

RADIO TEST REPORT

Andrey Adelberg, Senior Wireless/EMC Specialist

Report ID: Project number: REP103864 PRJ0080736 Type of assessment: Final product testing Type of radio equipment: Radar Applicant: Description of product: Strato Automation Inc. OpenStat OS537 Series HVAC Controller Product marketing name (PMN): OS214W, OS537HW, OS537MHW, OS537MHWC Models/HVINs: OS214W, OS537HW, OS537MHW, OS537MHWC FCC identifier: ISED certification number: IC: 34000-OSXXXMHWC FCC ID: 2BPMM-OSXXXMHWC Specifications: FCC 47 CFR Part 15 Subpart C, §15.255 RSS-210 Issue 11, June 2024, Annex J Date of issue: August 28, 2025 Atefeh Beiginezhad, EMC/RF Specialist Tested by

Nemko Canada Inc., a testing laboratory, is accredited by ANSI National Accreditation Board (ANAB).

The tests included in this report are within the scope of this accreditation.

The ANAB symbol is an official symbol of the ANSI National Accreditation Board, used under licence.

Reviewed by

Lab locations			

Company name	Nemko Canada Inc.
Facilities	Ottawa site:
	303 River Road, Ottawa, ON, Canada, K1V 1H2
	Tel: +1 613 737 9680, Fax: +1 613 737 9691
	Montréal site:
	292 Labrosse Avenue, Pointe-Claire, QC, Canada, H9R 5L8
	Tel: +1 514 694 2684, Fax: +1 514 694 3528
	Cambridge site:
	1-130 Saltsman Drive, Cambridge, ON, Canada, N3E 0B2
	Tel: +1 519 650 4811
Test site registration number:	- CA2040 (Ottawa)
. cot site i c ₀ .ct. attori ridinger.	
	- CA2041 (Montreal)
	- CA0101 (Cambridge)
Website	www.nemko.com

Limits of responsibility

Note that this report's results relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of this report.

This test report has been completed following the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report, provided it is reproduced in its entirety and for use by the company's employees only. Any use that a third party makes of this report, or any reliance on, or decisions made based on it, is such third parties' responsibility.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party due to decisions made or actions based on this report. © Nemko Canada Inc.

Report reference ID: REP103864 Page 2 of 39

Table of Contents

Table of C	Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Model variant declaration	5
2.4	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 4	Information provided by the applicant	7
4.1	Disclaimer	7
4.2	Applicant / Manufacturer	7
4.3	EUT information	7
4.4	Radio technical information	7
4.5	EUT setup details	8
Section 5	Summary of test results	9
5.1	location	9
5.2	Testing period	9
5.3	Sample information	9
5.4	FCC test results	9
5.5	ISED test results	10
Section 6	Test equipment	11
6.1	Test equipment list	11
Section 7	Testing data	13
7.1	Variation of power source	13
7.2	Number of frequencies	14
7.3	Antenna requirement	16
7.4	AC power line conducted emissions limits	17
7.5	Radiated power limits	20
7.6	Limits on spurious emissions	25
7.7	Frequency stability	37
Section 8	Test setup diagrams	38
8.1	Radiated emissions set-up for frequencies below 1 GHz	38
8.2	Radiated emissions set-up for frequencies above 1 GHz	38
8.3	AC mains conducted emissions set-up	39

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15 Subpart C, Clause 15.255	Operation within the band 61.0-61.5 GHz
RSS-210 Issue 11, June 2024, Annex J	Licence-Exempt Radio Apparatus: Category I Equipment
	Annex J: Devices operating in the band 57-71 GHz

1.2 Test methods

RSS-Gen, Issue 5, April 2018	General Requirements for Compliance of Radio Apparatus
ANSI 63.10-2020	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 364244 D01 Meas 15.255 Radars v01r01	Field disturbance sensors and radar devices certifying under the provisions of §15.255

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

Determining compliance is based on the results of the compliance measurement, not taking into account measurement uncertainty, in accordance with section 1.4 of ANSI C63.10 v2020.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
REP103864	August 28, 2025	Original report issued

Report reference ID: REP103864 Page 4 of 39

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Model variant declaration

As declared by the applicant, the EUT model OS537MHCW has been chosen to be representative for all other models in the model family. The model family, and the description of the variations, are as follows:

Number of inputs and outputs (sharing the same PCB with a different BOM)

PMNs/Model names: OS214W, OS537HW, OS537MHW, OS537MHWC

While these models share similarities, there are minor modifications that need to be documented:

- 1. Electrical Differences:
 - Although the circuitry and components are largely identical, there are specific variations between the models. These differences include:
 - number of inputs and outputs (sharing the same PCB with a different BOM)
 - With Humidity (H)
 - With motion (M)
 - With CO2 (C)
 - With Wi-Fi (W)
- 2. Antenna Type and Gain:

All models share the same antenna type and gain.

• 3 Enclosure Details:

The enclosures are consistent across models.

2.4 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Report reference ID: REP103864 Page 6 of 39

Section 4 Information provided by the applicant

Section 4

Disclaimer 4.1

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

Applicant / Manufacturer 4.2

Applicant name	Strato Automation Inc.
Applicant address	1550 Rue de Coulomb, Boucherville, QC J4B 7Z7

4.3 **EUT** information

Product description	Strato Automation Inc.	
Model	OS537MHCW	
Models / HVINs	OS214W, OS537HW, OS537MHW, OS537MHWC	
Serial number	12250200211	
Part number	OS537MHCW	
Power supply requirements	120 VAC, 60 Hz (Via a Transformer)	
Product description and theory	The OS537 is a wall-mounted, microprocessor-based configurable HVAC controller designed for rooftop units (RTUs), fan	
of operation	coil units (FCUs), heat pumps (HPs), water-source heat pumps (WSHPs), and air handling units (AHUs). It integrates	
	multiple sensing, control, and communication functions to provide flexible HVAC automation with energy efficiency and	
	IAQ strategies, compliant with ASHRAE G36 guidelines.	
	The device includes an integrated Wi-Fi 6 radio module (ESP32-C6-WROOM-1) to support wireless communication via	
	BACnet/IP over 2.4 GHz. It also supports BACnet MS/TP communication over RS-485 Configurable Wall Controller,	
	Source description Frequency (MHz) MCU 250 Crystal 32.768, 25, 38.4 RS-485 0.0768	
Software details	0.557-111	

Radio technical information 4.4

Category of Transmission equipment	60 GHz Radar-based motion sensor for occupancy detection	
Allocated frequency band	60–64 GHz	
Frequency start	61.0 GHz	
Frequency stop	61.5 GHz	
Field strength, dBμV/m @ 3 m	103.01 dBμV/m	
Measured BW (GHz), 99% OBW	19.6 MHz	
Type of modulation	Continuous Wave (CW) Doppler Mode	
Antenna information	Type: integrated patch antenna, Manufacturer: Infineon Technologies, Embedded, Model: BGT60LTR11AIP, Gain: 6	
	dBi	

REP103864 Page 7 of 39 Report reference ID:

4.5 EUT setup details

4.5.1 Radio exercise details

Operating conditions	The EUT was powered up using the support AC/DC adapter, the support CANUSB adapter was connected to a laptop
	USB port, Once the EUT was powered up its application was running and it was continuously transmitted, using a tera
	term interface at the laptop side the continuous operation was observed.
Transmitter state	Transmitter set into continuous mode.

4.5.2 EUT setup configuration

Table 4.5-1: EUT interface ports

Description	Qty.
USB-C port	1
Power port	1

Table 4.5-2: Support equipment

Description	Brand name	Serial number, Part number, Model, Revision level
Laptop	Dell	MN: Latitude E6420, DPN: VVF52 A01, SN: 28MCCS1

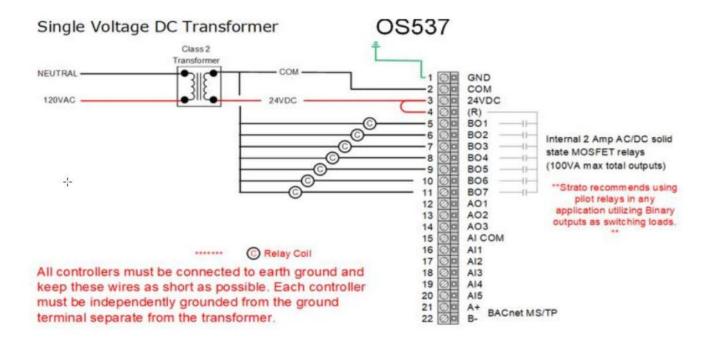


Figure 4.5-1: Radiated testing block diagram

Report reference ID: REP103864 Page 8 of 39

Section 5 Summary of test results

5.1 location

Test location (s) Montreal

5.2 Testing period

Test start date June 18, 2025 Test end date June 27, 2025

5.3 Sample information

Receipt date June 2, 2025 Nemko sample ID number(s) PRJ00807360001

5.4 FCC test results

Table 5.4-1: FCC general requirements results

Part	Test description	Verdict
Generic req	uirements	
§15.207(a)	Conducted limits	Pass ¹
§15.31(e)	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass
Notes:	¹ EUT is an AC powered device.	

Table 5.4-2: FCC Part 15 Subpart C, intentional radiators test results

Part	Test description	Verdict
§15.255(c)	Equivalent isotopically radiated power (EIRP)	Pass
§15.255(d)	Transmitter spurious emissions	Pass
§15.255(e)	Peak conducted output power	Not applicable
§15.255(f)	Frequency stability	Pass
Notes:	¹ FLIT is not a Fixed point-to-point operating system	

Report reference ID: REP103864 Page 9 of 39

5.5 ISED test results

Table 5.5-1: ISED general requirements results

Part	Test description	Verdict
RSS-Gen, 6.7	Occupied bandwidth	Pass
RSS-Gen, 6.9	Operating bands and selection of test frequencies	Pass
RSS-Gen, 7.3	Receiver radiated emission limits	Not applicable ¹
RSS-Gen, 7.4	Receiver conducted emission limits	Not applicable ¹
RSS-Gen, 8.8	AC powerline conducted emissions limits	Pass ²

Notes:

¹According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

²EUT is an AC powered device.

Table 5.5-2: ISED RSS-210 Annex J requirements results

Clause	Test description	Verdict
J.3	Equivalent isotopically radiated power (EIRP)	Pass
J.4, J.5	Spurious emissions	Pass
J.6	Frequency stability	Pass

Notes: None

Report reference ID: REP103864 Page 10 of 39

Section 6 Test equipment

6.1 Test equipment list

Table 6.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 Phase AC Power Supply	apc AC Power	AFC-33045T	FA002677	_	NCR
3 m EMI test chamber (Emissions)	TDK	SAC-3	FA002532e	1 year	April 4, 2026
Flush mount turntable	Sunol	FM2022	FA002550	_	NCR
Antenna mast	Sunol	TLT2	FA002552	_	NCR
Bilog antenna (20–2000 MHz)	Sunol	JB1	FA002517	1 year	September 6, 2025
Horn antenna (1–18 GHz)	EMCO	3115	FA001451	1 year	May 15, 2026
50 Ω coax cable	Huber + Suhner	None	FA003438	1 year	May 15, 2026
RF Cable Assembly	Huber + Suhner	2M-750-195A-750	FA002554	1 year	January 20, 2026
LNA (1-18 GHz)	Miteq	N/A	FA003391	1 year	January 20, 2026
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	January 17, 2026
Horn antenna (1–18 GHz)	EMCO	RGA-60	FA002577	_	NCR
Horn antenna (18–40 GHz)	EMCO	3116	FA002487	3 year	April 9, 2027
Pre-amplifier (18–40 GHz)	Com-Power	PAM-840	FA002508	_	September 17, 2025
Signal and Spectrum Analyzer	Rohde & Schwarz	FSW50	FA003267	1 year	December 4, 2025
Standard gain horn (50-75 GHz)	Mi-Wave	261V-25/385	FA003270	_	NCR
Hamonic mixer (50-75 GHz)	Rohde & Schwarz	FS-Z75	FA003263	3years	Oct 26, 2026
Standard gain horn (75-110 GHz)	Mi-Wave	261W-25/387	FA003271	_	NCR
Hamonic mixer (75-110 GHz)	Rohde & Schwarz	FS-Z110	FA003262	3years	Sep 28, 2026
Hamonic mixer (110-170 GHz)	Rohde & Schwarz	FS-Z170	FA003296	3years	Sep 26, 2026
Standard gain horn (110-170 GHz)	Mi-Wave	261D-25/387	FA003272	_	NCR
Hamonic mixer (140-220 GHz)	Rohde & Schwarz	FS-Z220	FA003269	3years	Sep 21, 2026
Standard gain horn (110-170 GHz)	Mi-Wave	261D-25/387	FA003272	_	NCR
Temperature humidity Chamber	LIK	EPX-4H	FA003430	-	NCR
Two-line v-network	Rohde & Schwarz	ENV216	FA002965	1 year	November 30, 2025
50 Ω coax cable	Rohde & Schwarz	None	FA003074	1 year	July 29, 2025
AC Power source	Chroma	61605	FA003034	_	NCR
LISN	Rohde & Schwarz	ENV216	FA002514	1 year	March 11, 2026

Note: NCR - no calibration required

All equipment related to the contribution of measurement has been included in this list. Such items include, but are not limited to, cables, attenuators, directional couplers, and pre-amps.

Table 6.1-2: Automation software details

Test description	Manufacturer of Software	Details
Radiated emissions as of January 29, 2021	Rohde & Schwarz	EMC32, Software for EMC Measurements, Version 10.60.20

Report reference ID: REP103864 Page 11 of 39

Test equipment, continued

Table 6.1-3: Measurement uncertainty calculations based on equipment list

Measurement	Measurement uncertainty, ±dB
Radiated spurious emissions (30 MHz to 1 GHz)	4.27
Radiated spurious emissions (1 GHz to 6 GHz)	4.74
Radiated spurious emissions (6 GHz to 18 GHz)	5.04
Radiated spurious emissions (18 GHz to 26 GHz)	4.47
Radiated spurious emissions (18 GHz to 40 GHz)	4.78
Radiated spurious emissions (40 GHz to 220 GHz)	5.81
RF Output power measurement using Spectrum Analyzer	0.71

Notes: UKAS Lab 34, TIA-603 and ETSI TR 100 028-1&2 have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experienc and validation of data. Nemko Canada Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Report reference ID: REP103864 Page 12 of 39

Section 7 Testing data

7.1 Variation of power source

7.1.1 References, definitions and limits

FCC §15.31 (e):

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

7.1.2 Test summary

Verdict	Pass		
Test date	June 18, 2025	Temperature	23 °C
Tested by	Atefeh Beiginezhad	Air pressure	1002 mbar
Test location	Montreal	Relative humidity	40 %

7.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used
- b) For devices, where operating at a supply voltage deviating ±15% from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.
- e) For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

7.1.4 Test data

The EUT is powered via 5 V_{DC} powered via 120 VAC, 60 Hz (Transformer), no observed noticeable output power variation.

Testing data
Number of frequencies
FCC Part 15 Subpart A and RSS-Gen, Issue 5

7.2 Number of frequencies

7.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

RSS-Gen, Clause 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 7.2-1: Frequency Range of Operation

Frequency range over which the device		Location of measurement frequency inside the
operates (in each band)	Number of test frequencies required	operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes:

"near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

7.2.2 Test summary

Verdict	Pass		
Test date	June 20, 2025	Temperature	22 °C
Tested by	Atefeh Beiginezhad	Air pressure	1002 mbar
Test location	Montreal	Relative humidity	33 %

7.2.3 Observations, settings and special notes

ANSI C63.10, Clause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

ANSI C63.10. Clause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Report reference ID: REP103864 Page 14 of 39

Testing data Number of frequencies

FCC Part 15 Subpart A and RSS-Gen, Issue 5

7.2.4 Test data

Table 7.2-2: Test channels selection

Start of Frequency range, GHz	End of Frequency range, GHz	Frequency range bandwidth, MHz	Signal description
61	61.5	500	Transmitter operates between 61.0 to 61.5 GHz at low Channel with 16.1 MHz and at high Channel with 19.6 MHz occupied bandwidth

Report reference ID: REP103864 Page 15 of 39

Testing data
Antenna requirement
FCC Part 15 Subpart C and RSS-Gen, Issue 5

7.3 Antenna requirement

7.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

FCC §15.255:

(C).2. 61.0-61.5 GHz: For field disturbance sensors/radars that occupy 500 MHz bandwidth or less that are contained wholly within the frequency band 61.0-61.5 GHz, the average power of any emission, measured during the transmit interval, shall not exceed 40 dBm, and the peak power of any emission shall not exceed 43 dBm. In addition, the average power of any emission outside of the 61.0-61.5 GHz band, measured during the transmit interval, but still within the 57-71 GHz band, shall not exceed 10 dBm, and the peak power of any emission shall not exceed 13 dBm.

RSS-Gen, Clause 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

7.3.2 Test summary

Verdict	Pass		
Test date	June 23, 2025	Temperature	23 °C
Tested by	Atefeh Beiginezhad	Air pressure	1002 mbar
Test location	Montreal	Relative humidity	40 %

7.3.3 Observations, settings and special notes

None

7.3.4 Test data

EUT is professionally installed, EUT does not have detachable antenna

Table 7.3-1: Antenna information

Antenna type	Manufacturer	Model number	Maximum gain	Connector type
Integrated patch antenna	Infineon Technologies AG	BGT60LTR11AIP	6 dBi	Antennas in package (AIP) (6.7 × 3.3 × 0.56
				mm3

Report reference ID: REP103864 Page 16 of 39

Testing data

AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5

7.4 AC power line conducted emissions limits

7.4.1 References, definitions and limits

FCC §15.207:

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI C63.10, Clause 6.2:

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

RSS-Gen, Clause 8.8:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 7.4-1: Conducted emissions limit

	Conducted emissions limit, dBμV		
Frequency of emission, MHz	Quasi-peak	Average**	
0.15-0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

Notes

- * The level decreases linearly with the logarithm of the frequency.
- ** A linear average detector is required.

7.4.2 Test summary

Verdict	Pass		
Test date	June 25, 2025	Temperature	23 °C
Tested by	Atefeh Beiginezhad	Air pressure	1002 mbar
Test location	Montreal	Relative humidity	40 %

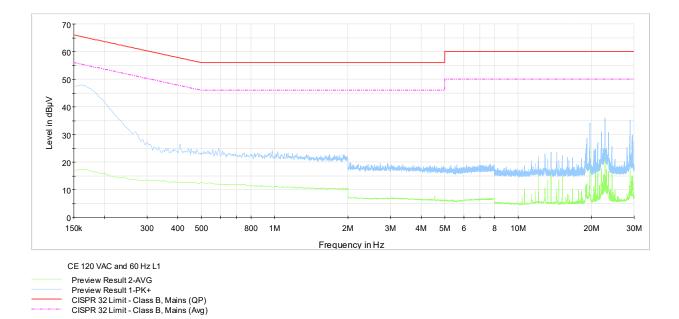
Report reference ID: REP103864 Page 17 of 39

Testing data

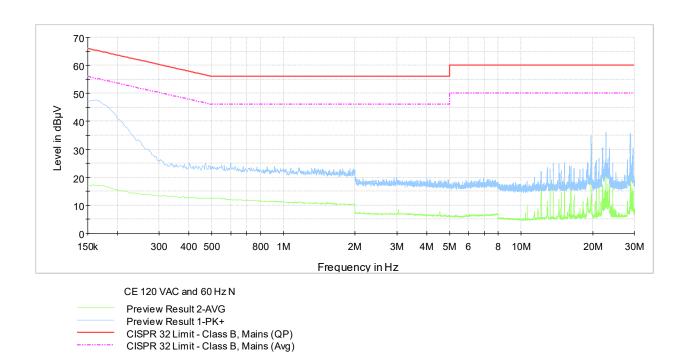
AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5

7.4.3 Observations, settings and special notes

Port under test – Coupling device	Power adapter – Artificial Mains Network (AMN)
EUT power input during test	5 V _{DC} powered via 100-240 AC/DC adapter
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or
	above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final
	measurement.
Additional notes:	 The EUT was set up as tabletop configuration per ANSI C63.10-2020 measurement procedure.
	- The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for
	determination of compliance. Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)
	– Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15
	seconds observation period were considered valid emissions. The maximum value of valid emissions has been
	recorded.


Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)


Report reference ID: REP103864 Page 18 of 39

AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5

7.4.4 Test data

Plot 7.4-1: Conducted emissions on phase line

Plot 7.4-2: Conducted emissions on neutral line

REP103864 Page 19 of 39 Report reference ID:

Testing data
Radiated power limits
FCC Part 15 Subpart C and RSS-210, Issue 11

7.5 Radiated power limits

7.5.1 References, definitions and limits

FCC §15.255:

(c)(2)(v) 61.0-61.5 GHz: For field disturbance sensors/radars that occupy 500 MHz bandwidth or less that are contained wholly within the frequency band 61.0-61.5 GHz, the average power of any emission, measured during the transmit interval, shall not exceed 40 dBm, and the peak power of any emission shall not exceed 43 dBm. In addition, the average power of any emission outside of the 61.0-61.5 GHz band, measured during the transmit interval, but still within the 57-71 GHz band, shall not exceed 10 dBm, and the peak power of any emission shall not exceed 13 dBm.

RSS-210, Annex J

J.3.2 (a) FDS devices that occupy a bandwidth of 500 MHz or less and where this bandwidth is contained wholly within the frequency band 61.0-61.5 GHz shall comply with the following limits: the equipment shall not exceed 40 dBm average e.i.r.p. and 43 dBm peak e.i.r.p. in the 61.0-61.5 GHz band. In addition, the average and peak e.i.r.p. of any emission outside of the band 61.0-61.5 GHz, but still within the band 57-71 GHz, shall not exceed 10 dBm average e.i.r.p. and 13 dBm peak e.i.r.p.

7.5.2 Test summary

Verdict	Pass		
Test date	June 26, 2025	Temperature	23 °C
Tested by	Atefeh Beiginezhad	Air pressure	1002 mbar
Test location	Montreal	Relative humidity	40 %

7.5.3 Observations, settings and special notes

None

Spectrum analyzer settings for OBW:

Detector mode	Peak
Resolution bandwidth	10 MHz
Video bandwidth	28 MHz
Trace mode	Max Hold

Spectrum analyzer settings for power:

-1 / 0	
Detector mode	Peak
Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Trace mode	Max Hold
Power Integration	Over the channel BW

Testing data
Radiated power limits

FCC Part 15 Subpart C and RSS-210, Issue 11

7.5.4 Test data

Table 7.5-1: Equivalent isotropically radiated power (EIRP) limits

Frequency, GHz	Measured Field strength, dBµV/m	Calculated EIRP, dBm	EIRP Limit, dBm	Margin, dB
61.0	96.74	1.51	20.0	18.49
61.39	103.01	7.78	20.0	12.22

Note: The factor of 95.23 dB was used to calculate the EIRP of the fundamental signal

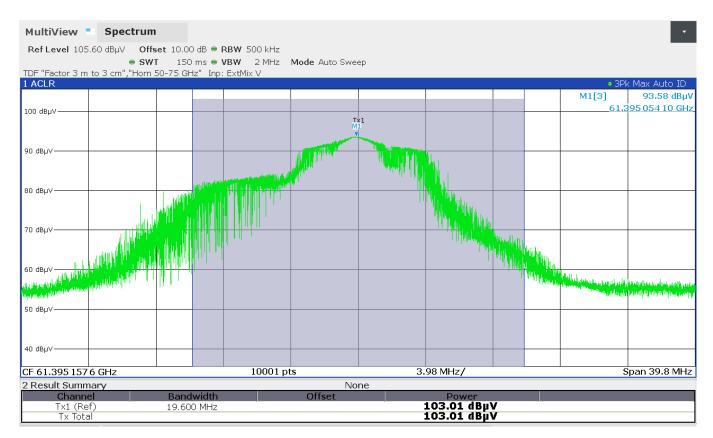


Figure 7.5-1: Field strength of fundamental - High Ch

Report reference ID: REP103864 Page 21 of 39

Testing data Radiated power limits

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

Figure 7.5-2: Field strength of fundamental - Low Ch

Report reference ID: REP103864 Page 22 of 39

Section 7 Test name Testing data

Radiated power limits

Specification FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

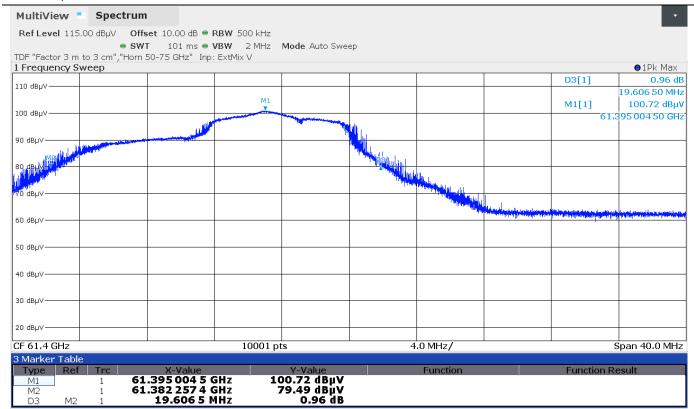


Figure 7.5-3: OBW measurement view high Ch

Table 7.5-2: OBW measurement result

OBW start frequency, GHz	OBW stop frequency, GHz	OBW, MHz
61.38	61.4	19.6

Report reference ID: REP103864 Page 23 of 39

Testing data Radiated power limits

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

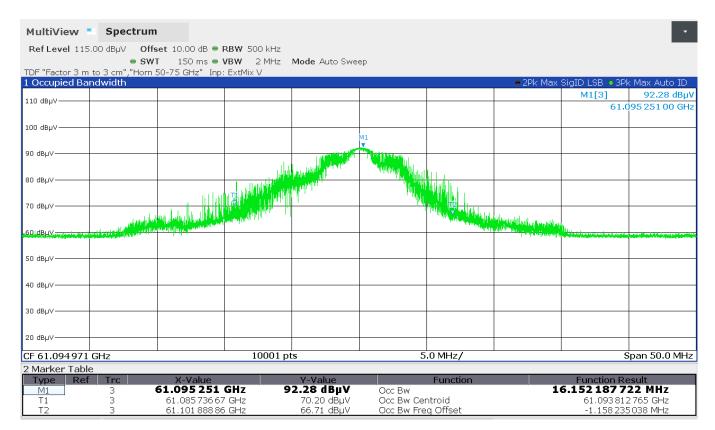


Figure 7.5-4: OBW measurement view Low Ch

Table 7.5-3: OBW measurement result

OBW start frequently, GHz	OBW stop frequently, GHz	OBW, MHz
61.08	61.1	16.1

Report reference ID: REP103864 Page 24 of 39

Testing data

Limits on spurious emissions

FCC Part 15 Subpart C and RSS-210, Issue 11

7.6 Limits on spurious emissions

7.6.1 References, definitions and limits

FCC §15.255:

- (d)
- (1) The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in § 15.209.
- (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm² at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

RSS-210, Annex J.4

Any emissions outside the band 57-71 GHz shall consist solely of spurious emissions and shall not exceed:

- (a) the fundamental emission levels
- (b) the general field strength limits specified in RSS-Gen, General Requirements for Compliance of Radio Apparatus, for emissions below 40 GHz
- (c) 90 pW/cm² at a distance of 3 m for emissions between 40 GHz and 200 GHz

Table 7.6-1: 15.209 and RSS-Gen emissions field strength limits

Frequency,	Field strength of emissions		Measurement distance, m
MHz	μV/m	dBμV/m	
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	$87.6 - 20 \times \log_{10}(F)$	30
1.705–30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes:

In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Equations to calculate power density:

Convert the EIRP in dBm to the EIRP in watts using:

EIRPLinear = 10[(EIRPLog - 30)/10]

Where, EIRP Linear is the equivalent isotropically radiated power, in watts and EIRP Log is the equivalent isotropically radiated power, in dBm Calculate the power density at the distance specified by the limit from the EIRP in watts using Equation:

 $PD = EIRPLinear / 4\pi d2$

Where PD is the power density at the distance specified by the limit, in W/m2 and EIRPLinear is the equivalent isotropically radiated power, in watts d is the distance at which the power density limit is specified, in m.

According to FCC §15.255(d)(3), the radiated emission limit outside the 57–71 GHz band between 40 GHz and 200 GHz is 90 pW/cm2 at a distance of 3 meters from the exterior surface of the radiating structure. As per above equation

 $EIRPLinear = PD \times 4\pi d2 = 0.0000009 * 4* \pi * 9 = 0.0001017876 W$

EIRPdBm = -9.92 $EIRPdB\mu V/m = 85.31$

Report reference ID: REP103864 Page 25 of 39

Testing data
Limits on spurious emissions
FCC Part 15 Subpart C and RSS-210, Issue 11

7.6.2 Test summary

Verdict	Pass		
Test date	June 18, 2025	Temperature	22 °C
Tested by	Atefeh Beiginezhad	Air pressure	1002 mbar
Test location	Montreal	Relative humidity	40 %

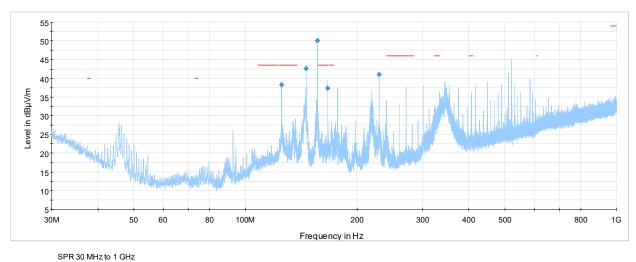
7.6.3 Observations, settings and special notes

- As part of the current assessment, the test range of 9 kHz to 220 GHz harmonic has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.
- The spectrum was searched from 30 MHz to 220 GHz.
- Radiated measurements were performed at a distance of 3 m, except for 18–50 GHz was performed at 30 cm, 50–220 GHz was performed at 3 cm to maintain low noise floor.

Spectrum analyser settings for radiated measurements below 1 GHz:

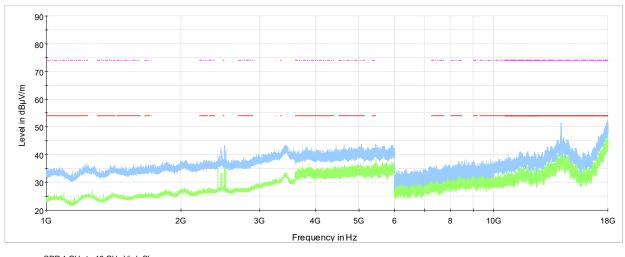
Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for radiated measurements 1 -40 GHz:


Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak/RMS
Trace mode:	Max Hold/Average

Spectrum analyser settings for average radiated measurements 40-220 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold


Report reference ID: REP103864 Page 26 of 39

7.6.4 Test data

Preview Result 1-PK+ FCC 15.209 and RSS-210 limit line RstrB Final_Result QPK

Figure 7.6-1: Radiated spurious emissions below 1000 MHz High Ch

SPR 1 GHz to 18 GHz High Ch Preview Result 2-AVG Preview Result 1-PK+ FCC 15.209 and RSS-210 limit line RstrB FCC 15.209 and RSS-210 limit line RstrB pk

Figure 7.6-2: Radiated spurious emissions above 1-18 GHz High Ch

REP103864 Report reference ID: Page 27 of 39

Testing data

Limits on spurious emissions

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

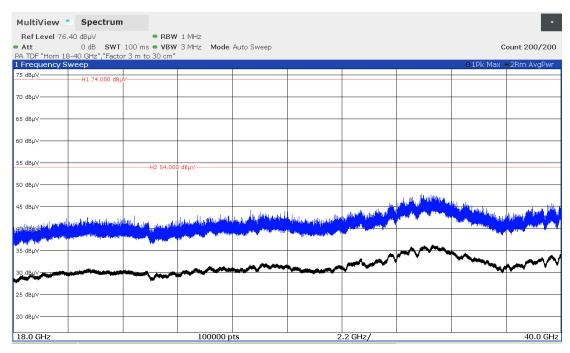


Figure 7.6-3: Radiated spurious emissions 18-40 GHz High Ch

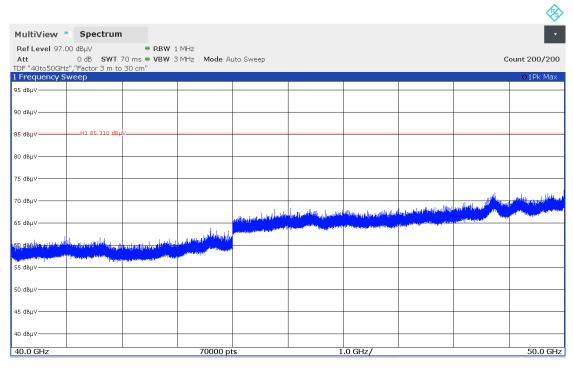


Figure 7.6-4: Radiated spurious emissions 40-50 GHz High Ch

Report reference ID: REP103864 Page 28 of 39

Testing data

Limits on spurious emissions

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

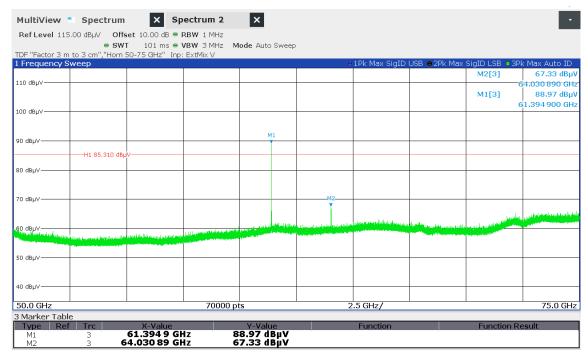


Figure 7.6-5: Radiated spurious emissions 50-75 GHz High Ch



Figure 7.6-6: Radiated spurious emissions 50-75 GHz Mask High Ch

Report reference ID: REP103864 Page 29 of 39

Section 7
Test name

Testing data

Limits on spurious emissions

Specification FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

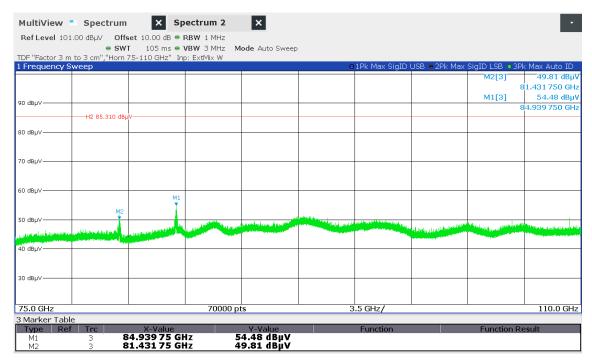


Figure 7.6-7: Radiated spurious emissions 75 GHz-110 GHz High Ch

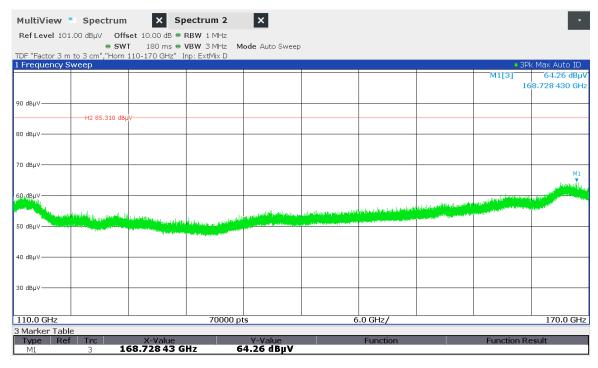


Figure 7.6-8: Radiated spurious emissions 110-170 GHz High Ch

Report reference ID: REP103864 Page 30 of 39

Section 7

Testing data Limits on spurious emissions

Test name Lin
Specification FC

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

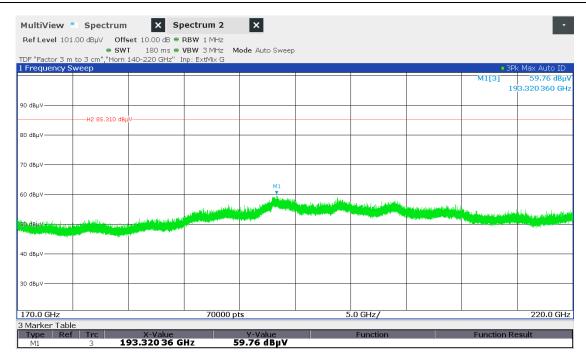


Figure 7.6-9: Radiated spurious emissions 170-220 GHz High Ch

Report reference ID: REP103864 Page 31 of 39

Test data, continued

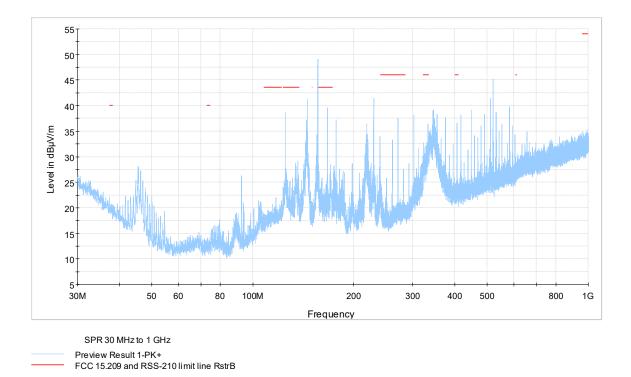


Figure 7.6-10: Radiated spurious emissions below 1000 MHz Low Ch

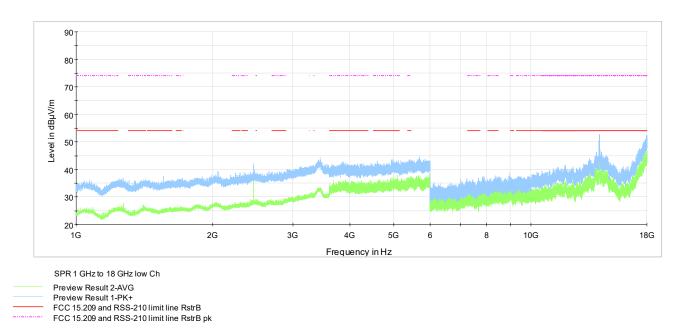


Figure 7.6-11: Radiated spurious emissions above 1-18 GHz Low Ch

Report reference ID: REP103864 Page 32 of 39

Testing data

Limits on spurious emissions

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

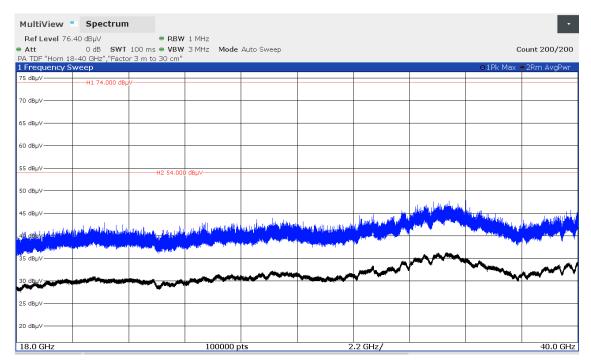


Figure 7.6-12: Radiated spurious emissions 18-40 GHz Low Ch

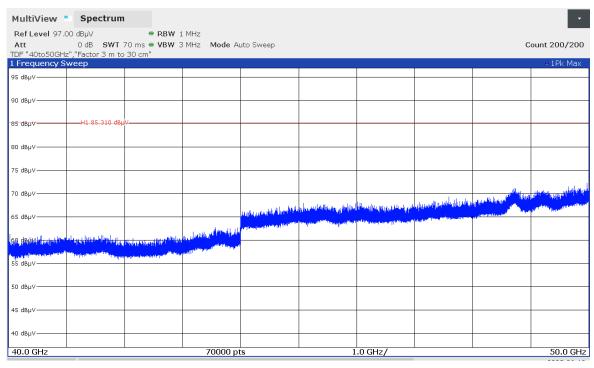


Figure 7.6-13: Radiated spurious emissions 40-50 GHz Low Ch

Report reference ID: REP103864 Page 33 of 39

Testing data

Limits on spurious emissions

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

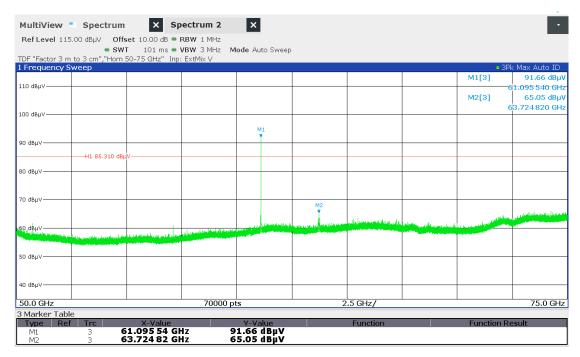


Figure 7.6-14: Radiated spurious emissions 50-75 GHz Low Ch

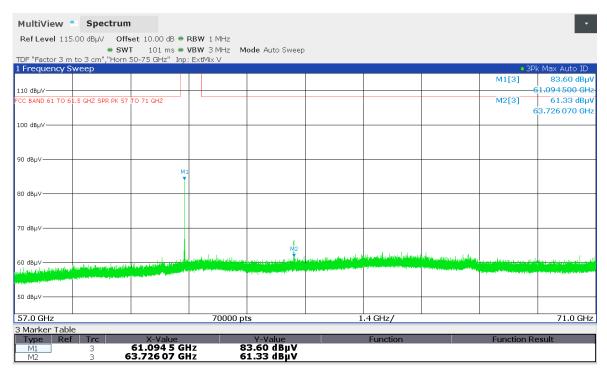


Figure 7.6-15: Radiated spurious emissions 50-75 GHz mask Low Ch

Report reference ID: REP103864 Page 34 of 39

Testing data

Limits on spurious emissions

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

Figure 7.6-16: Radiated spurious emissions 75 GHz-110 GHz Low Ch

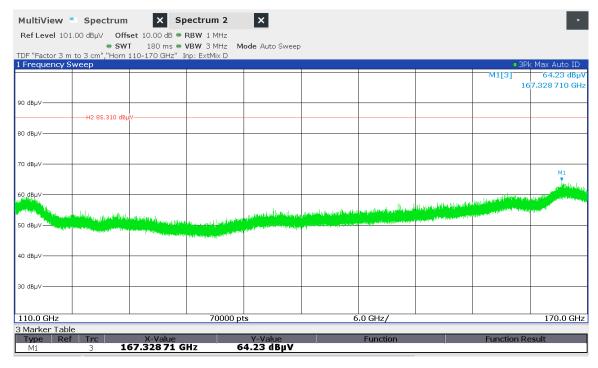


Figure 7.6-17: Radiated spurious emissions 110-170 GHz Low Ch

Report reference ID: REP103864 Page 35 of 39

Testing data

Limits on spurious emissions

FCC Part 15 Subpart C and RSS-210, Issue 11

Test data, continued

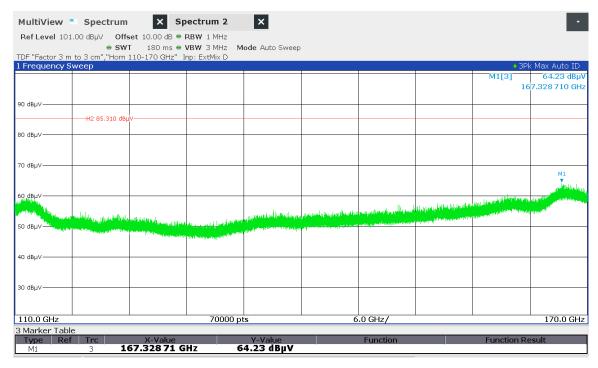


Figure 7.6-18: Radiated spurious emissions 110-170 GHz Low Ch



Figure 7.6-19: Radiated spurious emissions 170-220 GHz Low Ch

Report reference ID: REP103864 Page 36 of 39

Testing data
Frequency stability

FCC Part 15 Subpart C and RSS-210, Issue 11

7.7 Frequency stability

7.7.1 References, definitions and limits

FCC §15.255:

(f) **Frequency stability**. Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range –20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

RSS-210, J.6 Transmitter frequency stability

Fundamental emissions shall be contained within the frequency bands specified in this annex (Annex J – 57–71 GHz) during all conditions of operation when tested at the temperature and voltage variations specified for the frequency stability measurement in RSS-Gen.

7.7.2 Test summary

Verdict	Pass		
Test date	June 20, 2025	Temperature	22 °C
Tested by	Atefeh Beiginezhad	Air pressure	1001 mbar
Test location	Montreal	Relative humidity	38 %

7.7.3 Observations, settings and special notes

Resolution bandwidth:	1 MHz
Video bandwidth:	1 MHz
Detector mode:	Peak
Trace mode:	Max Hold

7.7.4 Test data

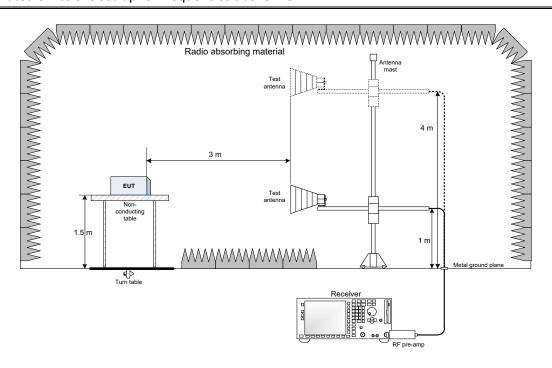
Table 7.7-1: Frequency drift measurement

Test conditions	Signal frequency range, GHz	Verdict
+50 °C, Nominal	61.0-61.4	Pass
+40 °C, Nominal	61.0-61.4	Pass
+30 °C, Nominal	61.0-61.4	Pass
+20 °C, +15 %	61.0-61.4	Pass
+20 °C, Nominal	61.0-61.4	Reference
+20 °C, −15 %	61.0-61.4	Pass
+10 °C, Nominal	61.0-61.4	Pass
0 °C, Nominal	61.0-61.4	Pass
−10 °C, Nominal	61.0-61.4	Pass
−20 °C, Nominal	61.0-61.4	Pass

The maximum measured drift was +10 kHz.

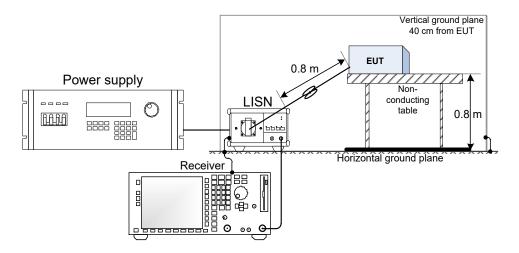
Summary: The fundamental emissions during all normal and extreme conditions of operation contained within the allocated band (57–71 GHz).

Report reference ID: REP103864 Page 37 of 39



Section 8 Test setup diagrams

8.1 Radiated emissions set-up for frequencies below 1 GHz



8.2 Radiated emissions set-up for frequencies above 1 GHz

8.3 AC mains conducted emissions set-up

End of the test report