

Test Report

Applicant: Shuzhiyinli (Xiamen) Sports Technology Co., Ltd.

Unit 2401-1, Building B10, Software Park Phase

Address: III, Houxi Town, Jimei District, Xiamen, Fujian

Province, China

Product Name: Intelligent Strength Training Mirror

Brand Mark : IMBODY

Model : IM8C40

Series model : IM8B40,IM7B40,IM7C40

FCC ID : 2BP9T-IM8C40

Report Number : BLA-EMC-202505-A8503

Date of Receipt : May 28, 2025

Date of Test : May 29, 2025 to Jul. 29, 2025

Test Standard: 47 CFR Part 15, Subpart E 15.407

Test Result : Pass

Compiled by: Charlie Review by: Lavier

Approved by:

red Date: Jul. 31, 2025

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Table of Contents

1 General information	5
1.1 General information	5
1.2 General description of EUT	5
2 Test summary	6
3 Test Configuration	
3.1 Test mode	
3.2 Operation frequency and test channel	
3.3 Auxiliary equipment	7
3.4 Test environment	7
4 Laboratory information	8
4.1 Laboratory and accreditations	Q Q
4.2 Measurement uncertainty	
5 Test equipment	
6 Test result	12
6.1 Antenna requirement	12
6.2 Conducted emissions at AC power line (150 kHz-30 MHz)	
6.3 Frequency Stability	
6.4 Maximum conducted output Power	
6.5 Peak power spectrum density	19
6.6 Minimum 6dB bandwidth (5.725-5.85 GHz band)	20
6.7 26dB Emission bandwidth	21
6.8 99% Bandwidth	22
6.9 Duty Cycle	23
6.10 Conducted Band Edges Measurement	24
6.11 Conducted spurious emissions	25
6.12 Radiated emissions	26
6.13 Radiated emissions which fall in the restricted bands	43
7 Appendix A	54
7.1 Duty Cycle	54
7.2 Frequency Stability	
Blue Asia of Technical Services (Shenzhen) Co. Ltd.	

Page 3 of 208

Appendix C: photographs of EUT	208
Appendix B: photographs of test setup	207
7.8 Conducted spurious emission	185
7.7 Band Edge	168
7.6 99% Occupied Channel Bandwidth	146
7.5 -26dB Bandwidth	124
7.4 Maximum Power Spectral Density Level	102
7.3 Maximum Conducted Output Power	80

Revise Record

Version No.	Date	Description
01	Jul. 31, 2025	Original

1 General information

1.1 General information

Applicant	Shuzhiyinli (Xiamen) Sports Technology Co., Ltd.			
Address	Unit 2401-1, Building B10, Software Park Phase III, Houxi Town, Jimei District,			
	Xiamen, Fujian Province, China			
Manufacturer	Shuzhiyinli (Xiamen) Sports Technology Co., Ltd.			
Address	Unit 2401-1, Building B10, Software Park Phase III, Houxi Town, Jimei District,			
Addiess	Xiamen, Fujian Province, China			
Factory	Shuzhiyinli (Xiamen) Sports Technology Co., Ltd.			
A alaba a a	Unit 2401-1, Building B10, Software Park Phase III, Houxi Town, Jimei District,			
Address	Xiamen, Fujian Province, China			

1.2 General description of EUT

Product Name	Intelligent Strength Training Mirror
Model No.	IM8C40
Series model	IM8B40,IM7B40,IM7C40
Desc of series model	Different screen sizes, different force arm gear settings, and differences in the
Desc of series model	appearance of the force arm buttons.
Operation Frequency	5180MHz-5240MHz
Channel numbers	802.11a/802.11n(HT20)/802.11ac(HT20)/802.11ax(HT20): 4, 802.11n(HT40)/802.11ac(HT40)/802.11ax(HT40):2, 802.11ac(HT80)/802.11ax(HT80): 1
Modulation Type	802.11a/n/ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Modulation Type	802.11ax: OFDMA(1024QAM-HIGHEST MODULATION)
	802.11a/n/ac/ax(HT20)/: 20MHz,
Channel Spacing	802.11n/ac/ax(HT40): 40MHz,
	802.11ac/ax(HT80): 80MHz
Data speed	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps, Up to
Data Speeu	1201Mbps
Antenna Type:	FPC Antenna
Antonno Coin:	ANT 1: 2.69dBi(Provided by customer)
Antenna Gain:	ANT 2: 2.69dBi(Provided by customer)
Power supply or adapter	Input: AC90V~265V, 50~60Hz

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

information	Output: DC15V, 150W
	Button battery on RF module: CR2032 DC3.0V
Hardware Version	N/A
Software Version	N/A

Note: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2 Test summary

No.	Test item	FCC standard	Test Method (Clause)	Result
1	Antenna Requirement	§15.203	N/A	Pass
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	§15.207	ANSI C63.10-2013 Clause 6.2	Pass
3	Frequency Stability	§15.407 (g)	ANSI C63.10-2013 Clause 6.8	Pass
4	Maximum Conducted output power	§15.407 (a)	KDB 789033 D02 II E	Pass
5	Transmitter Power Control	§15.407 (h)(1)	KDB 789033 D02 II E	N/A
6	Peak Power spectrum density	§15.407 (a)	KDB 789033 D02 II F	Pass
7	Minimum 6 dB bandwidth (5.725-5.85 GHz band)	§15.407 (e)	KDB 789033 D02 II C 2	N/A
8	26dB Emission bandwidth	§15.407 (a)	KDB 789033 D02 II C 1	Pass
9	99% Bandwidth	N/A	KDB 789033 II D	Pass
10	Duty Cycle	KDB 789033 D02 II B 1	KDB 789033 II B 1	Pass
11	Conducted Band Edges Measurement	§15.407 (b)(4)	ANSI C63.10-2013 Clause 11.13	Pass
12	Conducted spurious emissions	§15.407(b)	ANSI C63.10-2013 Clause 11.11	Pass
13	Radiated Emissions which fall in the restricted bands	§15.209 §15.407(b)	KDB 789033 D02 II G	Pass
14	Radiated Emissions	§15.209 §15.407(b)	KDB 789033 D02 II G	Pass
15	DFS: Channel Closing Transmission Time	§15.407((h)(2)	KDB 905462 D02 Clause 7.8.3	N/A
16	DFS: Non-occupancy period	§15.407((h)(2)	KDB 905462 D02 Clause 7.8.3	N/A

N/A: Not Applicable

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

3 Test Configuration

3.1 Test mode

Test Mode Note 1	Description
TX	Keep the EUT in continuously transmitting mode with modulation. (Duty cycle>98%)

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use; the EUT was operated in the engineering mode Note 2 to fix the TX frequency that was for the purpose of the measurements.

Note 2: Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

3.2 Operation frequency and test channel

802.11a/n/ac/ax

Bandwidth	20(MHz)		40(MHz)		80(MHz)	
Band	Channel	frequency	Channel	frequency	Channel	frequency(M
Band	number	(MHz)	number	(MHz)	number	Hz)
U-NII-1	36	5180	- 38	5190	- 42	5210
	40	5200				
	44	5220	46	46 5230		
	48	5240				

3.3 Auxiliary equipment

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	Lenovo	E460C	N/A	From lab (No.BLA-ZC-BS-2022005)
Note:				

Note:

3.4 Test environment

Environment	Temperature	Voltage
Normal	25°C	DC 24V

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

[&]quot;--" mean no any auxiliary device during testing.

4 Laboratory information

4.1 Laboratory and accreditations

The test facility is recognized, certified, or accredited by the following organizations:

Company name: Address:	BlueAsia of Technical Services(Shenzhen) Co., Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China
CNAS accredited No.:	L9788
A2LA Cert. No.:	
FCC Designation No.:	CN1252
ISED CAB identifier No.:	CN0028
Telephone:	+86-755-28682673
FAX:	+86-755-28682673

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

5 Test equipment

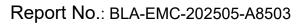
Radiated Spurious Emissions (Below 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date	
BLA-EMC-002-01	Anechoic	9*6*6	SKET	N/A	2024/3/27	2027/3/26	
BLA-LIVIO-002-01	chamber	chamber	SKLT	IN/A	2024/3/21	2021/3/20	
BLA-EMC-002-02	Control room	966 control	SKET	N/A	2024/3/27	2027/3/26	
BLA-LIVIO-002-02	Control room	room	SKLT	IN/A	2024/3/2/	2021/3/20	
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07	
BLA-EMC-043	Loop antenna	FMZB1519B	Schwarzbeck	00102	2024/06/29	2026/06/28	
BLA-EMC-065	Broadband	VULB9168	Schwarzbeck	01065P	2024/06/29	2026/06/27	
BLA-ENIC-003	antenna	VOLD9100	Scriwarzbeck	01003F	2024/00/29	2020/00/21	
BLA-XC-01	Coaxial Cable	N/A	BlueAsia	V01	N/A	N/A	
BLA-XC-02	Coaxial Cable	N/A	BlueAsia	V02	N/A	N/A	

Radiated Spurious Emissions (Above 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-001-01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2023/11/16	2026/11/15
BLA-EMC-001-02	Control Room	966 control room	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2024/08/08	2025/08/07
BLA-EMC-012	Broadband antenna	VULB9168	Schwarzbeck	00836 P:00227	2022/10/12	2025/10/11
BLA-EMC-013	Horn Antenna	BBHA9120D	Schwarzbeck	01892	2024/06/29	2026/06/28
BLA-EMC-014	Amplifier	PA_000318G- 45	SKET	PA201804 3003	2024/08/08	2025/08/07
BLA-EMC-046	Filter bank	2.4G/5G Filter bank	SKET	N/A	2024/06/28 2025/06/28	2025/06/27
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2024/06/28 2025/06/28	2025/06/27 2026/06/27
BLA-EMC-066	Amplifier	LNPA_30M01 G-30	SKET	SK202106 0801	2024/06/28 2025/06/28	2025/06/27 2026/06/27
BLA-EMC-086	Amplifier	LNPA_18G40 G-50dB	SKET	SK202207 1301	2024/06/28	2025/06/27

Blue Asia of Technical Services (Shenzhen) Co., Ltd.


Report No.: BLA-EMC-202505-A8503

Page 10 of 208

					2025/06/28	2026/06/27
BLA-EMC-087	Horn Antenna	BBHA 9170	Schwarzbeck	1106	2024/06/29	2026/06/28
BLA-XC-03	Coaxial Cable	N/A	BlueAsia	V03	N/A	N/A
BLA-XC-04	Coaxial Cable	N/A	BlueAsia	V04	N/A	N/A

Conducted Emissions

Equipment	Name	Model	Manufactu re	S/N	Cal. Date	Due. Date
BLA-EMC-003-001	Shield room	8*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011	LISN	ENV216	R&S	101372	2024/08/08	2025/08/07
DI A EMO 022	Impedance	DC 2CH-	DEVD	N/A	2024/06/28	2025/06/27
BLA-EMC-033	transformer	DC-2GHz	DFXP	N/A	2025/06/28	2026/06/27
BLA-EMC-041	LISN	AT166-2	ATTEN	AKK180600 0003	2024/08/08	2025/08/07
BLA-EMC-045	Impedance stable network	ISNT8-cat	TESEQ	53580	2024/08/08	2025/08/07
BLA-EMC-095	Single-channel vehicle artificial	NNBM 8124	Schwarzbe ck	01045	2024/06/28	2025/06/27
BLA-EMC-096	power network Single-channel vehicle artificial	NNBM	Schwarzbe	01075	2024/06/28	2025/06/27
DETTEMO 000	power network	8124	ck	3.370	2025/06/28	2026/06/27
BLA-XC-05	Coaxial Cable	N/A	BlueAsia	V05	N/A	N/A

Page 11 of 208

RF conducted

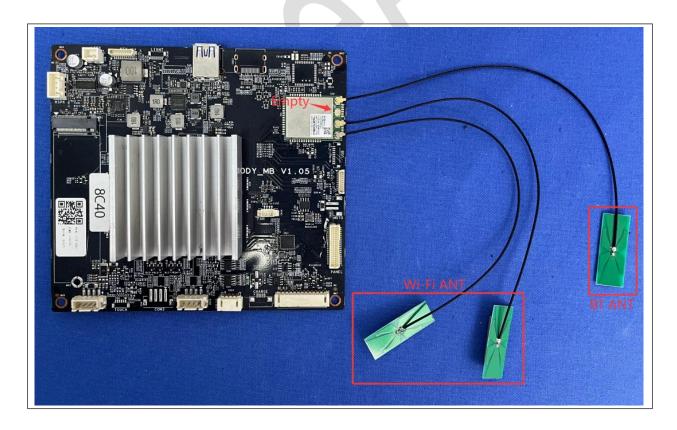
Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-003-003	Shield room	5*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-016	Signal Generator	N5182A	Agilent	MY52420567	2024/06/28	2025/06/27
BLA-EMC-038 Spectrum		N9020A	Agilent	MY49100060	2024/08/08	2025/08/07
BLA-EMC-042	Power sensor	RPR3006W	DARE	14I00889SN042	2024/08/08	2025/08/07
	Radio					
BLA-EMC-044	communication	CMW500	R&S	132429	2024/08/08	2025/08/07
	tester					
BLA-EMC-064	Signal Generator	N5182B	KEYSIGHT	MY58108892	2024/06/28	2025/06/27
BLA-LIVIC-004	Olgrial Generator	NOTOZD	RETOIGHT	W1136100092	2025/06/28	2026/06/27
BLA-EMC-079	Spectrum	N9020A	Agilent	MY54420161	2024/08/08	2025/08/07
BLA-EMC-088	Audio Analyzor	ATS-1	Audio Precision	ATS141094	2024/06/28	2025/06/27
DLA-EIVIC-U00	Audio Analyzer	A13-1	Audio Frecision	A13141094	2025/06/28	2026/06/27

Test software

Software No.	Software Name	Manufacture	Software version	Test site
BLA-EMC-S001	EZ-EMC	EZ	EEMC-3A1+	RE(Below 1GHz)
BLA-EMC-S002	EZ-EMC	EZ	EEMC-3A1+	RE(Above 1GHz)
BLA-EMC-S003	EZ-EMC	EZ	EEMC-3A1+	CE
BLA-EMC-S010	MTS 8310	MW	2.0.0.0	RF

6 Test result

6.1 Antenna requirement

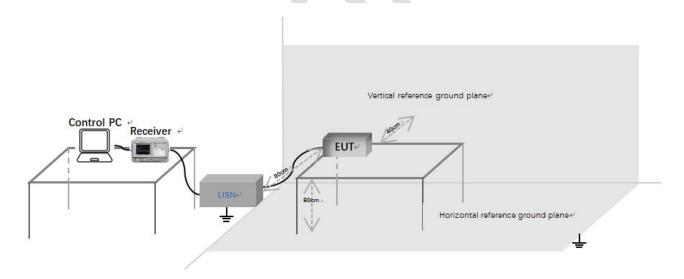

Test Standard	47 CFR Part 15, Subpart C 15.203
Test Method	N/A

6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT antenna:

The antenna type is FPA antenna, Best case gain of the antenna is 2.69 dBi


6.2 Conducted emissions at AC power line (150 kHz-30 MHz)

Test Standard	47 CFR Part 15, Subpart C 15.207
Test Method	ANSI C63.10-2013 Cluase6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.2.1 Limit

	Conducted limit(dBµV)						
Frequency of emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
*Decreases with the logarithm of	the frequency.						

6.2.2 Test setup

Description of test setup connection:

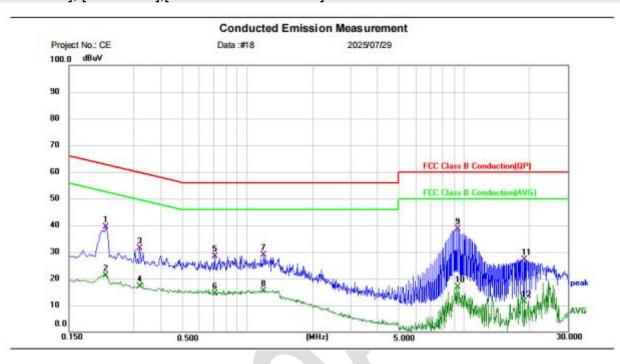
- a) Connect the control PC to the receiver through a USB to GPIB cable;
- b) The receiver is connected to the LISN through a coaxial line;
- c) Connect the power port of LISN to the EUT.

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

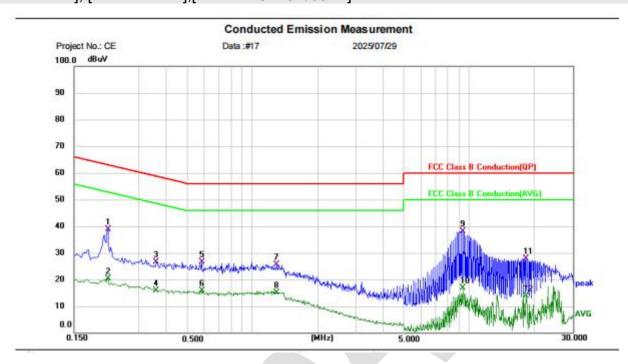
Page 14 of 208

6.2.3 Procedure

- The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


LISN=Read Level+ Cable Loss+ LISN Factor

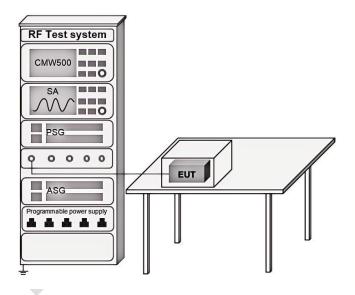
6.2.4 Test data


[Test mode: TX]; [Line: Line]; [Power:AC120V/60Hz]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	Ž.
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.2220	29.07	10.24	39.31	62.74	-23.43	QP			
2		0.2220	10.89	10.24	21.13	52.74	-31.61	AVG			
3		0.3180	21.65	9.73	31.38	59.76	-28.38	QP			
4		0.3180	7.43	9.73	17.16	49.76	-32.60	AVG			
5		0.7060	18.71	9.69	28.40	56.00	-27.60	QP			
6		0.7060	4.70	9.69	14.39	46.00	-31.61	AVG			
7		1.1900	19.17	9.79	28.96	56.00	-27.04	QP			
8		1.1900	5.63	9.79	15.42	46.00	-30.58	AVG			
9	*	9.3340	28.87	9.74	38.61	60.00	-21.39	QP			
10		9.3340	7.15	9.74	16.89	50.00	-33.11	AVG			
11		18.9140	16.99	10.14	27.13	60.00	-32.87	QP			
12	- 1	18.9140	1.14	10.14	11.28	50.00	-38.72	AVG			

[Test mode: TX]; [Line: Neutral]; [Power: AC120V/60Hz]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.2140	28.62	10.21	38.83	63.05	-24.22	QP			
2		0.2140	10.10	10.21	20.31	53.05	-32.74	AVG			
3		0.3579	16.92	9.74	26.66	58.78	-32.12	QP			
4		0.3579	6.17	9.74	15.91	48.78	-32.87	AVG			
5		0.5819	17.00	9.75	26.75	56.00	-29.25	QP			
6		0.5819	6.17	9.75	15.92	46.00	-30.08	AVG			
7		1.2900	15.92	9.76	25.68	56.00	-30.32	QP			
8		1.2900	5.29	9.76	15.05	46.00	-30.95	AVG			
9		9.3380	28.49	9.72	38.21	60.00	-21.79	QP			
10		9.3380	7.08	9.72	16.80	50.00	-33.20	AVG			
11		18.2420	17.83	10.05	27.88	60.00	-32.12	QP			
12		18.2420	3.83	10.05	13.88	50.00	-36.12	AVG			


6.3 Frequency Stability

Test Standard	47 CFR Part 15, Subpart E 15.407(g)
Test Method	ANSI C63.10-2013 Cluase6.8
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.3.1 Limit

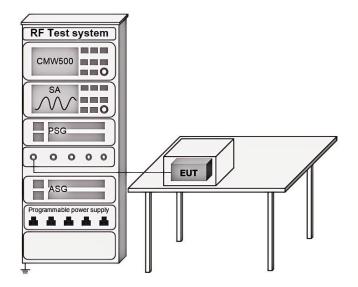
The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

6.3.2 Test setup

6.3.3 Test data

6.4 Maximum conducted output Power

Test Standard	47 CFR Part 15, Subpart E 15.407 (a)
Test Method	KDB 789033 D02 II E
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX


6.4.1 Limit

Frequency band(MHz)	Limit
5150-5250	≤1W(30dBm) for master device
	≤250mW(24dBm) for client device
5250-5350	≤250mW(24dBm) for client device or 11dBm+10logB*
5470-5725	≤250mW(24dBm) for client device or 11dBm+10logB*
5725-5850	≤1W(30dBm)

Remark:* Where B is the 26dB emission bandwidth in MHz.

The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

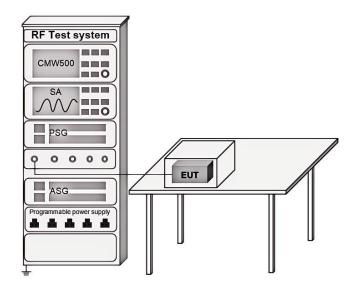
6.4.2 Test setup

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

6.4.3 Test data

Pass: Please refer to appendix A for details

6.5 Peak power spectrum density


Test Standard	47 CFR Part 15, Subpart E 15.407 (a)
Test Method	KDB 789033 D02 II F
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.5.1 Limit

Frequency band(MHz)	Limit
5150-5250	≤17dBm in 1MHz for master device
	≤11dBm in 1MHz for client device
5250-5350	≤11dBm in 1MHz for client device
5470-5725	≤11dBm in 1MHz for client device
5725-5850	≤30dBm in 500 kHz

Remark: The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.

6.5.2 Test setup

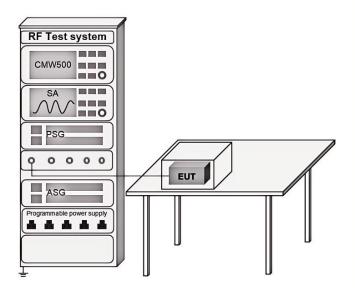
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

6.5.3 Test data

Pass: Please refer to appendix A for details


6.6 Minimum 6dB bandwidth (5.725-5.85 GHz band)

Test Standard	47 CFR Part 15, Subpart E 15.407 (e)
Test Method	KDB 789033 D02 II C 2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.6.1 Limit

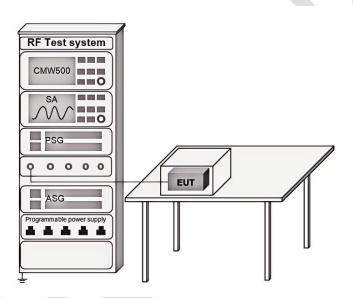
≥500 kHz

6.6.2 Test setup

6.6.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd.



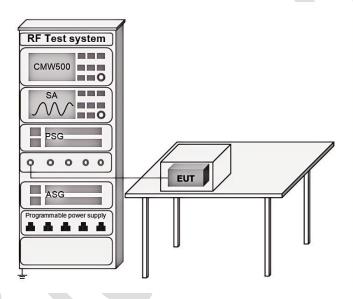
6.726dB Emission bandwidth

Test Standard	47 CFR Part 15, Subpart E 15.407 (a)
Test Method	KDB 789033 D02 II C 1
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.7.1 Limit

6.7.2 Test setup

6.7.3 Test data

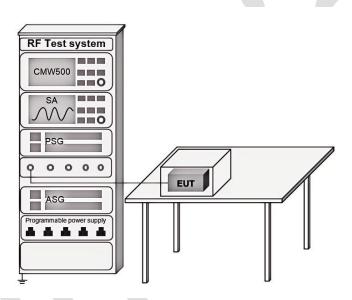


6.8 99% Bandwidth

Test Standard	N/A
Test Method	KDB 789033 II D
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.8.1 Limit

6.8.2 Test setup


6.8.3 Test data

6.9 Duty Cycle

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 II B 1
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

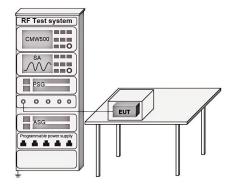
6.9.1 Test setup

6.9.2 Test data

6.10 Conducted Band Edges Measurement

Test Standard	47 CFR Part 15, Subpart C 15.407(b)(4)
Test Method	ANSI C63.10-2013 Cluase7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.10.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.10.2 Test setup

6.10.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

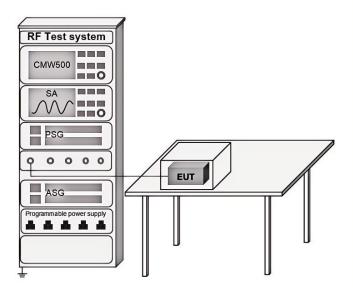
Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

6.11 Conducted spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.407
Test Method	ANSI C63.10-2013 Clause7.8.6 & Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.11.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.11.2 Test setup

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

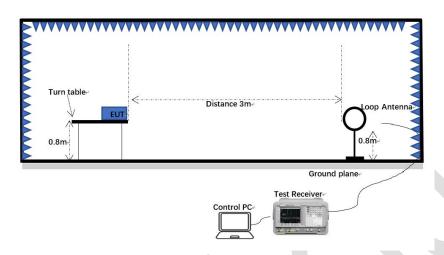
6.11.3 Test data

Pass: Please refer to appendix A for details

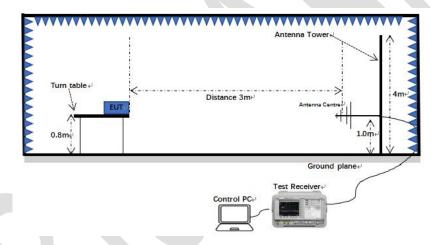
6.12 Radiated emissions

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 D02 II G
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

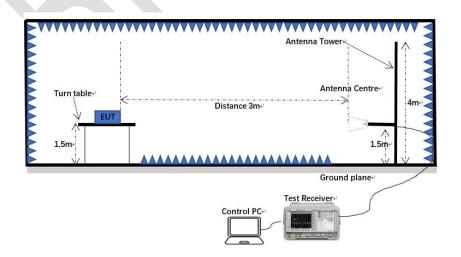
6.12.1 Limit


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.



6.12.2 Test setup


Below 1GHz:

30MHz-1GHz:

Above 1GHz:

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

6.12.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

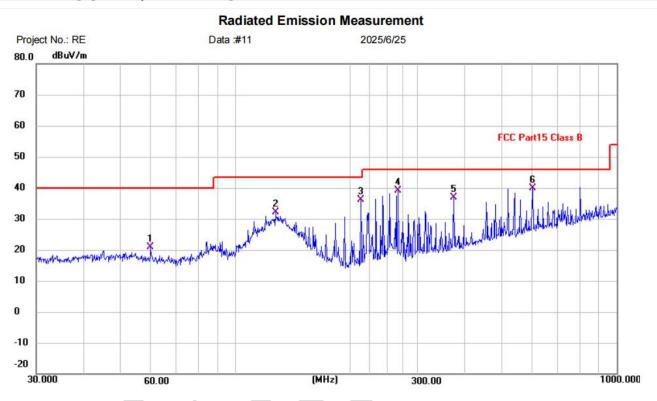
Note 1: Scan from 9 kHz to 40GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)

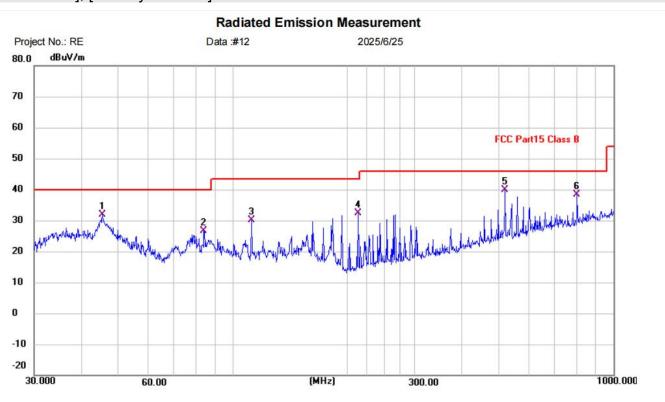
Blue Asia of Technical Services (Shenzhen) Co., Ltd.


Tel: +86-755-23059481

6.12.4 Test data

Below 1GHz

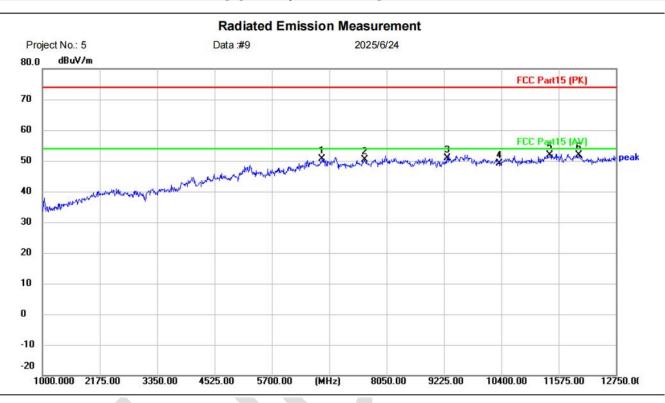
[Test mode: TX]; [Polarity: Horizontal]


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	59.8588	2.19	18.58	20.77	40.00	-19.23	QP	Р	
2	127.2176	13.04	19.07	32.11	43.50	-11.39	QP	Р	
3	213.0151	20.08	16.03	36.11	43.50	-7.39	QP	Р	
4	266.6089	20.41	18.83	39.24	46.00	-6.76	QP	Р	
5	373.3112	14.51	22.25	36.76	46.00	-9.24	QP	Р	
6 *	601.4265	13.01	26.81	39.82	46.00	-6.18	QP	Р	

Test Result: Pass

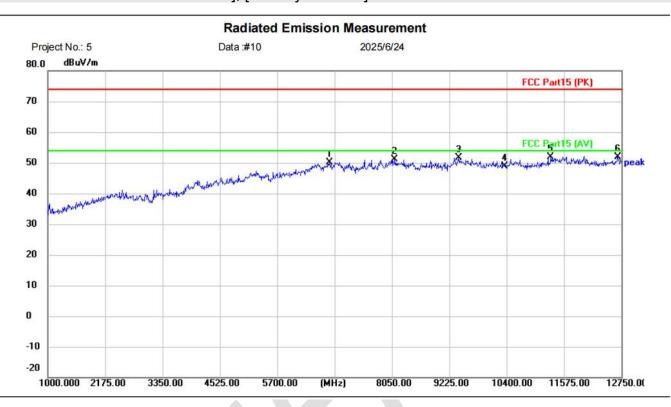
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

[Test mode: TX]; [Polarity: Vertical]

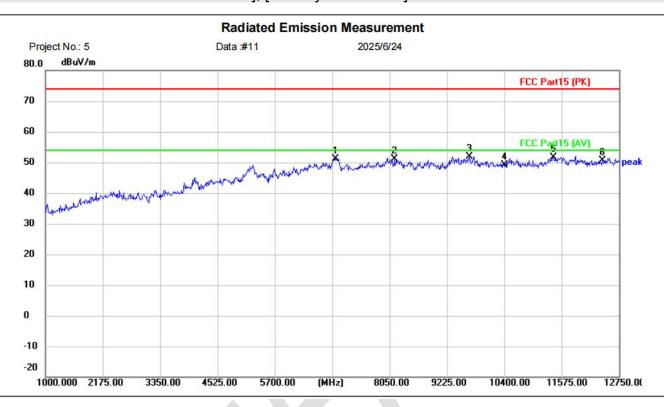

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	The second secon	Margin (dB)	Detector	P/F	Remark
1	45.3754	12.25	19.70	31.95	40.00	-8.05	QP	Р	
2	83.8155	11.22	15.46	26.68	40.00	-13.32	QP	Р	
3	111.7379	12.70	17.50	30.20	43.50	-13.30	QP	Р	
4	213.0151	16.33	16.03	32.36	43.50	-11.14	QP	Р	
5 *	519.0649	14.42	25.43	39.85	46.00	-6.15	QP	Р	
6	801.7863	8.51	29.92	38.43	46.00	-7.57	QP	Р	

Above 1GHz:

During the test, pre-scan the 802.11a/n/nc/ax mode, and found the 802.11a and 802.11ax mode which it is worse case.


[Test mode: 802.11a TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		6722.250	39.25	11.41	50.66	74.00	-23.34	peak		
2		7603.500	39.77	10.63	50.40	74.00	-23.60	peak		
3		9295.500	37.82	13.09	50.91	74.00	-23.09	peak		
4		10360.00	35.64	13.53	49.17	74.00	-24.83	peak		
5	(11387.00	37.67	14.13	51.80	74.00	-22.20	peak		
6	*	11986.25	37.67	14.18	51.85	74.00	-22.15	peak		


[Test mode: 802.11a TX low channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		6769.250	38.61	11.40	50.01	74.00	-23.99	peak	
2		8108.750	39.37	11.75	51.12	74.00	-22.88	peak	
3		9424.750	38.84	12.91	51.75	74.00	-22.25	peak	
4	- 1	10360.00	35.42	13.53	48.95	74.00	-25.05	peak	
5	9	11304.75	38.66	13.23	51.89	74.00	-22.11	peak	
6	*	12679.50	38.23	13.77	52.00	74.00	-22.00	peak	

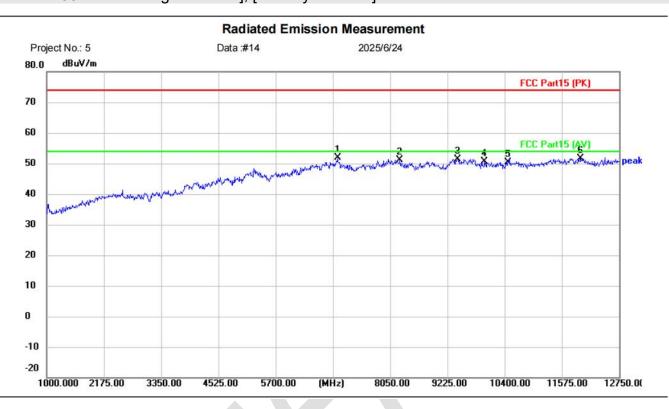
[Test mode: 802.11a TX middle channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		6945.500	38.71	12.47	51.18	74.00	-22.82	peak	
2		8155.750	39.74	11.49	51.23	74.00	-22.77	peak	
3	*	9683.250	38.35	13.52	51.87	74.00	-22.13	peak	
4	8	10400.00	35.70	13.51	49.21	74.00	-24.79	peak	
5	8	11410.50	37.42	14.33	51.75	74.00	-22.25	peak	
6	3	12409.25	37.88	12.74	50.62	74.00	-23.38	peak	

[Test mode: 802.11a TX middle channel]; [Polarity: Vertical]

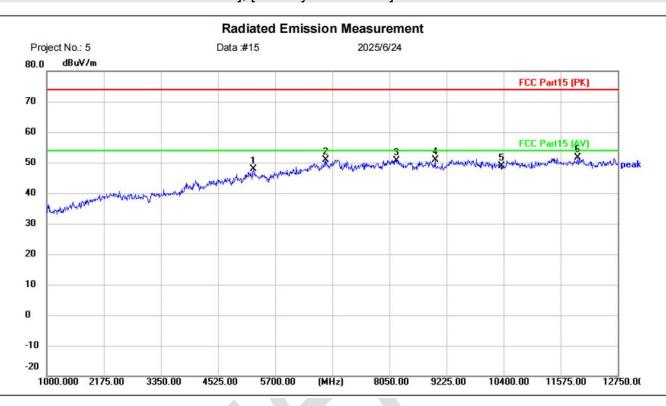
Radiated Emission Measurement Project No.: 5 Data :#12 2025/6/24 dBuV/m 80.0 FCC Part15 (PK) 70 60 50 40 30 20 10 0 -10 1000.000 2175.00 3350.00 4525.00 5700.00 (MHz) 8050.00 9225.00 10400.00 11575.00 12750.00

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		6957.250	38.30	12.50	50.80	74.00	-23.20	peak	
2	11	8426.000	39.11	11.31	50.42	74.00	-23.58	peak	
3		9448.250	38.20	13.10	51.30	74.00	-22.70	peak	
4		10400.00	35.78	13.51	49.29	74.00	-24.71	peak	
5	*	11504.50	36.92	14.87	51.79	74.00	-22.21	peak	
6		11951.00	37.81	13.93	51.74	74.00	-22.26	peak	

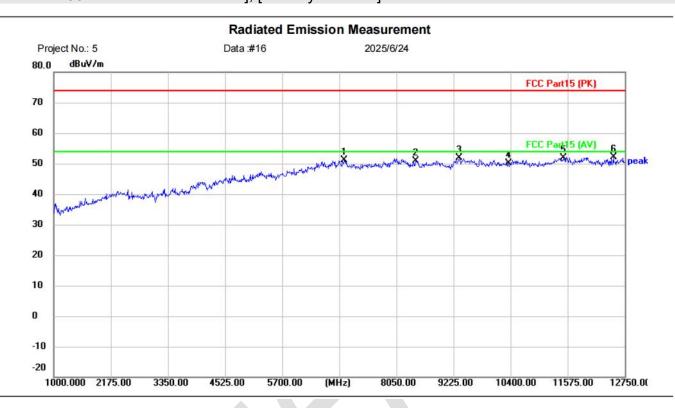

[Test mode: 802.11a TX High channel]; [Polarity: Horizontal]

Radiated Emission Measurement Data :#13 2025/6/24 Project No.: 5 dBuV/m 80.0 FCC Part15 (PK) 70 60 50 40 30 20 10 0 -10 1000.000 2175.00 3350.00 4525.00 5700.00 (MHz) 8050.00 9225.00 10400.00 11575.00 12750.00

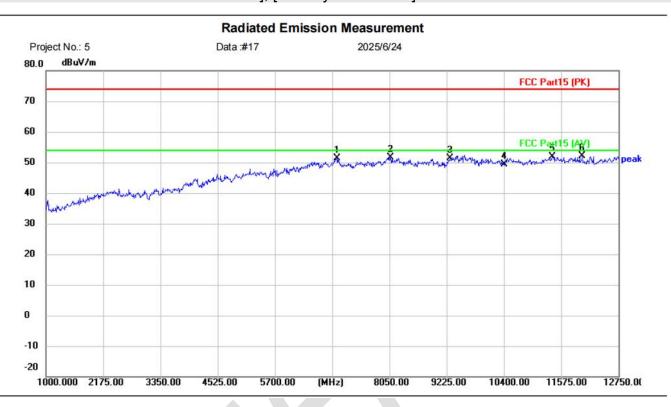
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7027.750	40.74	9.89	50.63	74.00	-23.37	peak	
2		8061.750	38.98	11.72	50.70	74.00	-23.30	peak	
3	*	9319.000	38.80	13.21	52.01	74.00	-21.99	peak	
4		10480.00	35.85	13.70	49.55	74.00	-24.45	peak	
5		11422.25	36.96	14.40	51.36	74.00	-22.64	peak	
6		12244.75	37.98	13.17	51.15	74.00	-22.85	peak	


[Test mode: 802.11a TX High channel]; [Polarity: Vertical]

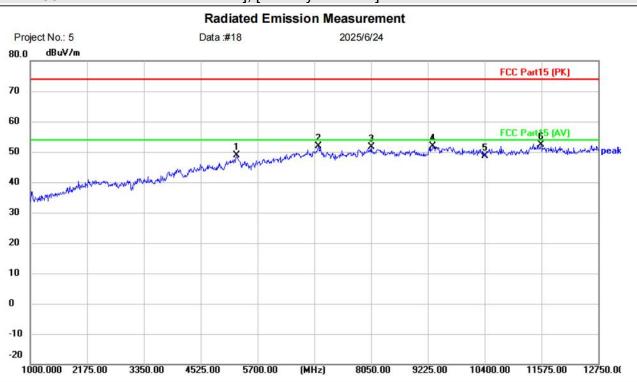
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	6969.000	39.40	12.46	51.86	74.00	-22.14	peak	
2	1	8249.750	39.98	11.20	51.18	74.00	-22.82	peak	
3		9436.500	38.48	12.99	51.47	74.00	-22.53	peak	
4		9988.750	37.39	13.23	50.62	74.00	-23.38	peak	
5		10480.00	36.77	13.70	50.47	74.00	-23.53	peak	
6		11951.00	37.77	13.93	51.70	74.00	-22.30	peak	


[Test mode: 802.11ax TX low channel]; [Polarity: Horizontal]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		5253.500	37.24	10.66	47.90	74.00	-26.10	peak	
2		6745.750	39.36	11.63	50.99	74.00	-23.01	peak	
3		8202.750	39.10	11.48	50.58	74.00	-23.42	peak	
4		8990.000	38.63	12.21	50.84	74.00	-23.16	peak	
5		10360.00	35.30	13.53	48.83	74.00	-25.17	peak	
6	*	11927.50	37.81	13.75	51.56	74.00	-22.44	peak	

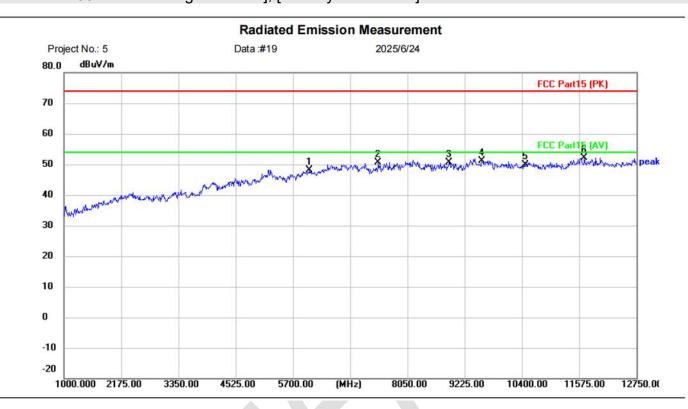

[Test mode: 802.11ax TX low channel]; [Polarity: Vertical]

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		6969.000	38.55	12.46	51.01	74.00	-22.99	peak	
2		8449.500	39.32	11.50	50.82	74.00	-23.18	peak	
3		9342.500	38.63	13.35	51.98	74.00	-22.02	peak	
4		10360.00	36.70	13.53	50.23	74.00	-23.77	peak	
5	(11492.75	37.06	14.82	51.88	74.00	-22.12	peak	
6	*	12515.00	39.11	12.95	52.06	74.00	-21.94	peak	


[Test mode: 802.11ax TX middle channel]; [Polarity: Horizontal]

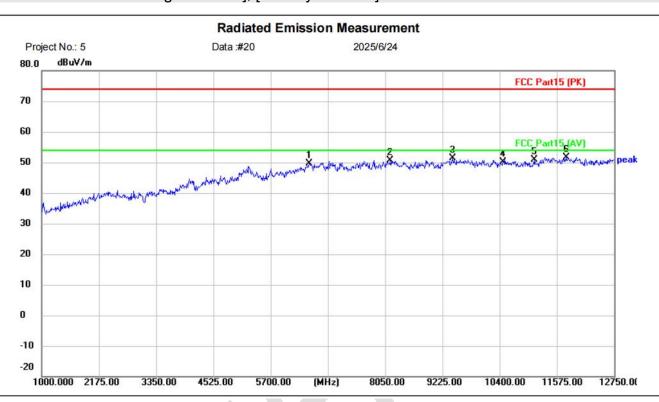
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		6969.000	38.95	12.46	51.41	74.00	-22.59	peak		
2	19	8073.500	39.78	11.75	51.53	74.00	-22.47	peak		
3		9295.500	38.26	13.09	51.35	74.00	-22.65	peak		
4		10400.00	35.86	13.51	49.37	74.00	-24.63	peak		
5	ě	11398.75	37.73	14.26	51.99	74.00	-22.01	peak		
6	*	12009.75	37.88	14.22	52.10	74.00	-21.90	peak		

[Test mode: 802.11ax TX middle channel]; [Polarity: Vertical]


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		5265.250	37.99	10.94	48.93	74.00	-25.07	peak	
2		6957.250	39.26	12.50	51.76	74.00	-22.24	peak	
3		8050.000	40.00	11.70	51.70	74.00	-22.30	peak	
4		9330.750	38.63	13.29	51.92	74.00	-22.08	peak	
5		10400.00	35.06	13.51	48.57	74.00	-25.43	peak	
6	*	11563.25	37.56	14.81	52.37	74.00	-21.63	peak	

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.


[Test mode: 802.11ax TX High channel]; [Polarity: Horizontal]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	I	6040.750	39.42	8.80	48.22	74.00	-25.78	peak	
2		7450.750	39.45	11.21	50.66	74.00	-23.34	peak	
3		8907.750	38.18	12.57	50.75	74.00	-23.25	peak	
4		9577.500	38.17	13.04	51.21	74.00	-22.79	peak	
5		10480.00	36.07	13.70	49.77	74.00	-24.23	peak	
6	*	11680.75	38.41	13.72	52.13	74.00	-21.87	peak	

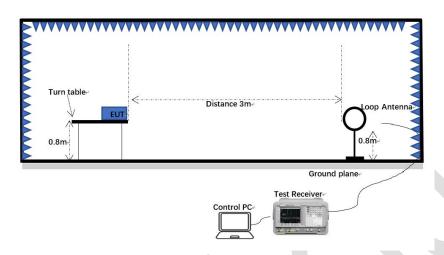
[Test mode: 802.11ax TX High channel]; [Polarity: Vertical]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		6487.250	38.69	10.89	49.58	74.00	-24.42	peak	
2		8155.750	39.07	11.49	50.56	74.00	-23.44	peak	
3		9436.500	38.46	12.99	51.45	74.00	-22.55	peak	
4		10480.00	36.36	13.70	50.06	74.00	-23.94	peak	
5		11116.75	37.63	13.27	50.90	74.00	-23.10	peak	
6	*	11763.00	38.04	13.48	51.52	74.00	-22.48	peak	

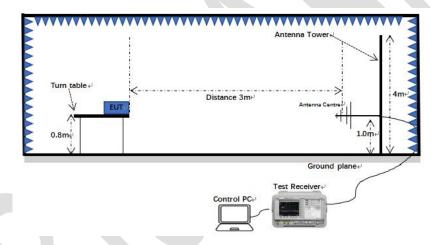
6.13 Radiated emissions which fall in the restricted bands

Test Standard	47 CFR Part 15, Subpart E 15.407
Test Method	KDB 789033 D02 II G
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

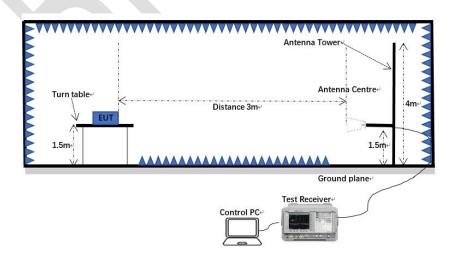
6.13.1 Limit


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.



6.13.2 Test setup


Below 1GHz:

30MHz-1GHz:

Above 1GHz:

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

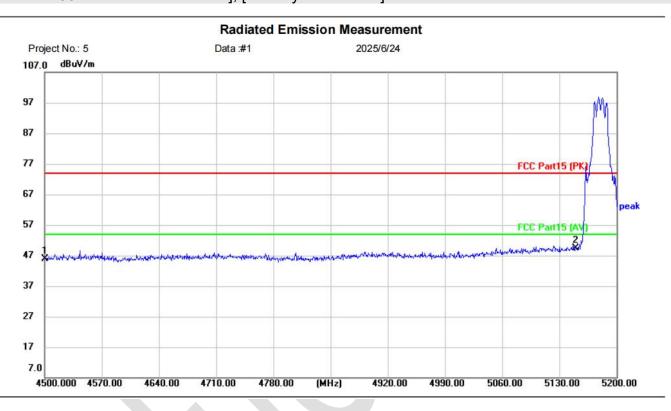
Email: marketing@cblueasia.com www.cblueasia.com

Page 45 of 208

6.13.3 Procedure

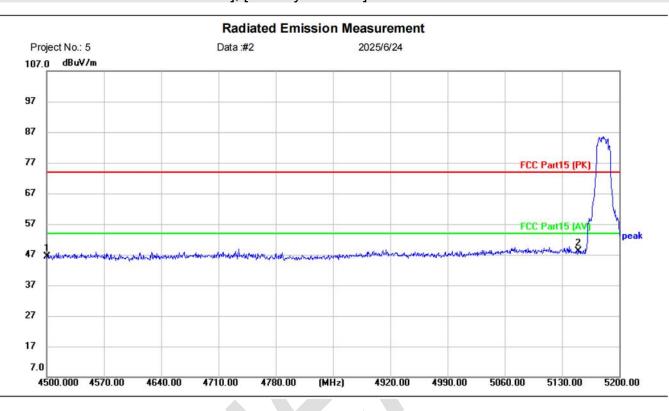
- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)

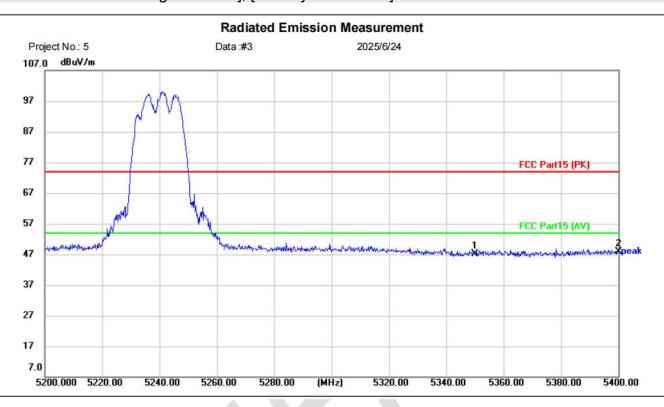

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

6.13.4 Test data

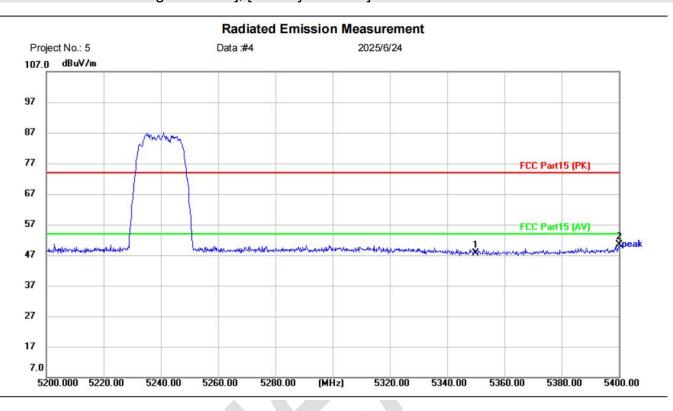
During the test, pre-scan the 802.11a/n/nc/ax mode, and found the 802.11a and 802.11ax mode which it is worse case.


[Test mode: 802.11a TX low channel]; [Polarity: Horizontal]

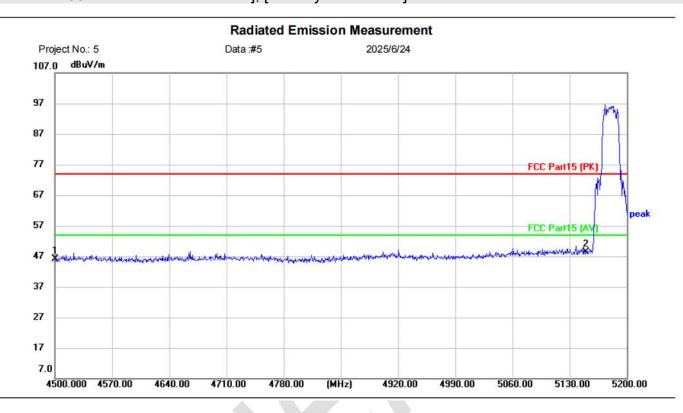
No.	MI			Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4500.00	0 42.85	3.02	45.87	74.00	-28.13	peak		
2	*	5150.00	0 43.54	5.93	49.47	74.00	-24.53	peak		


[Test mode: 802.11a TX low channel]; [Polarity: Vertical]

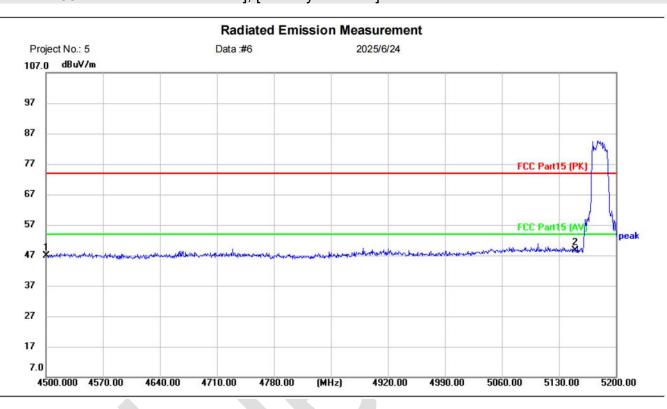
No.	lo. Mk	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		450	00.000	43.27	3.02	46.29	74.00	-27.71	peak		
2	*	515	50.000	42.15	5.93	48.08	74.00	-25.92	peak		


[Test mode: 802.11a TX High channel]; [Polarity: Horizontal]

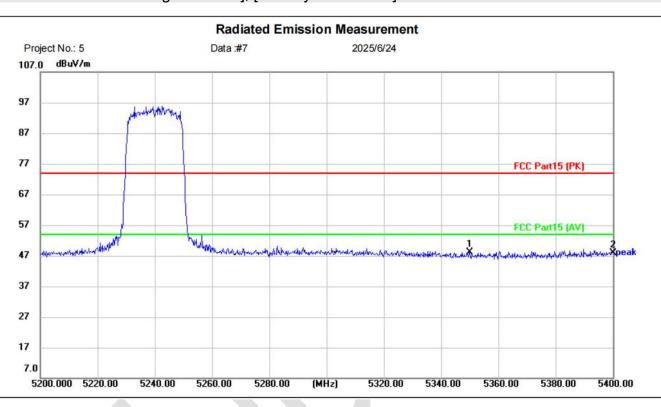
No.	lo. Mk.	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		53	350.000	41.87	5.21	47.08	74.00	-26.92	peak		
2	*	54	000.000	42.05	5.93	47.98	74.00	-26.02	peak		


[Test mode: 802.11aTX High channel]; [Polarity: Vertical]

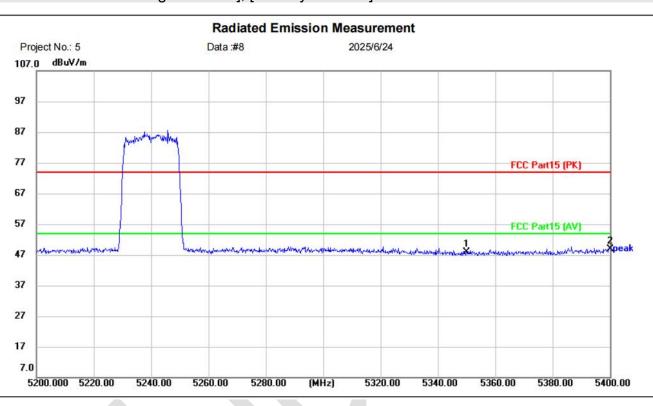
No.	lo. Mk.	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	527 65 x 537 5 x x 32 1/1 x 2 x x x		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		53	50.000	42.53	5.21	47.74	74.00	-26.26	peak		
2	*	54	00.000	44.54	5.93	50.47	74.00	-23.53	peak		


[Test mode: 802.11ax TX Low channel]; [Polarity: Horizontal]

No.	MI	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		450	00.000	43.00	3.02	46.02	74.00	-27.98	peak		
2	*	515	50.000	42.33	5.93	48.26	74.00	-25.74	peak		-


[Test mode: 802.11ax TX Low channel]; [Polarity: Vertical]

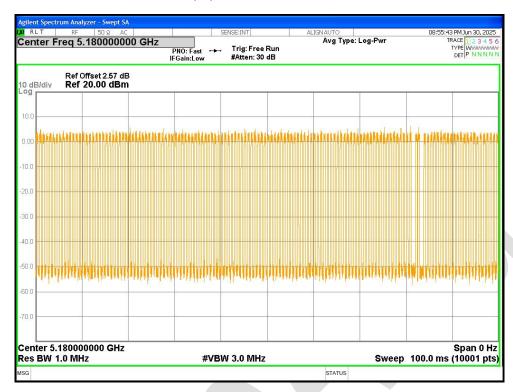
No.	No. MI	k.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		45	00.000	43.88	3.02	46.90	74.00	-27.10	peak		
2	*	51	50.000	42.80	5.93	48.73	74.00	-25.27	peak		


[Test mode: 802.11ax TX High channel]; [Polarity: Horizontal]

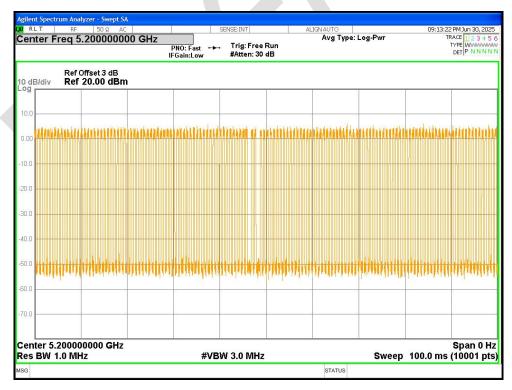
No.	М	c. F	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	535	0.000	42.96	5.21	48.17	74.00	-25.83	peak		
2		540	0.000	41.91	5.93	47.84	74.00	-26.16	peak		

[Test mode: 802.11ax TX High channel]; [Polarity: Vertical]

No.	M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		53	50.000	42.62	5.21	47.83	74.00	-26.17	peak		
2	*	54	00.000	42.90	5.93	48.83	74.00	-25.17	peak		

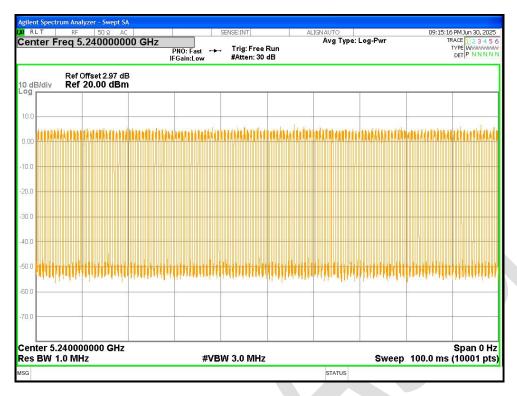

7 Appendix A

7.1 Duty Cycle

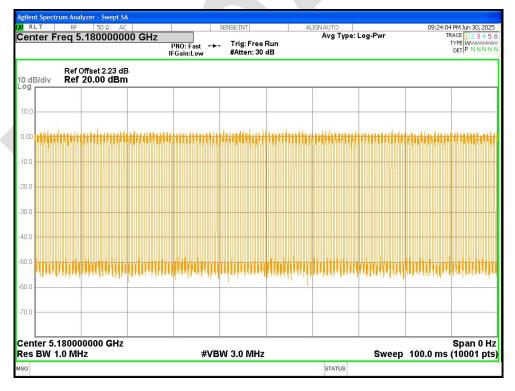

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5180	Ant1	52.89	2.77
NVNT	а	5200	Ant1	52.78	2.77
NVNT	а	5240	Ant1	53.80	2.69
NVNT	а	5180	Ant2	53.27	2.73
NVNT	а	5200	Ant2	53.29	2.73
NVNT	а	5240	Ant2	53.98	2.68
NVNT	n20	5180	Sum	78.44	1.05
NVNT	n20	5200	Sum	78.04	1.08
NVNT	n20	5240	Sum	78.42	1.06
NVNT	n40	5190	Sum	64.90	1.88
NVNT	n40	5230	Sum	64.80	1.88
NVNT	ac20	5180	Sum	65.80	1.82
NVNT	ac20	5200	Sum	65.79	1.82
NVNT	ac20	5240	Sum	65.49	1.84
NVNT	ac40	5190	Sum	49.55	3.05
NVNT	ac40	5230	Sum	49.85	3.02
NVNT	ac80	5210	Sum	35.60	4.49
NVNT	ax20	5180	Sum	61.37	2.12
NVNT	ax20	5200	Sum	61.43	2.12
NVNT	ax20	5240	Sum	61.13	2.14
NVNT	ax40	5190	Sum	39.28	4.06
NVNT	ax40	5230	Sum	38.86	4.11
NVNT	ax80	5210	Sum	35.55	4.49

Duty Cycle NVNT a 5180MHz Ant1

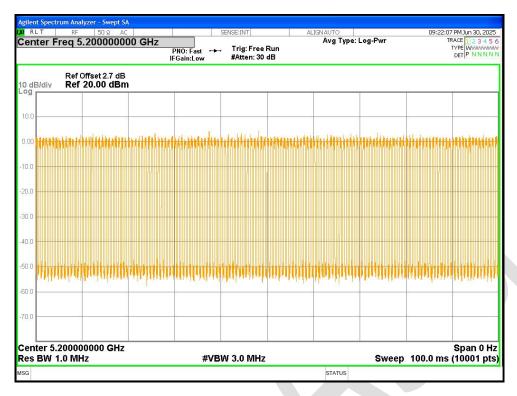
Duty Cycle NVNT a 5200MHz Ant1


Duty Cycle NVNT a 5240MHz Ant1

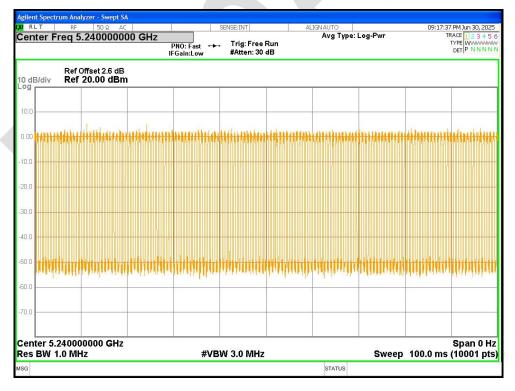
Blue Asia of Technical Services (Shenzhen) Co., Ltd.


Tel: +86-755-23059481

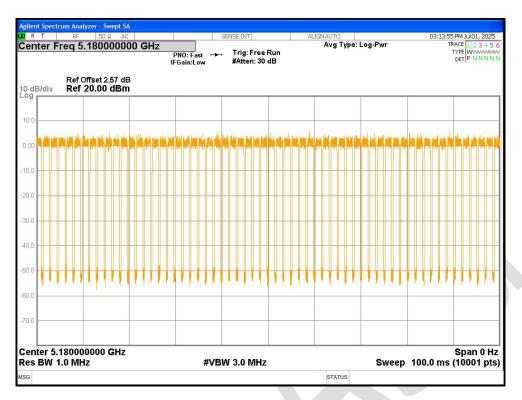
Email: marketing@cblueasia.com www.cblueasia.com



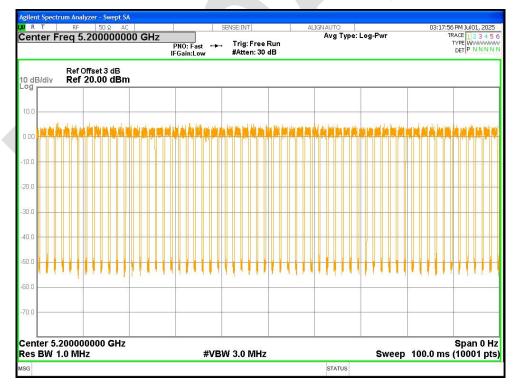
Duty Cycle NVNT a 5180MHz Ant2



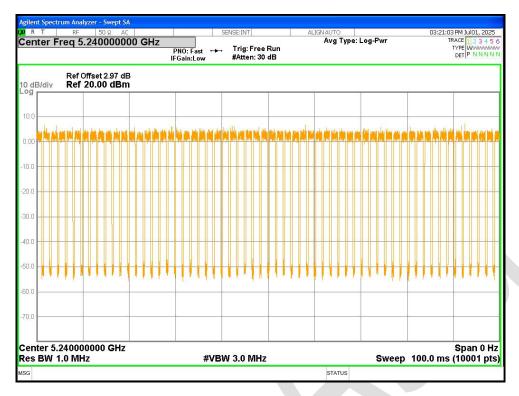
Duty Cycle NVNT a 5200MHz Ant2



Duty Cycle NVNT a 5240MHz Ant2



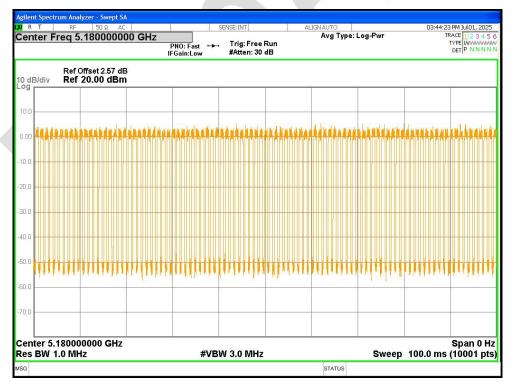
Duty Cycle NVNT n20 5180MHz Sum



Duty Cycle NVNT n20 5200MHz Sum

Duty Cycle NVNT n20 5240MHz Sum

Duty Cycle NVNT n40 5190MHz Sum



Duty Cycle NVNT n40 5230MHz Sum

Duty Cycle NVNT ac20 5180MHz Sum

Duty Cycle NVNT ac20 5200MHz Sum

Duty Cycle NVNT ac20 5240MHz Sum

Duty Cycle NVNT ac40 5190MHz Sum