

FCC CERTIFICATION TEST REPORT

Applicant	•	HANSHOW PTE. LTD.	
Address	:	138 ROBINSON ROAD #02-33 OXLEY TOWER SINGAPORE(068906)	
Equipment under Test	:	electronic shelf label	
Model No.	••	Nebular Ultra-266Q-N	
Trade Mark	:	N/A	
FCC ID	:	2BPF3-NU-266Q	
Manufacturer	:	HANSHOW PTE. LTD.	
Address	•	138 ROBINSON ROAD #02-33 OXLEY TOWER SINGAPORE(068906)	
Report No.	•	DDT-B25080109-6E03	
Issue Date	:	Aug. 14, 2025	
Issued By	:	Tianjin Dongdian Testing Service Co., Ltd.	
Address	•	Building D-1, No. 19, Weist Read, Microelectronic Industrial Park Development Area, Tianjin, China. Tel: +86-22-58036033 E-mail: det adddt.com, http://www.ddttest.com	

REPORT

TABLE OF CONTENTS

	Test report declares	3
1	Summary of test results	6
2	General test information	
2.1.	Description of EUT	7
2.2.	Accessories of EUT	8
2.3.	Assistant equipment used for test	8
2.4.	Block diagram of EUT configuration for test	8
2.5.	Deviations of test standard	8
2.6.	Test environment conditions	8
2.7.	Test laboratory	8
2.8.	Measurement uncertainty	9
3	Equipment used during test	10
4	20dB Bandwidth	12
4.1.	Block diagram of test setup	12
4.2.	Limits	12
4.3.	Test Procedure	12
4.4.	Test Result	12
4.5.	Original test data	13
5	Radiated emission	14
5.1.	Block diagram of test setup	14
5.2.	Limit	15
5.3.	Test Procedure	15
5.4.	Test result	16
6	Field Strength Of Fundamental	19
6.1.	Block diagram of test setup	19
6.2.	Limits	
6.3.	Test Procedure	
6.4.	Test Result	19
7	Frequency Stability	21
7.1.	Limit	21
7.2.	Test Procedure	21
7.3.	Test Result	21
8	Power Line Conducted Emission	22
8.1.	Block diagram of test setup	22
8.2.	Power Line Conducted Emission Limits	22
8.3.	Test Procedure	22
8.4.	Test Result	23

Report No.: DDT-B25080109-6E03

9	Antenna Requirements	. 2
10	Test setup photograph	.2
11	Photos of the FLIT	2

TEST REPORT DECLARE

Applicant	•••	HANSHOW PTE. LTD.
Address		138 ROBINSON ROAD #02-33 OXLEY TOWER SINGAPORE(068906)
Equipment under Test	•••	electronic shelf label
Model No.	•••	Nebular Ultra-266Q-N
Trade Mark : N/A		N/A
Manufacturer	(2)	HANSHOW PTE. LTD.
Address		138 ROBINSON ROAD #02-33 OXLEY TOWER SINGAPORE(068906)

Test Standard Used:

FCC Rules and Regulations Part 15 Subpart C

Test procedure used:

ANSI C63.10:2020

We Declare:

The equipment described above is tested by Tianjin Dongdian Testing Service Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Tianjin Dongdian Testing Service Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided receivest compliance with the requirement of the above standards.

 Report No:
 DDT-B25080109-6E03
 检验检测专用章 Inspection & Testing Services

 Date of Receipt:
 Aug. 04, 2025
 Date of Test:
 Aug. 04, 2025 ~ Aug. 14, 2025

Prepared By:

Approved By:

Report No.: DDT-B25080109-6E03

Sunny zhang

Aaron Zhang

Sunny Zhang/Engineer

Aaron Zhang/Manager

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Tianjin Dongdian Testing Service Co., Ltd.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

QR-4-106-23 RevA0 Page 4 of 25

Revision history

Rev.	Revisions		Issue Date	Revised By
	Initial issue	(3)	Aug. 14, 2025	(8)
	201	201	مر	71

QR-4-106-23 RevA0 Page 5 of 25

1 Summary of test results

Description of Test Item	Standard	Results
20dB Bandwidth	FCC Part 15: 15.215	PASS
Radiated Emission	FCC Part 15: 15.209	PASS
Field Strength Of Fundamental	FCC Part 15: 15.225	PASS
Frequency Stability	FCC Part 15: 15.225	PASS
Power Line Conducted Emissions	FCC Part 15: 15.207	PASS
Antenna requirement	FCC Part 15: 15.203	PASS

QR-4-106-23 RevA0 Page 6 of 25

General test information

2.1. Description of EUT

EUT* Name	:	ectronic shelf label		
Test Model Number	:	ebular Ultra-266Q-N		
EUT function description	:	Please reference user manual of this device		
Power Supply	:	DC 3V by Polymer Li-ion built-in battery		
Radio Specification	:	NFC		
Wireless charging Operation frequency	·	13.56MHz		
Number of Channel	:	1		
Antenna Type	:	Loop antenna		

Note1: EUT is the ab. of equipment under test.

Note2: All models are identical except the mode name and color, sales area, customer number.

QR-4-106-23 RevA0 Page 7 of 25

2.2. Accessories of EUT

Description of Accessories	Manufacturer	Model number	Serial No.	Other
N/A	⊗ N/A	N/A ®	N/A	®N/A

Report No.: DDT-B25080109-6E03

2.3. Assistant equipment used for test

Assistant equipment	Manufacturer	Model number or Type	Serial No.	Other
Ethernet POE Switch	TP-LINK	TL-SG1005P	1129195002359	N/A

2.4. Block diagram of EUT configuration for test

EUT

2.5. Deviations of test standard

No Deviation.

2.6. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	20-28℃
Humidity range:	20-75%
Pressure range:	86-106kPa

2.7. Test laboratory

Tianjin Dongdian Testing Service Co., Ltd.

Address: Building D-1, No. 19, Weisi Road, Microelectronics Industrial Park Development Area, Tianjin, China.

Tel: +86-22-58038033, http://www.ddttest.com, Email: ddt@dgddt.com

NVLAP (National Voluntary Laboratory Accreditation Program) CODE: 500036-0

CNAS (China National Accreditation Service for Conformity Assessment) CODE: L13402

FCC Designation Number: CN5004; FCC Test Firm Registration Number: 368676

ISED (Innovation, Science and Economic Development Canada) Company Number: 27768

Conformity Assessment Body Identifier: CN0125

VCCI Facility Registration Number: C-20089, T-20093, R-20125, G-20122

QR-4-106-23 RevA0 Page 8 of 25

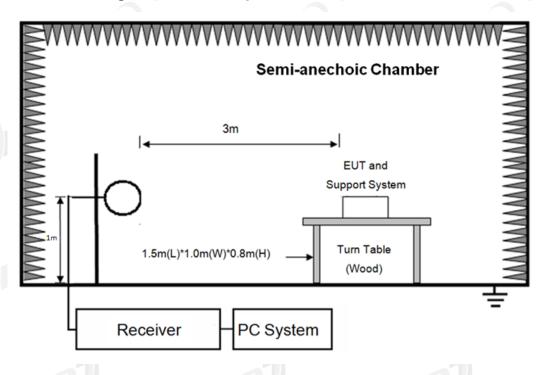
Test Item	Uncertainty				
Bandwidth	0.14%				
Peak Output Power (Conducted) (Spectrum Analyzer)	$0.12 \text{ dB } (10 \text{ MHz} \le f < 3.6 \text{ GHz});$				
Peak Output Power (Conducted) (Spectrum Analyzer)	0.32 dB (3.6 GHz ≤ f < 8 GHz)				
Peak Output Power (Conducted) (Power Sensor)	0.51 dB				
Dower Spectral Density	0.12 dB (10 MHz ≤ f < 3.6 GHz);				
Power Spectral Density	0.32 dB (3.6 GHz ≤ f < 8 GHz)				
Fraguencies Stability	6.7 x 10 ⁻⁸ (Antenna couple method)				
Frequencies Stability	3.4 x 10 ⁻⁸ (Conducted method)				
	0.12 dB (10 MHz ≤ f < 3.6 GHz);				
Conducted Spurious Emissions	0.32 dB (3.6 GHz ≤ f < 8 GHz)				
	0.52 dB (8 GHz ≤ f < 22 GHz)				
Uncertainty for Radio Frequency (RBW < 20 kHz)	3×10 ⁻⁷				
Temperature	±2°C				
Humidity	±1%				
Uncertainty for Radiation Emission Test (9 kHz - 30 MHz)	2.51 dB				
Uncertainty for Radiation Emission Test	2.72 dB (Antenna Polarize: V)				
(30 MHz - 1 GHz)	2.72 dB (Antenna Polarize: H)				
	2.74 dB (1 - 6 GHz)				
Uncertainty for Radiation Emission Test	2.72 dB (6 GHz - 18 GHz)				
(1 GHz - 40 GHz)	3.54 dB (18 GHz - 26 GHz)				
	4.30 dB (26 GHz - 40 GHz)				
Uncertainty for Power Line Conduction Emission Test	3.40 dB (150 kHz - 30 MHz)				
Note: This uncertainty represents an expanded uncertainty expressed at approximately the					

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

QR-4-106-23 RevA0 Page 9 of 25

3 Equipment used during test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
RF Connected Test (MWR	(Ftest system)	®		B	
EXG Analog Signal Generator	Keysight	N5173B	MY53270968	2025/02/20	1 Year
MXG Vector Signal Generator	Keysight	N5182A	MY50143288	2025/02/20	1 Year
PXA Signal Analyzer	Keysight	N9030B	MY56320639	2025/02/20	1 Year
PXA Signal Analyzer	Keysight	N9010A	MY53281492	2025/02/20	1 Year
Wideband Radio Communication Tester	R&S	CMW500	158800	2025/02/20	1 Year
Power Sensor	KEYSIGHT	U2021XA	MY59150007	2025/02/20	1 Year
DC Power Supply	inSTEK	PSP-2010	EN122317	2025/02/03	1 Year
Test Software	MWRFtest	MTS8310	V03	N/A	N/A
Radiated Emission -10m I	EMI Chamber		®	•	
Broadband Horn Antenna	TESEQ	BHA 9118	31754	2023/10/11	2 Year
Broad Band Horn Antenna	Com-Power	AHA-840	10100024	2023/10/16	2 Year
Active Loop Antenna	R&S	HFH2-Z2	100269	2024/08/25	2 Year
Active Loop Antenna	SCHWARZBE CK	FMZB1519- 60D	00058	2024/11/05	1 Year
Amplifier	CMO-MW	DPA8 1000 1800	09211739	2025/02/17	1 Year
EMI Test Receiver	R&S	ESCI	101024	2025/02/17	1 Year
EMI Test Receiver	R&S	ESCI	101030	2025/02/17	1 Year
EMI Test Receiver	R&S	ESU26	100244	2025/02/17	1 Year
EXA Signal Analyzer	Keysight	N9010A	MY53281492	2025/02/20	1 Year
Bilog Antenna	TESEQ	CBL6112D	29068	2024/10/10	2 Year
Bilog Antenna	TESEQ	CBL6112D	29069	2024/10/10	2 Year
Amplifier	Sonoma	310N	300913	2025/02/17	1 Year
Amplifier	Sonoma	310N	334532	2025/02/17	1 Year
Ant Mast	Innco	MA4000	N/A	N/A	N/A
Ant Mast	Innco	MA4000	N/A	N/A	N/A
Mast Controller	Innco	CO2000	N/A	N/A	N/A
Mast Controller	Innco	CO2000	N/A	N/A	N/A
RF Selector 4CH	TOYO	NS4904N	Selector1	N/A	N/A
RF Selector 4CH	TOYO	NS4904N	Selector2	N/A	N/A
Test software	TOYO	EP5/RSE	Ver 1.9.1	N/A	N/A
Test software	Audix	E3	V 6.11111b	N/A	N/A
Radiated Emission -3m E	MI Chamber	•	×		×
Broadband Horn Antenna	TESEQ	BHA 9118	31754	2023/10/11	2 Year
Broad Band Horn Antenna	Com-Power	AHA-840	10100024	2023/10/16	2 Year
Active Loop Antenna	R&S	HFH2-Z2	100269	2024/08/25	2 Year
Active Loop Antenna	SCHWARZBE CK	FMZB1519- 60D	00058	2024/11/05	1 Year
Amplifier	CMO-MW	DPA8 1000 1800	09211739	2025/02/17	1 Year


QR-4-106-23 RevA0 Page 10 of 25

EMI Test Receiver	R&S	ESCI	101397	2025/02/17	1 Year
EMI Test Receiver	R&S	ESU26	100244	2025/02/17	1 Year
EXA Signal Analyzer	Keysight	N9010A	MY53281492	2025/02/20	1 Year
Bilog Antenna	TESEQ	CBL6112D	29067	2025/06/17	2 Year
Amplifier	Sonoma	310N ®	334533	2025/02/17	1 Year
Ant Mast	Innco	MA4000	N/A	N/A	N/A
Mast Controller	Innco	CO2000	N/A	N/A	N/A
RF Selector 4CH	TOYO	NS4904N	Selector1	N/A	N/A
Test software	TOYO	EP5/RE	Ver 5.7.10	N/A	N/A
Test software	Audix	E3	V 6.11111b	N/A	N/A
Power Line Conducted En	nissions Test				(6)
Test Receiver	R&S	ESCI	101375	2025/02/17	1 Year
LISN	R&S	ENV216	101122	2025/02/17	1 Year
Test software	TOYO	EP5/CE	V 5.4.40	N/A	N/A

QR-4-106-23 RevA0 Page 11 of 25

4 20dB Bandwidth

4.1. Block diagram of test setup

4.2. Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.3. Test Procedure

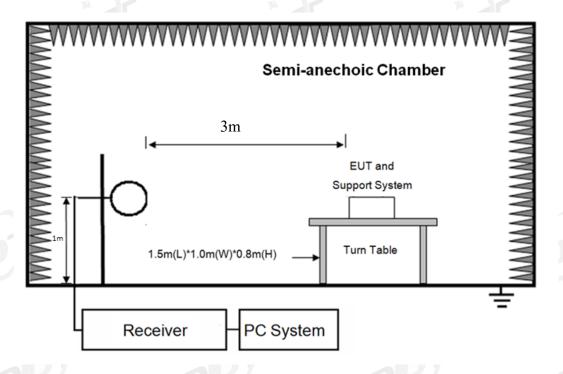
- (1) The EUT was rotated 360 degrees and scanning the peak frequency spectrum.
- (2) The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW: 1% to 5% of the OBW and VBW: at least three times RBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4. Test Result

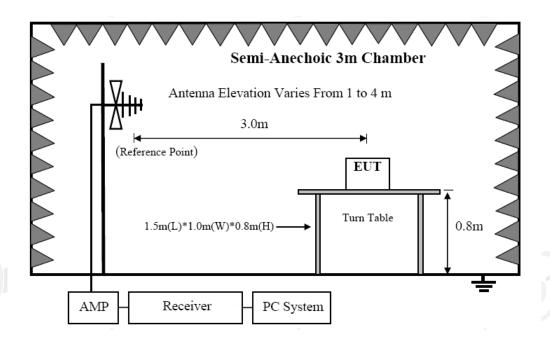
Freq. (MHz)	20dB bandwidth Result (kHz)	Conclusion		
13.56	109	PASS		

QR-4-106-23 RevA0 Page 12 of 25

4.5. Original test data



QR-4-106-23 RevA0 Page 13 of 25


5 Radiated emission

5.1. Block diagram of test setup

Test Setup Diagram for 9 kHz~30MHz

Test Setup Diagram for 30MHz~1GHz

QR-4-106-23 RevA0 Page 14 of 25

5.2. Limit

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT	
MHz	Meters	μV/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F) (kHz)
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F) (kHz)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0

Note: (1)The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz.Radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30MHz, measurement may be performed at a distance closer than that specified, and the limit at closer measurement distance can be extrapolated by below formula:

```
 \begin{array}{l} Limit_{10m}(dBuV/m) = Limit_{300m}(dBuV/m) + 40Log(300m/10m) = Limit_{300m}(dBuV/m) + 59.08 \\ Limit_{10m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/10m) = Limit_{30m}(dBuV/m) + 19.08 \\ Limit_{3m}(dBuV/m) = Limit_{300m}(dBuV/m) + 40Log(300m/3m) = Limit_{300m}(dBuV/m) + 80 \\ Limit_{3m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/3m) = Limit_{30m}(dBuV/m) + 40 \\ \end{array}
```

5.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used	Test antenna distance
9kHz-30MHz	Active Loop antenna	3m
30MHz-1GHz	Trilog Broadband Antenna	3m

According ANSI C63.10:2020 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

(3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9kHz to 1GHz:

QR-4-106-23 RevA0 Page 15 of 25

(a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT

Report No.: DDT-B25080109-6E03

- was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's fixed 1.5m above ground.)
- (b) Change work frequency or channel of device if practicable.
- (c) Change modulation type of device if practicable.
- (d) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions. Spectrum frequency from 9kHz to 1GHz (tenth harmonic of fundamental frequency) was investigated.
- (4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed according to ANSI C63.10:2020 on Radiated Emission test.
- (5) The emissions from 9kHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90kHz, 110-490kHz, for emissions from 9kHz-90kHz,110kHz-490kHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (6) The emissions from 9kHz to 1GHz, QP or average values were measured with EMI receiver with below RBW.

Frequency band	RBW
9kHz-150kHz	300Hz
150kHz-30MHz	9kHz
30MHz-1GHz	120kHz

(7) X axis, Y axis, Z axis are tested, and worse setup X axis is reported.

5.4. Test result

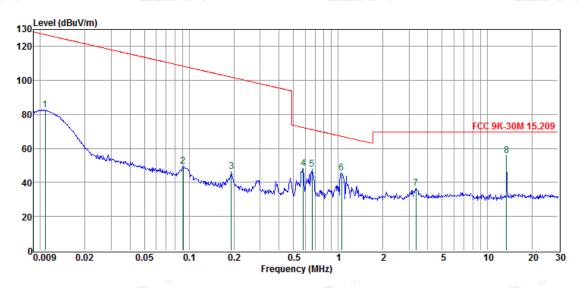
PASS. (See below detailed test result)

QR-4-106-23 RevA0 Page 16 of 25

Below 30MHz:

Radiated Emission Test Result

Test Site : DDT 10m Chamber


Test Date : 08-12-2025 Tested By : Sunny

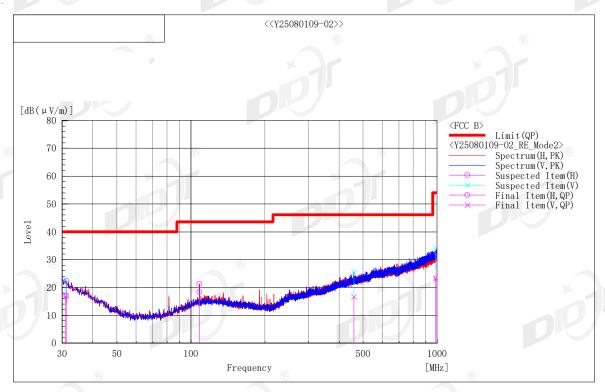
EUT : electronic shelf label Model Number : Nebular Ultra-266Q-N

Power Supply : Battery Test Mode : TX mode

Memo : 13.56MHz

Data: 16

Item	Freq.	Read Level	Antenna Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detect or	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	0.011	62.85	19.62	0.02	82.49	126.97	-44.48	Peak	HORIZONTAL
2	0.091	29.68	19.70	0.03	49.41	108.43	-59.02	Peak	HORIZONTAL
3	0.192	26.63	19.61	0.04	46.28	101.95	-55.67	Peak	HORIZONTAL
4	0.582	28.35	19.77	0.05	48.17	72.30	-24.13	Peak	HORIZONTAL
5	0.668	28.05	19.83	0.06	47.94	71.10	-23.16	Peak	HORIZONTAL
6	1.052	25.71	19.99	0.07	45.77	67.16	-21.39	Peak	HORIZONTAL
7	3.330	16.72	19.96	0.14	36.82	69.54	-32.72	Peak	HORIZONTAL
8	13.548	35.57	19.93	0.24	55.74	69.54	₋ 13.80	Peak	HORIZONTAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: 9k-150kHz, RBW: 300Hz; 150k-30Mhz, RBW: 10kHz, Sweep time: auto.

QR-4-106-23 RevA0 Page 17 of 25

Above 30MHz: Transmission mode:

Final Result

No.	Frequency	(P)	Reading QP	c. f	Result QP	Limit QP	Margin QP	Height	Angle	System
	[MHz]		[dB(µV)]	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	31. 173	Н	22.3	-5. 3	17.0	40.0	23.0	322.0	51.8	1
2	108.491	Н	29.2	-11.0	18.2	43.5	25. 3	314.0	359.0	1
3	996. 245	Н	16.9	6.3	23.2	54.0	30.8	115.0	116.5	1
4	30. 920	V	22. 7	-5. 7	17.0	40.0	23.0	292.0	140.5	2
5	459. 164	V	19. 1	-2.4	16. 7	46.0	29.3	107.0	143.8	2
6	987.732	V	15. 7	7. 5	23. 2	54. 0	30.8	216.0	132.4	2

Note) Receiving antenna polarization: Horizontal and/or Vertical
Test Distance: 3 m, Antenna Height: 1 m to 4 m
Level QP (Quasi-Peak) = Reading QP + Factor (Antenna Factor + Cable Loss - Amp. Gain)
Margin QP (Quasi-Peak) = Limit – Level QP

QR-4-106-23 RevA0 Page 18 of 25

6.1. Block diagram of test setup

Same with 5.1.

6.2. Limits

- (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

6.3. Test Procedure

Same with 5.3.

6.4. Test Result

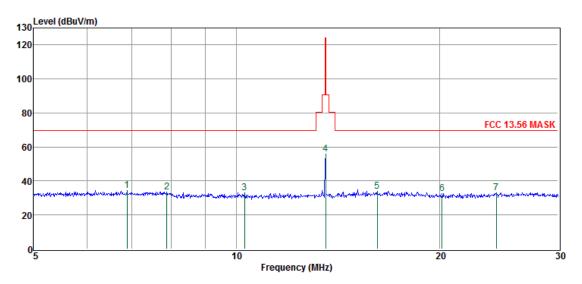
PASS. (See below detailed test result)

QR-4-106-23 RevA0 Page 19 of 25

Radiated Emission Test Result

Report No.: DDT-B25080109-6E03

Test Site : DDT 10m Chamber


Test Date : 08-12-2025 Tested By : Sunny

EUT : electronic shelf label Model Number : Nebular Ultra-266Q-N

Power Supply : Battery Test Mode : TX mode

Memo : 13.56MHz

Data: 14

Item	Freq.	Read	Antenna	Cable	Result	Limit	Over	Detect	Polarization
		Level	Factor	Loss	Level	Line	Limit	or	
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	(dBµV/m)	(dBµV/m)	(dB)	11/	
1	6.878	14.27	20.00	0.18	34.45	69.54	-35.09	Peak	HORIZONTAL
2	7.882	13.32	20.00	0.19	33.51	69.54	-36.03	Peak	HORIZONTAL
3	10.275	13.06	19.99	0.20	33.25	69.54	-36.29	Peak	HORIZONTAL
4	13.564	35.56	19.92	0.24	55.72	124.00	-68.28	Peak	HORIZONTAL
5	16.168	13.62	20.00	0.26	33.88	69.54	-35.66	Peak	HORIZONTAL
6	20.191	12.21	20.30	0.28	32.79	69.54	-36.75	Peak	HORIZONTAL
7	24.283	12.62	20.30	0.31	33.23	69.54	-36.31	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: 9k-150kHz, RBW: 300Hz; 150k-30Mhz, RBW: 10kHz, Sweep time: auto.

QR-4-106-23 RevA0 Page 20 of 25

7 Frequency Stability

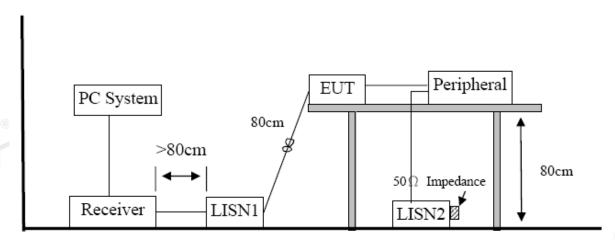
7.1. Limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ (± 1.356 kHz) of the operating frequency over a temperature variation of -20 degrees to ± 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

7.2. Test Procedure

ANSI C63.10-2020 Clause 6.8

7.3. Test Result


PASS. (See below detailed test result)

Voltage	Temperature	Frequency (MHz)	Measured Frequency(MHz)	Frequency Tolerance(kHz)	Limit (±1.356kHz)	Conclusion
Normal	20°C	13.5600000	13.5603814	0.3814	±1.356	PASS
High	20°C	13.5600000	13.5602797	0.2797	±1.356	PASS
Low	20°C	13.5600000	13.5602632	0.2632	±1.356	PASS
Normal	0°C	13.5600000	13.5603779	0.3779	±1.356	PASS
Normal	10°C	13.5600000	13.5602531	0.2531	±1.356	PASS
Normal	30°C	13.5600000	13.5603590	0.3590	±1.356	PASS
Normal	40°C	13.5600000	13.5603147	0.3147	±1.356	PASS
Normal	50°C	13.5600000	13.5603843	0.3843	±1.356	PASS

QR-4-106-23 RevA0 Page 21 of 25

8 Power Line Conducted Emission

8.1. Block diagram of test setup

8.2. Power Line Conducted Emission Limits

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)		
150kHz @~ 500kHz	66 ~ 56*	® 56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

8.3. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 3 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

QR-4-106-23 RevA0 Page 22 of 25

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 kHz.

8.4. Test Result

No Applicable.

QR-4-106-23 RevA0 Page 23 of 25

9 Antenna Requirements

For intentional device, according to FCC 47 CFR Section 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

QR-4-106-23 RevA0 Page 24 of 25

10 Test setup photograph

Please find the detailed in APPENDIXES-Test Setup.

11 Photos of the EUT

Please find the photos of EUT in APPENDIXES-Photos.

END OF REPORT

QR-4-106-23 RevA0 Page 25 of 25