

# FCC RADIO TEST REPORT

**FCC ID: 2BPM4-BL-332**

**Sample:** Watch intercom

**Trade Name:** N/A

**Main Model:** BL-332

**Additional Model:** M5A, BL-371, MBL-368, MBL-369, 7799-20A, BL-385, MBL-325, MBL-324, MBL-323

**Report No.:** UNIA25051614ER-61

## Prepared for

Shantou Mibile Electronic Technology Co., Ltd

2nd Floor, No. 4 East Yutan Road, North Chengjiang Road, Longtian, Guangyi Street, Chenghai District, Shantou City, Guangdong Province, China

## Prepared by

Shenzhen United Testing Technology Co., Ltd.

D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

**TEST RESULT CERTIFICATION****Applicant**.....: Shantou Mibile Electronic Technology Co., Ltd

Address.....: 2nd Floor, No. 4 East Yutan Road, North Chengjiang Road, Longtian, Guangyi Street, Chenghai District, Shantou City, Guangdong Province, China

**Manufacturer**.....: Shantou Mibile Electronic Technology Co., Ltd

Address.....: 2nd Floor, No. 4 East Yutan Road, North Chengjiang Road, Longtian, Guangyi Street, Chenghai District, Shantou City, Guangdong Province, China

**Product description**

Product.....: Watch intercom

Trade Name.....: N/A

Model Name.....: BL-332, M5A, BL-371, MBL-368, MBL-369, 7799-20A, BL-385, MBL-325, MBL-324, MBL-323

**Test Methods**.....: FCC 47 CFR Part 2&Part 95

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the IC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

**Date of Test**.....:

Date (s) of performance of tests.....: May. 19, 2025 ~ Jun. 25, 2025

Date of Issue.....: Jun. 25, 2025

Test Result.....: Pass

Prepared by:

Abe Yang/Supervisor

Kelly Cheng/Supervisor

Liuze/Manager

Approved &amp; Authorized Signer:

## TABLE OF CONTENTS

|                                              |           |
|----------------------------------------------|-----------|
| <b>1. GENERAL INFORMATION .....</b>          | <b>5</b>  |
| <b>2. PRODUCT INFORMATION .....</b>          | <b>6</b>  |
| 2.1 PRODUCT TECHNICAL DESCRIPTION .....      | 6         |
| 2.2 TEST FREQUENCY LIST .....                | 7         |
| 2.3 RELATED SUBMITTAL(S) / GRANT (S) .....   | 8         |
| 2.4 TEST METHODOLOGY .....                   | 8         |
| 2.5 CALCULATION OF EMISSION INDICATORS ..... | 8         |
| 2.6 SPECIAL ACCESSORIES .....                | 8         |
| 2.7 EQUIPMENT MODIFICATIONS .....            | 8         |
| 2.8 ANTENNA REQUIREMENT .....                | 8         |
| <b>3. TEST ENVIRONMENT .....</b>             | <b>9</b>  |
| 3.1 TEST FACILITY .....                      | 9         |
| 3.2 ENVIRONMENTAL CONDITIONS .....           | 10        |
| 3.3 MEASUREMENT UNCERTAINTY .....            | 10        |
| 3.4 LIST OF EQUIPMENTS USED .....            | 11        |
| <b>4. SYSTEM TEST CONFIGURATION .....</b>    | <b>12</b> |
| 4.1 EUT CONFIGURATION .....                  | 12        |
| 4.2 EUT EXERCISE .....                       | 12        |
| 4.3 CONFIGURATION OF TESTED SYSTEM .....     | 12        |
| 4.4 EQUIPMENT USED IN TESTED SYSTEM .....    | 12        |
| 4.5 SUMMARY OF TEST RESULTS .....            | 13        |
| <b>5. DESCRIPTION OF TEST MODES .....</b>    | <b>14</b> |
| <b>6. FREQUENCY STABILITY .....</b>          | <b>15</b> |
| 6.1 PROVISIONS APPLICABLE .....              | 15        |
| 6.2 MEASUREMENT PROCEDURE .....              | 15        |
| 6.3 MEASUREMENT SETUP .....                  | 15        |
| 6.4 MEASUREMENT RESULTS .....                | 16        |
| <b>7. EMISSION BANDWIDTH .....</b>           | <b>17</b> |
| 7.1 PROVISIONS APPLICABLE .....              | 17        |
| 7.2 MEASUREMENT PROCEDURE .....              | 17        |
| 7.3 MEASUREMENT SETUP .....                  | 17        |
| 7.4 MEASUREMENT RESULTS .....                | 19        |
| <b>8. SPURIOUS RADIATED EMISSION .....</b>   | <b>20</b> |
| 8.1 PROVISIONS APPLICABLE .....              | 20        |
| 8.2 MEASUREMENT PROCEDURE .....              | 20        |

|                                             |           |
|---------------------------------------------|-----------|
| 8.3 MEASUREMENT SETUP .....                 | 21        |
| 8.4 MEASUREMENT RESULTS .....               | 22        |
| 8.5 EMISSION MASK PLOT .....                | 24        |
| <b>9. MAXIMUMN TRANSMITTER POWER .....</b>  | <b>26</b> |
| 9.1 PROVISIONS APPLICABLE .....             | 26        |
| 9.2 MEASUREMENT METHOD .....                | 26        |
| 9.3 MEASUREMENT SETUP .....                 | 27        |
| 9.4 MEASUREMENT RESULTS .....               | 28        |
| <b>10. MODULATION CHARACTERISTICS .....</b> | <b>29</b> |
| 10.1 PROVISIONS APPLICABLE .....            | 29        |
| 10.2 MEASUREMENT METHOD .....               | 29        |
| 10.3 MEASUREMENT SETUP .....                | 29        |
| 10.4 MEASUREMENT RESULTS .....              | 30        |
| <b>11. TEST SETUP PHOTO .....</b>           | <b>32</b> |
| <b>12. EUT CONSTRUCTIONAL DETAILS .....</b> | <b>32</b> |

## 1. GENERAL INFORMATION

|                             |                |
|-----------------------------|----------------|
| <b>Product Designation:</b> | Watch intercom |
| <b>Brand Name:</b>          | N/A            |
| <b>Test Model</b>           | BL-332         |

## 2. PRODUCT INFORMATION

### 2.1 PRODUCT TECHNICAL DESCRIPTION

|                           |                                                                                                                                                      |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication Type        | Voice/ Tone only                                                                                                                                     |
| Product:                  | Watch intercom                                                                                                                                       |
| Trade Mark:               | N/A                                                                                                                                                  |
| Main Model:               | BL-332                                                                                                                                               |
| Additional Model:         | M5A, BL-371, MBL-368, MBL-369, 7799-20A, BL-385, MBL-325, MBL-324, MBL-323                                                                           |
| Model Difference:         | The functions, software and circuits of all models are the same, only the model names and appearance colors are different. Test sample model: BL-332 |
| Hardware Version          | 1.0                                                                                                                                                  |
| Software Version          | 1.0                                                                                                                                                  |
| Power Supply              | DC 3.7V by battery or DC 5V by adapter                                                                                                               |
| Communication Type        | Voice / Tone only                                                                                                                                    |
| Operation Frequency Range | 462.5625MHZ                                                                                                                                          |
| Modulation Type           | FM                                                                                                                                                   |
| Channel Separation        | 12.5 KHz                                                                                                                                             |
| Emission Designator       | 11K0F3E                                                                                                                                              |
| Number of Channels:       | 1 Channels                                                                                                                                           |
| Maximum Transmitter Power | 7.539dBm                                                                                                                                             |
| Antenna Designation       | Inseparable Antenna                                                                                                                                  |
| Antenna Gain              | 0.54dBi                                                                                                                                              |
| Frequency Tolerance       | 1.011ppm                                                                                                                                             |

## 2.2 TEST FREQUENCY LIST

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

| Frequency range Over which EUT operates | Number of Frequencies | Location in frequency range of operation     |
|-----------------------------------------|-----------------------|----------------------------------------------|
| 1 MHz or less                           | 1                     | Middle                                       |
| 1 MHz to 10 MHz                         | 2                     | 1 near top and 1 near bottom                 |
| More than 10 MHz                        | 3                     | 1 near top, 1 near middle, and 1 near bottom |

| Operation Frequency Each of Channel |              |
|-------------------------------------|--------------|
| FRS                                 |              |
| Channel                             | Frequency    |
| 1                                   | 462.5625 MHz |

## 2.3 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: 2BPM4-BL-332, filing to comply with Part 2, Part 95 of the Federal Communication Commission rules.

## 2.4 TEST METHODOLOGY

The tests were performed according to following standards:

| No. | Identity           | Document Title                                                                                    |
|-----|--------------------|---------------------------------------------------------------------------------------------------|
| 1   | FCC 47 CFR Part 95 | PERSONAL RADIO SERVICES                                                                           |
| 2   | FCC 47 CFR Part 2  | Frequency allocations and radio treaty matters; general rules and regulations                     |
| 3   | ANSI C63.26        | American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services |
| 4   | ANSI/TIA-603-E     | Land Mobile FM or PM Communications Equipment Measurement and Performance Standards               |
| 5   | KDB 888861 D01     | 888861 D01 Part 95 GMRS FRS v01                                                                   |

## 2.5 CALCULATION OF EMISSION INDICATORS

FCC Rules and Regulations Part 2.202: Necessary Bandwidth and Emission Bandwidth

### For FM Mode (Channel Spacing: 12.5kHz)

Emission Designator 11K0F3E

In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation.

$$BW = 2(M+D) = 2*(3.0 \text{ kHz} + 2.5 \text{ kHz}) = 11 \text{ kHz} = 11K0$$

F3E portion of the designator represents an FM voice transmission.

Therefore, the entire designator for 12.5 kHz channel spacing FM mode is 11K0F3E.

## 2.6 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

## 2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

## 2.8 ANTENNA REQUIREMENT

### Excerpt from §95.1787 of the FCC Rules/Regulations:

The antenna of each GMRS transmitter type must meet the following requirements.

- (1) The antenna must be a non-removable integral part of the GMRS transmitter type.
- (2) The non-detachable antenna is only for handheld portable GMRS equipment.

- The antenna of this device is permanently attached.
- There are no provisions for connection to an external antenna.
- This GMRS device has a fixed antenna port
- This GMRS equipment is a mobile station or a fixed station, which can be connected to an external antenna

Conclusion: The unit complies with the requirement of §95.1787.

### 3. TEST ENVIRONMENT

#### 3.1 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.  
Address : D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community,  
Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 0027159896

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

### 3.2 ENVIRONMENTAL CONDITIONS

|                         | NORMAL CONDITIONS | EXTREME CONDITIONS |
|-------------------------|-------------------|--------------------|
| Temperature range (°C)  | 15 - 35           | -20 - 50           |
| Relative humidity range | 20 % - 75 %       | 20 % - 75 %        |
| Pressure range (kPa)    | 86 - 106          | 86 - 106           |
| Power supply            | --                | --                 |

Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

### 3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty  $U$  is based on a standard uncertainty multiplied by a coverage factor of  $k=2$ , providing a level of confidence of approximately 95%.

| Test Items                              | Measurement Uncertainty |
|-----------------------------------------|-------------------------|
| Frequency stability                     | $\pm 0.5\%$             |
| Transmitter power conducted             | $\pm 0.8\text{dB}$      |
| Transmitter power Radiated              | $\pm 1.3\text{dB}$      |
| Conducted spurious emission 9kHz-40 GHz | $\pm 2.7\text{dB}$      |
| Conducted Emission                      | $\pm 3.2 \text{ dB}$    |
| Radiated Emission below 1GHz            | $\pm 3.9 \text{ dB}$    |
| Radiated Emission above 1GHz            | $\pm 4.8 \text{ dB}$    |
| Occupied Channel Bandwidth              | $\pm 2 \text{ %}$       |
| FM deviation                            | $\pm 2 \text{ %}$       |
| Audio level                             | $\pm 0.98\text{dB}$     |
| Low Pass Filter Response                | $\pm 0.65\text{dB}$     |
| Modulation Limiting                     | 0.42 %                  |
| Transient Frequency Behavior            | 6.8 %                   |

### 3.4 LIST OF EQUIPMENTS USED

| Item | Equipment                           | Manufacturer  | Model No.               | Serial No.    | Calibrated until |
|------|-------------------------------------|---------------|-------------------------|---------------|------------------|
| 1    | Horn Antenna                        | Sunol         | DRH-118                 | A101415       | 2025.07.14       |
| 2    | Broadband Hybrid Antenna            | Sunol         | JB1                     | A090215       | 2025.07.28       |
| 3    | PREAMP                              | HP            | 8449B                   | 3008A00160    | 2026.06.11       |
| 4    | PREAMP                              | HP            | 8447D                   | 2944A07999    | 2026.06.11       |
| 5    | EMI Test Receiver                   | Rohde&Schwarz | ESR3                    | 101891        | 2026.06.11       |
| 6    | MXA Signal Analyzer                 | Agilent       | N9020A                  | MY50510140    | 2026.06.11       |
| 7    | MXA Signal Analyzer                 | Agilent       | N9020A                  | MY51110104    | 2026.06.11       |
| 8    | RF Power Sensor                     | DARE          | RPR3006W                | 15I00041SNO88 | 2026.06.11       |
| 9    | RF Power Sensor                     | DARE          | RPR3006W                | 15I00041SNO89 | 2026.06.11       |
| 10   | RF Power Divider                    | Anritsu       | K241B                   | 992289        | 2026.06.11       |
| 11   | Signal Generator                    | Agilent       | E4421B                  | MY4335105     | 2026.06.11       |
| 12   | VECTOR Signal Generator             | Rohde&Schwarz | SMU200A                 | 101521        | 2026.06.11       |
| 13   | Wideband Radio Communication Tester | Rohde&Schwarz | CMW500                  | 154987        | 2026.06.11       |
| 14   | Active Loop Antenna                 | Com-Power     | AL-130R                 | 10160009      | 2026.06.11       |
| 15   | Horn Antenna                        | Schwarzbeck   | BBHA9120D               | 9120D-1680    | 2025.07.14       |
| 16   | Horn Antenna                        | A-INFOMW      | LB-180400-KF            | J211060660    | 2024.07.14       |
| 17   | Microwave Broadband Preamplifier    | Schwarzbeck   | BBV 9721                | 100472        | 2025.09.22       |
| 18   | Signal Generator                    | Agilent       | N5183A                  | MY47420153    | 2025.09.22       |
| 19   | Spectrum Analyzer                   | Rohde&Schwarz | FSP 40                  | 100501        | 2025.09.22       |
| 20   | Power Meter                         | KEYSIGHT      | N1911A                  | MY50520168    | 2025.09.22       |
| 21   | Frequency Meter                     | VICTOR        | VC2000                  | 997406086     | 2025.09.22       |
| 22   | DC Power Source                     | HYELEC        | HY5020E                 | 055161818     | 2025.09.22       |
| 23   | MTS 8310                            | MW            | Copyright MWRFtest 2017 | V2.0.0.0      | N/A              |

## 4. SYSTEM TEST CONFIGURATION

### 4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

### 4.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

### 4.3 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System



Table 2-1 Equipment Used in Tested System

### 4.4 EQUIPMENT USED IN TESTED SYSTEM

The Following Peripheral Devices And Interface Cables Were Connected During The Measurement:

- Test Accessories Come From The Laboratory
- Test Accessories Come From The Manufacturer

| Item | Equipment      | Model No. | Identifier           | Note      |
|------|----------------|-----------|----------------------|-----------|
| 1    | Watch intercom | BL-332    | FCC ID: 2BPM4-BL-332 | EUT       |
| 2    | Battery        | N/A       | DC 3.7V              | Accessory |

#### 4.5 SUMMARY OF TEST RESULTS

| Item | FCC Rules              | Description of Test        | Result |
|------|------------------------|----------------------------|--------|
| 1    | FCC 47 CFR PART 95     | Antenna Equipment          | Pass   |
| 2    | § 95.567& 2.1046(a)    | Maximum Transmitter Power  | Pass   |
| 3    | §95.575& 2.1047(a) (b) | Modulation Limit           | Pass   |
| 4    | §95.575& 2.1047(a)     | Audio Frequency Response   | Pass   |
| 5    | §95.573& 2.1049        | Emission Bandwidth         | Pass   |
| 6    | §95.579& 2.1049        | Emission Mask              | Pass   |
| 7    | §95.565& 2.1055(a) (1) | Frequency Stability        | Pass   |
| 8    | §95.579& 2.1053        | Spurious Ratiated Emission | Pass   |

## 5. DESCRIPTION OF TEST MODES

The EUT (**Two-way radio**) has been tested under normal operating condition. (FRS TX) are chosen for testing at each channel separation.

| NO. | TEST MODE DESCRIPTION | CHANNEL SEPARATION |
|-----|-----------------------|--------------------|
| 1   | FRS TX CHANNEL 1      | 12.5 kHz           |

Note:

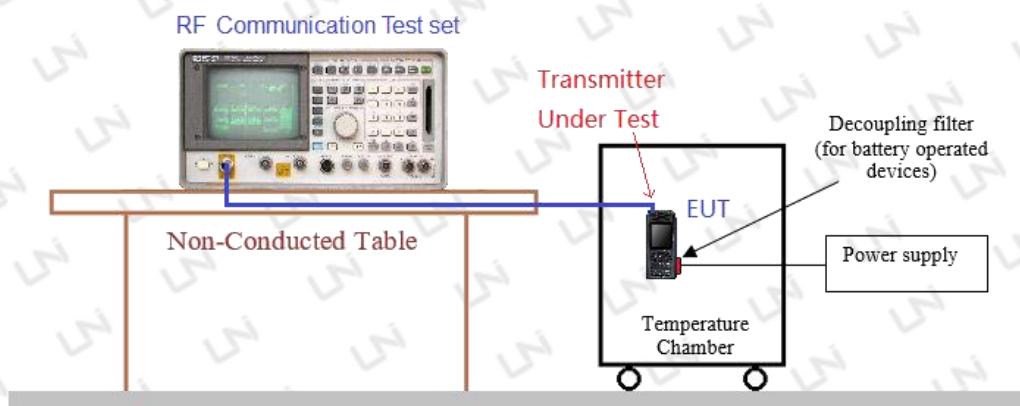
1. Only the result of the worst case was recorded in the report, if no other cases.
2. The battery is full-charged during the test.
3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
4. Manufacturers use computer PC programming software to switch and operate frequency points, refer to the instructions for details

## 6.FREQUENCY STABILITY

### 6.1 PROVISIONS APPLICABLE

Each FRS transmitter type must be designed such that the carrier frequencies remain within  $\pm 2.5$  parts-per-million (ppm) of the channel center frequencies specified in §95.563 during normal operating conditions.

### 6.2 MEASUREMENT PROCEDURE


#### 6.2.1 Frequency stability versus environmental temperature

1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1kHz and Video Resolution Bandwidth to 1kHz and Frequency Span to 50kHz. Record this frequency as reference frequency.
3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
4. Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured, record all measured frequencies on each temperature step.

#### 6.2.2 Frequency stability versus input voltage

1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15°C to 25°C. Otherwise, an environment chamber set for a temperature of 20°C shall be used. The EUT shall be powered by DC 7.4V.
2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 kHz and Video Resolution Bandwidth to 1kHz. Record this frequency as reference frequency.
3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

### 6.3 MEASUREMENT SETUP



## 6.4 MEASUREMENT RESULTS

### (1) Frequency stability versus input voltage (Supply nominal voltage is 3.70V)-12.5KHz

| Environment Temperature(°C) | Power Supply | Reference Frequency | Limit | Result |
|-----------------------------|--------------|---------------------|-------|--------|
|                             |              | (V)                 |       |        |
| 50                          | DC 3.70      | 0.728               | 2.5   | Pass   |
| 40                          | DC 3.70      | 1.011               | 2.5   | Pass   |
| 30                          | DC 3.70      | 0.876               | 2.5   | Pass   |
| 20                          | DC 3.70      | 0.745               | 2.5   | Pass   |
| 10                          | DC 3.70      | 0.774               | 2.5   | Pass   |
| 0                           | DC 3.70      | 0.703               | 2.5   | Pass   |
| -10                         | DC 3.70      | 0.836               | 2.5   | Pass   |
| -20                         | DC 3.70      | 0.920               | 2.5   | Pass   |
| -30                         | DC 3.70      | 0.567               | 2.5   | Pass   |

### (2) Frequency stability versus input voltage (Battery endpoint is 3.15V) -12.5KHz

| Environment Temperature(°C) | Power Supply | Reference Frequency | Limit | Result |
|-----------------------------|--------------|---------------------|-------|--------|
|                             |              | (V)                 |       |        |
| 50                          | DC 3.15      | 0.715               | 2.5   | Pass   |
| 40                          | DC 3.15      | 1.002               | 2.5   | Pass   |
| 30                          | DC 3.15      | 0.848               | 2.5   | Pass   |
| 20                          | DC 3.15      | 0.765               | 2.5   | Pass   |
| 10                          | DC 3.15      | 0.768               | 2.5   | Pass   |
| 0                           | DC 3.15      | 0.775               | 2.5   | Pass   |
| -10                         | DC 3.15      | 0.858               | 2.5   | Pass   |
| -20                         | DC 3.15      | 0.925               | 2.5   | Pass   |
| -30                         | DC 3.15      | 0.754               | 2.5   | Pass   |

**Note:** 1. Battery terminal voltage is declared and specified by the manufacturer.

2. All test values are in "ppm"

## 7. EMISSION BANDWIDTH

### 7.1 PROVISIONS APPLICABLE

FCC Part 95.573: FRS: The authorized bandwidth for an FRS unit is 12.5 kHz.

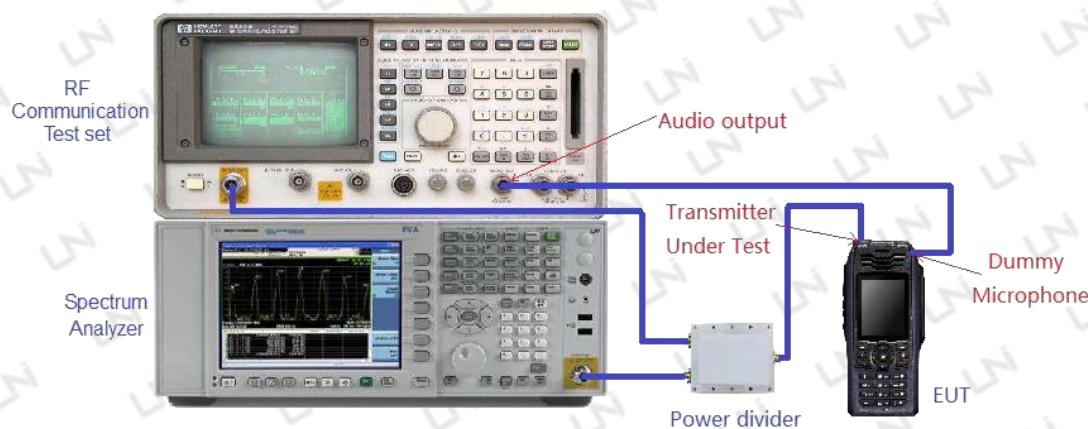
Occupied Bandwidth (Section 2.1049, 95.573): The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.

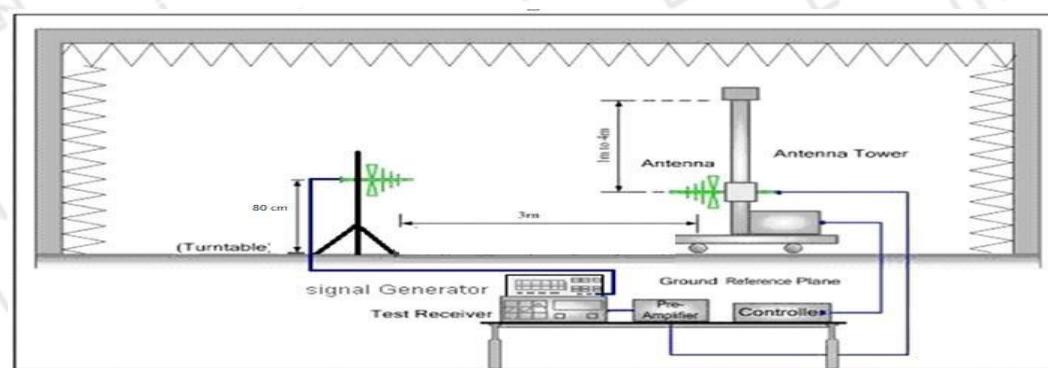
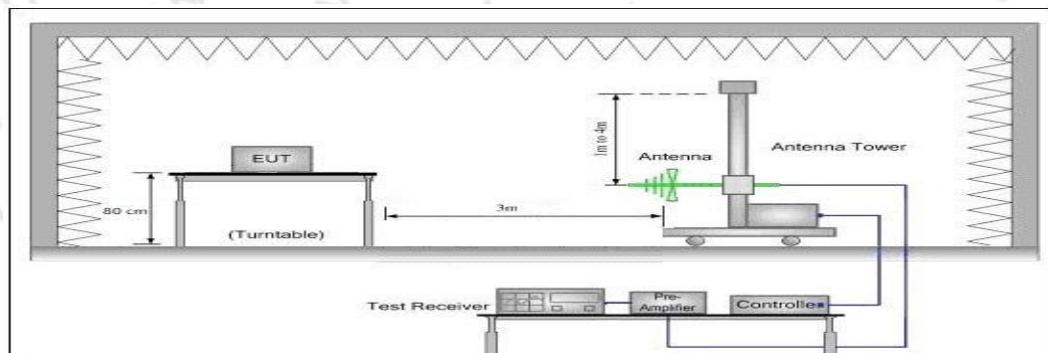
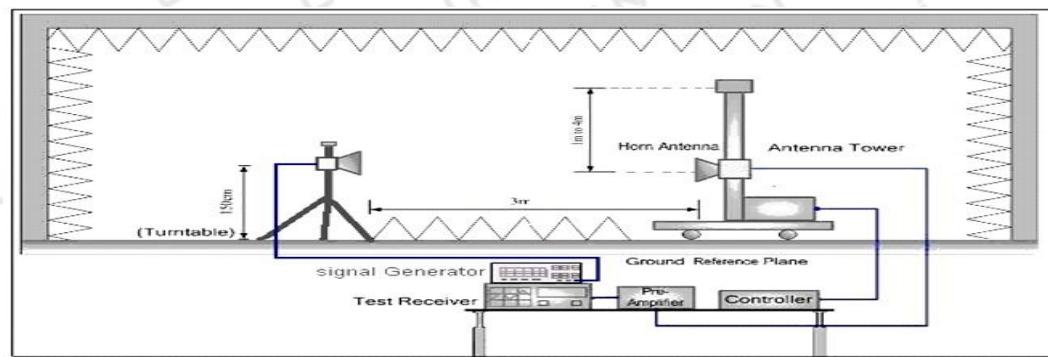
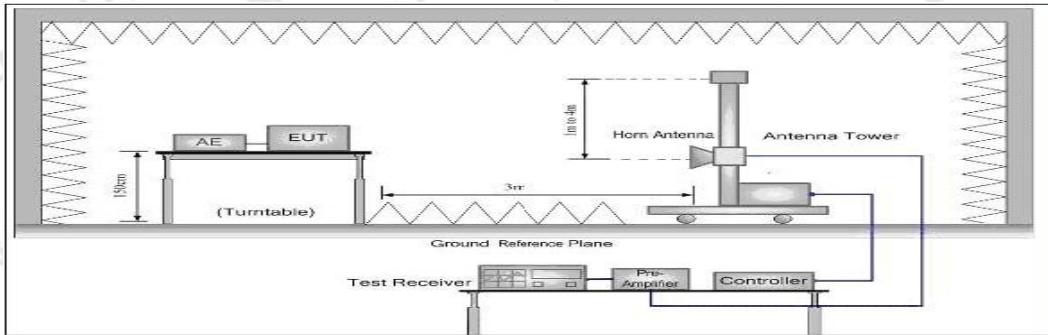
### 7.2 MEASUREMENT PROCEDURE

1. The EUT was modulated by 2.5kHz sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation.

Rated system deviation is 2.5 kHz for 12.5kHz channel spacing).

2. Spectrum set as follow:

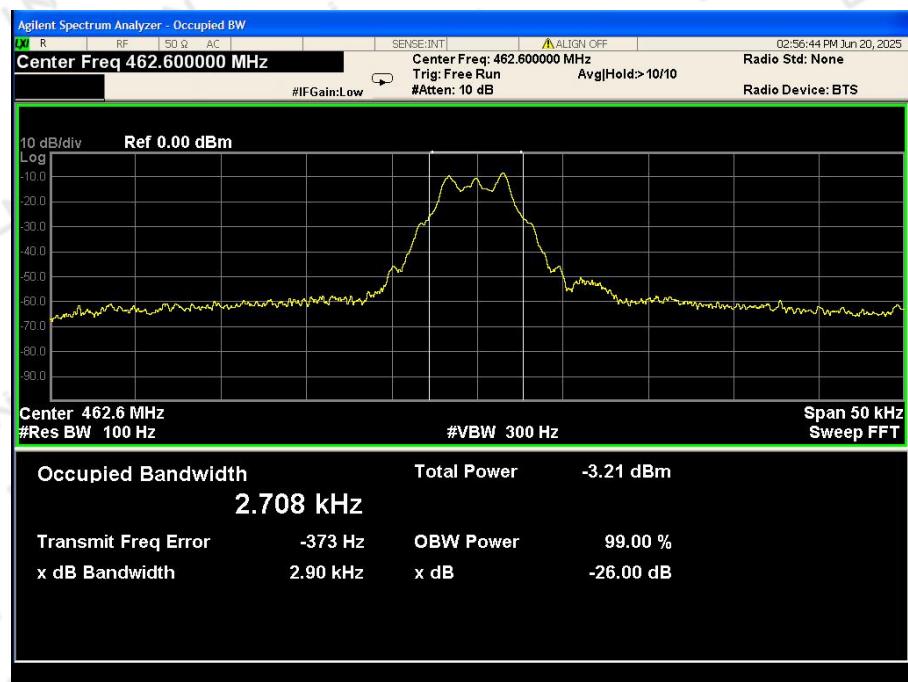

Centre frequency = fundamental frequency, span=50kHz for 12.5kHz channel spacing, RBW=100Hz, VBW=300Hz, Sweep = auto,





Detector function = peak, Trace = max hold

3. Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.

4. Measure and record the results in the test report.

### 7.3 MEASUREMENT SETUP




**RADIATED BELOW 1GHZ****RADIATED ABOVE 1 GHZ**

## 7.4 MEASUREMENT RESULTS

| Emission Bandwidth Measurement Result |                             |                    |          |        |
|---------------------------------------|-----------------------------|--------------------|----------|--------|
| Operating Frequency                   | 12.5 KHz Channel Separation |                    |          |        |
|                                       | Occupied Bandwidth          | Emission Bandwidth | Limits   | Result |
| 462.5625MHz                           | 2.708 KHz                   | 2.90 KHz           | 12.5 KHz | Pass   |

### Occupied bandwidth of Middle channel Channel (462.5625MHz)



## 8. SPURIOUS RADIATED EMISSION

### 8.1 PROVISIONS APPLICABLE

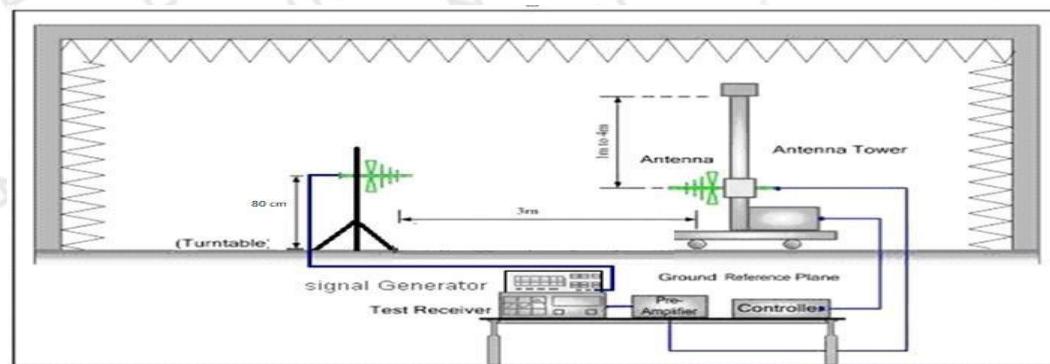
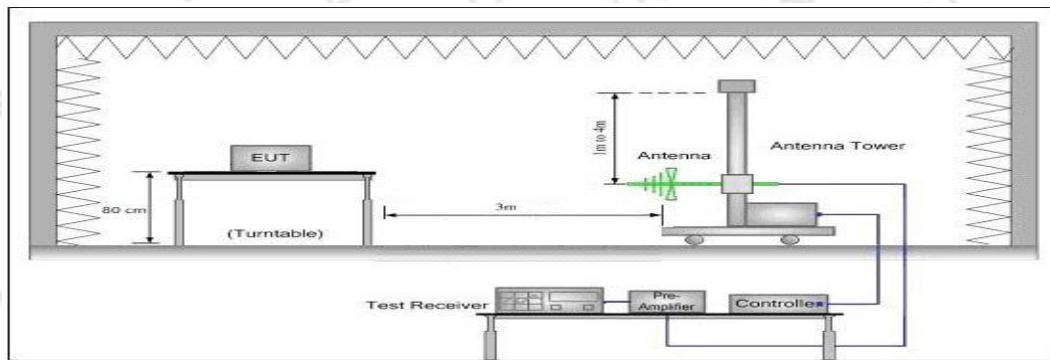
Standard Applicable [FCC Part 95.579] According to FCC section 95.579, the unwanted emission should be attenuated below TP by at least 43+10 log (Transmit Power) Db.

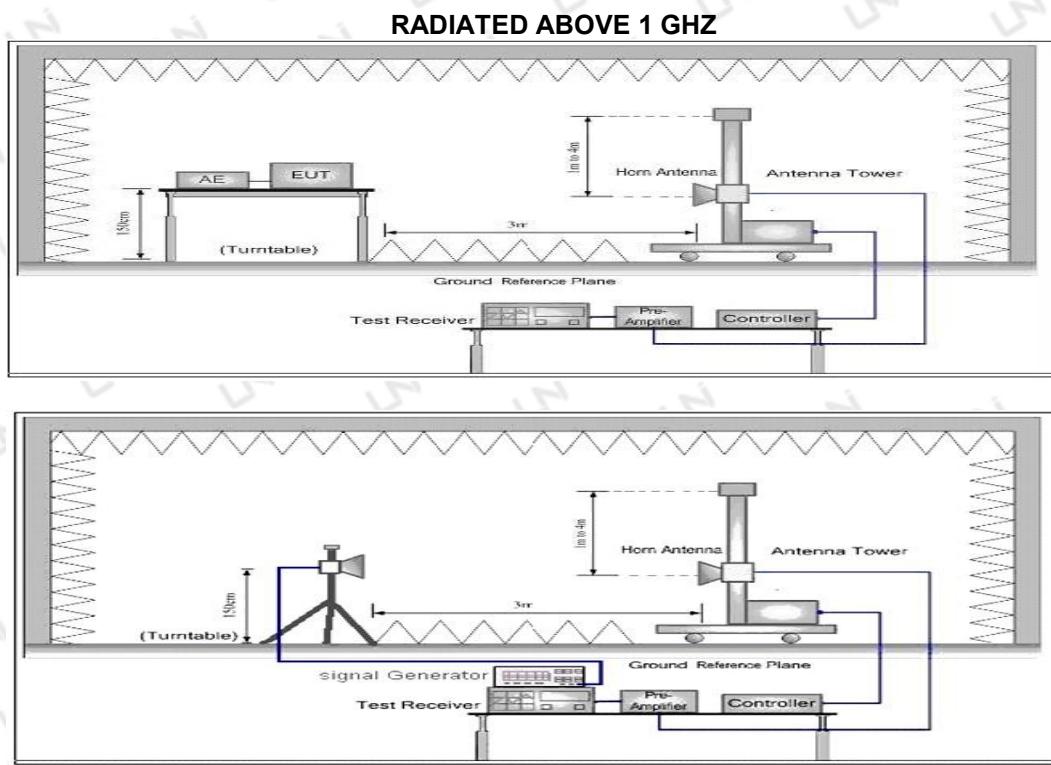
Each FRS transmitter type must be designed to satisfy the applicable unwanted emissions limits in this paragraph.

(a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least:

- (1) 25 dB (decibels) in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency.
- (2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency.
- (3) 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz

### 8.2 MEASUREMENT PROCEDURE

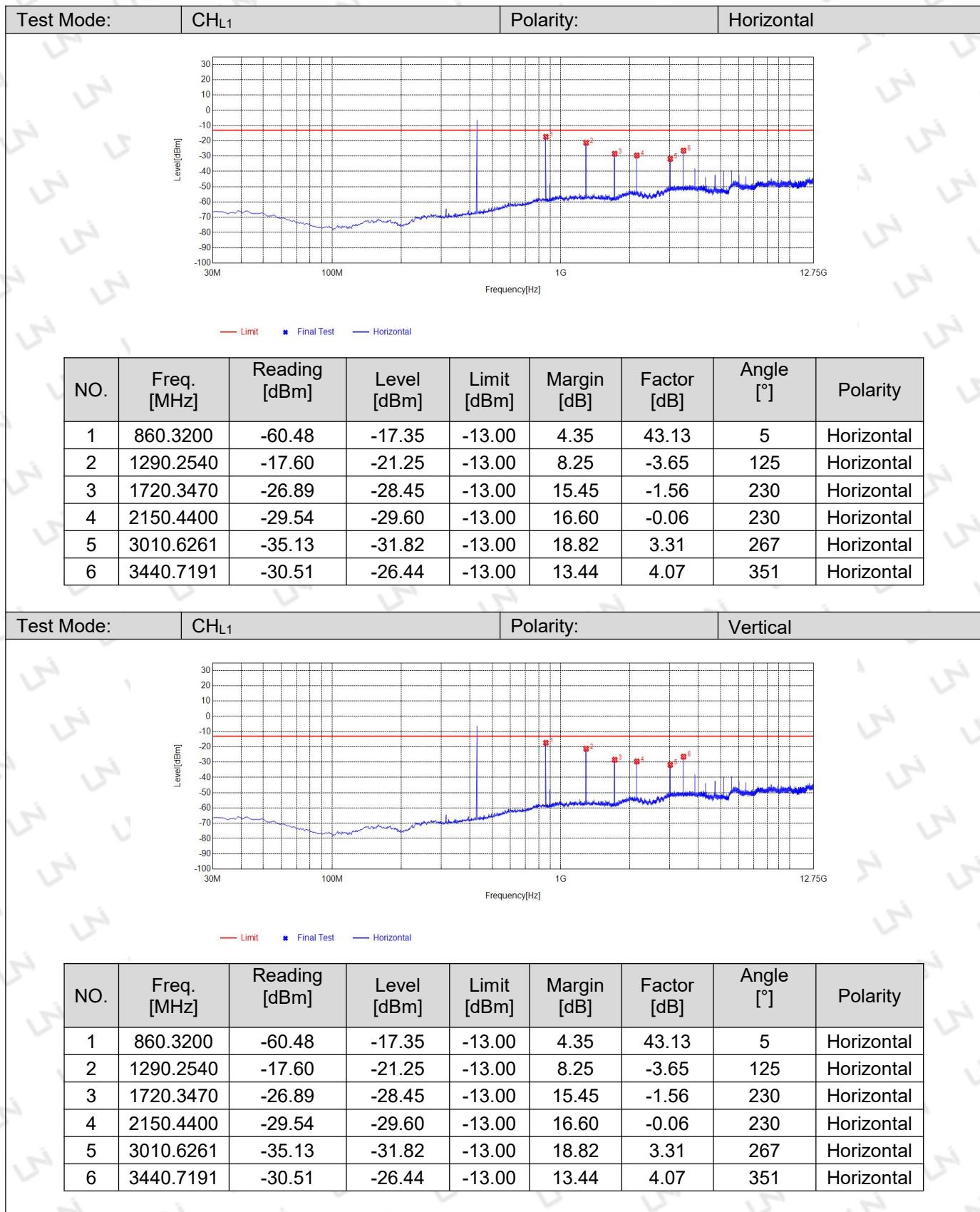


- 1) EUT was placed on a 0.8 or 1.5meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector.
- 2) A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3) The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4) The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5) A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test
- 6) The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl - Ga The


measurement results are amend as described below: Power(EIRP)=PMea- Pcl - Ga

- 7) This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 8) ERP can be calculated from EIRP by subtracting the gain of the dipole,  $ERP = EIRP - 2.15\text{dBi}$ .
- 9) Test the EUT in the lowest channel, the middle channel the Highest channel

### 8.3 MEASUREMENT SETUP

RADIATED BELOW1GHZ






#### 8.4 MEASUREMENT RESULTS

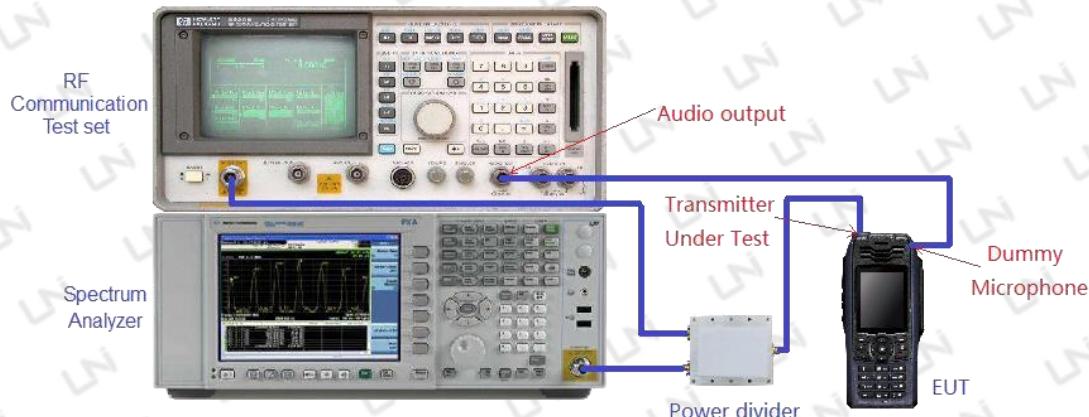
| Preliminary calculation                                  | Final Result                                         |
|----------------------------------------------------------|------------------------------------------------------|
| At least $43+10 \log (P) = 43+10\log (5) = 49.99$ (dB)   | Limit=P- Preliminary calculation=36.99-49.99=-13 dBm |
| At least $43+10 \log (P) = 43+10\log (0.5) = 43.00$ (dB) | Limit=P- Preliminary calculation=30.00-43.00=-13 dBm |

1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
2. Factor=Antenna Factor+ Cable loss -Pre-amplifier. (Above 1 GHz)
3. Margin=Limit- Level



## 8.5 EMISSION MASK PLOT

The detailed procedure employed for Emission Mask measurements are specified as following:


-Connect the equipment as illustrated.

-Spectrum set as follow:

1. Centre frequency = fundamental frequency, Span=50kHz for 12.5kHz , RBW=100Hz, VBW=300Hz ;
2. Sweep = auto, Detector function = peak, Trace = max hold
3. Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
4. Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation (Rated system deviation is 2.5 kHz for 12.5kHz channel spacing).


The input level shall be established at the frequency of maximum response of the audio modulating circuit.

5. Transmitters employing digital modulation techniques that bypass the limiter and the audio low-pass filter shall be modulated as specified by the manufacturer.
6. Measure and record the results in the test report.



Test plot as follows:

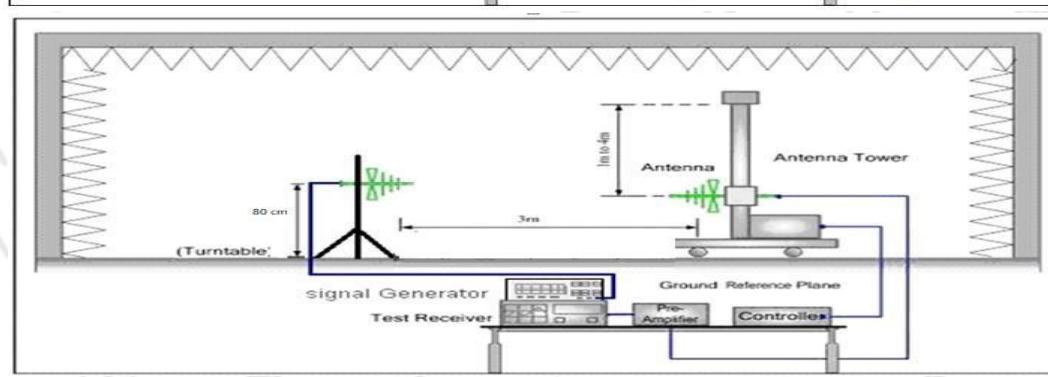
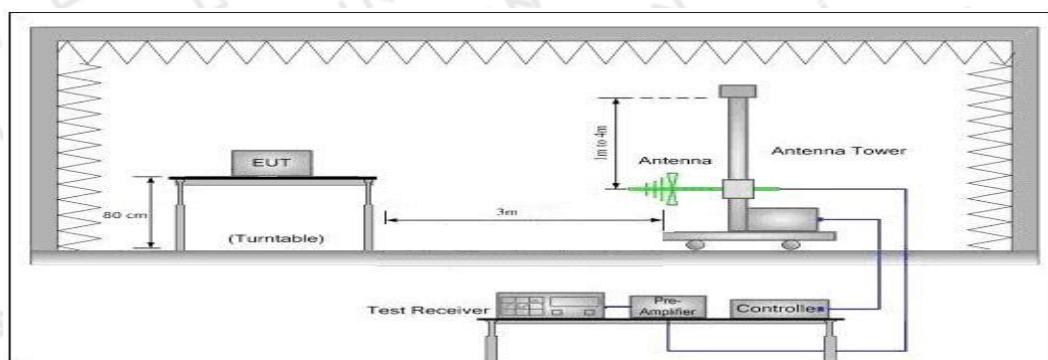
**The Worst Emission Mask for (462.5625 MHz) of 12.5 KHz channel Separation**



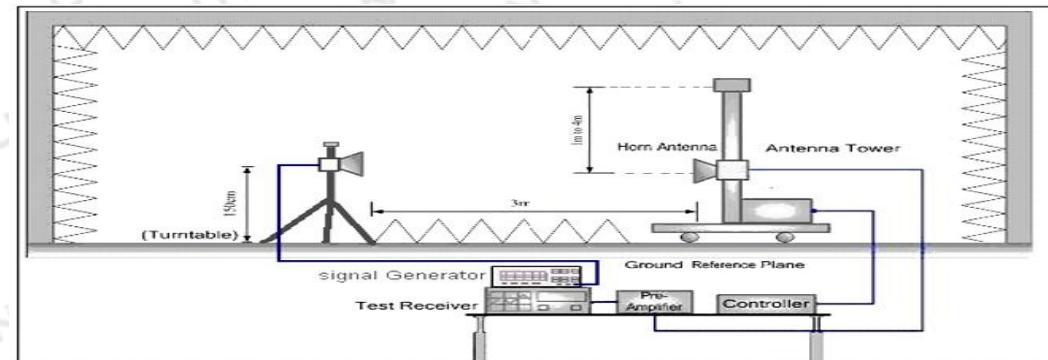
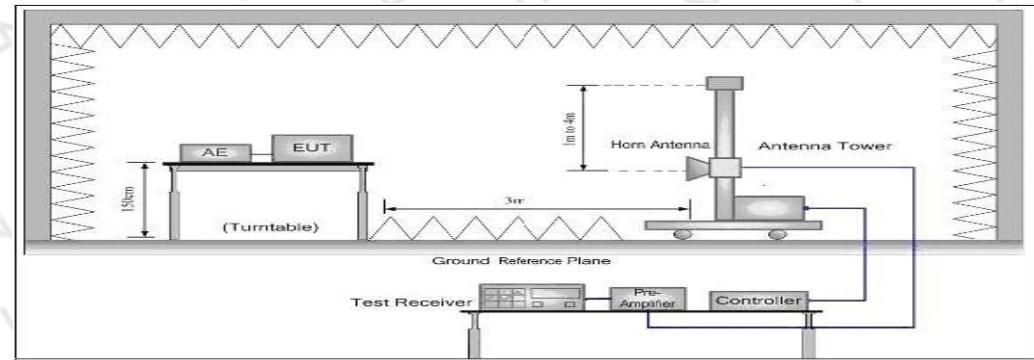
## 9. MAXIMUMN TRANSMITTER POWER

### 9.1 PROVISIONS APPLICABLE

Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.



### 9.2 MEASUREMENT METHOD

- 1) EUT was placed on a 0.8 or 1.5meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector.
- 2) A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3) The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4) The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5) A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test
- 6) The measurement results are obtained as described below:  $\text{Power(EIRP)} = \text{PMea} - \text{PAg} - \text{Pcl} - \text{Ga}$  The measurement results are amend as described below:  $\text{Power(EIRP)} = \text{PMea} - \text{Pcl} - \text{Ga}$
- 7) This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 8) ERP can be calculated from EIRP by subtracting the gain of the dipole,  $\text{ERP} = \text{EIRP} - 2.15\text{dBi}$ .
- 9) Test the EUT in the lowest channel, the middle channel the Highest channel



### 9.3 MEASUREMENT SETUP

#### EFFECTIVE RADIATED POWER:

##### Radiated Below 1GHz



##### Radiated Above 1 GHz



#### 9.4 MEASUREMENT RESULTS

##### ERP RESULT:

| Frequency                        | Reading Level | Antenna      | S.G.  | Cable Loss | Ant.Gain | Emission Level | Emission Level | Limit |
|----------------------------------|---------------|--------------|-------|------------|----------|----------------|----------------|-------|
| (MHz)                            | (dBuv/m)      | Polarization | (dBm) | (dB)       | (dBi)    | (dBm)          | (W)            | (W)   |
| <b>ChannelSeparation:12.5KHz</b> |               |              |       |            |          |                |                |       |
| 462.5625                         | 105.93        | V            | 7.379 | 0.38       | 0.54     | 7.539          | <b>0.00567</b> | 2.0   |
| 462.5625                         | 105.88        | H            | 7.34  | 0.38       | 0.54     | 7.5            | 0.00562        | 2.0   |

**NOTE:** 1. Calculation Formula: Emission Level(dBm) = S.G. (dBm)- Cable Loss(dB)+ Ant.Gain(dBi)

2.The Ant. Gain including the correct factor 2.15

3.Margin (dB) = Limit(dBm)- Emission Level(dBm)

## 10. MODULATION CHARACTERISTICS

### 10.1 PROVISIONS APPLICABLE

According to FCC§2.1047 and §95.575, for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

Each FRS transmitter type must be designed such that the peak frequency deviation does not exceed 2.5 kHz, and the highest audio frequency contributing substantially to modulation must not exceed 3.125 kHz.

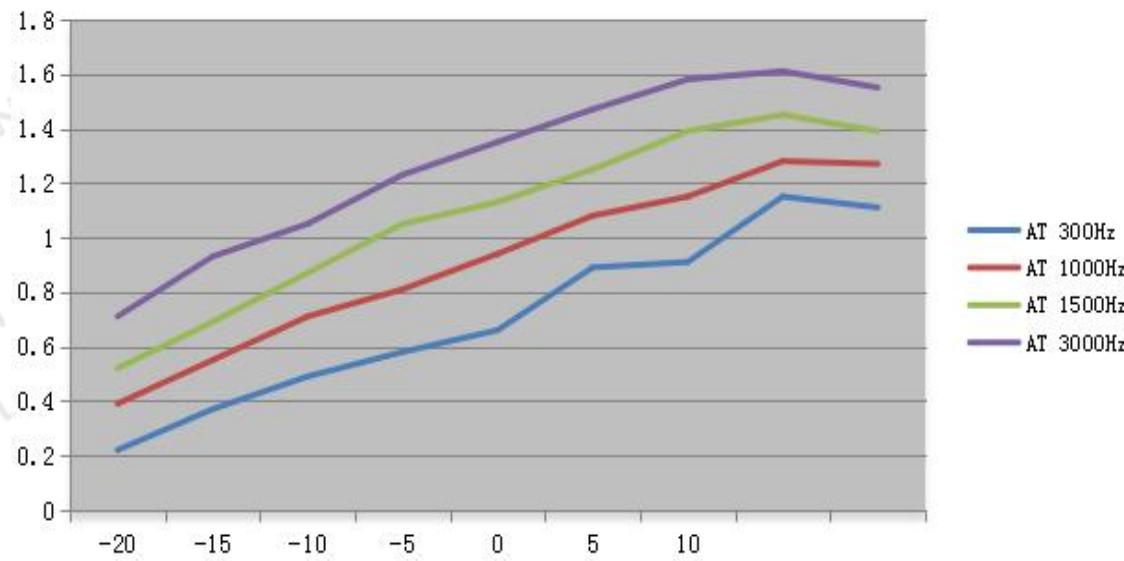
### 10.2 MEASUREMENT METHOD

#### 10.2.1 Modulation Limit

- (1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1kHz using this level as a reference (0dB) and vary the input level from –20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

#### 10.2.2 Audio Frequency Response

- (1). Configure the EUT as shown in figure 1.
- (2). Adjust the audio input for 20% of rated system deviation at 1 kHz using this level as a reference (0 dB).
- (3). Vary the Audio frequency from 100 Hz to 10 kHz and record the frequency deviation.
- (4). Audio Frequency Response =  $20\log_{10}(\text{Deviation of test frequency}/\text{Deviation of 1 kHz reference})$ .

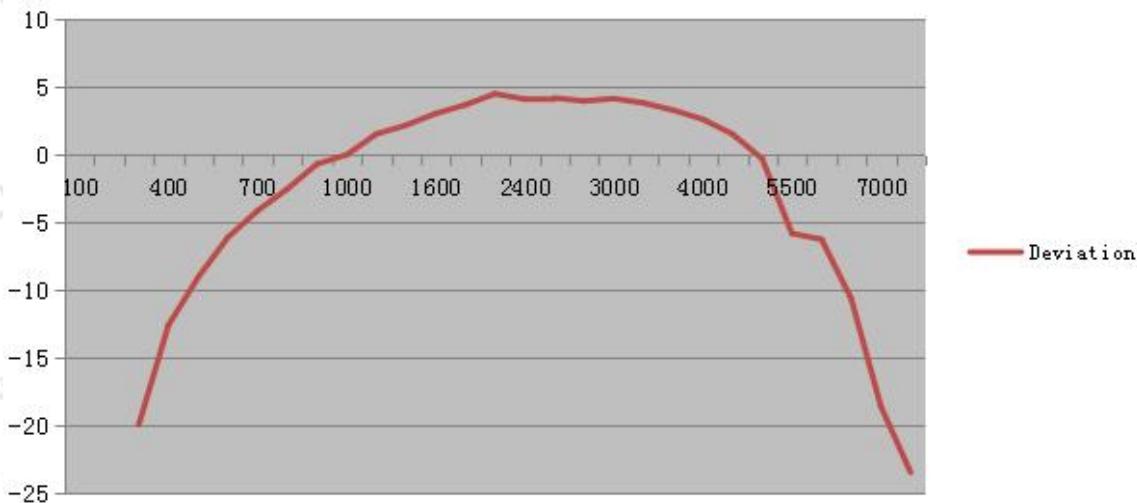

### 10.3 MEASUREMENT SETUP



## 10.4 MEASUREMENT RESULTS

### (A). MODULATION LIMIT:

| 12.5kHz, FM modulation, Assigned Frequency:462.5625MHz |                                      |                                       |                                       |                                       |
|--------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Modulation Level (dB)                                  | Peak Freq. Deviation At 300 Hz (kHz) | Peak Freq. Deviation At 1000 Hz (kHz) | Peak Freq. Deviation At 1500 Hz (kHz) | Peak Freq. Deviation At 3000 Hz (kHz) |
| -20                                                    | 0.21                                 | 0.45                                  | 0.62                                  | 0.86                                  |
| -15                                                    | 0.45                                 | 0.69                                  | 0.89                                  | 1.25                                  |
| -10                                                    | 0.62                                 | 0.88                                  | 1.13                                  | 1.48                                  |
| -5                                                     | 0.77                                 | 1.09                                  | 1.28                                  | 1.53                                  |
| 0                                                      | 0.83                                 | 1.13                                  | 1.35                                  | 1.66                                  |
| +5                                                     | 0.92                                 | 1.28                                  | 1.48                                  | 1.71                                  |
| +10                                                    | 0.99                                 | 1.34                                  | 1.69                                  | 1.80                                  |
| +15                                                    | 1.12                                 | 1.47                                  | 1.72                                  | 1.86                                  |
| +20                                                    | 1.11                                 | 1.45                                  | 1.65                                  | 1.82                                  |




Note: All the modes had been tested, but only the worst data recorded in the report

## (B). AUDIO FREQUENCY RESPONSE:

| 12.5kHz, Analog modulation, Assigned Frequency:462.5625MHz |                 |                              |
|------------------------------------------------------------|-----------------|------------------------------|
| Frequency (Hz)                                             | Deviation (kHz) | Audio Frequency Response(dB) |
| 100                                                        | --              | --                           |
| 200                                                        | --              | --                           |
| 300                                                        | 0.12            | -19.93                       |
| 400                                                        | 0.28            | -12.57                       |
| 500                                                        | 0.42            | -9.05                        |
| 600                                                        | 0.59            | -6.09                        |
| 700                                                        | 0.74            | -4.13                        |
| 800                                                        | 0.89            | -2.52                        |
| 900                                                        | 1.10            | -0.68                        |
| 1000                                                       | 1.19            | 0.00                         |
| 1200                                                       | 1.42            | 1.53                         |
| 1400                                                       | 1.53            | 2.18                         |
| 1600                                                       | 1.69            | 3.05                         |
| 1800                                                       | 1.82            | 3.69                         |
| 2000                                                       | 2.00            | 4.51                         |
| 2400                                                       | 1.91            | 4.11                         |
| 2500                                                       | 1.93            | 4.20                         |
| 2800                                                       | 1.88            | 3.97                         |
| 3000                                                       | 1.92            | 4.16                         |
| 3200                                                       | 1.85            | 3.83                         |
| 3600                                                       | 1.74            | 3.30                         |
| 4000                                                       | 1.61            | 2.63                         |
| 4500                                                       | 1.42            | 1.53                         |
| 5000                                                       | 1.15            | -0.30                        |
| 5500                                                       | 0.61            | -5.80                        |
| 6000                                                       | 0.58            | -6.24                        |
| 6500                                                       | 0.35            | -10.63                       |
| 7000                                                       | 0.14            | -18.59                       |
| 7500                                                       | 0.08            | -23.45                       |

## 12.5 KHz Channel Separations



Note: All the modes had been tested, but only the worst data recorded in the report.

## 11. TEST SETUP PHOTO

Reference to the **Test Setup Photo** for details.

## 12. EUT CONSTRUCTIONAL DETAILS

Reference to the **External Photos and Internal Photos** for details.

-----END OF REPORT-----