15.215(c)  
RSS-Gen 6.7

### 2.2.2 Equipment Under Test and Modification State

S/N: N/A - Modification State 0

### 2.2.3 Date of Test

2025-June-26

### 2.2.4 Test Method

This is a Radiated test. Span is wide enough to capture the channel transmission. RBW is set to worst case 10kHz setting. VBW is 3X RBW. Sweep is auto. Detector is peak. The “n” dB down marker function of the spectrum analyser was used for this test.

### 2.2.5 Environmental Conditions

|                      |                   |
|----------------------|-------------------|
| Ambient Temperature  | 24.0 - 26.0 °C °C |
| Relative Humidity    | 51.0 % %          |
| Atmospheric Pressure | 48.9 kPa          |

### 2.2.6 Test Results: PASS

See data below for detailed results.

| Frequency (MHz) | 20dB Bandwidth (kHz) | T1 (MHz) | T2 (MHz) |
|-----------------|----------------------|----------|----------|
| 13.56           | 118.17               | 13.50    | 13.62    |
| T1 > 13.110 MHz | Complies             |          |          |
| T2 < 14.010 MHz | Complies             |          |          |



**Figure 3 20dB Bandwidth Test Results**

## 2.2.7 Test Location and Test Equipment Used

The tests were carried out in San Diego, CA  
 Test Area: SR5 (MM).

| Instrument                 | Manufacturer    | Type No            | TE No | Calibration Period (months) | Calibration Due |
|----------------------------|-----------------|--------------------|-------|-----------------------------|-----------------|
| Signal & Spectrum Analyzer | Rohde & Schwarz | FSW26              | 30188 | 1 year                      | 04-Feb-2026     |
| Loop Antenna               | Rohde & Schwarz | HFH2-Z2335.4711.52 | 30020 | 2 years                     | 07-July-2026    |



## 2.3 Emission Mask

### 2.3.1 Specification Reference

Part 15 Subpart C §15.225(a)(b)(c) and RSS-210 B.6(a)(b)(c)

### 2.3.2 Equipment Under Test and Modification State

S/N: N/A - Modification State 0

### 2.3.3 Date of Test

2025-June-24

### 2.3.4 Test Method

This is a radiated test. Only 13.110 MHz to 14.010 MHz presented. There are no significant emissions observed other than the fundamental frequency (13.56 MHz) measured at 3 meters. Limits were converted from 30 meters to 3 meters using 40 dB/decade extrapolation rules.

### 2.3.5 Environmental Conditions

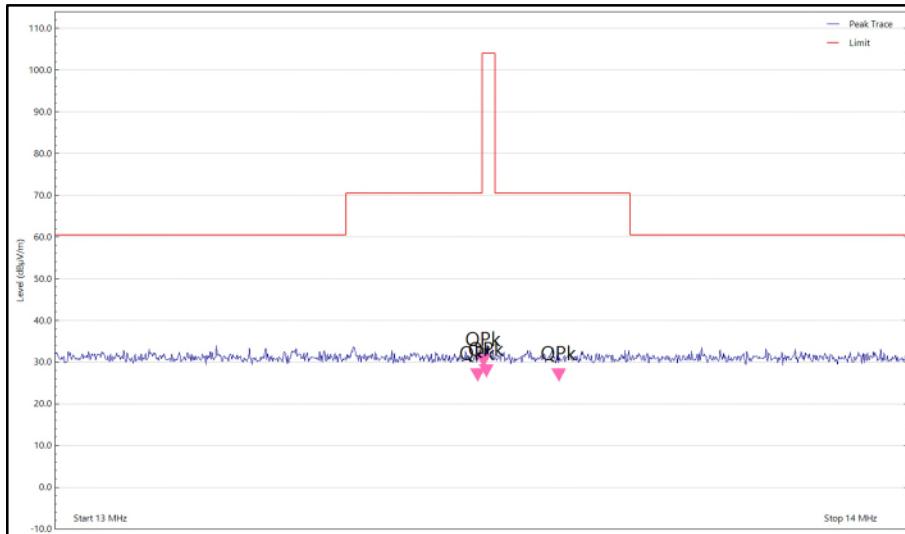
Ambient Temperature 24.0 - 26.0 °C  
Relative Humidity 51.0 %  
Atmospheric Pressure 50.2 kPa

### 2.3.6 Additional Observations

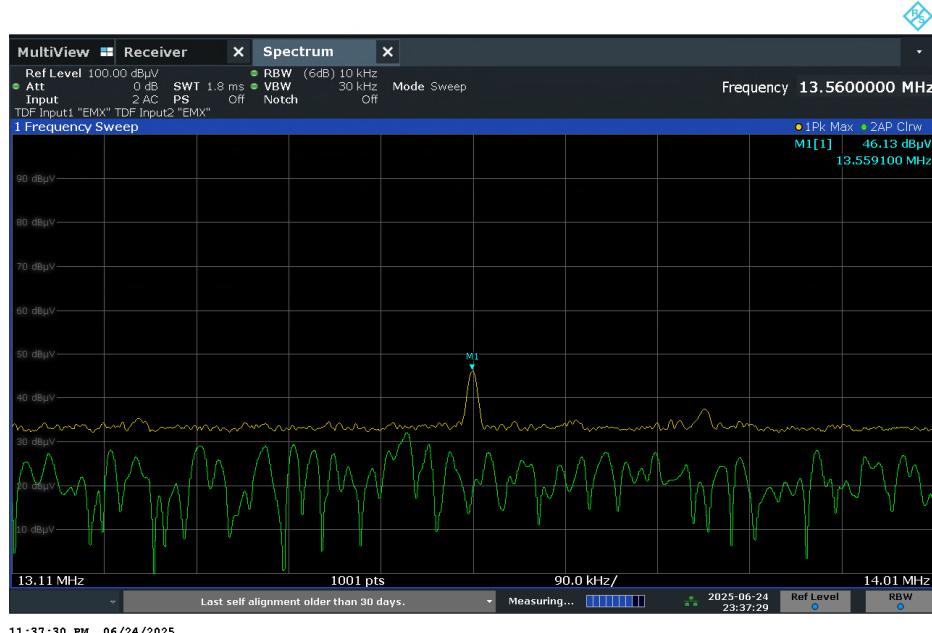
Measurement was done using EmX automated software. Reported level is the actual level with all the correction factors factored in (loaded in the receiver). The fundamental at 13.56 MHz was not significant at 3meters.

### 2.3.7 Sample Computation (Limits)

|                                       |                          |
|---------------------------------------|--------------------------|
| Limit @ 13.553–13.567 MHz:            | = 15,848 µV/m @30 meters |
|                                       | = 20 log(15,848 µV/m)    |
|                                       | = 84 dB µV/m @30 meters  |
| Using 40dB/decade extrapolation rule: | = 40 log (30m/3m)        |
| Measuring distance correction factor: | = 20 dB                  |
| Calculated limit @ 3 meters:          | = 84 dB µV/m + 20 dB     |
|                                       | = 104 dB µV/m            |


### 2.3.8 Test Results

#### Test Result: Pass


See result on the following page.



### 2.3.9 Radiated Field Strength



At 3 meters, the EUT RFID is not visible (below the noise floor). In order to quantify field strength of the EUT at 3 meters, a closer distance measurement (1m) is performed and the corresponding 40 dB/decade extrapolation factor applied:



Field Strength @ 1m



Sample Calculation:

$$\begin{aligned} & 46.13 \text{ dB}\mu\text{V/m} @ 1 \text{ meter} \\ & 46.13 \text{ dB}\mu\text{V/m} - (40 \log (3 \text{ meters}/1 \text{ meter})) \\ & 27.045 \text{ dB}\mu\text{V/m} @ 3 \text{ meters} \end{aligned}$$

### 2.3.10 Test Location and Test Equipment Used

The tests were carried out in San Diego, CA  
Test Area: SR5 (MM).

**Table 2.3.10-1 – Radiated Emissions Equipment List**

| Instrument         | Manufacturer    | Type No            | TE No  | Calibration Period (months) | Calibration Due |
|--------------------|-----------------|--------------------|--------|-----------------------------|-----------------|
| EMI Test Receiver  | Rohde & Schwarz | ESW44              | 68301  | 1 year                      | 05-July-2025    |
| TUV SSU 010 PLC US | TUV SUD UK      | SSU 010            | SSU001 | 1 year                      | 16-Apr-2026     |
| Loop Antenna       | Rohde & Schwarz | HFH2-Z2335.4711.52 | 30020  | 2 years                     | 07-July-2026    |
| Test Software      | TUV SUD UK      | EMX                | -      | N/A                         |                 |



## **2.4 Radiated Spurious Emissions**

### **2.4.1 Specification Reference**

FCC 47 CFR Part §15.209  
FCC 47 CFR Part §15.225(d)  
RSS-210 B.6(d)

### **2.4.2 Equipment Under Test and Modification State**

S/N: N/A - Modification State 0

### **2.4.3 Date of Test**

2025-June-27

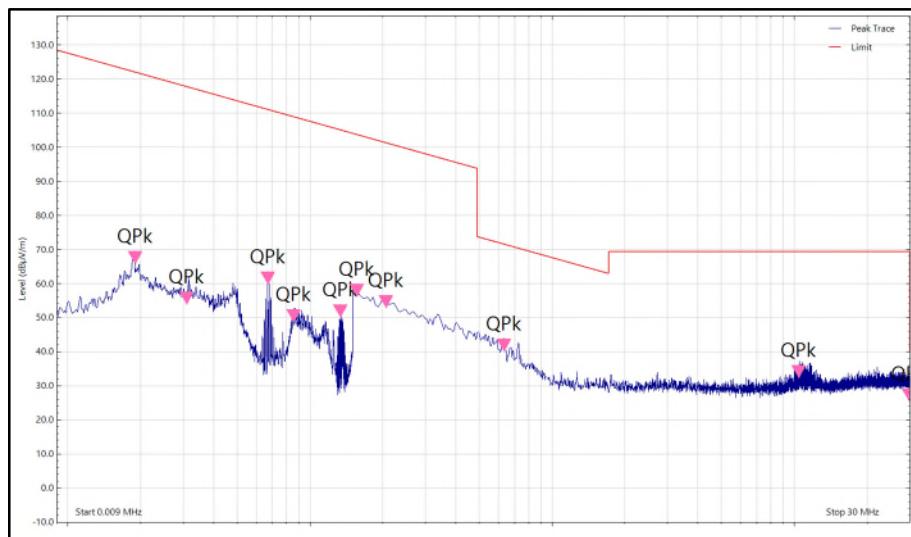
### **2.4.4 Test Method**

Measurements were made using EmX automated software. Measurements were done at a 3m distance. The spectrum was searched from 9kHz to 1GHz. Reported level is the actual level with all the correction factors factored in (EmX will store correction factors in the receiver).

### **2.4.5 Environmental Conditions**

|                      |                |
|----------------------|----------------|
| Ambient Temperature  | 24.0 - 26.0 °C |
| Relative Humidity    | 51.0 %         |
| Atmospheric Pressure | 48.7 kPa       |

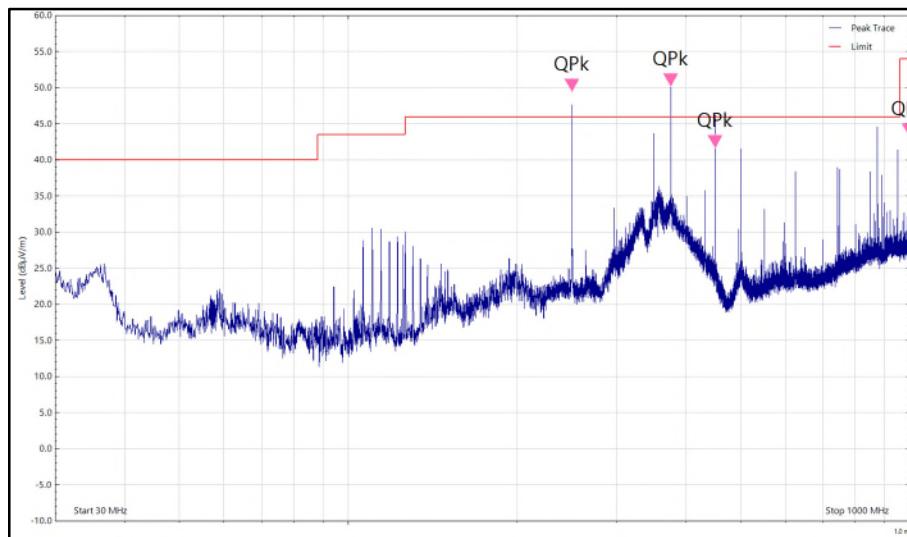
### **2.4.6 Additional Observations**


The measurements at 250.000 MHz and 374.999 MHz are verified emissions from the display touch screen and power/communication panel. The 13.56 MHz RFID was confirmed not transmitting in this range.

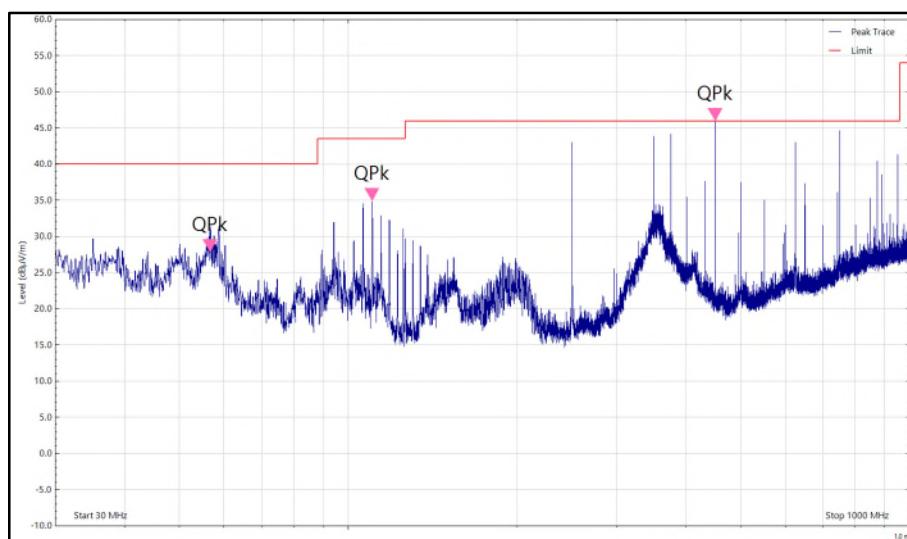
### **2.4.7 Test Results: Pass**

See data on the following pages for detailed results.




## 2.4.8 RSE, 9kHz-30MHz




| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Pol        |
|-----------------|--------------------------|----------------------|-------------|----------|-----------|-------------|------------|
| 0.019           | 65.24                    | 122.20               | -56.96      | Q-Peak   | 212       | 100         | Horizontal |
| 0.031           | 53.42                    | 117.70               | -64.28      | Q-Peak   | 0         | 100         | Horizontal |
| 0.067           | 59.25                    | 111.10               | -51.85      | Q-Peak   | 4         | 100         | Horizontal |
| 0.086           | 48.17                    | 108.90               | -60.73      | Q-Peak   | 178       | 100         | Horizontal |
| 0.134           | 49.60                    | 105.00               | -55.40      | Q-Peak   | 190       | 100         | Horizontal |
| 0.156           | 55.57                    | 103.70               | -48.13      | Q-Peak   | 150       | 100         | Horizontal |
| 0.206           | 52.42                    | 101.30               | -48.88      | Q-Peak   | 236       | 100         | Horizontal |
| 0.635           | 39.67                    | 71.60                | -31.93      | Q-Peak   | 350       | 100         | Horizontal |
| 10.473          | 31.91                    | 69.50                | -37.59      | Q-Peak   | 327       | 100         | Horizontal |
| 29.897          | 25.01                    | 69.50                | -44.49      | Q-Peak   | 213       | 100         | Horizontal |



#### 2.4.9 RSE, 30 MHz to 1 GHz, Horizontal (Peak)



#### 2.4.10 RSE, 30 MHz to 1 GHz, Vertical (Peak)





| Frequency (MHz) | QuasiPeak (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Pol        |
|-----------------|--------------------------|----------------------|-------------|----------|-----------|-------------|------------|
| 56.736          | 27.62                    | 40.00                | -12.38      | Q-Peak   | 328       | 101         | Vertical   |
| 110.130         | 34.65                    | 43.50                | -8.85       | Q-Peak   | 167       | 127         | Vertical   |
| 250.000         | 49.24                    | 46.00                | 3.24        | Q-Peak   | 276       | 137         | Horizontal |
| 374.999         | 49.98                    | 46.00                | 3.98        | Q-Peak   | 270       | 100         | Horizontal |
| 449.994         | 41.41                    | 46.00                | -4.59       | Q-Peak   | 56        | 117         | Horizontal |
| 450.001         | 45.75                    | 46.00                | -0.25       | Q-Peak   | 176       | 100         | Vertical   |
| 999.996         | 43.02                    | 54.00                | -10.98      | Q-Peak   | 47        | 101         | Horizontal |

#### 2.4.11 Test Location and Test Equipment Used

This test was carried out in SR5 (MM).

**Table 2.4.11-1 – Radiated Emissions Equipment List**

| Instrument                           | Manufacturer     | Type No            | TE No  | Calibration Period (months) | Calibration Due |
|--------------------------------------|------------------|--------------------|--------|-----------------------------|-----------------|
| EMI Test Receiver                    | Rohde & Schwarz  | ESW44              | 68301  | 1 year                      | 05-July-2025    |
| TUV SSU 010 PLC US                   | TUV SUD UK       | SSU 010            | SSU001 | 1 year                      | 16-Apr-2026     |
| 25-2000 MHz Trilog-Broadband Antenna | Schwarzbeck Mess | VULB 9168          | 69564  | 1 year                      | 06-Nov-2025     |
| Loop Antenna                         | Rohde & Schwarz  | HFH2-Z2335.4711.52 | 30020  | 2 years                     | 07-July-2026    |
| Test Software                        | TUV SUD UK       | EMX                | -      | N/A                         |                 |



## 2.5 Occupied Bandwidth

### 2.5.1 Specification Reference

FCC 47 CFR Part §15.215  
RSS-Gen Clause 6.7

### 2.5.2 Equipment Under Test and Modification State

S/N: N/A - Modification State 0

### 2.5.3 Date of Test

2025-June-27

### 2.5.4 Test Method

This is a Radiated test. Span is wide enough to capture the channel transmission. RBW is set from 1% to 5% of the anticipated 99% EBW. VBW is 3X RBW. Sweep is auto. Detector is peak. The % Power Bandwidth setting in the spectrum analyzer was set to 99% (default). The Channel Bandwidth measurement function of the spectrum analyzer was used for this test.

### 2.5.5 Environmental Conditions

Ambient Temperature 24.0 - 26.0 °C  
Relative Humidity 51.0 %  
Atmospheric Pressure 49.1 kPa

### 2.5.6 Test Results: PASS

#### Occupied Bandwidth

| Frequency (MHz) | 20dB Bandwidth (kHz) | T1 (MHz) | T2 (MHz) |
|-----------------|----------------------|----------|----------|
| 13.56           | 517.21               | 13.30    | 13.81    |
| T1 > 13.110 MHz |                      |          | Complies |
| T2 < 14.010 MHz |                      |          | Complies |



Figure 4 99% dB bandwidth Test Results

### 2.5.7 Test Location and Test Equipment Used

This test was carried out in SR5 (MM).

Table 2.5.7-1 – Radiated Emissions Test Equipment List

| Instrument         | Manufacturer    | Type No            | TE No  | Calibration Period (months) | Calibration Due |
|--------------------|-----------------|--------------------|--------|-----------------------------|-----------------|
| EMI Test Receiver  | Rohde & Schwarz | ESW44              | 68301  | 1 year                      | 05-July-2025    |
| TUV SSU 010 PLC US | TUV SUD UK      | SSU 010            | SSU001 | 1 year                      | 16-Apr-2026     |
| Loop Antenna       | Rohde & Schwarz | HFH2-Z2335.4711.52 | 30020  | 2 years                     | 07-July-2026    |
| Test Software      | TUV SUD UK      | EMX                | -      | N/A                         |                 |



## 2.6 Frequency Tolerance

### 2.6.1 Specification Reference

FCC 47 CFR Part 15.225(e)  
ISED RSS-GEN 6.11

### 2.6.2 Equipment Under Test and Modification State

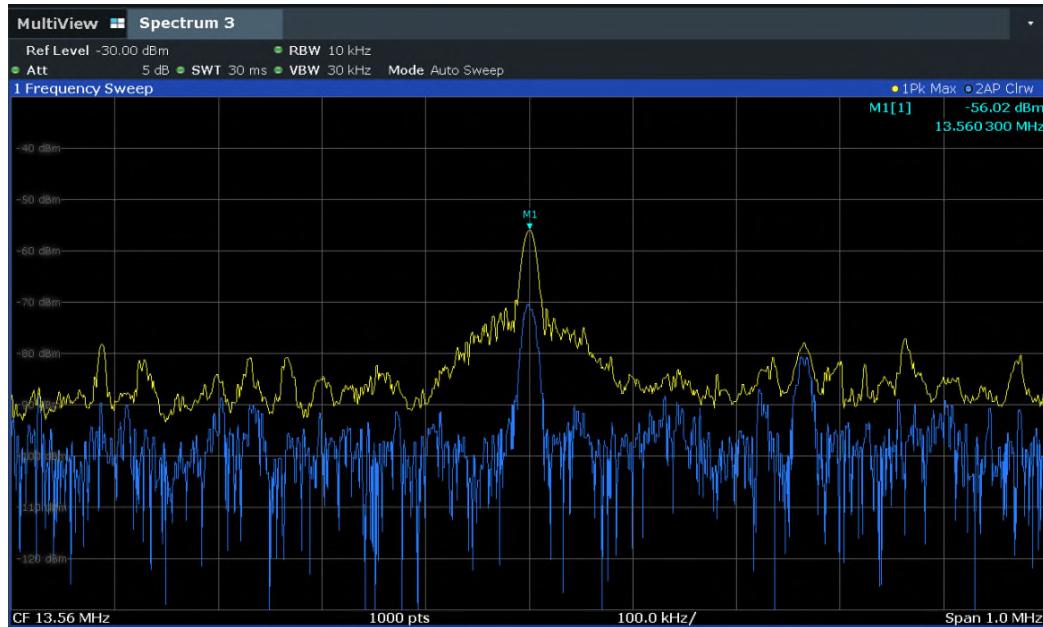
S/N: N/A - Modification State 0

### 2.6.3 Date of Test

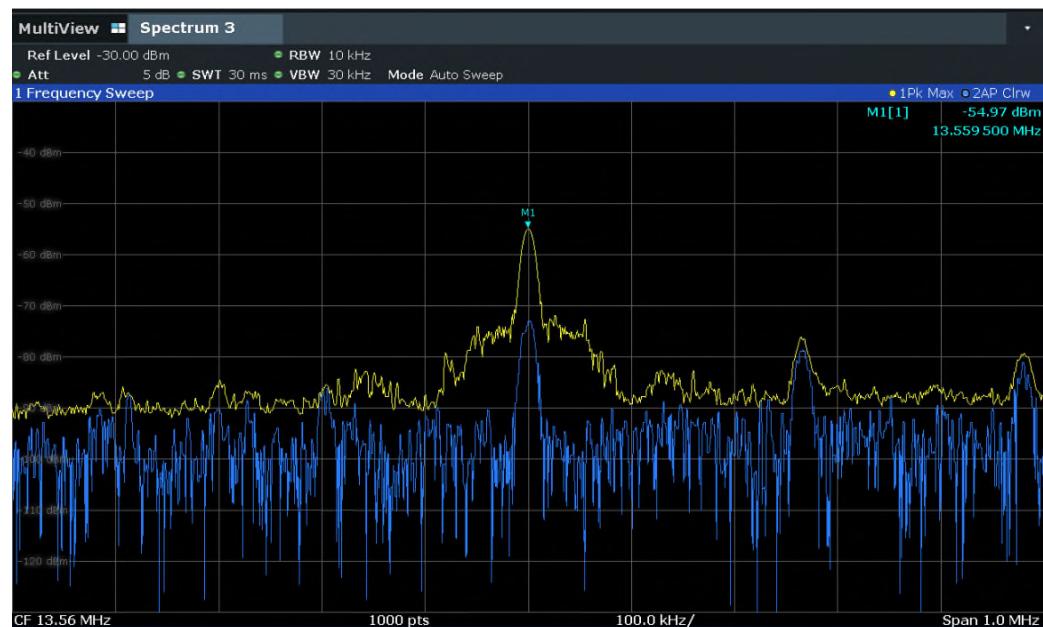
2025-June-27

### 2.6.4 Test Method

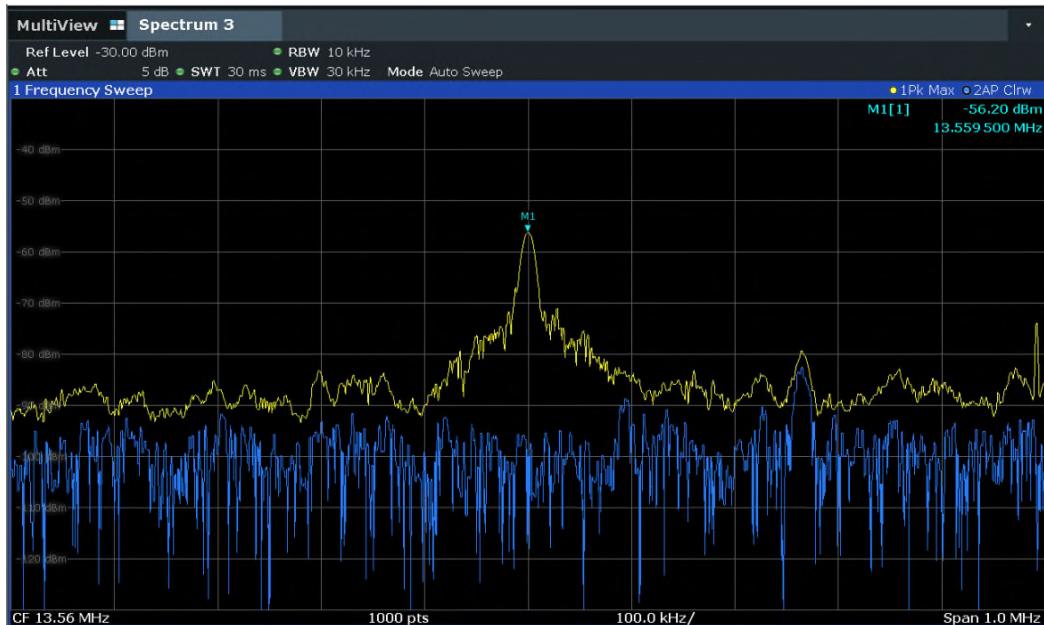
This is a radiated test with the loop antenna next to the environmental chamber. Measurement was done using marker function of the spectrum analyser. The RBW was set to 30 kHz for better resolution. The temperature was varied from -20°C to +50°C in 10-degree increments with voltage variation of 85% and 115% on the VAC power supply @ 20°C. The EUT was powered off, then powered on once the temperature stabilized and the frequency was then measured.


### 2.6.5 Environmental Conditions

Ambient Temperature 21.7 °C  
Relative Humidity 41.8 %  
Atmospheric Pressure 49.1 kPa


### 2.6.6 Test Results: PASS

| Voltage (%) | Temp (°C) | Frequency Measured (MHz) | Tolerance ±0.01% | Results |
|-------------|-----------|--------------------------|------------------|---------|
| 100         | -20       | 13.559500                | -0.005899574%    | Pass    |
| 100         | -10       | 13.559500                | -0.005899574%    | Pass    |
| 100         | 0         | 13.559500                | -0.005899574%    | Pass    |
| 100         | +10       | 13.559500                | -0.005899574%    | Pass    |
| 100         | +20       | 13.560300                | 0                | Pass    |
| 100         | +30       | 13.559500                | -0.005899574%    | Pass    |
| 100         | +40       | 13.560500                | 0.001474894%     | Pass    |
| 100         | +50       | 13.559500                | -0.005899574%    | Pass    |
| 85          | +20       | 13.559500                | -0.005899574%    | Pass    |
| 115         | +20       | 13.559500                | -0.005899574%    | Pass    |


Figure 2-5 Frequency Stability – 13.56 MHz



**20°C (100% Voltage)**



**-20°C (100% Voltage)**



**50°C (100% Voltage)**

#### 2.6.7 Test Location and Test Equipment Used

This test was carried out in SR5 (MM).

**Table 2.6.7-1 – Conducted Emissions Test Equipment List**

| Instrument                 | Manufacturer    | Type No | TE No | Calibration Period (months) | Calibration Due |
|----------------------------|-----------------|---------|-------|-----------------------------|-----------------|
| Signal & Spectrum Analyzer | Rohde & Schwarz | FSW26   | 30188 | 1 year                      | 04-Feb-2026     |
| Loop Antenna               | Com Power Corp. | AL-130R | 37113 | 1 year                      | 02-Dec-2025     |



## 2.7 AC Conducted Emissions

### 2.7.1 Specification Reference

Part 15 Subpart C §15.207(a)

### 2.7.2 Standard Applicable

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN).

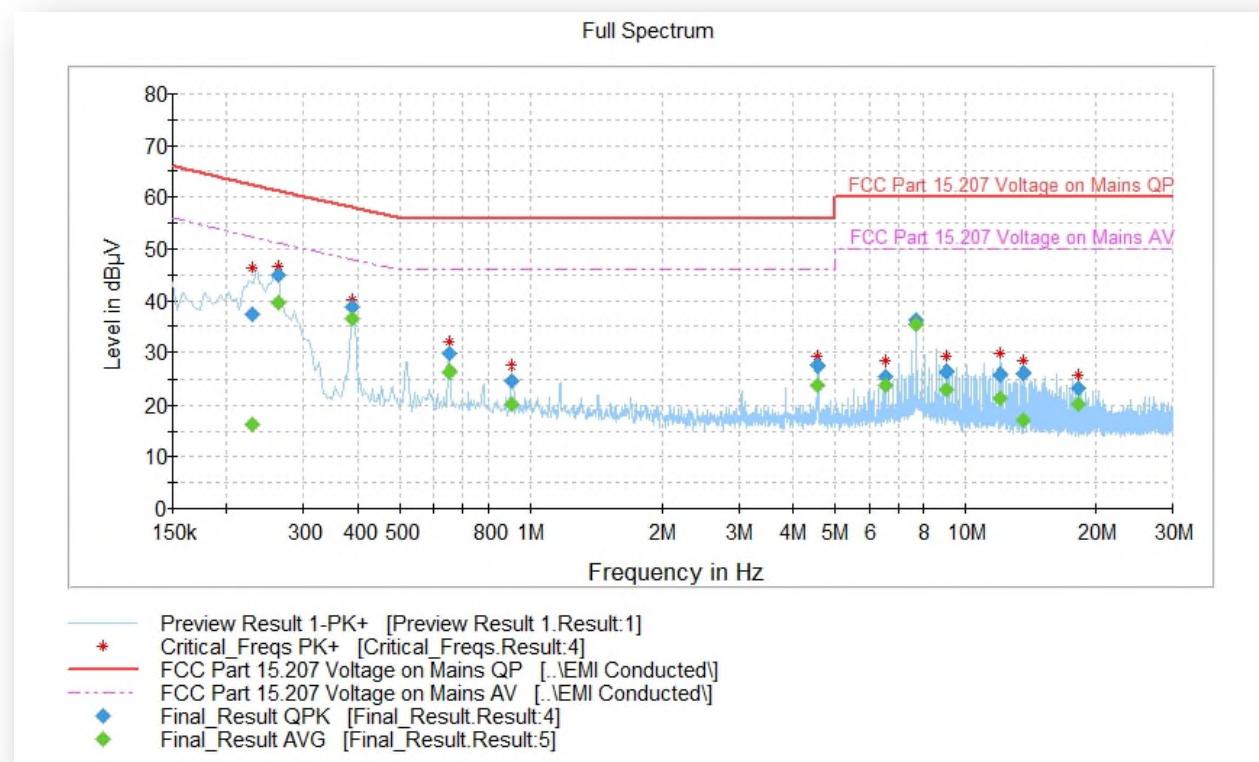
| Frequency of emission (MHz) | Conducted limit (dB $\mu$ V) |           |
|-----------------------------|------------------------------|-----------|
|                             | Quasi-peak                   | Average   |
| 0.15–0.5                    | 66 to 56*                    | 56 to 46* |
| 0.5–5                       | 56                           | 46        |
| 5–30                        | 60                           | 50        |

*\*Decreases with the logarithm of the frequency.*

### 2.7.3 Equipment Under Test and Modification State

S/N: N/A - Modification State 0

### 2.7.4 Date of Test


2025-June-27

### 2.7.5 Environmental Conditions

Ambient Temperature 21.7 °C  
Relative Humidity 41.8 %  
Atmospheric Pressure 49.1 kPa



## 2.7.6 Test Results: PASS





### 2.7.7 Quasi Peak and Average Results

| Frequency (MHz) | Quasi Peak (dB $\mu$ V) | Average (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Filter | Corr. (dB) | Sig Path (dB) | Trd Cable (dB) | Trd Corr. (dB) |
|-----------------|-------------------------|----------------------|--------------------|-------------|-----------------|-----------------|------|--------|------------|---------------|----------------|----------------|
| 0.229500        | ---                     | 16.28                | 52.24              | 35.96       | 1000.0          | 9.000           | L1   | ON     | 9.9        | 0.1           | 0.0            | 9.9            |
| 0.229500        | 37.29                   | ---                  | 62.28              | 24.99       | 1000.0          | 9.000           | L1   | ON     | 9.9        | 0.1           | 0.0            | 9.9            |
| 0.262000        | ---                     | 39.46                | 51.12              | 11.66       | 1000.0          | 9.000           | N    | ON     | 9.9        | 0.0           | 0.0            | 9.9            |
| 0.262000        | 44.91                   | ---                  | 61.16              | 16.25       | 1000.0          | 9.000           | N    | ON     | 9.9        | 0.0           | 0.0            | 9.9            |
| 0.390000        | ---                     | 36.52                | 47.91              | 11.38       | 1000.0          | 9.000           | N    | ON     | 9.9        | 0.1           | 0.0            | 9.9            |
| 0.390000        | 38.65                   | ---                  | 57.93              | 19.28       | 1000.0          | 9.000           | N    | ON     | 9.9        | 0.1           | 0.0            | 9.9            |
| 0.650000        | ---                     | 26.43                | 46.00              | 19.57       | 1000.0          | 9.000           | N    | ON     | 9.9        | 0.1           | 0.0            | 9.8            |
| 0.650000        | 29.88                   | ---                  | 56.00              | 26.12       | 1000.0          | 9.000           | N    | ON     | 9.9        | 0.1           | 0.0            | 9.8            |
| 0.909500        | ---                     | 20.33                | 46.00              | 25.67       | 1000.0          | 9.000           | L1   | ON     | 9.8        | 0.1           | 0.0            | 9.8            |
| 0.909500        | 24.77                   | ---                  | 56.00              | 31.23       | 1000.0          | 9.000           | L1   | ON     | 9.8        | 0.1           | 0.0            | 9.8            |
| 4.570500        | 27.46                   | ---                  | 56.00              | 28.54       | 1000.0          | 9.000           | N    | ON     | 9.9        | 0.2           | 0.0            | 9.8            |
| 4.570500        | ---                     | 23.95                | 46.00              | 22.05       | 1000.0          | 9.000           | N    | ON     | 9.9        | 0.2           | 0.0            | 9.8            |
| 6.530000        | 25.51                   | ---                  | 60.00              | 34.49       | 1000.0          | 9.000           | N    | ON     | 10.0       | 0.2           | 0.0            | 9.8            |
| 6.530000        | ---                     | 23.91                | 50.00              | 26.09       | 1000.0          | 9.000           | N    | ON     | 10.0       | 0.2           | 0.0            | 9.8            |
| 7.689500        | 36.09                   | ---                  | 60.00              | 23.91       | 1000.0          | 9.000           | N    | ON     | 10.1       | 0.2           | 0.0            | 9.8            |
| 7.689500        | ---                     | 35.29                | 50.00              | 14.71       | 1000.0          | 9.000           | N    | ON     | 10.1       | 0.2           | 0.0            | 9.8            |
| 9.038000        | 26.35                   | ---                  | 60.00              | 33.65       | 1000.0          | 9.000           | L1   | ON     | 10.1       | 0.3           | 0.0            | 9.9            |
| 9.038000        | ---                     | 23.06                | 50.00              | 26.94       | 1000.0          | 9.000           | L1   | ON     | 10.1       | 0.3           | 0.0            | 9.9            |
| 12.058000       | 25.92                   | ---                  | 60.00              | 34.08       | 1000.0          | 9.000           | N    | ON     | 10.2       | 0.4           | 0.0            | 9.9            |
| 12.058000       | ---                     | 21.22                | 50.00              | 28.78       | 1000.0          | 9.000           | N    | ON     | 10.2       | 0.4           | 0.0            | 9.9            |
| 13.558000       | ---                     | 17.24                | 50.00              | 32.76       | 1000.0          | 9.000           | N    | ON     | 10.3       | 0.4           | 0.0            | 9.9            |
| 13.558000       | 26.02                   | ---                  | 60.00              | 33.98       | 1000.0          | 9.000           | N    | ON     | 10.3       | 0.4           | 0.0            | 9.9            |
| 18.241500       | 23.18                   | ---                  | 60.00              | 36.82       | 1000.0          | 9.000           | L1   | ON     | 10.4       | 0.5           | 0.0            | 9.9            |
| 18.241500       | ---                     | 20.26                | 50.00              | 29.74       | 1000.0          | 9.000           | L1   | ON     | 10.4       | 0.5           | 0.0            | 9.9            |



## 2.7.8 Test Location and Test Equipment Used

This test was carried out in SR5 (MM).

**Table 2.7.8-1 – Conducted Emissions Test Equipment List**

| Instrument        | Manufacturer    | Type No | TE No | Calibration Period (months) | Calibration Due |
|-------------------|-----------------|---------|-------|-----------------------------|-----------------|
| EMI Test Receiver | Rohde & Schwarz | ESU40   | 30216 | 1 year                      | 26-Aug-2025     |
| Two-Line Network  | Rohde & Schwarz | ENV-216 | 65161 | 1 year                      | 07-Jul-2025     |



### 3 Measurement Uncertainty

Calculation of Measurement Uncertainty per CISPR 16-4-2:2011 with Corr. 1

#### 3.1 Conducted Measurements - 150 kHz – 30 MHz, 50 ohm / 50µH LISN

|                               | Input Quantity (Contribution) $X_i$ | Value   | Prob. Dist. | Divisor     | $u_i(x)$ | $u_i(x)^2$ |
|-------------------------------|-------------------------------------|---------|-------------|-------------|----------|------------|
| 1                             | Receiver reading                    | 0.10 dB | Normal, k=1 | 1.000       | 0.10     | 0.01       |
| 2                             | LISN-receiver attenuation           | 0.10 dB | Normal, k=2 | 2.000       | 0.05     | 0.00       |
| 3                             | LISN voltage division factor        | 0.30 dB | Normal, k=2 | 2.000       | 0.15     | 0.02       |
| 4                             | Receiver sinewave accuracy          | 0.36 dB | Normal, k=2 | 2.000       | 0.18     | 0.03       |
| 5                             | Receiver pulse amplitude            | 1.50 dB | Rectangular | 1.732       | 0.87     | 0.75       |
| 6                             | Receiver pulse repetition rate      | 1.50 dB | Rectangular | 1.732       | 0.87     | 0.75       |
| 7                             | Noise floor proximity               | 0.00 dB | Rectangular | 1.732       | 0.00     | 0.00       |
| 8                             | AMN VDF frequency interpolation     | 0.10 dB | Rectangular | 1.732       | 0.06     | 0.00       |
| 9                             | Mismatch                            | 0.07 dB | U-shaped    | 1.414       | 0.05     | 0.00       |
| 10                            | LISN impedance                      | 2.65 dB | Triangular  | 2.449       | 1.08     | 1.17       |
| 11                            | Effect of mains disturbance         | 0.00 dB |             |             | 0.00     | 0.00       |
| 12                            | Effect of the environment           |         |             |             |          |            |
| Combined standard uncertainty |                                     |         |             | Normal      | 1.66 dB  |            |
| Expanded uncertainty          |                                     |         |             | Normal, k=2 | 3.31 dB  |            |

#### 3.2 Radiated Emissions Measurements – Below 30 MHz at a distance of 3 m (alternate site)

|    | Input Quantity (Contribution) $X_i$ | Value   | Prob. Dist. | Divisor | $u_i(x)$ | $u_i(x)^2$ |
|----|-------------------------------------|---------|-------------|---------|----------|------------|
| 1  | Receiver reading                    | 0.10 dB | Normal, k=1 | 1.000   | 0.10     | 0.01       |
| 2  | Attenuation: antenna-receiver       | 0.20 dB | Normal, k=2 | 2.000   | 0.10     | 0.01       |
| 3  | Antenna factor AF                   | 0.44 dB | Normal, k=2 | 2.000   | 0.22     | 0.05       |
| 4  | Receiver sinewave accuracy          | 0.15 dB | Normal, k=2 | 2.000   | 0.08     | 0.01       |
| 5  | Receiver pulse amplitude            | 1.50 dB | Rectangular | 1.732   | 0.87     | 0.75       |
| 6  | Receiver pulse repetition rate      | 1.50 dB | Rectangular | 1.732   | 0.87     | 0.75       |
| 7  | Noise floor proximity               | 0.50 dB | Rectangular | 1.732   | 0.29     | 0.08       |
| 8  | Mismatch: antenna-receiver          | 0.95 dB | U-shaped    | 1.414   | 0.67     | 0.45       |
| 9  | AF frequency interpolation          | 0.30 dB | Rectangular | 1.732   | 0.17     | 0.03       |
| 10 | AF height deviations                | 0.10 dB | Rectangular | 1.732   | 0.06     | 0.00       |
| 11 | Directivity difference at 10 m      | 3.12 dB | Rectangular | 1.732   | 1.80     | 3.24       |
| 12 | Phase center location at 10 m       | 1.00 dB | Rectangular | 1.732   | 0.58     | 0.33       |



|                               |                                 |         |             |             |         |      |
|-------------------------------|---------------------------------|---------|-------------|-------------|---------|------|
| 13                            | Cross-polarization              | 0.90 dB | Rectangular | 1.732       | 0.52    | 0.27 |
| 14                            | Balance                         | 0.00 dB | Rectangular | 1.732       | 0.00    | 0.00 |
| 15                            | Site imperfections              | 0.00 dB | Triangular  | 2.449       | 0.00    | 0.00 |
| 16                            | Separation distance at 10 m     | 0.30 dB | Rectangular | 1.732       | 0.17    | 0.03 |
| 17                            | Effect of setup table material  | 0.00 dB | Rectangular | 1.732       | 0.00    | 0.00 |
| 18                            | Table height at 10 m            | 0.10 dB | Normal, k=2 | 2.000       | 0.05    | 0.00 |
| 19                            | Near-field effects              | 0.00 dB | Triangular  | 2.449       | 0.00    | 0.00 |
| 20                            | Effect of ambient noise on OATS | 0.00 dB |             |             |         | 0.00 |
| Combined standard uncertainty |                                 |         |             | Normal      | 2.45 dB |      |
| Expanded uncertainty          |                                 |         |             | Normal, k=2 | 4.91 dB |      |

### 3.3 Radiated Emissions Measurements - 30 MHz – 1000 MHz at a distance of 3 m

|                               | Input Quantity (Contribution) $X_i$ | Value   | Prob. Dist. | Divisor     | $u_i(x)$ | $u_i(x)^2$ |
|-------------------------------|-------------------------------------|---------|-------------|-------------|----------|------------|
| 1                             | Receiver reading                    | 0.10 dB | Normal, k=1 | 1.000       | 0.10     | 0.01       |
| 2                             | Attenuation: antenna-receiver       | 0.20 dB | Normal, k=2 | 2.000       | 0.10     | 0.01       |
| 3                             | Antenna factor AF                   | 0.58 dB | Normal, k=2 | 2.000       | 0.29     | 0.08       |
| 4                             | Receiver sinewave accuracy          | 0.15 dB | Normal, k=2 | 2.000       | 0.08     | 0.01       |
| 5                             | Receiver pulse amplitude            | 1.50 dB | Rectangular | 1.732       | 0.87     | 0.75       |
| 6                             | Receiver pulse repetition rate      | 1.50 dB | Rectangular | 1.732       | 0.87     | 0.75       |
| 7                             | Noise floor proximity               | 0.50 dB | Rectangular | 1.732       | 0.29     | 0.08       |
| 8                             | Mismatch: antenna-receiver          | 0.95 dB | U-shaped    | 1.414       | 0.67     | 0.45       |
| 9                             | AF frequency interpolation          | 0.30 dB | Rectangular | 1.732       | 0.17     | 0.03       |
| 10                            | AF height deviations                | 0.10 dB | Rectangular | 1.732       | 0.06     | 0.00       |
| 11                            | Directivity difference at 3 m       | 3.12 dB | Rectangular | 1.732       | 1.80     | 3.24       |
| 12                            | Phase center location at 3 m        | 1.00 dB | Rectangular | 1.732       | 0.58     | 0.33       |
| 13                            | Cross-polarization                  | 0.90 dB | Rectangular | 1.732       | 0.52     | 0.27       |
| 14                            | Balance                             | 0.00 dB | Rectangular | 1.732       | 0.00     | 0.00       |
| 15                            | Site imperfections                  | 3.99 dB | Triangular  | 2.449       | 1.63     | 2.65       |
| 16                            | Separation distance at 3 m          | 0.30 dB | Rectangular | 1.732       | 0.17     | 0.03       |
| 17                            | Effect of setup table material      | 0.57 dB | Rectangular | 1.732       | 0.33     | 0.11       |
| 18                            | Table height at 3 m                 | 0.10 dB | Normal, k=2 | 2.000       | 0.05     | 0.00       |
| 19                            | Near-field effects                  | 0.00 dB | Triangular  | 2.449       | 0.00     | 0.00       |
| 20                            | Effect of ambient noise on OATS     | 0.00 dB |             |             |          | 0.00       |
| Combined standard uncertainty |                                     |         |             | Normal      | 2.97 dB  |            |
| Expanded uncertainty          |                                     |         |             | Normal, k=2 | 5.94 dB  |            |



### 3.4 Radiated Emissions Measurements - 30 MHz – 1000 MHz at a distance of 3 m

|                               | Input Quantity (Contribution) $X_i$ | Value   | Prob. Dist. | Divisor     | $u_i(x)$ | $u_i(x)^2$ |
|-------------------------------|-------------------------------------|---------|-------------|-------------|----------|------------|
| 1                             | Receiver reading                    | 0.10 dB | Normal, k=1 | 1.000       | 0.10     | 0.01       |
| 2                             | Attenuation: antenna-receiver       | 0.20 dB | Normal, k=2 | 2.000       | 0.10     | 0.01       |
| 3                             | Antenna factor AF                   | 0.58 dB | Normal, k=2 | 2.000       | 0.29     | 0.08       |
| 4                             | Receiver sinewave accuracy          | 0.15 dB | Normal, k=2 | 2.000       | 0.08     | 0.01       |
| 5                             | Receiver pulse amplitude            | 1.50 dB | Rectangular | 1.732       | 0.87     | 0.75       |
| 6                             | Receiver pulse repetition rate      | 1.50 dB | Rectangular | 1.732       | 0.87     | 0.75       |
| 7                             | Noise floor proximity               | 0.50 dB | Rectangular | 1.732       | 0.29     | 0.08       |
| 8                             | Mismatch: antenna-receiver          | 0.95 dB | U-shaped    | 1.414       | 0.67     | 0.45       |
| 9                             | AF frequency interpolation          | 0.30 dB | Rectangular | 1.732       | 0.17     | 0.03       |
| 10                            | AF height deviations                | 0.10 dB | Rectangular | 1.732       | 0.06     | 0.00       |
| 11                            | Directivity difference at 3 m       | 3.12 dB | Rectangular | 1.732       | 1.80     | 3.24       |
| 12                            | Phase center location at 3 m        | 1.00 dB | Rectangular | 1.732       | 0.58     | 0.33       |
| 13                            | Cross-polarization                  | 0.90 dB | Rectangular | 1.732       | 0.52     | 0.27       |
| 14                            | Balance                             | 0.00 dB | Rectangular | 1.732       | 0.00     | 0.00       |
| 15                            | Site imperfections                  | 3.99 dB | Triangular  | 2.449       | 1.63     | 2.65       |
| 16                            | Separation distance at 3 m          | 0.30 dB | Rectangular | 1.732       | 0.17     | 0.03       |
| 17                            | Effect of setup table material      | 0.57 dB | Rectangular | 1.732       | 0.33     | 0.11       |
| 18                            | Table height at 3 m                 | 0.10 dB | Normal, k=2 | 2.000       | 0.05     | 0.00       |
| 19                            | Near-field effects                  | 0.00 dB | Triangular  | 2.449       | 0.00     | 0.00       |
| 20                            | Effect of ambient noise on OATS     | 0.00 dB |             |             |          | 0.00       |
| Combined standard uncertainty |                                     |         |             | Normal      | 2.99 dB  |            |
| Expanded uncertainty          |                                     |         |             | Normal, k=2 | 5.99 dB  |            |



## 4 Diagram of Test Setups

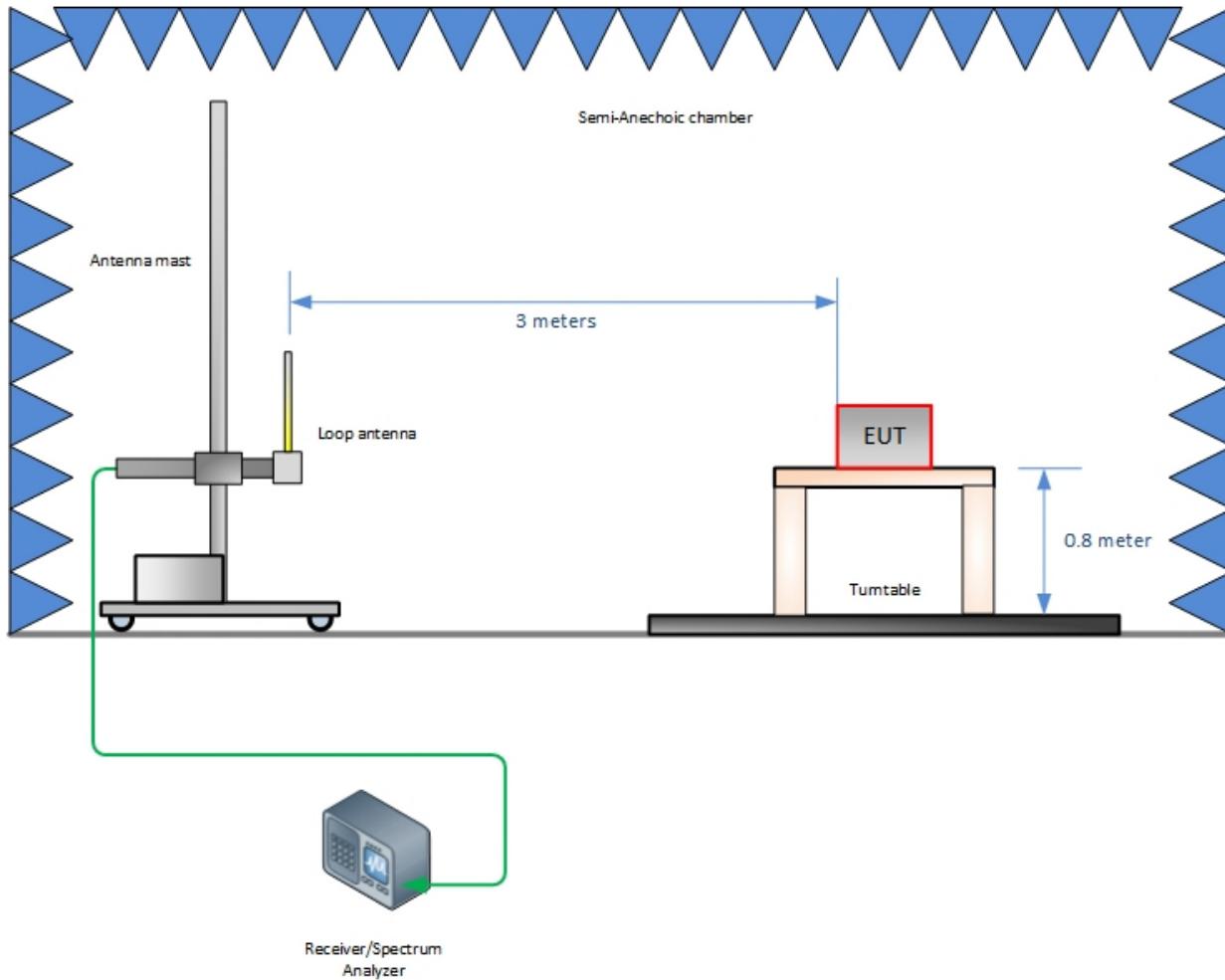
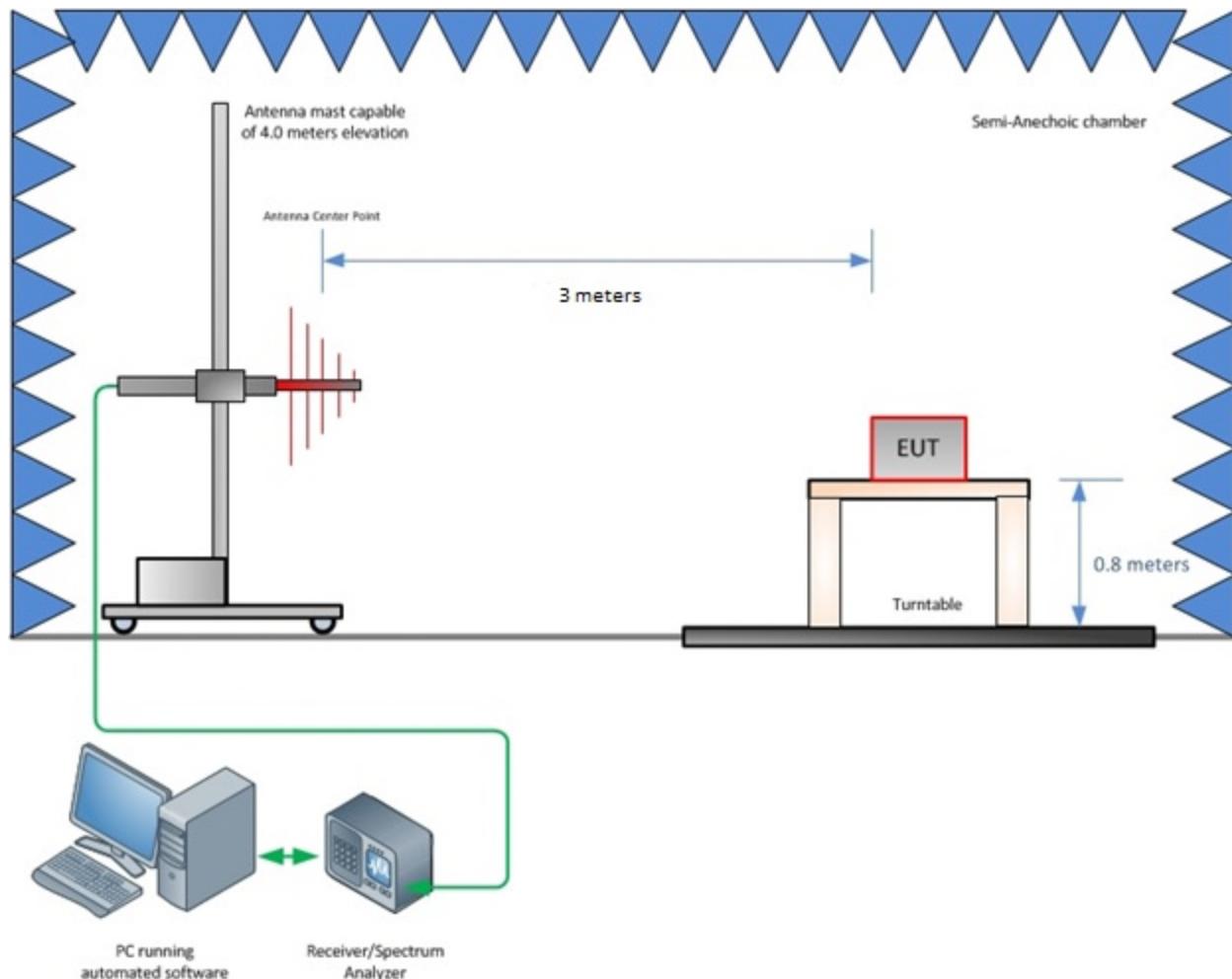




Figure 4-1 – Radiated Emission Test Setup (Below 30MHz)



**Figure 4-2 – Radiated Emissions Test Setup 30MHz to 1 GHz**

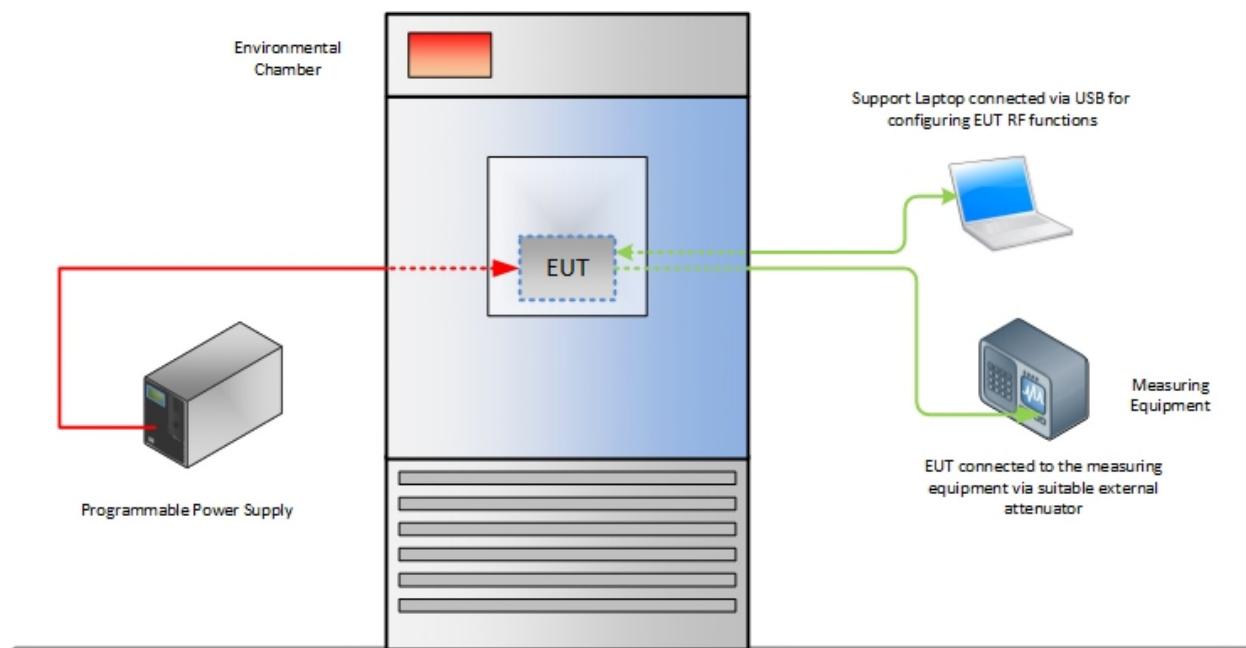
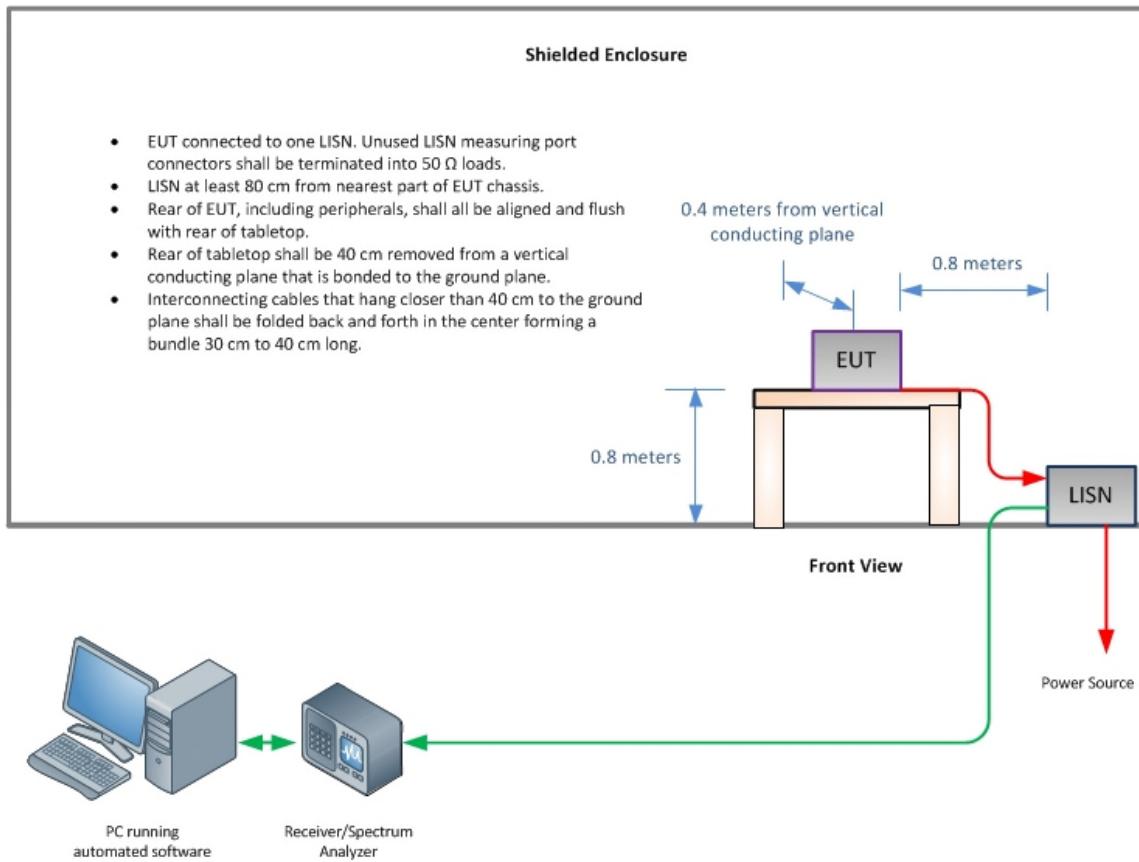




Figure 4-3 – Frequency Stability Test Configuration



### Conducted Emission Test Setup



## 5 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.



A2LA Cert. No. 2955.13

