

TEST REPORT

Applicant: NEXhome Smart Technologies Co . , Ltd.

Address: 7th Floor, A Bldg Star-Net Plaza, No.33 Xingang Avenue, High-tech Zone, Fuzhou, Fujian, China

Product Name: Door Unit

FCC ID: 2BPYV-M10G710

47 CFR Part 15, Subpart C(15.247)

Standard(s): ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Report Number: 2402A111038E-RF-00A

Report Date: 2025/3/25

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Reviewed By: Pedro Yun

Approved By: Gavin Xu

Title: Project Engineer

Title: RF Supervisor

Bay Area Compliance Laboratories Corp. (Dongguan)
No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888

Fax: +86-769-86858891

www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

CONTENTS

DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	5
1.1 GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	5
1.2 ACCESSORY INFORMATION	5
1.3 ANTENNA INFORMATION DETAIL▲	5
1.4 EQUIPMENT MODIFICATIONS	5
2. SUMMARY OF TEST RESULTS	6
3. DESCRIPTION OF TEST CONFIGURATION	7
3.1 OPERATION FREQUENCY DETAIL	7
3.2 EUT OPERATION CONDITION	7
3.3 SUPPORT EQUIPMENT LIST AND DETAILS	7
3.4 SUPPORT CABLE LIST AND DETAILS	7
3.5 BLOCK DIAGRAM OF TEST SETUP	8
3.6 TEST FACILITY	10
3.7 MEASUREMENT UNCERTAINTY	10
4. REQUIREMENTS AND TEST PROCEDURES	11
4.1 AC LINE CONDUCTED EMISSIONS	11
4.1.1 Applicable Standard	11
4.1.2 EUT Setup	12
4.1.3 EMI Test Receiver Setup	12
4.1.4 Test Procedure	13
4.1.5 Corrected Result& Margin Calculation	13
4.1.6 Test Result	13
4.2 RADIATION SPURIOUS EMISSIONS	14
4.2.1 Applicable Standard	14
4.2.2 EUT Setup	14
4.2.3 EMI Test Receiver & Spectrum Analyzer Setup	16
4.2.4 Test Procedure	16
4.2.5 Corrected Result & Margin Calculation	17
4.2.6 Test Result	17
4.3 MINIMUM 6 DB BANDWIDTH	18
4.3.1 Applicable Standard	18
4.3.2 EUT Setup	18
4.3.3 Test Procedure	18
4.3.4 Test Result	18
4.4 MAXIMUM CONDUCTED OUTPUT POWER	19
4.4.1 Applicable Standard	19
4.4.2 EUT Setup	19
4.4.3 Test Procedure	19
4.4.4 Test Result	19
4.5 MAXIMUM POWER SPECTRAL DENSITY	20

4.5.1 Applicable Standard	20
4.5.2 EUT Setup	20
4.5.3 Test Procedure	20
4.5.4 Test Result	20
4.6 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	21
4.6.1 Applicable Standard	21
4.6.2 EUT Setup	21
4.6.3 Test Procedure	21
4.6.4 Test Result	21
4.7 DUTY CYCLE	22
4.7.1 EUT Setup	22
4.7.2 Test Procedure	22
4.7.3 Judgment	22
4.8 ANTENNA REQUIREMENT	23
4.8.1 Applicable Standard	23
4.8.2 Judgment	23
5. Test DATA AND RESULTS	24
5.1 AC LINE CONDUCTED EMISSIONS	24
5.2 RADIATION SPURIOUS EMISSIONS	27
5.3 6dB EMISSION BANDWIDTH	42
5.4 MAXIMUM CONDUCTED OUTPUT POWER	44
5.5 POWER SPECTRAL DENSITY	46
5.6 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	48
5.7 DUTY CYCLE	49
EXHIBIT A - EUT PHOTOGRAPHS	50
EXHIBIT B - TEST SETUP PHOTOGRAPHS	51

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2402A111038E-RF-00A	Original Report	2025/3/24

1. GENERAL INFORMATION

1.1 General Description Of Equipment under Test

EUT Name:	Door Unit
EUT Model:	DH-G710S
Operation Frequency:	2402-2480 MHz
Maximum Peak Output Power (Conducted):	-0.44dBm
Modulation Type:	GFSK
Rated Input Voltage:	DC 12V From Adapter or DC 48V From PoE
Serial Number:	2W6Y-1(For AC Line Conducted Emissions and Radiated Spurious Emission Below 1G tests) 2W6Z-1(For RF conducted and Radiated Spurious Emission Above 1G tests)
EUT Received Date:	2024/12/20
EUT Received Status:	Good

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
/	/	/	/

1.3 Antenna Information Detail▲

Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
Word Easy Electronics Co.,Ltd.	PCB	50	2.4~2.5GHz	-3.5dBi
The design of compliance with §15.203:				
<input checked="" type="checkbox"/> Unit uses a permanently attached antenna. <input type="checkbox"/> Unit uses a unique coupling to the intentional radiator. <input type="checkbox"/> Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.				

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC §15.205,§15.209,§15.247(d)	Radiated Spurious Emission	Compliant
FCC §15.247(a)(2)	6dB Emission Bandwidth	Compliant
FCC §15.247(b)(1)	Maximum Conducted Output Power	Compliant
FCC §15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §15.247(e)	Power Spectral Density	Compliant
FCC §15.203	Antenna Requirement	Compliant

Note 1: For AC line conducted emissions, the maximum output power mode and channel was tested.

Note 2: For Radiated Spurious Emissions 9kHz~1GHz and 18~25GHz, the maximum output power mode and channel was tested.

Note 3: Per 15B report, Powered by Adapter was the worst for AC Line Conducted Emissions and Radiated Spurious Emission Below 1G, so only performed it.

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404
...
...
...	...	38	2478
19	2440	39	2480

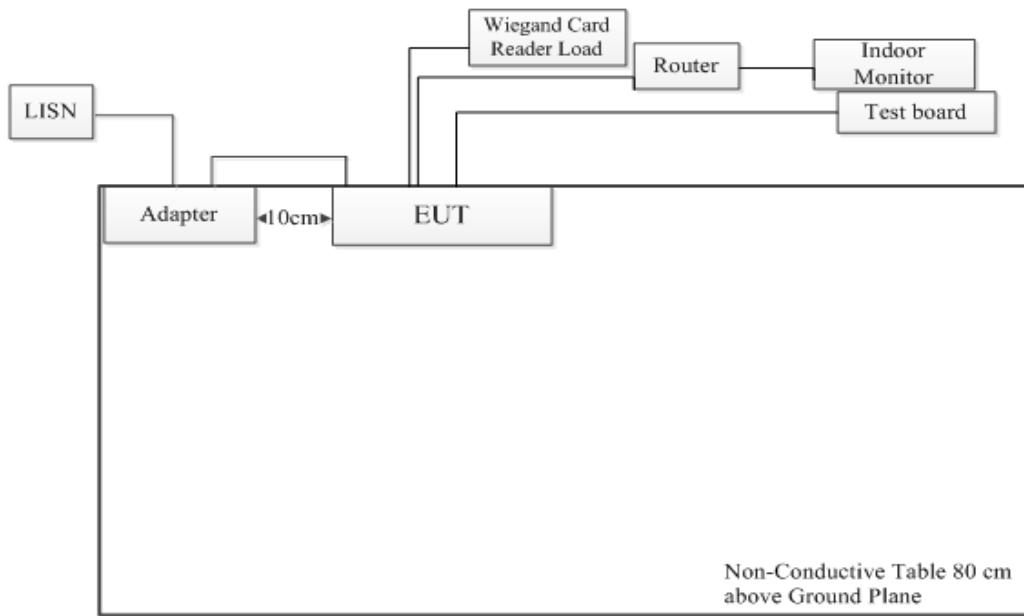
Note: The above frequencies in bold were performed the test.

3.2 EUT Operation Condition

The EUT was configured for testing in Engineering Mode, which was provided by the manufacturer. The EUT configuration as below:

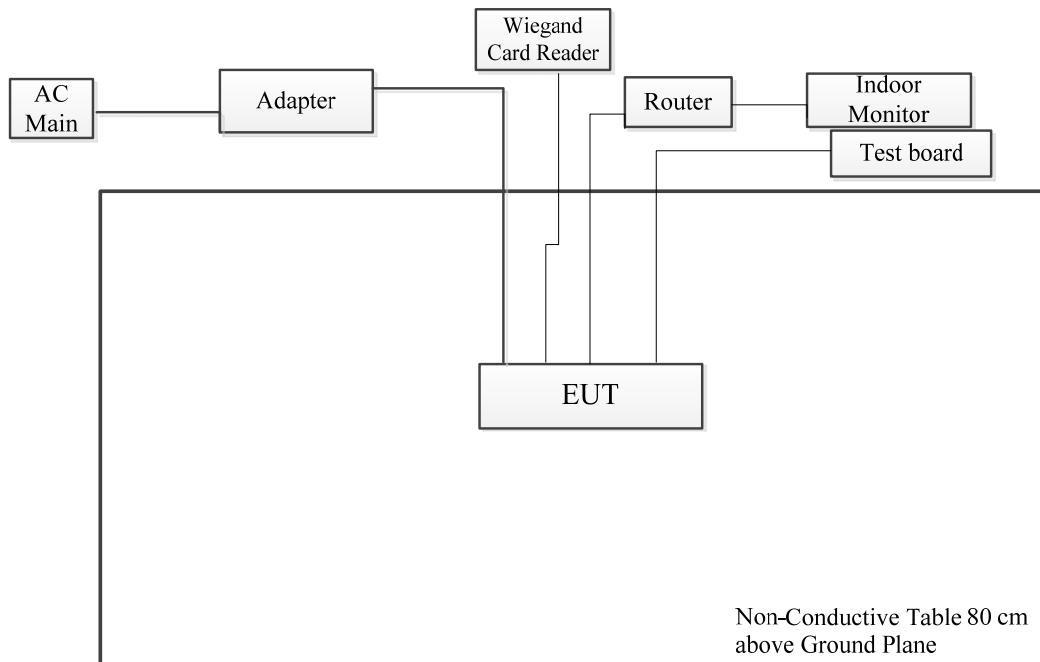
EUT Exercise Software:	EMI_TEST_v1.5		
The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer▲ :			
Test Modes	Power Level Setting		
	Lowest Channel	Middle Channel	Highest Channel
BLE 1Mbps	1.9	1.9	3
BLE 2Mbps	1.9	1.9	3

3.3 Support Equipment List and Details

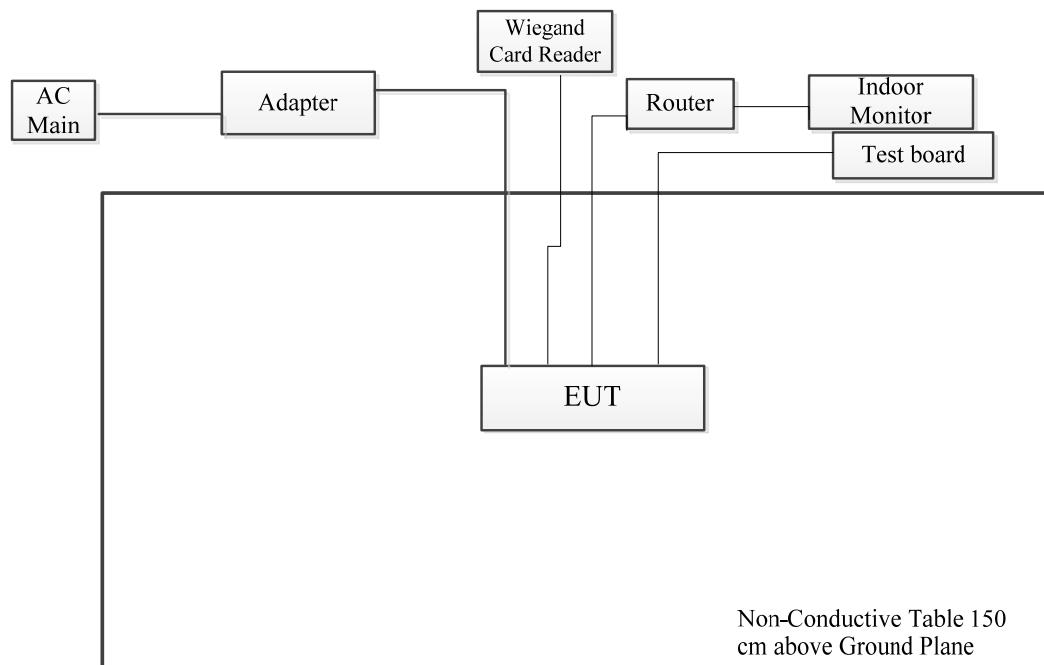

Manufacturer	Description	Model	Serial Number
Hunan Frcem	Adapter(DC 12V)	FC036A07-120030D	2W9H-4
TENDA	Router	F6	E6895010048000097
Unknown	Indoor Monitor	Unknown	Unknown
Unknown	Wiegand card reader Load	Unknown	Unknown
NEXhome	Test board	Unknown	Unknown

3.4 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	To
2Pin DC Cable	No	No	2.2	Adapter(DC 12V)	EUT
RJ45 Cable	No	No	10	Router	EUT
RJ45 Cable	No	No	3	Router	Indoor Monitor
2Pin Wiegand card reader Cable	No	No	3	Wiegand card reader Load	EUT
14Pin Test board Cable	No	No	1.5	Test board	EUT


3.5 Block Diagram of Test Setup

AC line conducted emissions:



Spurious Emissions:

Below 1GHz:

Above 1GHz:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB, 18GHz~26.5GHz: 5.47 dB, 26.5GHz~40GHz: 5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1 °C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

4. REQUIREMENTS AND TEST PROCEDURES

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

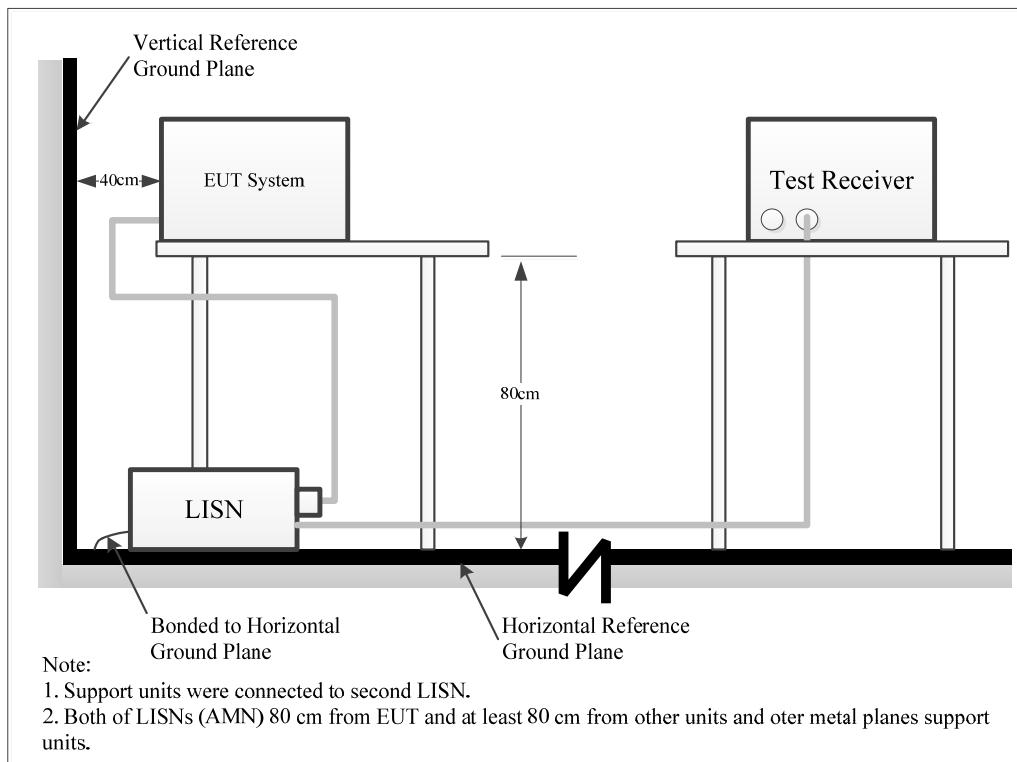
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground[protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Result& Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor=attenuation caused by cable loss + voltage division factor of AMN

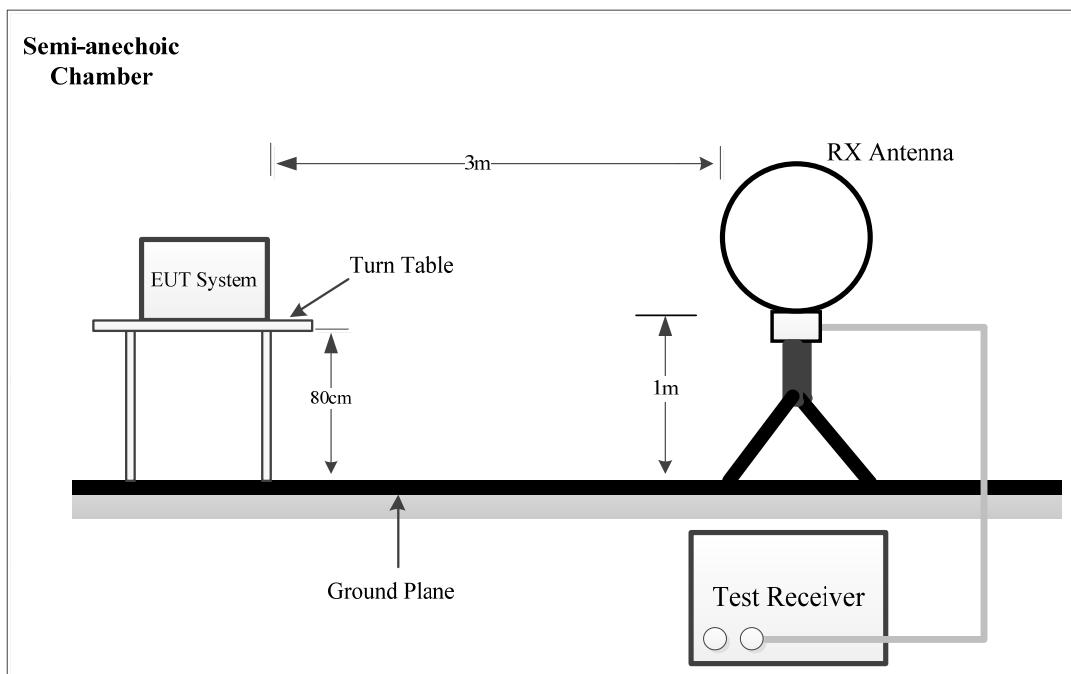
The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

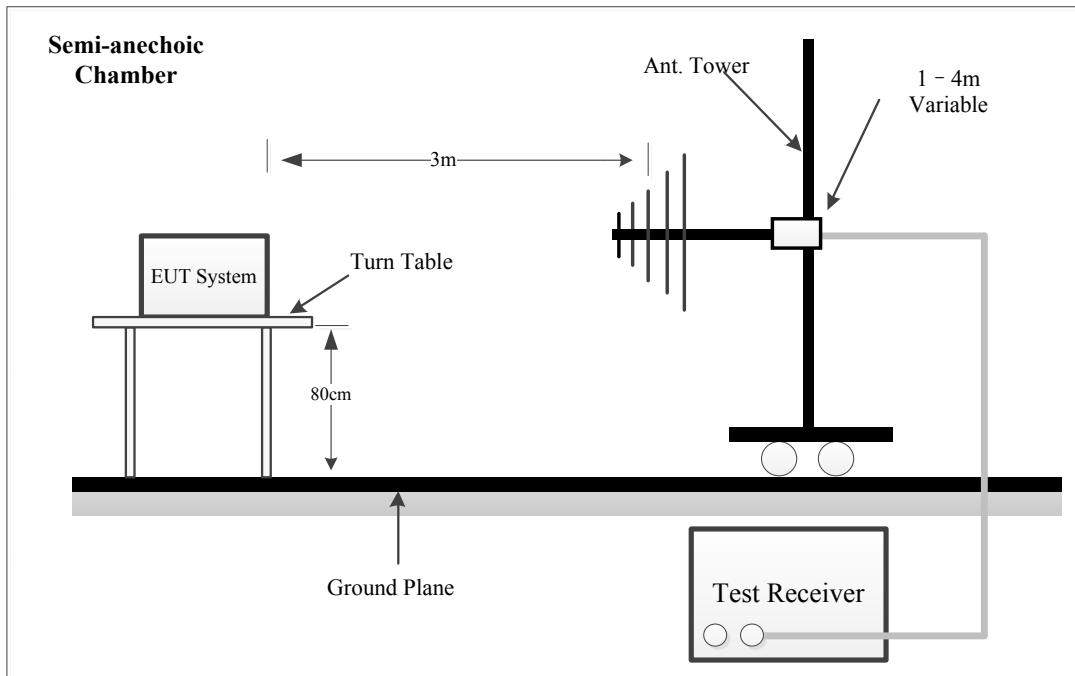
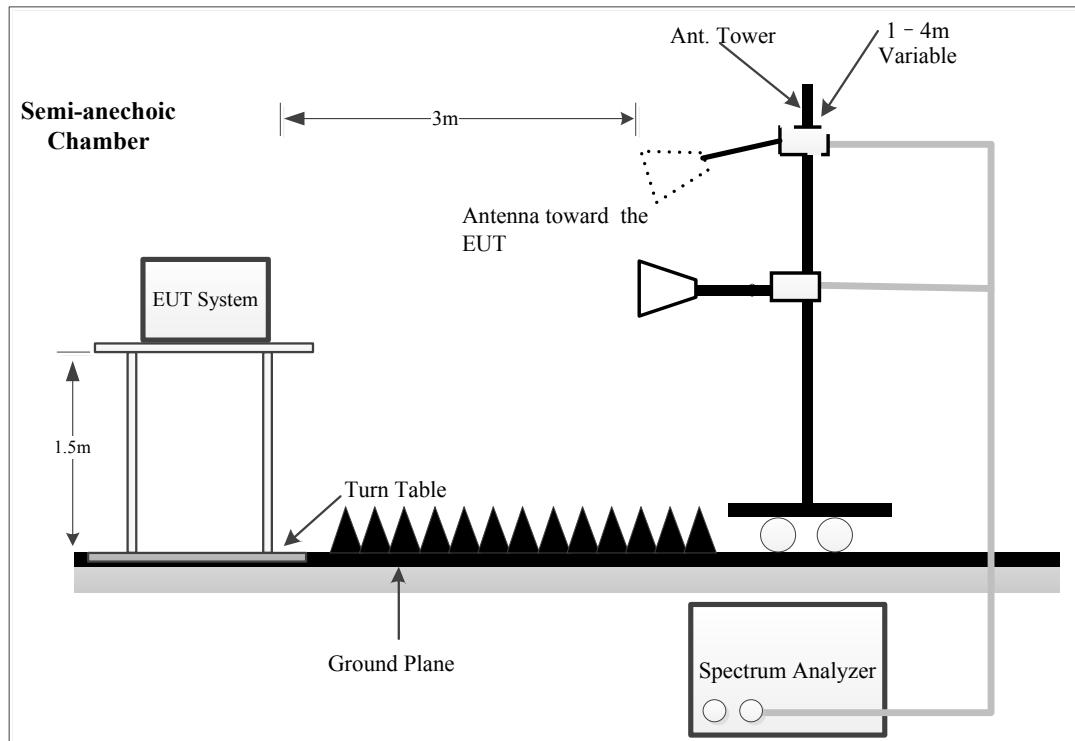
Margin = Limit – Result

4.1.6 Test Result

Please refer to section 5.1.

4.2 Radiation Spurious Emissions


4.2.1 Applicable Standard



FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

4.2.2 EUT Setup

9kHz-30MHz:

30MHz~1GHz:**Above 1GHz:**

The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40cm long in the middle.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz-1000MHz:

Frequency Range	Measurement	RBW	Video B/W	IF B/W	Detector
9 kHz-150 kHz	QP/AV	300 Hz	1 kHz	200 Hz	QP/AV
150 kHz-30 MHz	QP/AV	10 kHz	30 kHz	9 kHz	QP/AV
30 MHz-1000 MHz	Peak	100 kHz	300 kHz	/	PK
	QP	/	/	120 kHz	QP

Above 1GHz:

Pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
Above 1 GHz	Peak	1MHz	3 MHz	PK
	AV	1MHz	5kHz	PK

Final measurement for emission identified during the pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
Above 1 GHz	Peak	1MHz	3 MHz	PK
	AV	1MHz	≥1/T	PK

Note: T is minimum transmission duration

4.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was required in Quasi-peak measurement for frequency range of 9 kHz-1 GHz except 9-90 kHz, 110-490 kHz, employing an average measurement, peak and Average measurement for frequencies above 1 GHz.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

4.2.5 Corrected Result & Margin Calculation

$$E_{Log} = 20 \times \log_{10}(E_{Linear})$$

E_{Linear} is the field strength of the emission, in μ V/m

E_{Log} is the field strength of the emission, in dB μ V/m

For 9kHz-30MHz test, test distance is 3m, extrapolation limit shall be calculated using Equation:

$$E_{limit-measure} = E_{limit-Standard} + 40 \times \log_{10} (d_{standard}/d_{measure})$$

The basic equation is as follows:

Result = Reading + Factor

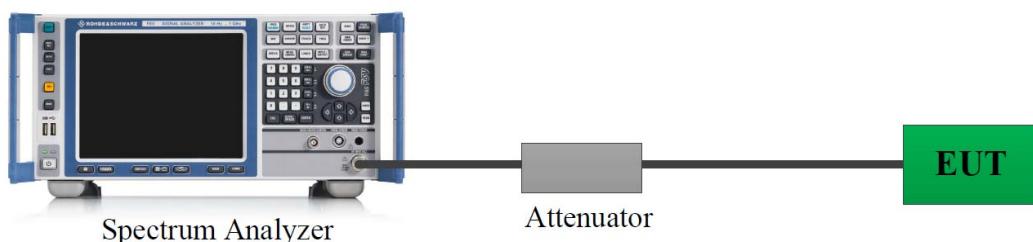
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Result}$$

4.2.6 Test Result

Please refer to section 5.2.


4.3 Minimum 6 dB Bandwidth

4.3.1 Applicable Standard

FCC §15.247 (a)(2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

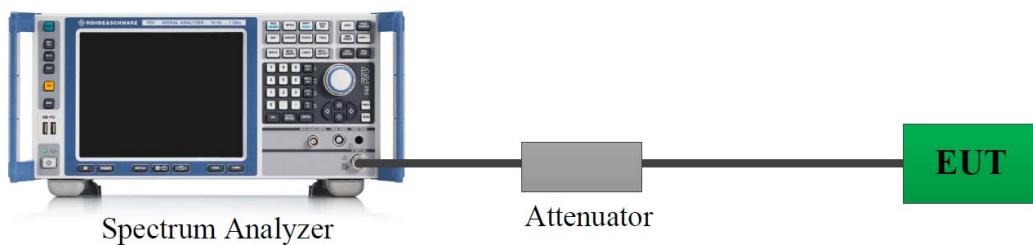
4.3.3 Test Procedure

According to ANSI C63.10-2013 Section 11.8

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times \text{RBW}$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.3.4 Test Result

Please refer to section 5.3.


4.4 Maximum Conducted Output Power

4.4.1 Applicable Standard

FCC §15.247 (b)(3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

4.4.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.4.3 Test Procedure

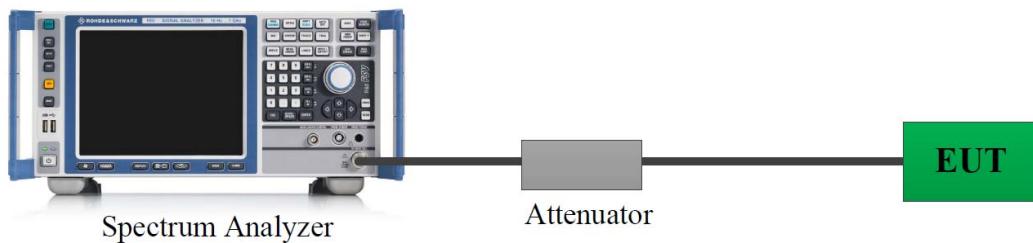
According to ANSI C63.10-2013 Section 11.9.1.1

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW $\geq [3 \times \text{RBW}]$.
- c) Set span $\geq [3 \times \text{RBW}]$.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

4.4.4 Test Result

Please refer to section 5.4.


4.5 Maximum power spectral density

4.5.1 Applicable Standard

FCC §15.247 (e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

4.5.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

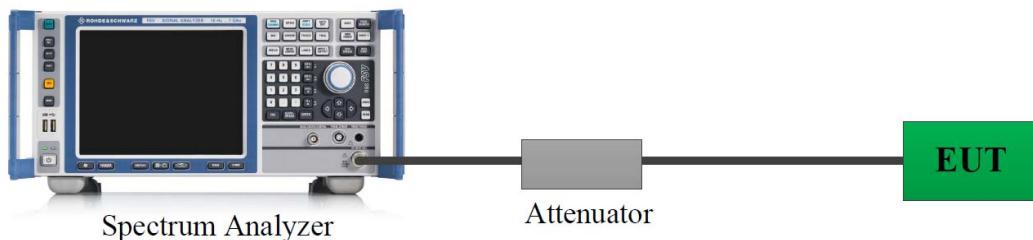
4.5.3 Test Procedure

According to ANSI C63.10-2013 Section 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW $\geq [3 \times \text{RBW}]$.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

4.5.4 Test Result

Please refer to section 5.5.


4.6 100 kHz Bandwidth of Frequency Band Edge

4.6.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

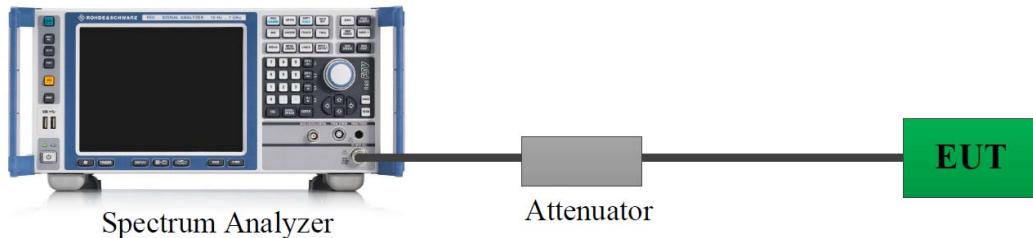
4.6.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.6.3 Test Procedure

According to ANSI C63.10-2013 Section 11.11

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW $\geq [3 \times \text{RBW}]$.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.


Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

4.6.4 Test Result

Please refer to section 5.6.

4.7 Duty Cycle

4.7.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.7.2 Test Procedure

According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set $RBW \geq OBW$ if possible; otherwise, set RBW to the largest available value.
- 3) Set $VBW \geq RBW$. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are $> 50/T$ and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \leq 16.7 \mu s$.)

4.7.3 Judgment

Report only, please refer to section 5.7.

4.8 Antenna Requirement

4.8.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or§15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.8.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.3.

5. Test DATA AND RESULTS

5.1 AC Line Conducted Emissions

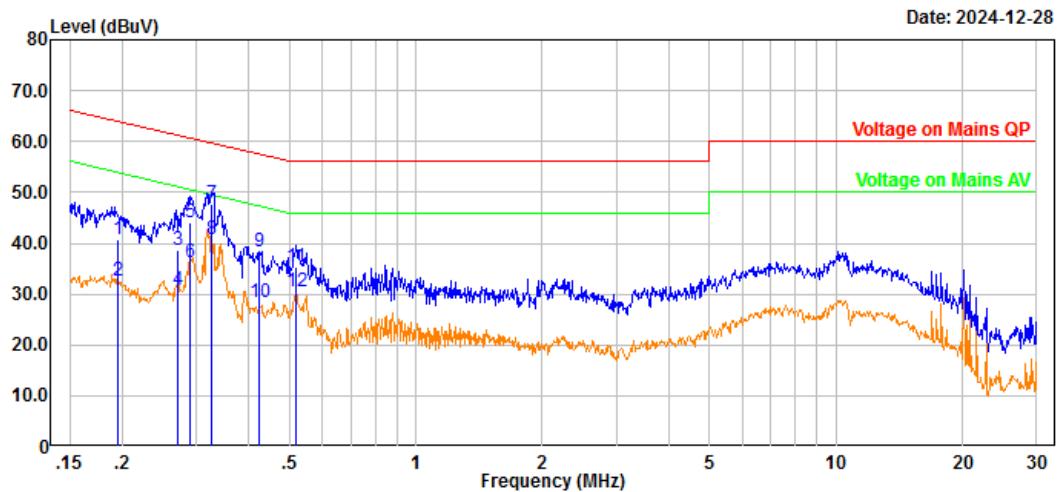
Serial Number:	2W6Y-1	Test Date:	2024/12/28
Test Site:	CE	Test Mode:	Transmitting
Tester:	Yukin Qiu	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	22	Relative Humidity: (%)	28	ATM Pressure: (kPa)	102.8
-------------------	----	------------------------	----	---------------------	-------

Test Equipment List and Details:

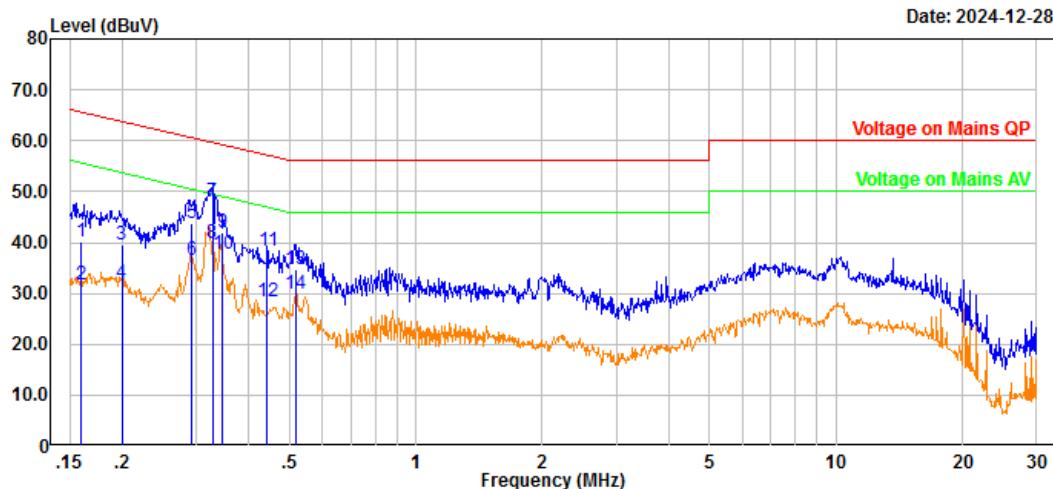
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2024/9/5	2025/9/4
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2024/9/5	2025/9/4
R&S	EMI Test Receiver	ESCI	100035	2024/8/26	2025/8/25
Audix	Test Software	E3	191218 V9	N/A	N/A


* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Note: BLE 1Mbps Low channel was tested.

Project No.: 2402A111038E-RF
 Port: Line
 Test Mode: Transmitting
 IF B/W 9KHz PK/AV


Serial No.: 2W6Y-1
 Tester: Yukin Qiu

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)	Measurement
1	0.20	29.82	10.84	40.66	63.79	23.13	QP
2	0.20	21.64	10.84	32.48	53.79	21.31	Average
3	0.27	27.71	10.83	38.54	61.09	22.55	QP
4	0.27	20.01	10.83	30.84	51.09	20.25	Average
5	0.29	33.38	10.82	44.20	60.53	16.33	QP
6	0.29	25.31	10.82	36.13	50.53	14.40	Average
7	0.33	36.79	10.83	47.62	59.55	11.93	QP
8	0.33	29.87	10.83	40.70	49.55	8.85	Average
9	0.43	27.48	10.84	38.32	57.35	19.03	QP
10	0.43	17.48	10.84	28.32	47.35	19.03	Average
11	0.52	24.41	10.84	35.25	56.00	20.75	QP
12	0.52	19.76	10.84	30.60	46.00	15.40	Average

Project No.: 2402A111038E-RF
 Port: neutral
 Test Mode: Transmitting
 IF B/W 9KHz PK/AV

Serial No.: 2W6Y-1
 Tester: Yukin Qiu

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)	Measurement
1	0.16	29.37	10.85	40.22	65.47	25.25	QP
2	0.16	20.95	10.85	31.80	55.47	23.67	Average
3	0.20	28.74	10.85	39.59	63.63	24.04	QP
4	0.20	21.01	10.85	31.86	53.63	21.77	Average
5	0.29	32.85	10.79	43.64	60.44	16.80	QP
6	0.29	25.75	10.79	36.54	50.44	13.90	Average
7	0.33	37.32	10.79	48.11	59.51	11.40	QP
8	0.33	29.14	10.79	39.93	49.51	9.58	Average
9	0.35	31.29	10.78	42.07	59.06	16.99	QP
10	0.35	26.82	10.78	37.60	49.06	11.46	Average
11	0.44	27.56	10.76	38.32	57.02	18.70	QP
12	0.44	17.60	10.76	28.36	47.02	18.66	Average
13	0.52	24.11	10.74	34.85	56.00	21.15	QP
14	0.52	19.22	10.74	29.96	46.00	16.04	Average

5.2 Radiation Spurious Emissions

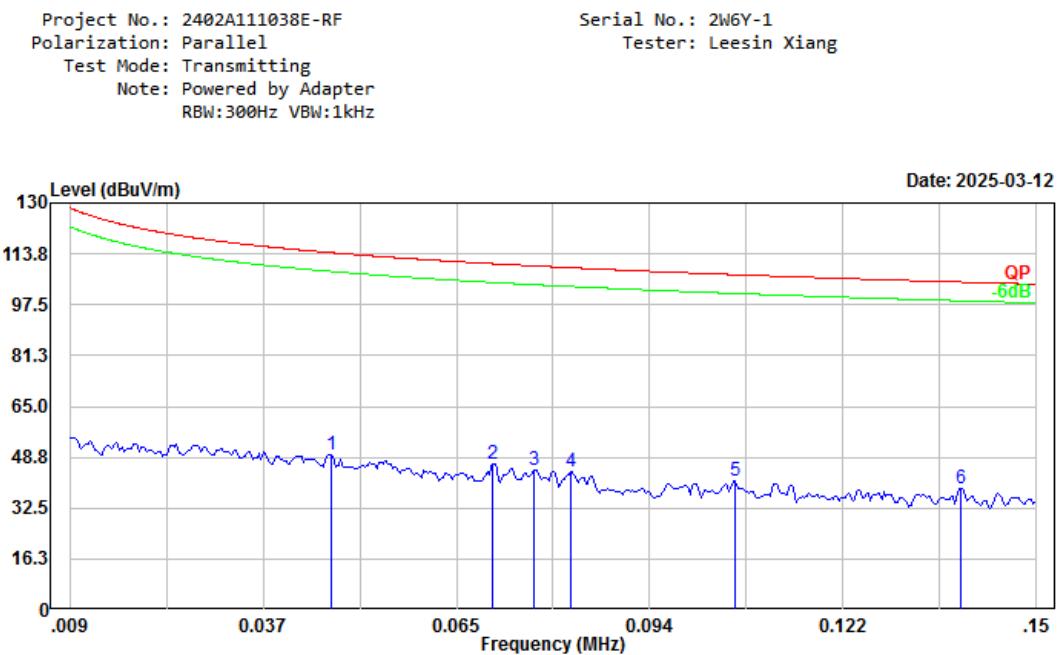
1)9kHz - 1GHz

Serial Number:	2W6Y-1	Test Date:	2025/3/12
Test Site:	Chamber10m	Test Mode:	Transmitting
Tester:	Leesin Xiang	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	24.4	Relative Humidity: (%)	62	ATM Pressure: (kPa)	100.9

Test Equipment List and Details:

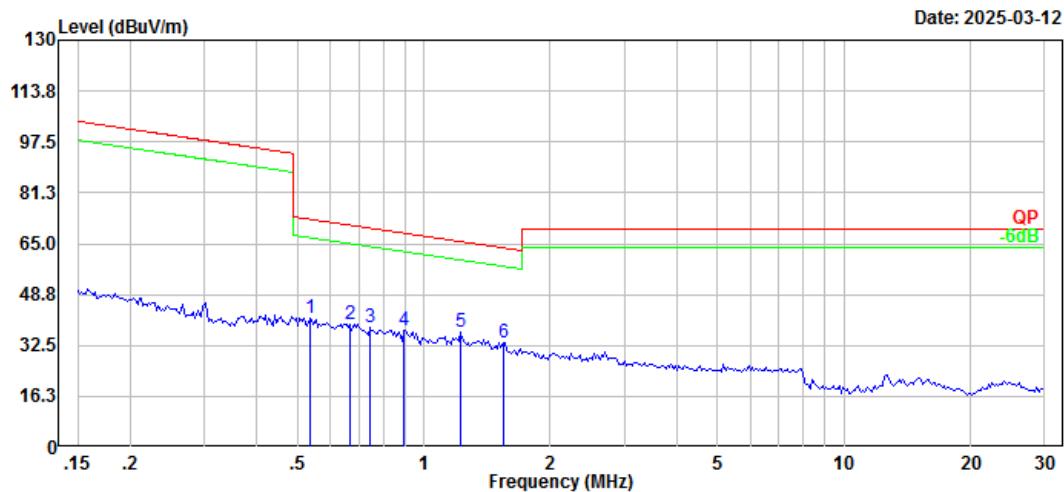
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/25	2026/10/24
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2024/7/1	2025/6/30
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2024/7/1	2025/6/30
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2024/7/1	2025/6/30
Sonoma	Amplifier	310N	185914	2024/8/26	2025/8/25
R&S	EMI Test Receiver	ESCI	100224	2024/8/26	2025/8/25
Audix	Test Software	E3	191218 V9	N/A	N/A


* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.
BLE 1Mbps Low channel was tested.

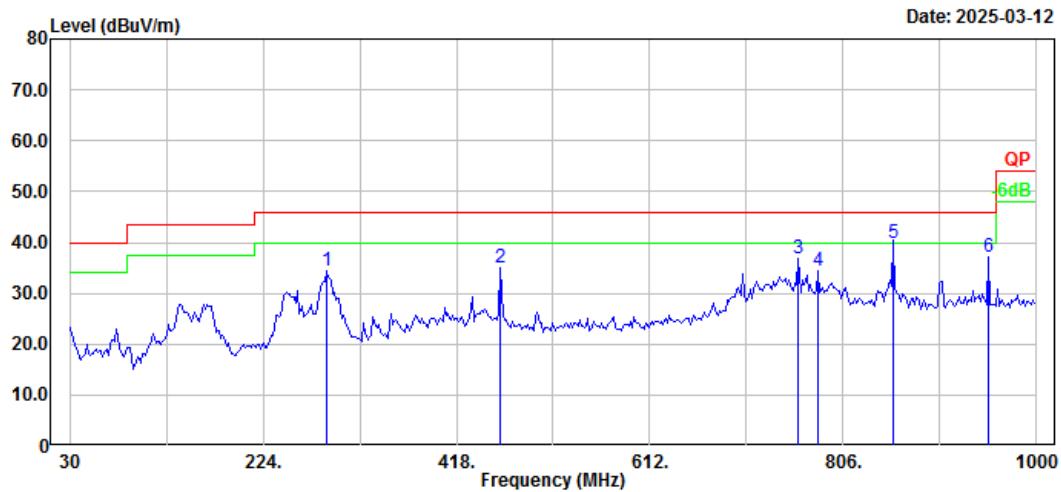
9kHz~30MHz


Three antenna orientations (parallel, perpendicular, and ground-parallel) was measured, the worst orientations was below:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Measurement
1	0.047	5.12	44.55	49.67	114.15	64.48	Peak
2	0.071	6.05	40.46	46.51	110.61	64.10	Peak
3	0.077	5.34	39.47	44.81	109.91	65.10	Peak
4	0.082	5.55	38.56	44.11	109.32	65.21	Peak
5	0.106	6.08	35.07	41.15	107.10	65.95	Peak
6	0.139	5.69	33.25	38.94	104.74	65.80	Peak

Project No.: 2402A111038E-RF
Polarization: Parallel
Test Mode: Transmitting
Note: Powered by Adapter
RBW:10kHz VBW:30kHz

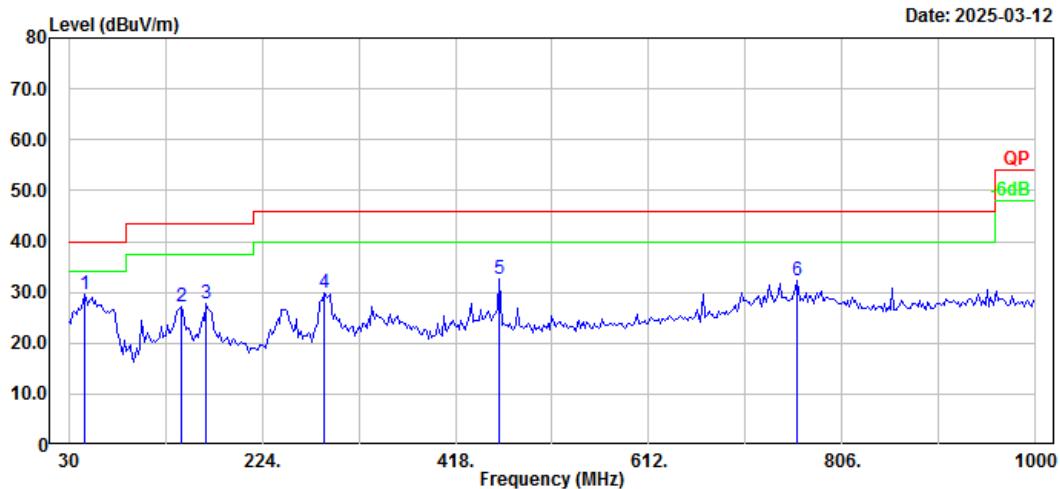
Serial No.: 2W6Y-1
Tester: Leesin Xiang



No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Measurement
1	0.535	18.03	23.16	41.19	73.02	31.83	Peak
2	0.668	17.67	21.78	39.45	71.05	31.60	Peak
3	0.743	17.41	21.08	38.49	70.11	31.62	Peak
4	0.899	18.56	18.58	37.14	68.42	31.28	Peak
5	1.223	21.17	15.57	36.74	65.69	28.95	Peak
6	1.544	19.12	14.14	33.26	63.62	30.36	Peak

30MHz-1GHz

Project No.: 2402A111038E-RF
Polarization: Horizontal
Test Mode: Transmitting
Note: Powered by Adapter
RBW:100kHz VBW:300kHz


Serial No.: 2W6Y-1
Tester: Leesin Xiang

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Measurement
1	288.02	44.00	-9.60	34.40	46.00	11.60	Peak
2	462.62	40.25	-5.09	35.16	46.00	10.84	Peak
3	761.38	37.11	-0.14	36.97	46.00	9.03	Peak
4	780.78	34.25	0.17	34.42	46.00	11.58	Peak
5	856.44	38.80	0.96	39.76	46.00	6.24	QP
6	951.50	35.09	2.05	37.14	46.00	8.86	Peak

Project No.: 2402A111038E-RF
Polarization: Vertical
Test Mode: Transmitting
Note: Powered by Adapter
RBW:100kHz VBW:300kHz

Serial No.: 2W6Y-1
Tester: Leesin Xiang

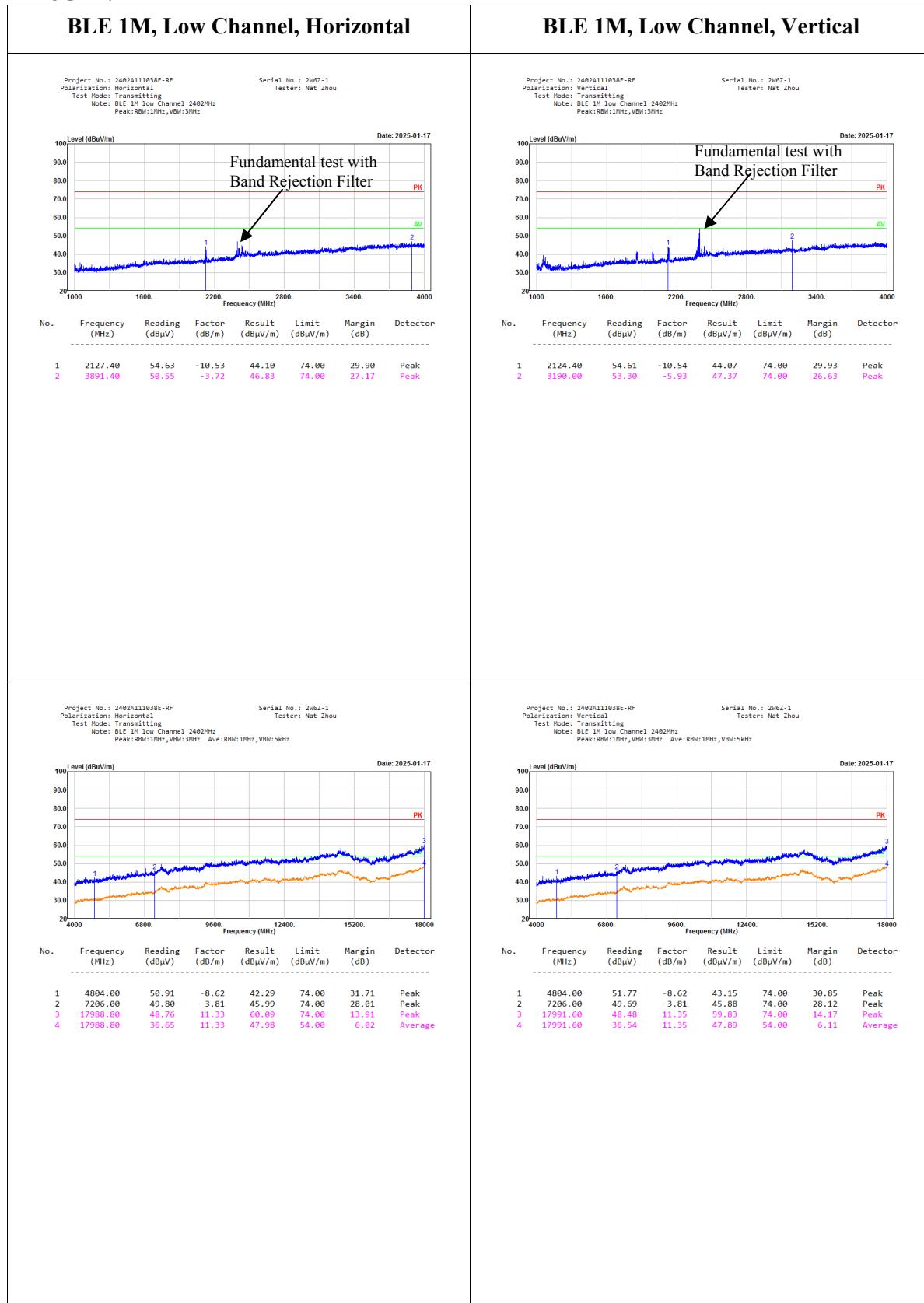
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Measurement
1	45.52	43.41	-13.94	29.47	40.00	10.53	Peak
2	142.52	37.70	-10.61	27.09	43.50	16.41	Peak
3	167.74	39.47	-11.64	27.83	43.50	15.67	Peak
4	286.08	39.42	-9.63	29.79	46.00	16.21	Peak
5	462.62	37.83	-5.09	32.74	46.00	13.26	Peak
6	761.38	32.39	-0.14	32.25	46.00	13.75	Peak

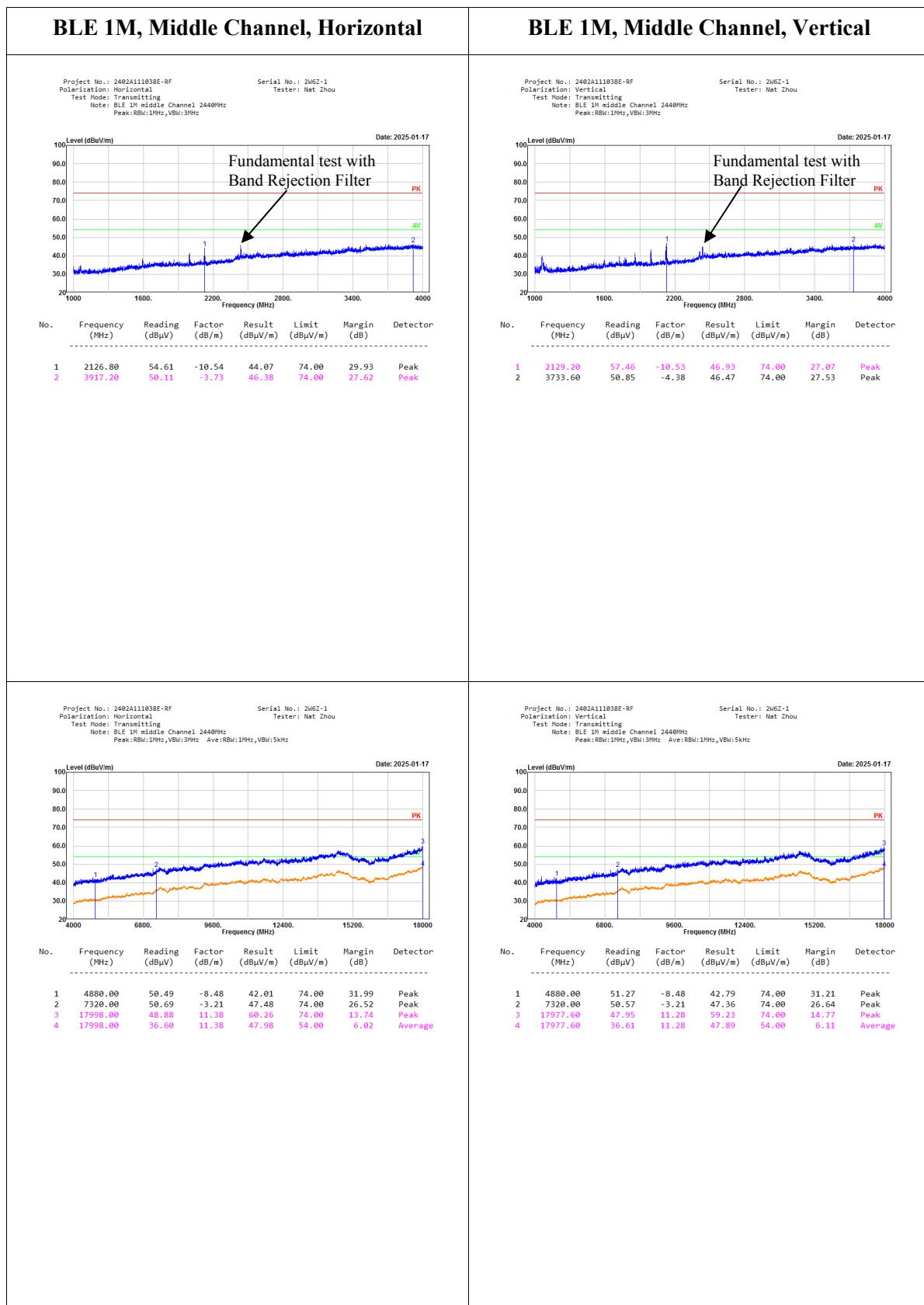
2) 1-25GHz:

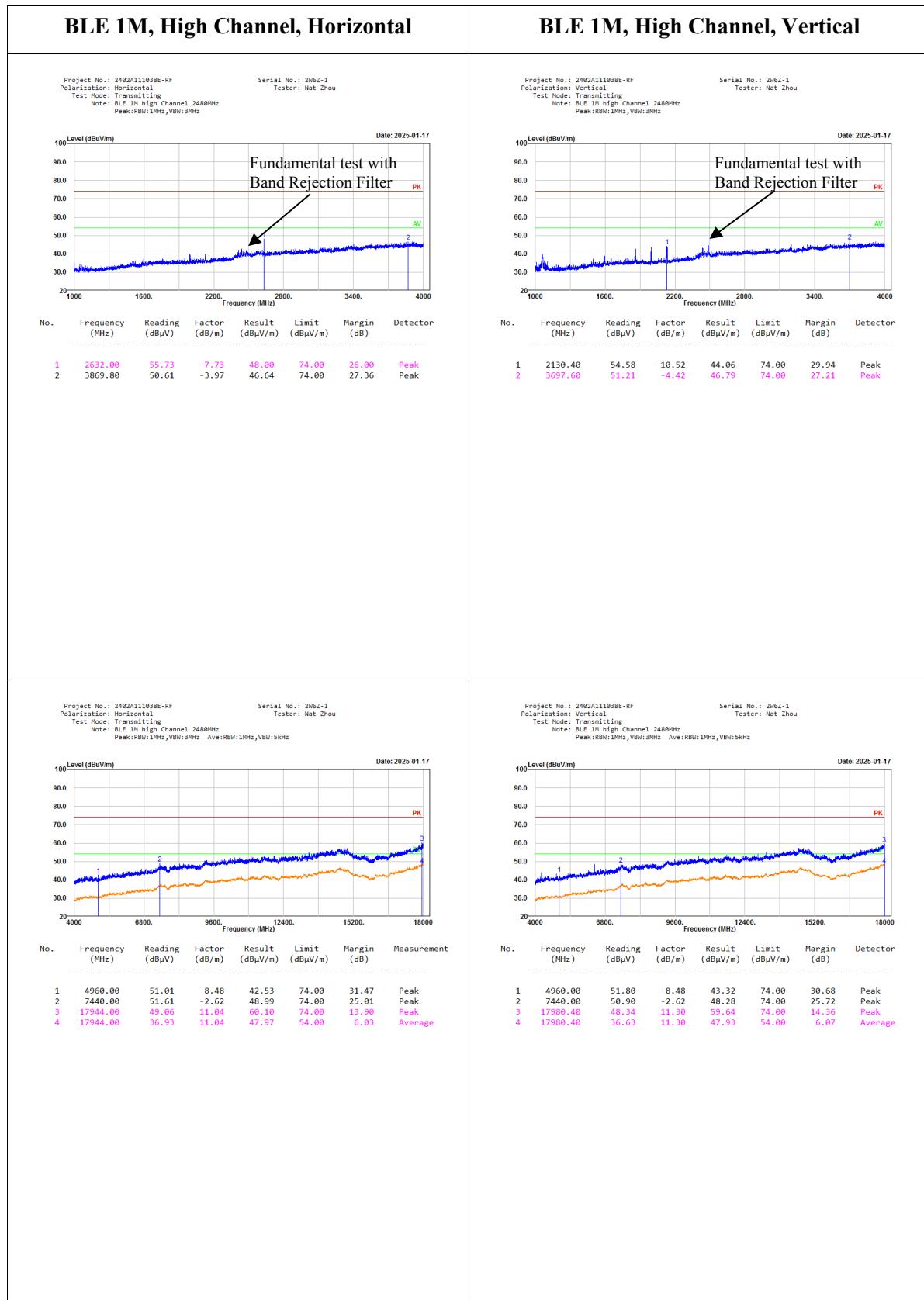
Serial Number:	2W6Z-1	Test Date:	2025/1/17
Test Site:	Chamber B	Test Mode:	Transmitting
Tester:	Nat Zhou	Test Result:	Pass

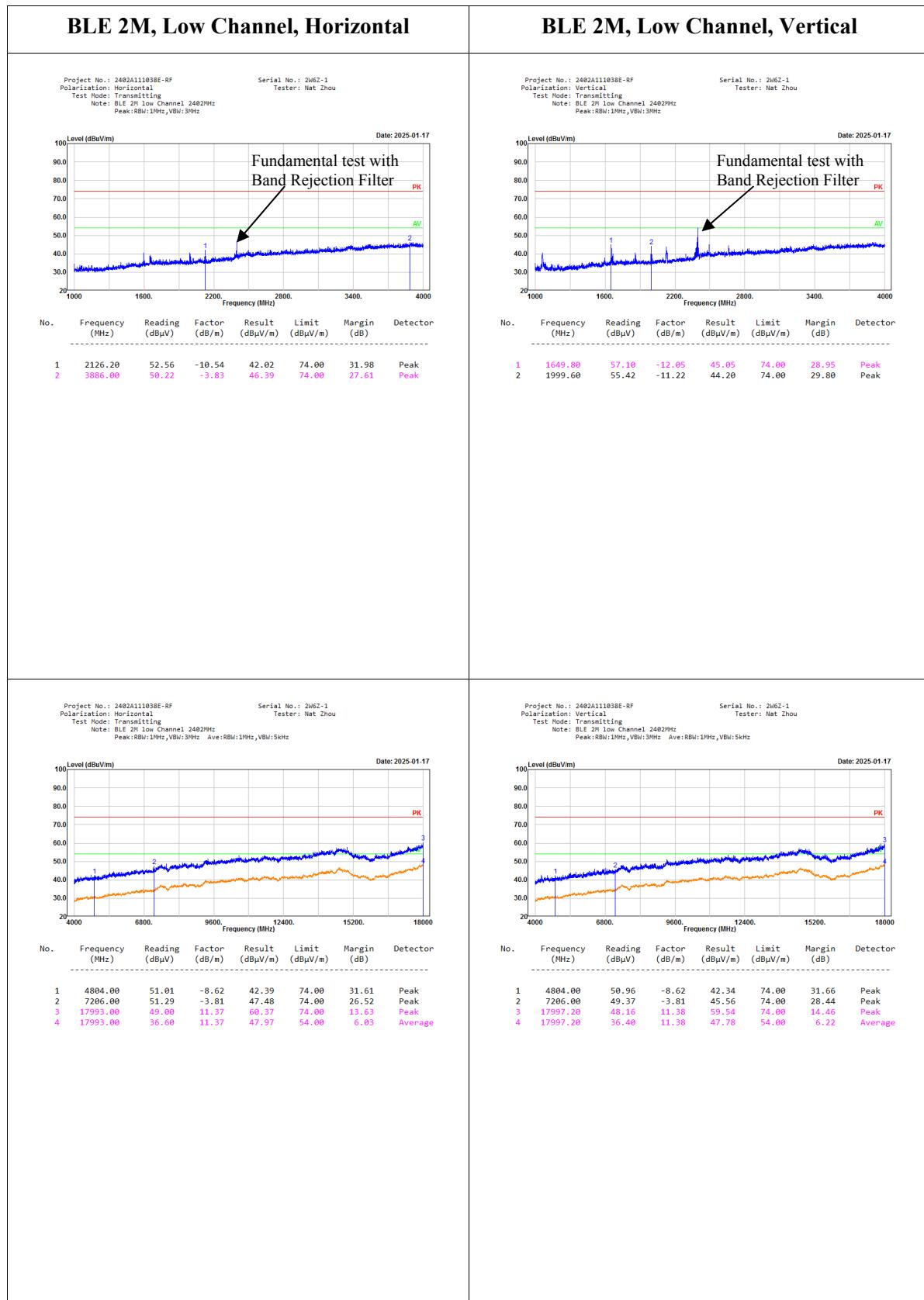
Environmental Conditions:					
Temperature: (°C)	20.5	Relative Humidity: (%)	27	ATM Pressure: (kPa)	101.9

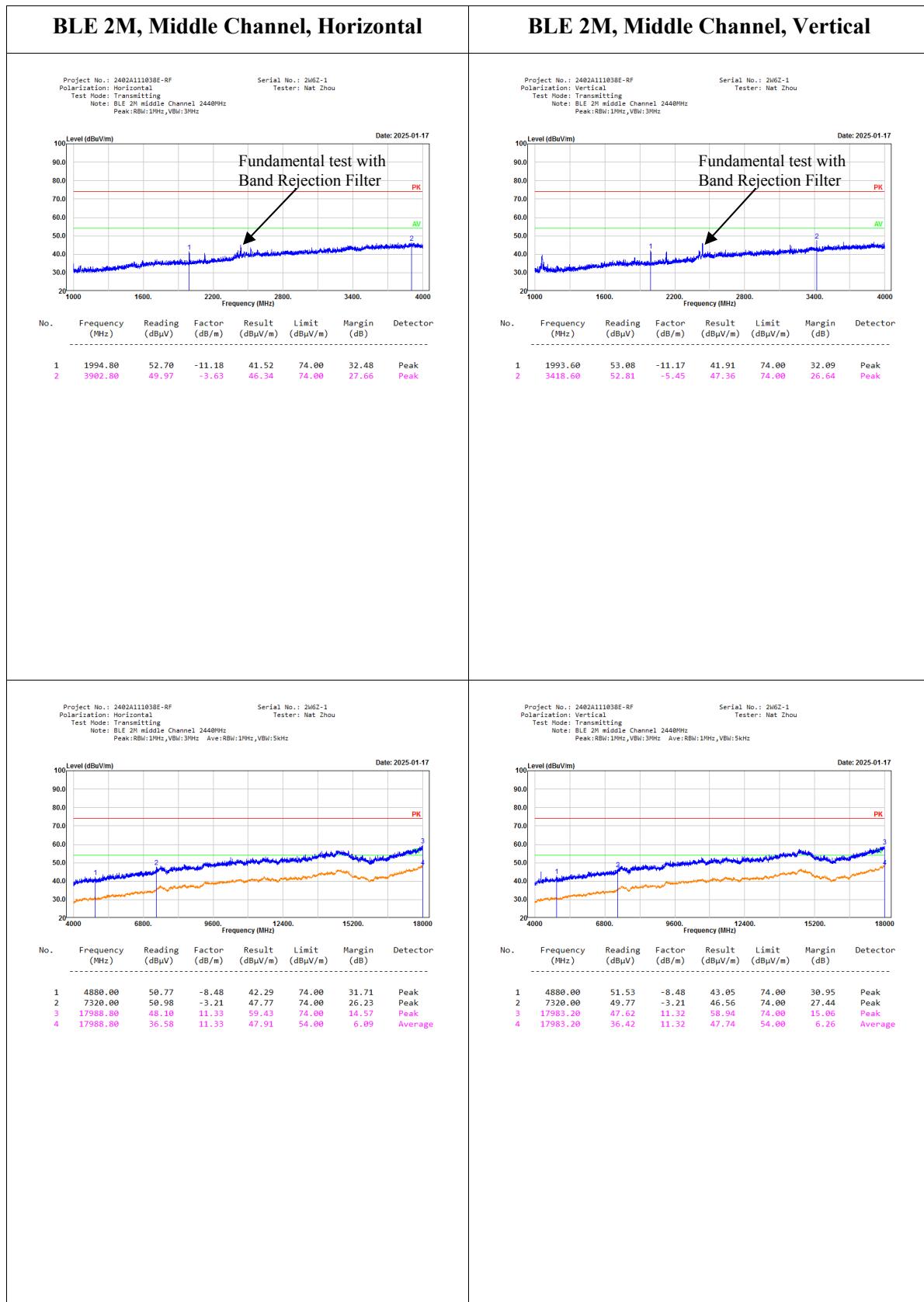
Test Equipment List and Details:

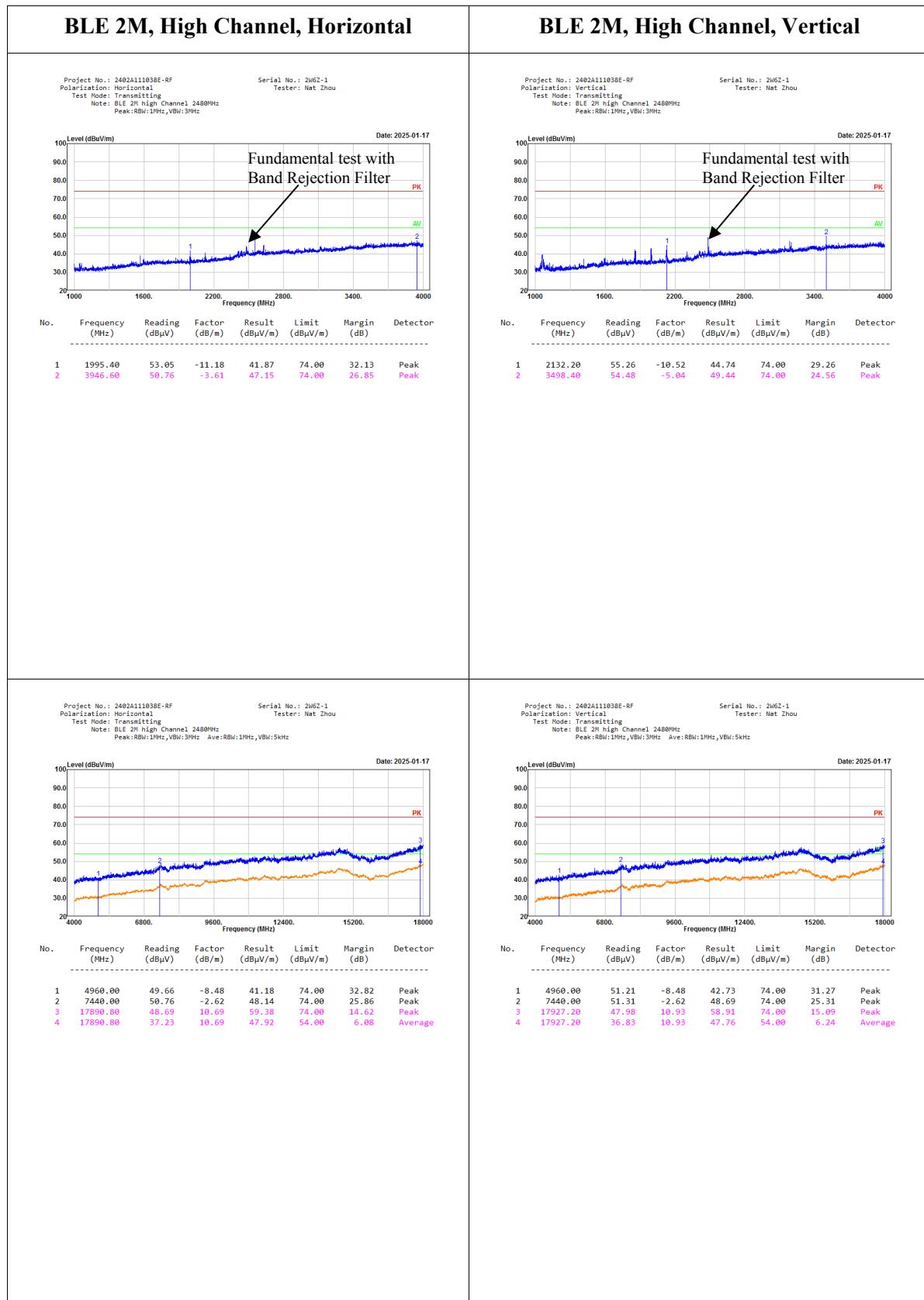

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-02 1304	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A-N/J-SMA/J-10M	20231117004 #0001	2024/11/17	2025/11/16
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J-2.92/J-6M-A	20231208001 #0001	2024/12/9	2025/12/8
AH	Preamplifier	PAM-0118P	469	2024/4/15	2025/4/14
AH	Preamplifier	PAM-1840VH	191	2024/9/5	2025/9/4
R&S	Spectrum Analyzer	FSV40	101944	2024/9/6	2025/9/5
Audix	Test Software	E3	191218 V9	N/A	N/A
Decentest	Multiplex Switch Test Control Set & Filter Switch Unit	DT7220SCU & DT7220FCU	DC79902 & DC79905	2024/8/27	2025/8/26

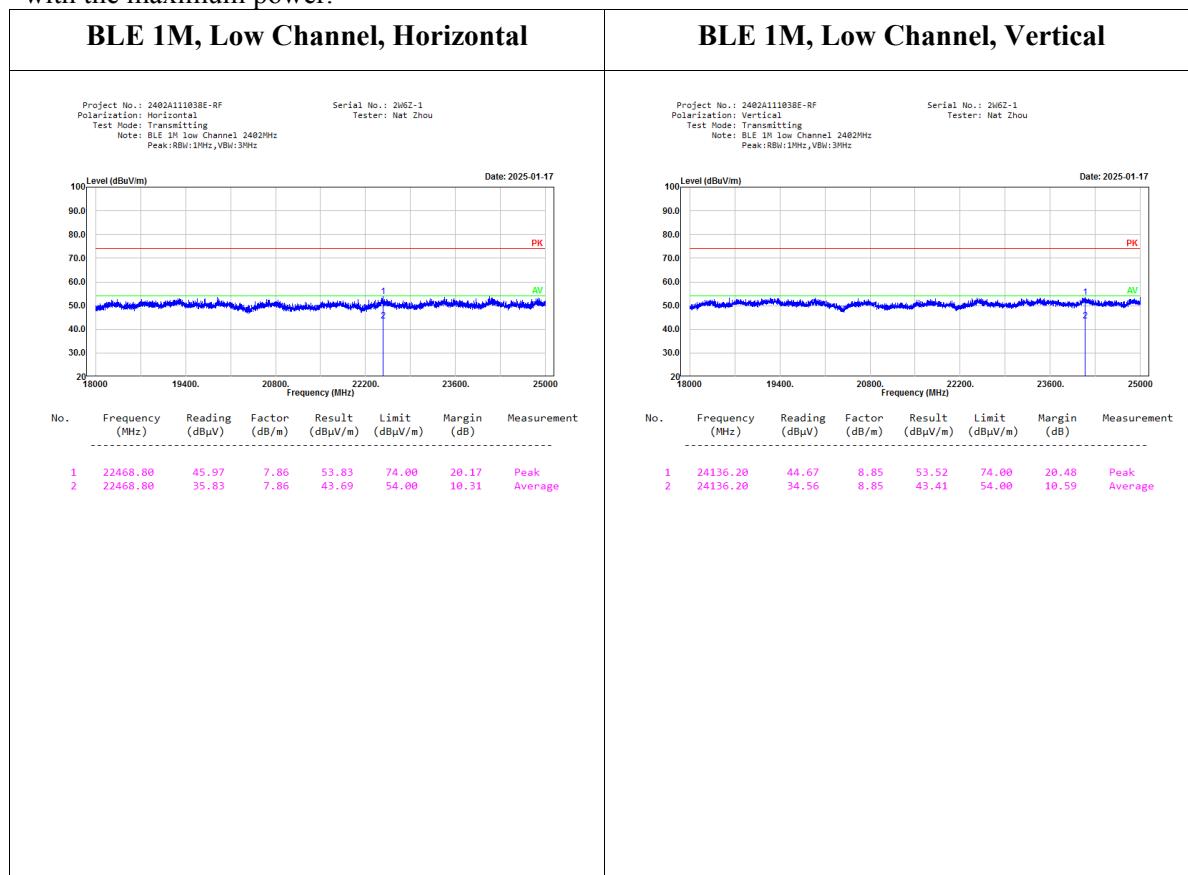

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

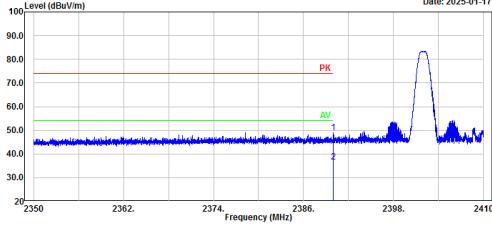
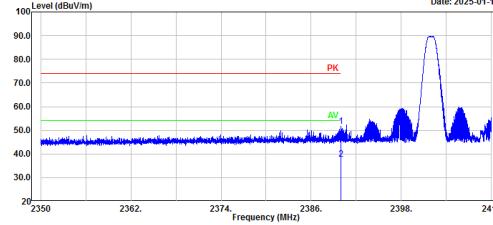
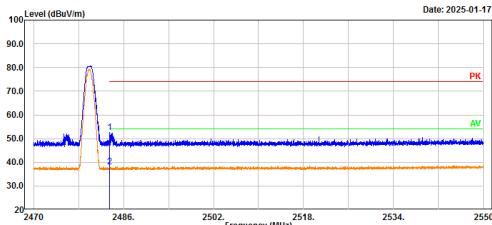
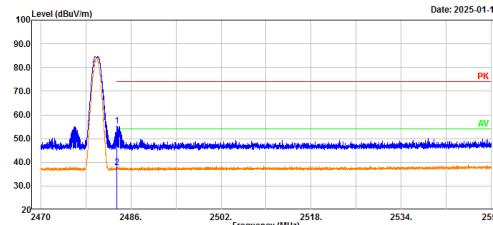

Test Data:

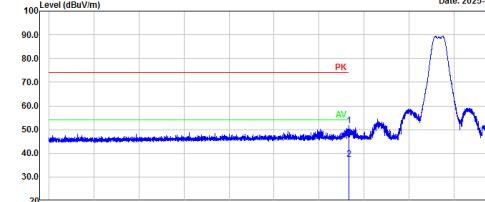
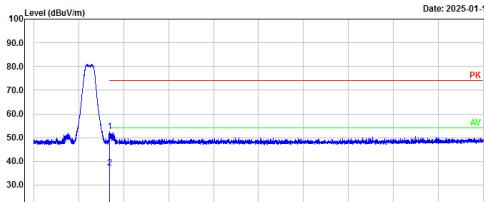

Please refer to the below table and plots.


1-18GHz:







18-25GHz:

No Emission was detected in the range 18-25GHz, test was performed on the mode and channel which with the maximum power.

Bandedge:

BLE 1M, Low Channel, Bandedge, Horizontal	BLE 1M, Low Channel, Bandedge, Vertical																																																
<p>Project No.: 2402A111038E-RF Polarization: Horizontal Test Mode: Transmitting Note: BLE 1M low Channel 2402MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2W6Z-1 Tester: Nat Zhou</p> <table border="1" data-bbox="214 662 722 741"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBm/m)</th><th>Factor (dB/m)</th><th>Result (dBm/m)</th><th>Limit (dBm/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>2398.00</td><td>49.39</td><td>-0.49</td><td>48.90</td><td>74.00</td><td>25.10</td><td>Peak</td></tr> <tr> <td>2</td><td>2398.00</td><td>37.16</td><td>-0.49</td><td>36.67</td><td>54.00</td><td>17.33</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dBm/m)	Factor (dB/m)	Result (dBm/m)	Limit (dBm/m)	Margin (dB)	Detector	1	2398.00	49.39	-0.49	48.90	74.00	25.10	Peak	2	2398.00	37.16	-0.49	36.67	54.00	17.33	Average	<p>Project No.: 2402A111038E-RF Polarization: Vertical Test Mode: Transmitting Note: BLE 1M low Channel 2402MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2W6Z-1 Tester: Nat Zhou</p> <table border="1" data-bbox="801 662 1310 741"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBm/m)</th><th>Factor (dB/m)</th><th>Result (dBm/m)</th><th>Limit (dBm/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>2398.00</td><td>52.11</td><td>-0.49</td><td>51.62</td><td>74.00</td><td>22.38</td><td>Peak</td></tr> <tr> <td>2</td><td>2398.00</td><td>38.35</td><td>-0.49</td><td>37.86</td><td>54.00</td><td>16.14</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dBm/m)	Factor (dB/m)	Result (dBm/m)	Limit (dBm/m)	Margin (dB)	Detector	1	2398.00	52.11	-0.49	51.62	74.00	22.38	Peak	2	2398.00	38.35	-0.49	37.86	54.00	16.14	Average
No.	Frequency (MHz)	Reading (dBm/m)	Factor (dB/m)	Result (dBm/m)	Limit (dBm/m)	Margin (dB)	Detector																																										
1	2398.00	49.39	-0.49	48.90	74.00	25.10	Peak																																										
2	2398.00	37.16	-0.49	36.67	54.00	17.33	Average																																										
No.	Frequency (MHz)	Reading (dBm/m)	Factor (dB/m)	Result (dBm/m)	Limit (dBm/m)	Margin (dB)	Detector																																										
1	2398.00	52.11	-0.49	51.62	74.00	22.38	Peak																																										
2	2398.00	38.35	-0.49	37.86	54.00	16.14	Average																																										
<p>BLE 1M, High Channel, Bandedge, Horizontal</p> <p>Project No.: 2402A111038E-RF Polarization: Horizontal Test Mode: Transmitting Note: BLE 1M high Channel 2480MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <table border="1" data-bbox="214 1538 722 1617"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBm/m)</th><th>Factor (dB/m)</th><th>Result (dBm/m)</th><th>Limit (dBm/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>2483.50</td><td>52.52</td><td>-0.05</td><td>52.47</td><td>74.00</td><td>21.53</td><td>Peak</td></tr> <tr> <td>2</td><td>2483.50</td><td>38.28</td><td>-0.05</td><td>38.23</td><td>54.00</td><td>15.77</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dBm/m)	Factor (dB/m)	Result (dBm/m)	Limit (dBm/m)	Margin (dB)	Detector	1	2483.50	52.52	-0.05	52.47	74.00	21.53	Peak	2	2483.50	38.28	-0.05	38.23	54.00	15.77	Average	<p>BLE 1M, High Channel, Bandedge, Vertical</p> <p>Project No.: 2402A111038E-RF Polarization: Vertical Test Mode: Transmitting Note: BLE 1M high Channel 2480MHz Peak:RBW:1MHz,VBW:3MHz Ave:RBW:1MHz,VBW:5kHz</p> <table border="1" data-bbox="801 1538 1310 1617"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBm/m)</th><th>Factor (dB/m)</th><th>Result (dBm/m)</th><th>Limit (dBm/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>2483.50</td><td>55.22</td><td>-0.05</td><td>55.17</td><td>74.00</td><td>18.83</td><td>Peak</td></tr> <tr> <td>2</td><td>2483.50</td><td>37.92</td><td>-0.05</td><td>37.87</td><td>54.00</td><td>16.13</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dBm/m)	Factor (dB/m)	Result (dBm/m)	Limit (dBm/m)	Margin (dB)	Detector	1	2483.50	55.22	-0.05	55.17	74.00	18.83	Peak	2	2483.50	37.92	-0.05	37.87	54.00	16.13	Average
No.	Frequency (MHz)	Reading (dBm/m)	Factor (dB/m)	Result (dBm/m)	Limit (dBm/m)	Margin (dB)	Detector																																										
1	2483.50	52.52	-0.05	52.47	74.00	21.53	Peak																																										
2	2483.50	38.28	-0.05	38.23	54.00	15.77	Average																																										
No.	Frequency (MHz)	Reading (dBm/m)	Factor (dB/m)	Result (dBm/m)	Limit (dBm/m)	Margin (dB)	Detector																																										
1	2483.50	55.22	-0.05	55.17	74.00	18.83	Peak																																										
2	2483.50	37.92	-0.05	37.87	54.00	16.13	Average																																										

BLE 2M, Low Channel, Bandedge, Horizontal		BLE 2M, Low Channel, Bandedge, Vertical																																																																																																	
<p>Project No.: 2402A111038E-RF Polarization: Horizontal Test Mode: Transmitting Note: BLE 2M low Channel 2402MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2i6GZ-1 Tester: Nat Zhou</p> <p>Date: 2025-01-17</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dB_uV)</th><th>Factor (dB/m)</th><th>Result (dB_uV/m)</th><th>Limit (dB_uV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>2398.00</td><td>49.60</td><td>-0.49</td><td>49.11</td><td>74.00</td><td>24.89</td><td>Peak</td></tr> <tr> <td>2</td><td>2399.00</td><td>37.18</td><td>-0.49</td><td>36.69</td><td>54.00</td><td>17.31</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB _u V)	Factor (dB/m)	Result (dB _u V/m)	Limit (dB _u V/m)	Margin (dB)	Detector	1	2398.00	49.60	-0.49	49.11	74.00	24.89	Peak	2	2399.00	37.18	-0.49	36.69	54.00	17.31	Average	<p>Project No.: 2402A111038E-RF Polarization: Vertical Test Mode: Transmitting Note: BLE 2M low Channel 2402MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2i6GZ-1 Tester: Nat Zhou</p> <p>Date: 2025-01-17</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dB_uV)</th><th>Factor (dB/m)</th><th>Result (dB_uV/m)</th><th>Limit (dB_uV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>2390.00</td><td>52.31</td><td>-0.49</td><td>51.82</td><td>74.00</td><td>22.18</td><td>Peak</td></tr> <tr> <td>2</td><td>2390.00</td><td>38.05</td><td>-0.49</td><td>37.56</td><td>54.00</td><td>16.44</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB _u V)	Factor (dB/m)	Result (dB _u V/m)	Limit (dB _u V/m)	Margin (dB)	Detector	1	2390.00	52.31	-0.49	51.82	74.00	22.18	Peak	2	2390.00	38.05	-0.49	37.56	54.00	16.44	Average	<p>Project No.: 2402A111038E-RF Polarization: Vertical Test Mode: Transmitting Note: BLE 2M high Channel 2480MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2i6GZ-1 Tester: Nat Zhou</p> <p>Date: 2025-01-17</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dB_uV)</th><th>Factor (dB/m)</th><th>Result (dB_uV/m)</th><th>Limit (dB_uV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>2483.50</td><td>52.60</td><td>-0.05</td><td>52.55</td><td>74.00</td><td>21.45</td><td>Peak</td></tr> <tr> <td>2</td><td>2483.50</td><td>37.15</td><td>-0.05</td><td>37.10</td><td>54.00</td><td>16.90</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB _u V)	Factor (dB/m)	Result (dB _u V/m)	Limit (dB _u V/m)	Margin (dB)	Detector	1	2483.50	52.60	-0.05	52.55	74.00	21.45	Peak	2	2483.50	37.15	-0.05	37.10	54.00	16.90	Average	<p>Project No.: 2402A111038E-RF Polarization: Vertical Test Mode: Transmitting Note: BLE 2M high Channel 2480MHz Peak:RBW:1MHz,VBW:3MHz</p> <p>Serial No.: 2i6GZ-1 Tester: Nat Zhou</p> <p>Date: 2025-01-17</p> <table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dB_uV)</th><th>Factor (dB/m)</th><th>Result (dB_uV/m)</th><th>Limit (dB_uV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>2483.50</td><td>52.16</td><td>-0.05</td><td>52.11</td><td>74.00</td><td>21.89</td><td>Peak</td></tr> <tr> <td>2</td><td>2483.50</td><td>37.28</td><td>-0.05</td><td>37.23</td><td>54.00</td><td>16.77</td><td>Average</td></tr> </tbody> </table>	No.	Frequency (MHz)	Reading (dB _u V)	Factor (dB/m)	Result (dB _u V/m)	Limit (dB _u V/m)	Margin (dB)	Detector	1	2483.50	52.16	-0.05	52.11	74.00	21.89	Peak	2	2483.50	37.28	-0.05	37.23	54.00	16.77	Average
No.	Frequency (MHz)	Reading (dB _u V)	Factor (dB/m)	Result (dB _u V/m)	Limit (dB _u V/m)	Margin (dB)	Detector																																																																																												
1	2398.00	49.60	-0.49	49.11	74.00	24.89	Peak																																																																																												
2	2399.00	37.18	-0.49	36.69	54.00	17.31	Average																																																																																												
No.	Frequency (MHz)	Reading (dB _u V)	Factor (dB/m)	Result (dB _u V/m)	Limit (dB _u V/m)	Margin (dB)	Detector																																																																																												
1	2390.00	52.31	-0.49	51.82	74.00	22.18	Peak																																																																																												
2	2390.00	38.05	-0.49	37.56	54.00	16.44	Average																																																																																												
No.	Frequency (MHz)	Reading (dB _u V)	Factor (dB/m)	Result (dB _u V/m)	Limit (dB _u V/m)	Margin (dB)	Detector																																																																																												
1	2483.50	52.60	-0.05	52.55	74.00	21.45	Peak																																																																																												
2	2483.50	37.15	-0.05	37.10	54.00	16.90	Average																																																																																												
No.	Frequency (MHz)	Reading (dB _u V)	Factor (dB/m)	Result (dB _u V/m)	Limit (dB _u V/m)	Margin (dB)	Detector																																																																																												
1	2483.50	52.16	-0.05	52.11	74.00	21.89	Peak																																																																																												
2	2483.50	37.28	-0.05	37.23	54.00	16.77	Average																																																																																												

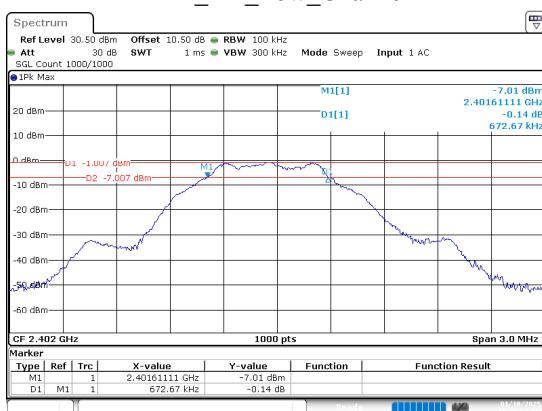
5.3 6dB Emission Bandwidth

Serial No.:	2W6Z-1	Test Date:	2025/01/10
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	Pass

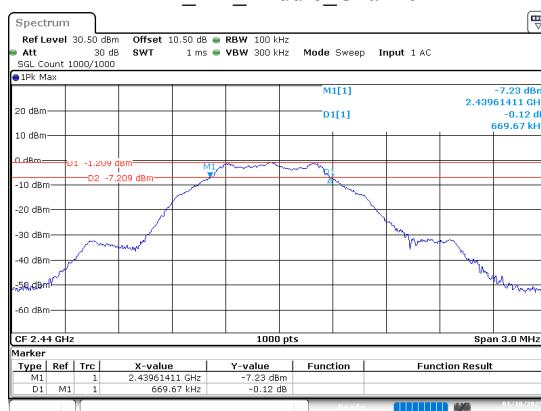
Environmental Conditions:

Temperature: (°C)	20.4	Relative Humidity: (%)	26	ATM Pressure: (kPa)	102.3
-----------------------------	------	----------------------------------	----	-------------------------------	-------

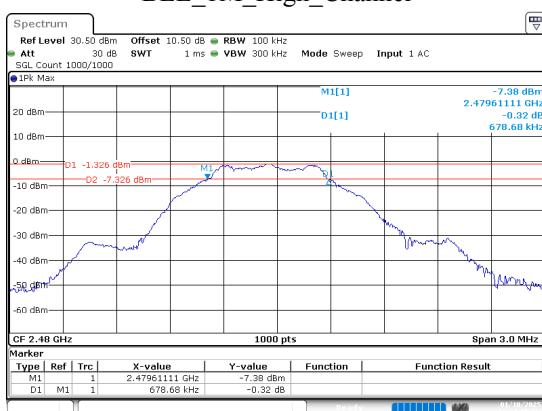
Test Equipment List and Details:

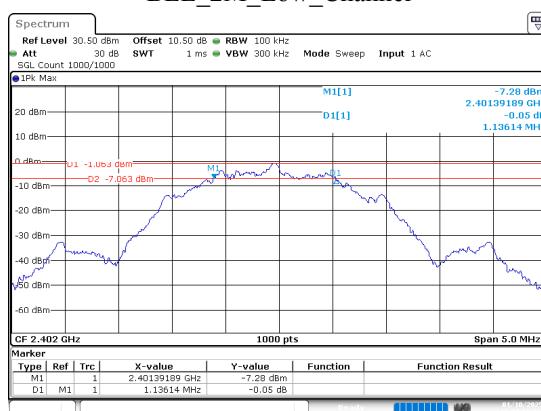

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	EMI Test Receiver	ESR3	102453	2024/08/26	2025/08/25

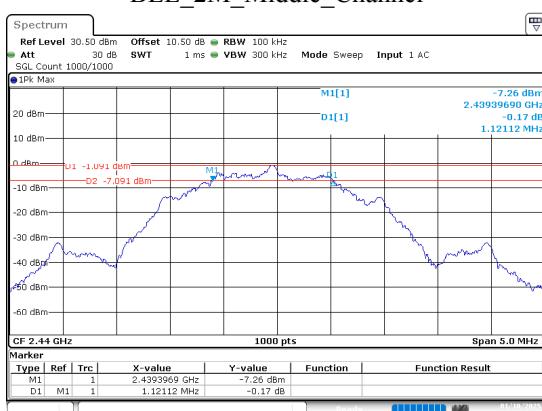
* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

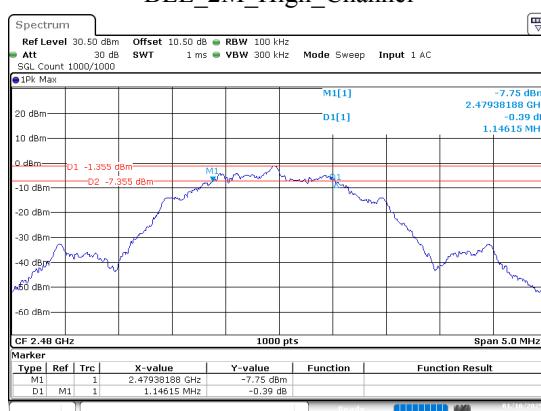

Test Data:

Channel	Result (MHz)	Limit (MHz)	Verdict
BLE 1Mbps Low	0.673	≥0.5	Pass
BLE 1Mbps Middle	0.670	≥0.5	Pass
BLE 1Mbps High	0.679	≥0.5	Pass
BLE 2Mbps Low	1.136	≥0.5	Pass
BLE 2Mbps Middle	1.121	≥0.5	Pass
BLE 2Mbps High	1.146	≥0.5	Pass


BLE_1M_Low_Channel


BLE_1M_Middle_Channel


BLE_1M_High_Channel


BLE_2M_Low_Channel

BLE_2M_Middle_Channel

BLE_2M_High_Channel

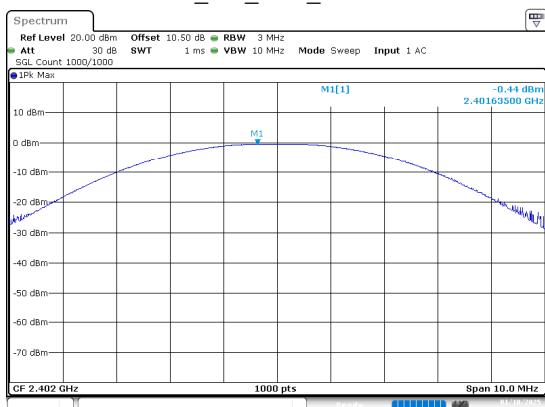
5.4 Maximum Conducted Output Power

Serial No.:	2W6Z-1	Test Date:	2025/01/10
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	20.4	Relative Humidity: (%)	26	ATM Pressure: (kPa)	102.3
-----------------------------	------	----------------------------------	----	-------------------------------	-------

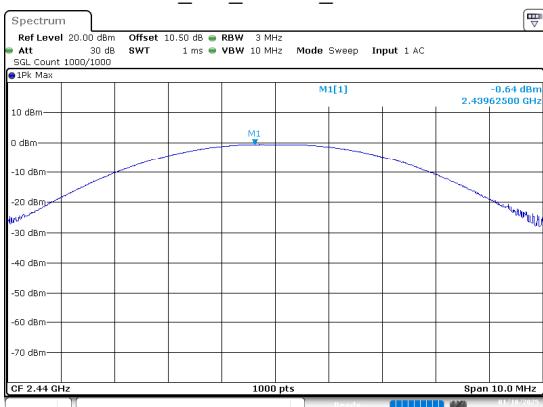
Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	EMI Test Receiver	ESR3	102453	2024/08/26	2025/08/25

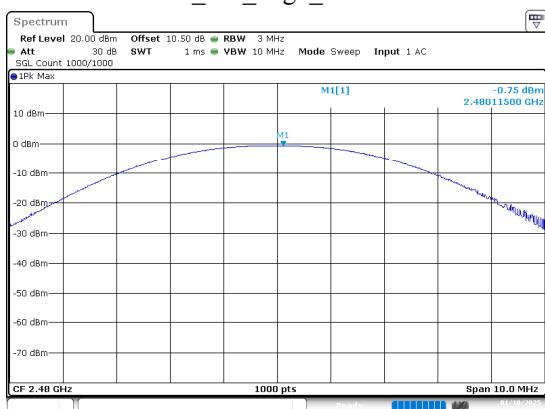
* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Channel	Peak Output Power (dBm)	Limit (dBm)	Verdict
BLE 1Mbps Low	-0.44	30.00	Pass
BLE 1Mbps Middle	-0.64	30.00	Pass
BLE 1Mbps High	-0.75	30.00	Pass
BLE 2Mbps Low	-0.49	30.00	Pass
BLE 2Mbps Middle	-0.52	30.00	Pass
BLE 2Mbps High	-0.79	30.00	Pass

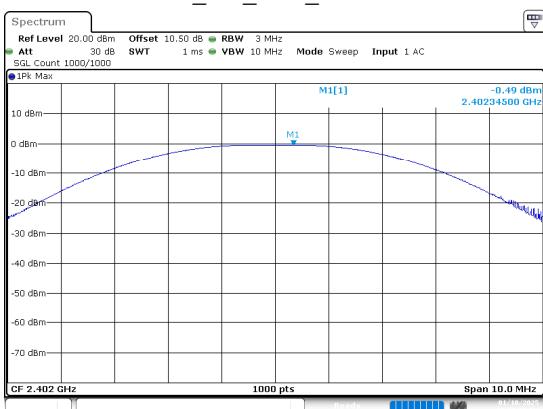

BLE_1M_Low_Channel

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:30:32


BLE_1M_Middle_Channel

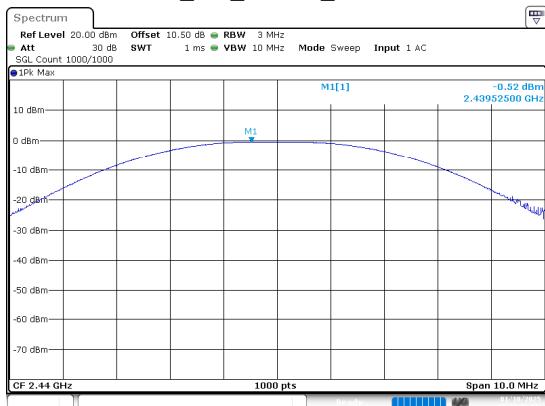
BLE_1M_Middle_Channel

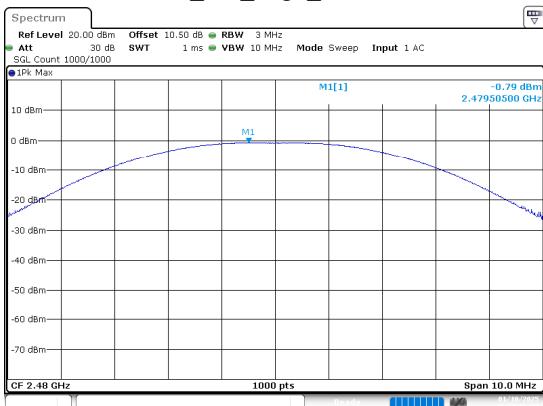
ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:31:20


BLE_1M_High_Channel

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:35:41

BLE_2M_Low_Channel


BLE_2M_Low_Channel


ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:37:33

BLE_2M_Middle_Channel

BLE_2M_High_Channel

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:39:43

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:42:33

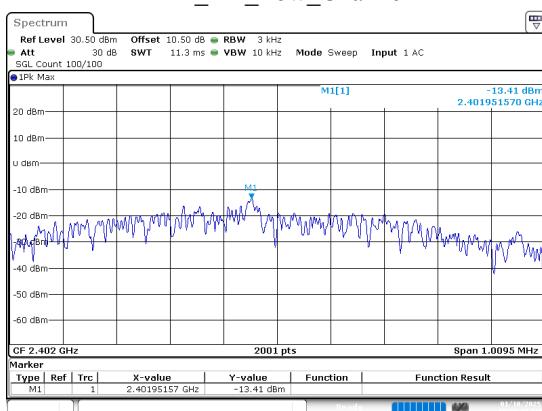
5.5 Power Spectral Density

Serial No.:	2W6Z-1	Test Date:	2025/01/10
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	20.4	Relative Humidity: (%)	26	ATM Pressure: (kPa)	102.3
-----------------------------	------	----------------------------------	----	-------------------------------	-------

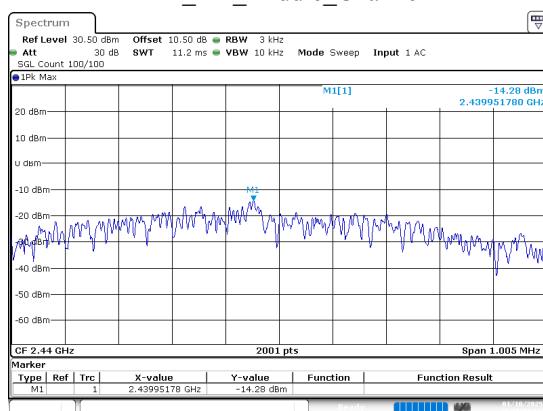
Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	EMI Test Receiver	ESR3	102453	2024/08/26	2025/08/25

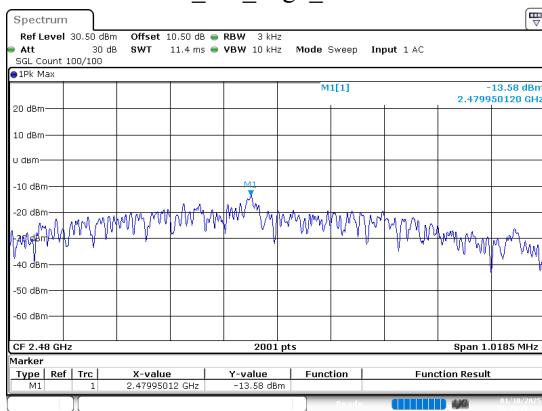
* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Channel	Result (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
BLE 1Mbps Low	-13.41	8	Pass
BLE 1Mbps Middle	-14.28	8	Pass
BLE 1Mbps High	-13.58	8	Pass
BLE 2Mbps Low	-17.62	8	Pass
BLE 2Mbps Middle	-17.59	8	Pass
BLE 2Mbps High	-17.97	8	Pass

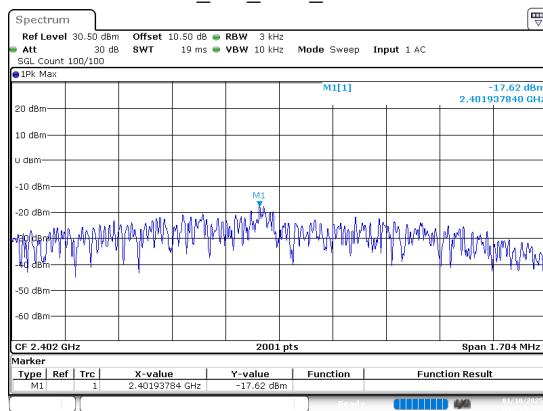

BLE_1M_Low_Channel

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:30:44

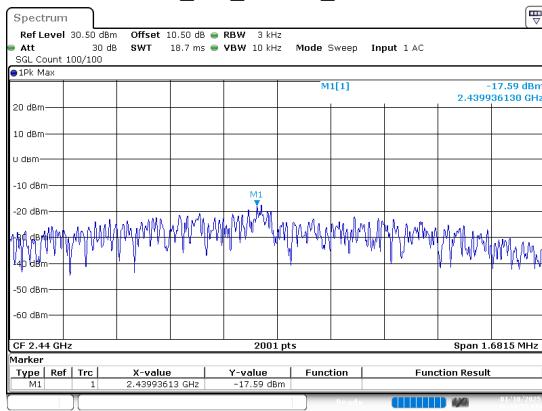

BLE_1M_Middle_Channel

BLE_1M_Middle_Channel

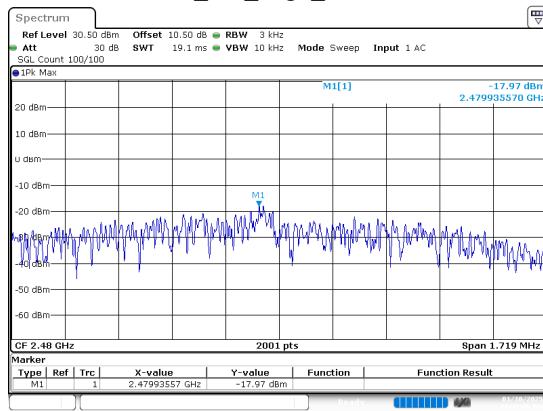
ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:31:33


BLE_1M_High_Channel

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:35:55


BLE_2M_Low_Channel

BLE_2M_Low_Channel



ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:37:47

BLE_2M_Middle_Channel

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:39:57

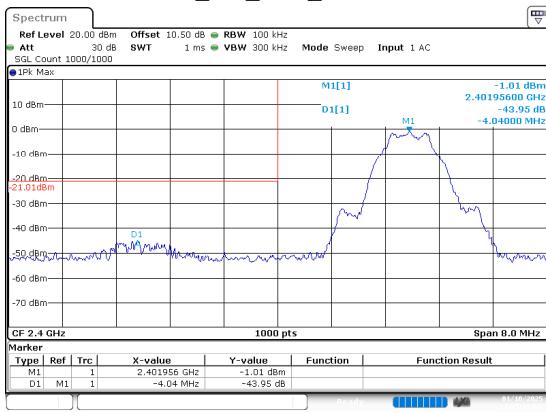
ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:42:47

5.6 100 kHz Bandwidth of Frequency Band Edge

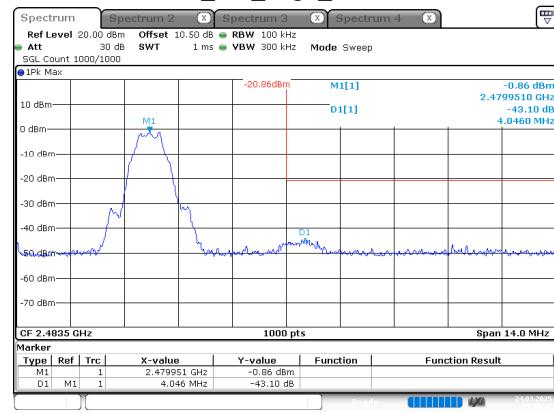
Serial No.:	2W6Z-1	Test Date:	2025/01/10~2025/03/24
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	Pass

Environmental Conditions:

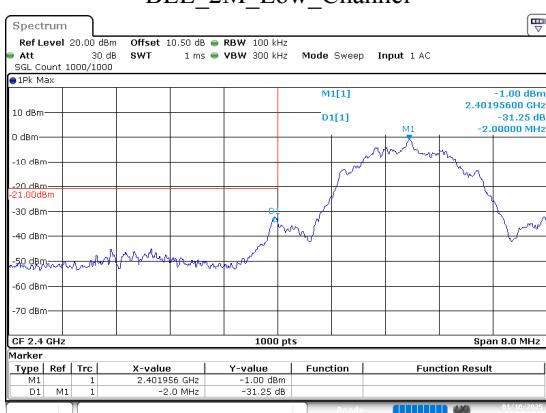
Temperature: (°C)	20.4~24.8	Relative Humidity: (%)	26~40	ATM Pressure: (kPa)	100.8~102.3
-----------------------------	-----------	----------------------------------	-------	-------------------------------	-------------

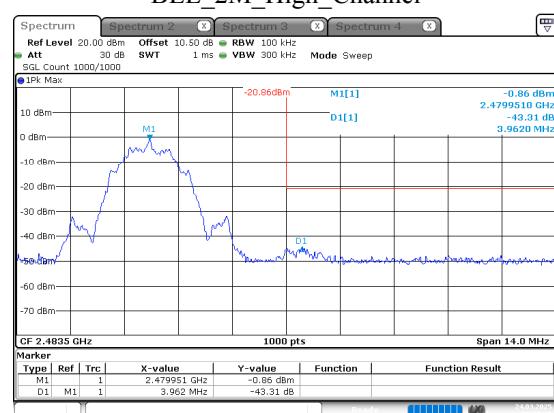

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	EMI Test Receiver	ESR3	102453	2024/08/26	2025/08/25
R&S	Spectrum Analyzer	FSV40	101589	2024/09/05	2025/09/04


* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:


BLE_1M_Low_Channel


BLE_1M_High_Channel

BLE_2M_Low_Channel

BLE_2M_High_Channel

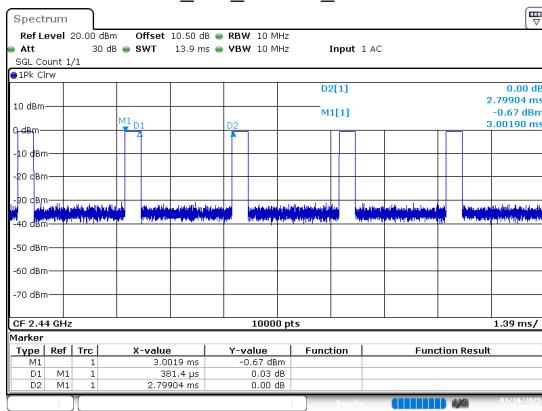
5.7 Duty Cycle

Serial No.:	2W6Z-1	Test Date:	2025/01/10
Test Site:	RF	Test Mode:	Transmitting
Tester:	Tower Qing	Test Result:	N/A

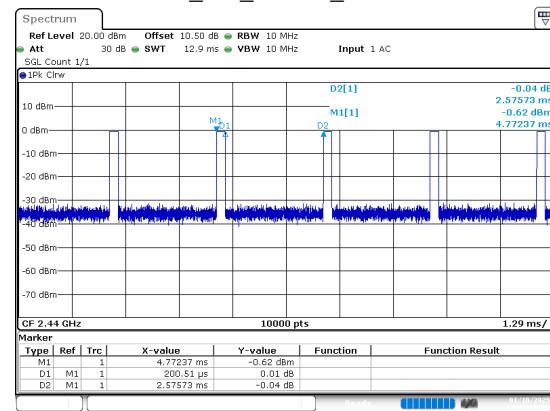
Environmental Conditions:

Temperature: (°C)	20.4	Relative Humidity: (%)	26	ATM Pressure: (kPa)	102.3
-----------------------------	------	----------------------------------	----	-------------------------------	-------

Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	EMI Test Receiver	ESR3	102453	2024/08/26	2025/08/25

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Channel	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	1/Ton (Hz)	VBW Setting (kHz)
BLE 1Mbps Middle	0.381	2.799	13.61	2625	3
BLE 2Mbps Middle	0.201	2.576	7.80	4975	5

BLE_1M_Middle_Channel

BLE_2M_Middle_Channel

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:26:15

ProjectNo.:2402A111038E-RF Tester:Tower Qing
Date: 10.JAN.2025 10:27:11

EXHIBIT A - EUT PHOTOGRAPHS

Please refer to the attachment 2402A111038E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2402A111038E-RF-INP EUT INTERNAL PHOTOGRAPHS.

EXHIBIT B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2402A111038E-RF-00A-TSP TEST SETUP PHOTOGRAPHS.

******* END OF REPORT *******