

Report Seal

TEST REPORT

Product: ROBOTIC LAWN MOWER

Trade mark : AIRSEEKERS

Model/Type reference : TRON

Serial Number : N/A

Report Number : EED32R80464701 FCC ID : 2BPTW-TRONE1

Date of Issue : Jun. 04, 2025

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Guangdong Changyao Innovation Technology Co., Ltd 201, Building 1, No. 1322, Meijie Road, Xiangzhou District, Zhuhai

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	Keven Jan.	Reviewed by:	Firever. Li	
TERNATION	Keven Tan		Frazer Li	
Approved by:	Lavon Ma	Date:	Jun. 04, 2025	_0-
CTI) CO QUUD C	Aaron Ma			

Check No.: 9256020425

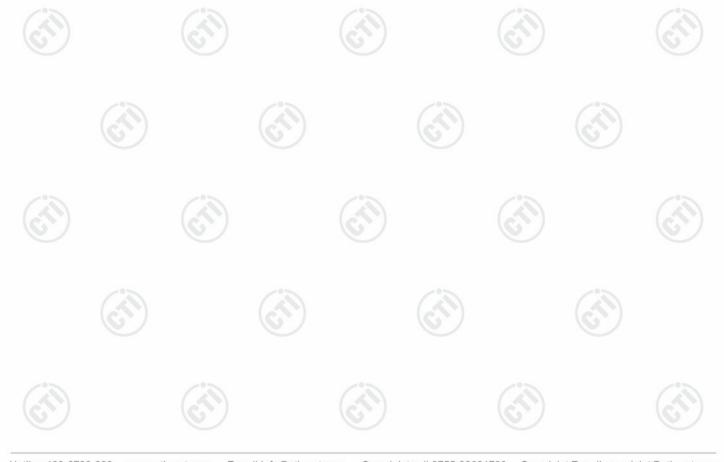
Page 2 of 126 Report No.: EED32R80464701

Content

1 CONTENT	2
2 VERSION	
3 TEST SUMMARY	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.4 TEST ENVIRONMENT	7 7
5 EQUIPMENT LIST	
6 TEST RESULTS AND MEASUREMENT DATA	12
6.1 ANTENNA REQUIREMENT	
7 APPENDIX A	31
8 PHOTOGRAPHS OF TEST SETUP	32
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	34

2 Version

Version No.	Date	Description
00	Jun. 04, 2025	Original
(



Report No. : EED32R80464701 Page 4 of 126

3 Test Summary

o root ourinitary		
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Note: The product has two BLE chips(ESP32 and AP6256), and the report only records the worst data(ESP32).

Report No. : EED32R80464701 Page 5 of 126

4 General Information

4.1 Client Information

Applicant: Guangdong Changyao Innovation Technology Co., Ltd		
Address of Applicant:	201, Building 1, No. 1322, Meijie Road, Xiangzhou District, Zhuhai	
Manufacturer:	Guangdong Changyao Innovation Technology Co., Ltd	100
Address of Manufacturer:	201, Building 1, No. 1322, Meijie Road, Xiangzhou District, Zhuhai	4

4.2 General Description of EUT

Product Name:	ROBOTIC LAWN MOWER	
Model No.:	TRON	
Trade mark:	AIRSEEKERS	
Product Type:		
Operation Frequency:	2402MHz~2480MHz	
Modulation Type:	GFSK	
Transfer Rate:	ESP32: ⊠ 1Mbps □ 2Mbps AP6256: ⊠ 1Mbps □ 2Mbps	(4)
Number of Channel:	40	
Antenna Type:	FPC Antenna	
Antenna Gain:	ESP32: 3.0dBi AP6256: 2.5 dBi	
Power Supply:	Adapter: DC 24V	
Test Voltage:	DC 24V	
Sample Received Date:	Apr. 16, 2025	705
Sample tested Date:	Apr. 16, 2025 to May 26, 2025	

Report No. : EED32R80464701 Page 6 of 126

100		100				100	
Operation F	requency eac	h of channe		-			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency(MHz)
The lowest channel (CH0)	2402
The middle channel (CH19)	2440
The highest channel (CH39)	2480

4.3 Test Configuration

Mode f

EUT Test Softwar	e Settings:						
Test Software:		ESP32: ES AP6256: M	P32.exe obaXterm_Persona	I_22.1.exe			
EUT Power Grade		Default (Po selected)	Default (Power level is built-in set parameters and cannot be changed and selected)				
Use test software t transmitting of the		vest frequency	/, the middle freque	ncy and the highest f	requency keep		
Test Mode	Mod	dulation	Rate	Channel	Frequency(MHz)		
Mode a	G	FSK	1Mbps	CH0	2402		
Mode b	Mode b GFSK		1Mbps	CH19	2440		
Mode c GFSK		1Mbps	CH39	2480			
Mode d	GFSK		2Mbps	CH0	2402		
Mode e	GFSK		2Mbps	CH19	2440		

2Mbps

CH39

2480

GFSK

4.4 Test Environment

	Operating Environment	t:					
	Radiated Spurious Emi	ssions:					
10	Temperature:	22~25.0 °C	(4)		(41)		(4)
	Humidity:	50~55 % RH	0		(0)		(0)
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(2)		(30)	
	Humidity:	50~55 % RH		(0,)		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(°)		(3)		
(i	Humidity:	50~55 % RH	(5,2)		(6,7)		(6.2)
	Atmospheric Pressure:	1010mbar					

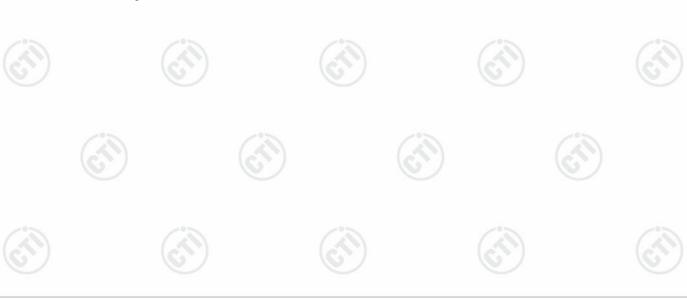
4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Dell	P77F	FCC&CE	СТІ

4.6 Test Location


All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0	DE novem conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Couriers and also test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(27)		3.4dB (18GHz-40GHz)
1	Oca duration annieries	3.5dB (9kHz-150kHz)
4	Conduction emission	3.1dB (150kHz-30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32R80464701 Page 9 of 126

5 Equipment List

RF test system					
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-05-2024	12-04-2025
Signal Generator	Keysight	N5182B	MY53051549	11-30-2024	11-29-2025
DC Power	Keysight	E3642A	MY56376072	11-30-2024	11-29-2025
Communication test	R&S	CMW500	169004	03-03-2025	03-02-2026
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20		<u> </u>
Spectrum Analyzer	R&S	FSV3044	101509	02-14-2025	02-13-2026

705		107			_0,
Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date
Receiver	R&S	ESCI	100435	04-08-2025	04-07-2026
Temperature/ Humidity Indicator	Defu	TH128		03-31-2025	03-30-2026
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025
Barometer	changchun	DYM3	1188		(3)
Test software	Fara	EZ-EMC	EMC-CON 3A1.1		

Page 10 of 126 Report No.: EED32R80464701

Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12-05-2024	12-04-2025

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
BM Chamber & Accessory Equipment	TDK	SAC-3		01/13/2024	01/12/2027	
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025	
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022 05/14/2025	05/21/2025 05/13/2026	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/07/2025	04/06/2026	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/07/2025	04/06/2026	
Preamplifier	Agilent	11909A	12-1	03/03/2025	03/02/2026	
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025	
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	(<u> </u>	
Cable line	Fulai(7M)	SF106	5219/6A	01/13/2024	01/12/2027	
Cable line	Fulai(6M)	SF106	5220/6A	01/13/2024	01/12/2027	
Cable line	Fulai(3M)	SF106	5216/6A	01/13/2024	01/12/2027	
Cable line	Fulai(3M)	SF106	5217/6A	01/13/2024	01/12/2027	

Report No. : EED32R80464701 Page 11 of 126

		3M full-anechoic	: Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-04-2025	01-03-2026
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-14-2025	01-13-2026
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-14-2025	01-13-2026
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-12-2025	04-11-2026
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-12-2025	04-11-2026
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-03-2025	03-02-2026
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025
Communication test set	R&S	CMW500	102898	01-04-2025	01-03-2026
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	03-31-2025	03-30-2026
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

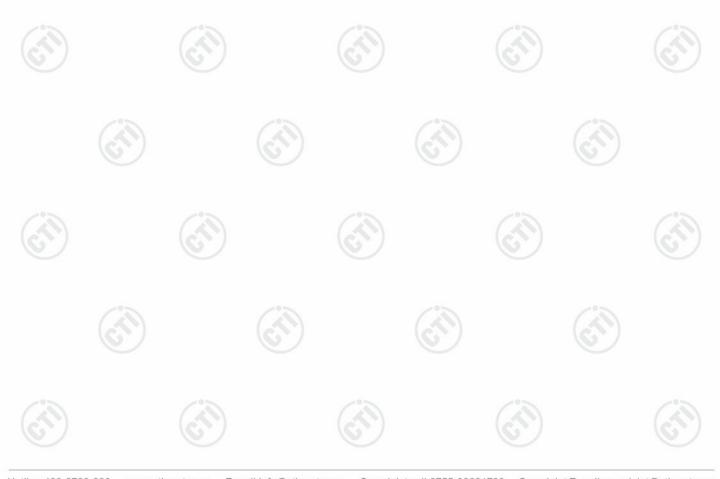
Report No. : EED32R80464701 Page 12 of 126

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is FPC antenna. For ESP32, the best case gain of the antenna is 3.0dBi. For AP6256, the best case gain of the antenna is 2.5dBi.

Report No.: EED32R80464701 Page 13 of 126

Test Requirement:	47 CFR Part 15C Section 15.	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto			
Limit:	(1411-)	Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarith	m of the frequency.			
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 ACM	Test Receiver		

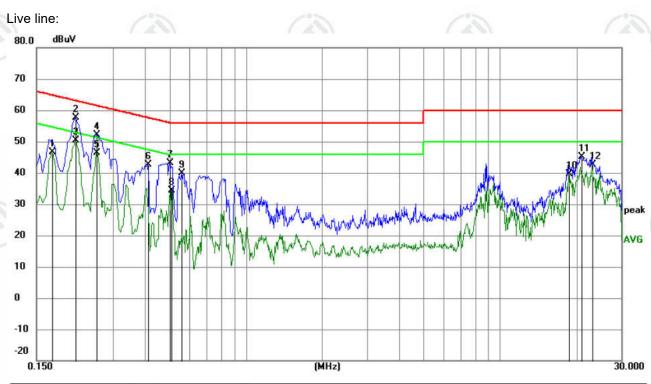
Test Procedure:

1) The mains terminal disturbance voltage test was conducted in a shielded room

Ground Reference Plane

- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.

Test Mode:

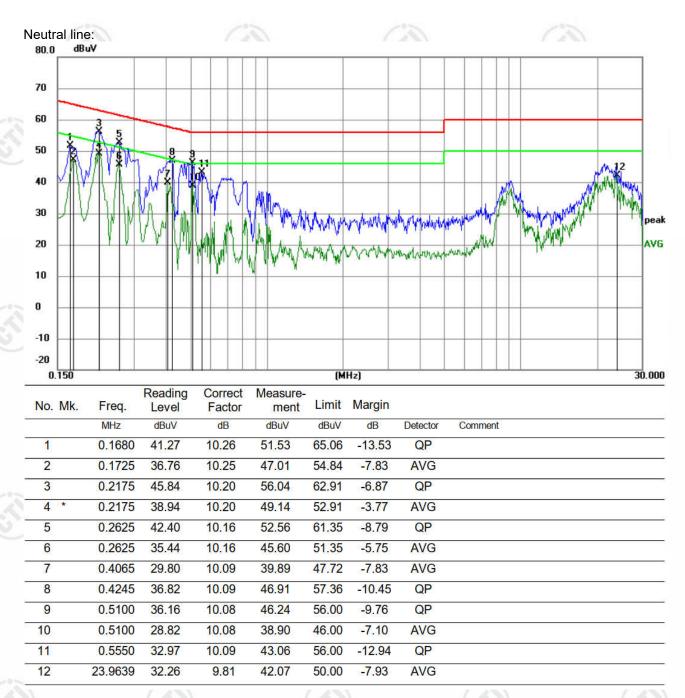

All modes were tested, only the worst case mode d was recorded in the report.

Report No.: EED32R80464701 Page 14 of 126

Test Results:	Pass			
---------------	------	--	--	--

Measurement Data

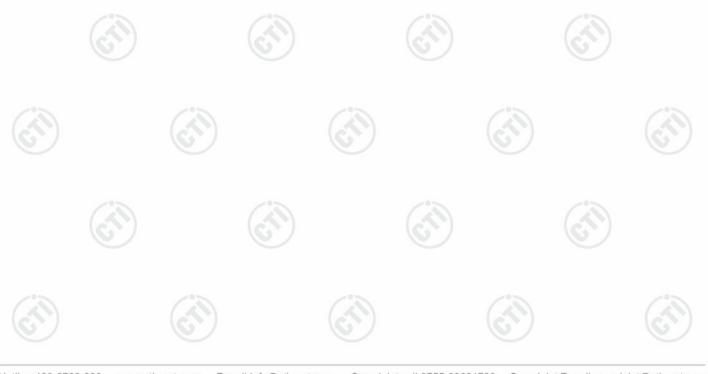
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1725	36.45	10.25	46.70	54.84	-8.14	AVG	
2		0.2130	47.43	10.20	57.63	63.09	-5.46	QP	
3	*	0.2130	40.18	10.20	50.38	53.09	-2.71	AVG	
4		0.2580	42.05	10.16	52.21	61.50	-9.29	QP	
5		0.2580	36.19	10.16	46.35	51.50	-5.15	AVG	
6		0.4110	32.50	10.09	42.59	57.63	-15.04	QP	
7		0.5010	32.96	10.08	43.04	56.00	-12.96	QP	
8		0.5100	24.23	10.08	34.31	46.00	-11.69	AVG	
9		0.5595	29.68	10.09	39.77	56.00	-16.23	QP	
10		18.6450	29.70	9.82	39.52	50.00	-10.48	AVG	
11		20.8410	35.35	9.80	45.15	60.00	-14.85	QP	
12		23.1225	32.82	9.81	42.63	50.00	-7.37	AVG	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



6.3 Maximum Conducted Output Power

10.0	164 / 164 / 164 /	
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Contro	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW 	(0,
	 d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	/°>
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix A	



Report No.: EED32R80464701 Page 17 of 126

6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Power Supply Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

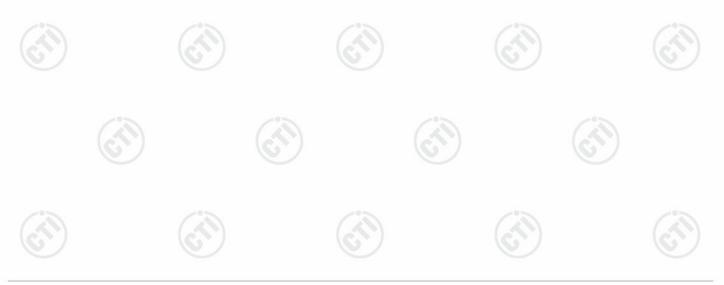
6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)				
Test Method:	ANSI C63.10 2013				
Test Setup:		(ci)			
	Control Control Control Power Power Supply Power Temperature Cabinet	RF test System Instrument			
	Remark: Offset=Cable loss+ attenua	ation factor.			
Test Procedure:	within the RBW.	S bandwidth.			
Limit:	≤8.00dBm/3kHz				
Test Mode:	Refer to clause 5.3	405			
Test Results:	Refer to Appendix A				



6.6 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Power Poort Poort Poort Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



6.7 Radiated Spurious Emission & Restricted bands

	16.7		1800		16.7	
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	(6)	
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)	-51
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak
	Al 4011-		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak		1MHz	10kHz	Average
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/0>	300
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(A)	30
	1.705MHz-30MHz		30	-	-	30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz	10	200	46.0	Quasi-peak	3
	960MHz-1GHz		500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	IB above the i	maximum est. This p	permitted ave	erage emission

Report No.: EED32R80464701 Page 21 of 126

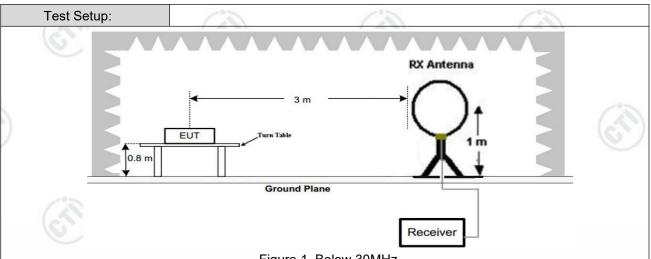
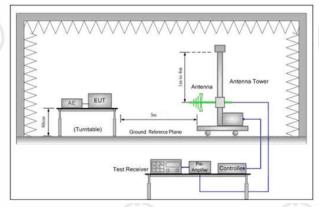



Figure 1. Below 30MHz

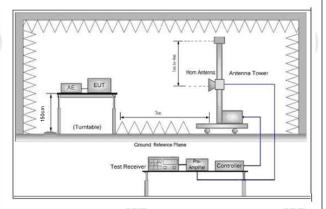


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

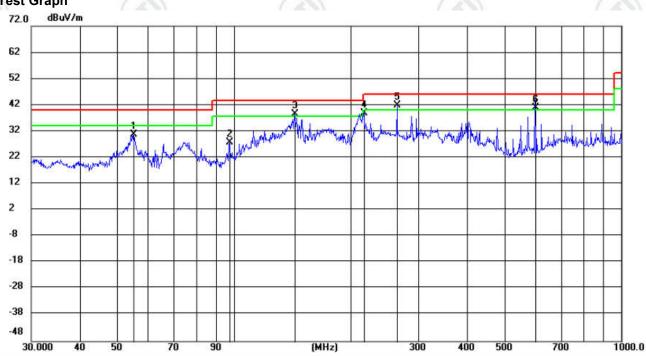
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

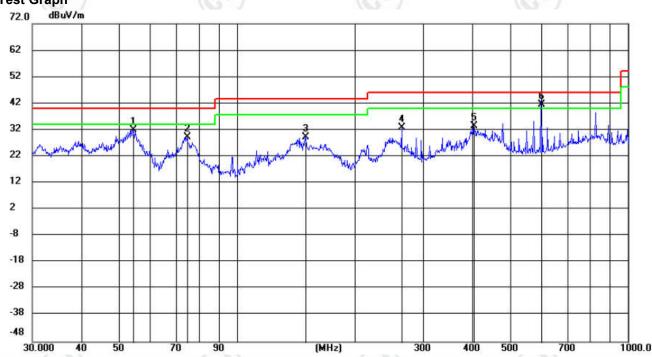


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

Horizontal:

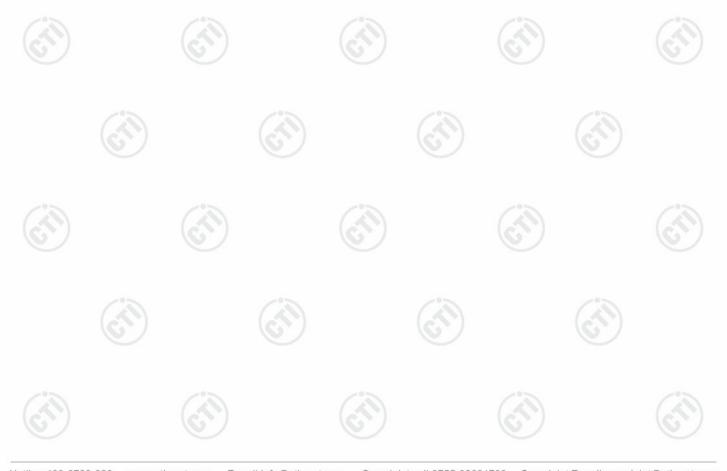
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		55.0660	16.84	13.94	30.78	40.00	-9.22	QP	100	122	
2		97.4901	15.07	12.77	27.84	43.50	-15.66	QP	199	118	
3	1	143.6783	28.02	10.42	38.44	43.50	-5.06	QP	199	352	
4		216.6688	25.40	13.41	38.81	46.00	-7.19	QP	100	175	
5	*	264.0040	26.77	15.21	41.98	46.00	-4.02	QP	100	49	
6	!	600.0571	17.75	23.35	41.10	46.00	-4.90	QP	199	352	



Report No.: EED32R80464701 Page 24 of 126

Vertical:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	54.3848	17.90	14.02	31.92	40.00	-8.08	QP	100	87	
	74.7748	18.97	10.14	29.11	40.00	-10.89	QP	200	250	
	149.9844	19.06	10.34	29.40	43.50	-14.10	QP	100	59	
	264.0041	17.69	15.21	32.90	46.00	-13.10	QP	200	81	
-	404.4537	13.93	19.64	33.57	46.00	-12.43	QP	100	214	
*	600.0573	18.35	23.35	41.70	46.00	-4.30	QP	100	257	
		MHz 54.3848 74.7748 149.9844	Mk. Freq. Level MHz dBuV 54.3848 17.90 74.7748 18.97 149.9844 19.06 264.0041 17.69 404.4537 13.93	Mk. Freq. Level Factor MHz dBuV dB/m 54.3848 17.90 14.02 74.7748 18.97 10.14 149.9844 19.06 10.34 264.0041 17.69 15.21 404.4537 13.93 19.64	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 54.3848 17.90 14.02 31.92 74.7748 18.97 10.14 29.11 149.9844 19.06 10.34 29.40 264.0041 17.69 15.21 32.90 404.4537 13.93 19.64 33.57	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m 40.00 24.00 10.00 10.14 29.11 40.00 40.00 149.9844 19.06 10.34 29.40 43.50 46.00 404.4537 13.93 19.64 33.57 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dB 54.3848 17.90 14.02 31.92 40.00 -8.08 74.7748 18.97 10.14 29.11 40.00 -10.89 149.9844 19.06 10.34 29.40 43.50 -14.10 264.0041 17.69 15.21 32.90 46.00 -13.10 404.4537 13.93 19.64 33.57 46.00 -12.43	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector 54.3848 17.90 14.02 31.92 40.00 -8.08 QP 74.7748 18.97 10.14 29.11 40.00 -10.89 QP 149.9844 19.06 10.34 29.40 43.50 -14.10 QP 264.0041 17.69 15.21 32.90 46.00 -13.10 QP 404.4537 13.93 19.64 33.57 46.00 -12.43 QP	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dBuV dBuV/m dBuV/m dB Detector cm 54.3848 17.90 14.02 31.92 40.00 -8.08 QP 100 74.7748 18.97 10.14 29.11 40.00 -10.89 QP 200 149.9844 19.06 10.34 29.40 43.50 -14.10 QP 100 264.0041 17.69 15.21 32.90 46.00 -13.10 QP 200 404.4537 13.93 19.64 33.57 46.00 -12.43 QP 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dBuV dBuV/m dBuV/m dB Detector cm degree 54.3848 17.90 14.02 31.92 40.00 -8.08 QP 100 87 74.7748 18.97 10.14 29.11 40.00 -10.89 QP 200 250 149.9844 19.06 10.34 29.40 43.50 -14.10 QP 100 59 264.0041 17.69 15.21 32.90 46.00 -13.10 QP 200 81 404.4537 13.93 19.64 33.57 46.00 -12.43 QP 100 214



Report No. : EED32R80464701 Page 25 of 126

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

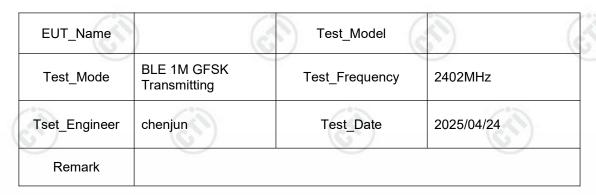
10				/ 41		100			
Mode	:		Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	2
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1222.0148	11.54	37.49	49.03	74.00	24.97	Pass	Н	PK
2	2018.0679	14.58	36.96	51.54	74.00	22.46	Pass	Н	PK
3	3687.0958	-12.80	53.12	40.32	74.00	33.68	Pass	Н	PK
4	4804.5203	-8.60	51.95	43.35	74.00	30.65	Pass	Н	PK
5	7207.0805	-3.34	49.07	45.73	74.00	28.27	Pass	Н	PK
6	11973.1982	3.11	45.10	48.21	74.00	25.79	Pass	Н	PK
7	1250.15	11.63	38.20	49.83	74.00	24.17	Pass	V	PK
8	1853.7903	14.47	36.34	50.81	74.00	23.19	Pass	V	PK
9	3197.6132	-14.46	59.26	44.80	74.00	29.20	Pass	V	PK
10	4368.9913	-10.08	3 51.47	41.39	74.00	32.61	Pass	V	PK
11	7604.907	-2.12	47.21	45.09	74.00	28.91	Pass	V	PK
12	11297.8032	2.44	45.20	47.64	74.00	26.36	Pass	V	PK

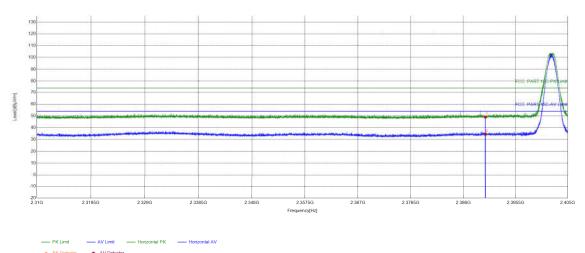
Report No.: EED32R80464701 Page 26 of 126

Mo	de:	ВІ	uetooth LE G	SFSK Transmi	tting	Channel:		2440 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.15	11.63	38.32	49.95	74.00	24.05	Pass	Н	PK
2	1991.1327	14.64	36.81	51.45	74.00	22.55	Pass	Н	PK
3	3738.4492	-12.85	53.29	40.44	74.00	33.56	Pass	Н	PK
4	4879.9253	-8.36	52.49	44.13	74.00	29.87	Pass	Н	PK
5	7320.8381	-2.86	49.96	47.10	74.00	26.90	Pass	Н	PK
6	11753.4836	2.41	45.67	48.08	74.00	25.92	Pass	Н	PK
7	1386.6924	12.81	37.19	50.00	74.00	24.00	Pass	V	PK
8	1689.5126	14.01	37.36	51.37	74.00	22.63	Pass	V	PK
9	3749.5	-12.86	58.16	45.30	74.00	28.70	Pass	V	PK
10	5698.9799	-6.09	48.98	42.89	74.00	31.11	Pass	V	PK
11	7970.8814	-1.38	48.46	47.08	74.00	26.92	Pass	V	PK
12	12568.6379	4.44	44.10	48.54	74.00	25.46	Pass	V	PK

Mode	:		Bluetooth LE G	FSK Transmi	tting	Channel:		2480 MHz	2
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1243.2162	11.59	37.29	48.88	74.00	25.12	Pass	Н	PK
2	1703.2469	14.09	37.05	51.14	74.00	22.86	Pass	Н	PK
3	3194.363	-14.48	54.68	40.20	74.00	33.80	Pass	Н	PK
4	4960.5307	-8.05	52.94	44.89	74.00	29.11	Pass	Н	PK
5	7440.446	-2.50	48.74	46.24	74.00	27.76	Pass	Н	PK
6	11960.1973	3.11	44.94	48.05	74.00	25.95	Pass	Н	PK
7	1190.146	11.53	37.33	48.86	74.00	25.14	Pass	V	PK
8	1590.306	13.68	36.68	50.36	74.00	23.64	Pass	V	PK
9	3198.2632	-14.46	59.11	44.65	74.00	29.35	Pass	V	PK
10	6376.9751	-4.36	51.46	47.10	74.00	26.90	Pass	V	PK
11	9088.9559	0.15	45.02	45.17	74.00	28.83	Pass	V	PK
12	11285.4524	2.43	44.82	47.25	74.00	26.75	Pass	V	PK

- The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

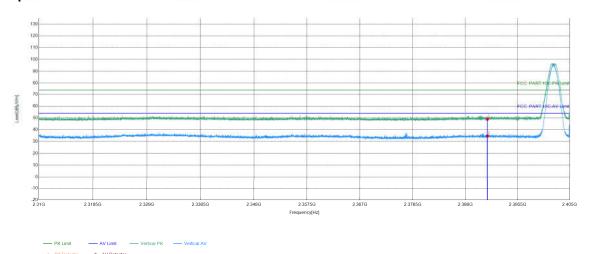




Restricted bands:

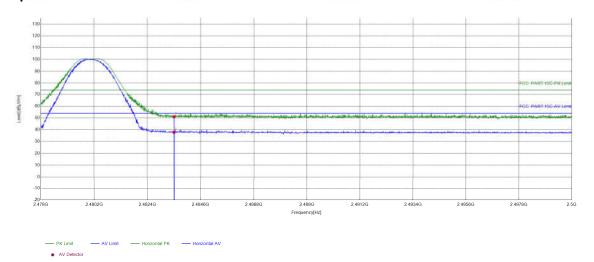
Test plot as follows:

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	15.96	33.20	49.16	74.00	24.84	PASS	Horizontal	PK
6	2	2390	15.96	18.58	34.54	54.00	19.46	PASS	Horizontal	AV



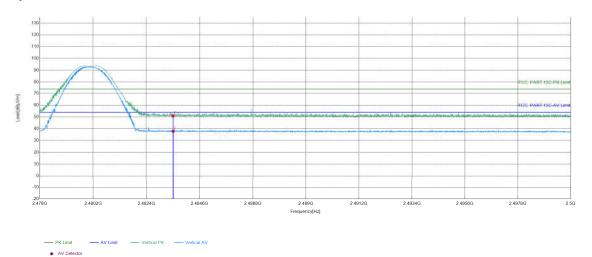
Page 28 of 126 Report No.: EED32R80464701

	(635)	(6.5)	(6.7)
EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2025/04/24
Remark			Ci


Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.96	33.02	48.98	74.00	25.02	PASS	Vertical	PK
2	2390	15.96	18.67	34.63	54.00	19.37	PASS	Vertical	AV

6.70	(635)	(6.4)	(6.7)
EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2025/04/24
Remark			(3)

Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5	16.29	34.84	51.13	74.00	22.87	PASS	Horizontal	PK		
2	2483.5	16.29	21.55	37.84	54.00	16.16	PASS	Horizontal	AV		



Page 30 of 126 Report No.: EED32R80464701

C. C. J.	1000	100	167.		
EUT_Name		Test_Model			
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz		
Tset_Engineer	chenjun	Test_Date	2025/04/24		
Remark			60		

Test Graph

Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2483.5	16.29	34.60	50.89	74.00	23.11	PASS	Vertical	PK		
2	2483.5	16.29	21.58	37.87	54.00	16.13	PASS	Vertical	AV		

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix A

Refer to Appendix: Bluetooth LE of EED32R80464701

- 1. This report is considered invalid without approved signature, special seal and the seal on the perforation;
- 2. The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;
- 3. The result(s) shown in this report refer(s) only to the sample(s) tested;
- 4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;
- 5. Without written approval of CTI, this report can't be reproduced except in full;

