

MEASUREMENT REPORT

FCC PART 15C

Report No.: S2025070248160101

Issue Date: 08-01-2025

Applicant: Tung Thih Electron(Xiamen) Co., Ltd
Address: No.26, Hua-Sheng Rd., Hu Li District, Xiamen City, Fujian, China
FCC ID: 2BP7T-22439
Product: IMMO
Model No.: IMMO-A
Trade Mark: NISSAN
FCC Classification: Low Power Communication Device Transmitter
FCC Rule Part(s): Part 15 Subpart C
Test Procedure(s): ANSI C63.10-2013
Result: Pass
Item Receipt Date: Jun. 04, 2025
Test Date: Jun. 30, 2025 ~ Jul. 23, 2025

Compiled By

(Stone Zhang)
Senior Test Engineer

Approved By

(Line Chen)
Engineer Manager

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s). The test report shall not be reproduced except in full without the written approval of Fangguang Inspection & Testing Co., Ltd. Wuxi Branch.

The test report must not be used by the client to claim product certifications, approval, or endorsement by NVLAP, NIST or any agency of U.S. Government.

Revision History

Report No.	Version	Description	Issue Date
S2025070248160101	Rev. 01	/	08-01-2025

CONTENTS

Description	Page
§2.1033 General Information	5
1. Introduction	6
1.1. Scope	6
1.2. Fangguang Test Location	6
2. Product Information	7
2.1. Equipment Description	7
2.2. Product Specification Subjective to this Standard	7
2.3. Device Capabilities	8
2.4. Description of Test Software	8
2.5. Test Mode	8
2.6. Test Configuration	8
2.7. EMI Suppression Device(s)/Modifications	8
2.8. EUT Photo	8
2.9. Labeling Requirements	9
2.10. Calculation with all conversion and correction factors used	9
3. Description of Test	10
3.1. Evaluation Procedure	10
4. Antenna Requirements	11
5. Test Equipment Calibration Date	12
6. Measurement Uncertainty	13
7. Test Result	14
7.1. Summary	14
7.2. AC Conducted Emissions Measurement	15
7.2.1. Test Limit	15
7.2.2. Test Setup	15
7.2.3. Test Result	15
7.3. Radiated Spurious Emissions	16
7.3.1. Test Limits	16
7.3.2. Test Procedures	16
7.3.3. Test Setup	19
7.3.4. Test Data Sample	20
7.3.5. Test Result	22
7.4. 20dB Bandwidth Measurement	27
7.4.1. Test Limit	27
7.4.2. Test Procedures	27

7.4.3. Test Setup	28
7.4.4. Test Result	29
8. Conclusion	30

§2.1033 General Information

Applicant:	Tung Thih Electron(Xiamen) Co., Ltd
Applicant Address:	No.26, Hua-Sheng Rd., Hu Li District, Xiamen City, Fujian, China
Manufacturer:	Tung Thih Electron(Xiamen) Co., Ltd
Manufacturer Address:	No.26, Hua-Sheng Rd., Hu Li District, Xiamen City, Fujian, China
Factory:	TUNG THIH ELECTRON (XIAMEN) CO., LTD
Factory Address:	No.9,11,13,15, Zhaogang Rd., Xiangbei Industrial Zone, XiangAn District, Xiamen, Fujian Province, P.R. China
Test Site:	Fangguang Inspection & Testing Co., Ltd.
LAB ID:	CN5037
Test Site Address:	No.8 Ningyun Rd., Xinwu District Wuxi, Jiangsu 214000 China
FCC Rule Part(s):	Part 15 Subpart C
FCC ID:	2BP7T-22439
Test Device Serial No.:	S/N.: / <input checked="" type="checkbox"/> Production <input type="checkbox"/> Pre-Production <input type="checkbox"/> Engineering
FCC Classification:	FCC Part 15 Low Power Communication Device Transmitter

1. Introduction

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2. Fangguang Test Location

These measurement tests were performed at the Fangguang Inspection and testing Co.,LTD located at No.8 Ningyun Rd., Xinwu District Wuxi, Jiangsu 214000 China. The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.10-2013.

2. Product Information

2.1. Equipment Description

Product Name:	IMMO
Model Name:	IMMO-A
Trade Mark:	NISSAN
Input Voltage Range:	DC 12V
Temperature Range:	-40°C~+85°C
Hardware Version:	1.0
Software Version:	1.0
Note:	This information is provided by the Customer and its authenticity is the responsibility of the Customer.

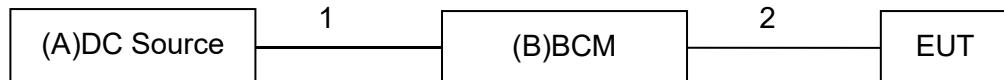
2.2. Product Specification Subjective to this Standard

Operating Frequency	125 kHz
Type of modulation	2ASK
Antenna Type:	Coil Antenna

Note: The maximum Antenna Gain was declared by the manufacturer.

2.3. Device Capabilities

This device contains the following capabilities: 125 kHz.


2.4. Description of Test Software

The EUT is tested in power on, turn on the switch, no test software.

2.5. Test Mode

Test Mode	Mode 1: Transmit by 125kHz
-----------	----------------------------

2.6. Test Configuration

2.7. EMI Suppression Device(s)/Modifications

No.	Name of equipment	Manufacturer	Model	Serial number	Note
A	DC Source	LW	PS-305DM	180704473	/
B	BCM	/	/	/	/

No.	Cable Type	Qty.	Shielded Type	Ferrite Core(Qty.)	Length
1	DC cable	1	No	0	0.80m
2	DC cable	1	No	0	0.84m

2.8. EUT Photo

The EUT external photo, internal photo and test setup photo, please refer to the plots in the S20250702481601-A1/A2/A3

2.9. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

2.10. Calculation with all conversion and correction factors used

For AC Line Conducted Emissions Test:

Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

For Radiated Emissions Below 1GHz Test:

Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

For Radiated Emissions Above 1GHz Test:

Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

3. Description of Test

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the “Filing were used in the measurement of the EUT.

Deviation from measurement procedure..........**None**

4. Antenna Requirements

Excerpt from §15.203 of the FCC Rules/Regulations:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- Use a unique coupling to the intentional radiator.

5. Test Equipment Calibration Date

Radiated Emission

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Loop Antenna	Schwarzbeck	FMZB 1519B	FWXGJC-2018-015	1 year	2026/06/21
Bi-Log Antenna	R&S	VULB 9168	FWXGJC-2024-055	1 year	2026/06/21
Broadband Horn Antenna	R&S	HF907	FWXGJC-2016-267-07	1 year	2026/06/21
Broadband Horn Antenna	Schwarzbeck	BBHA9170	FWXGJC-2018-016	1 year	2026/06/21
EMI Receiver	R&S	ESR26	FWXGJC-2016-267-01	1 year	2026/07/16
EXA Signal Analyzer	Keysight	N9010B	FWXGJC-2018-010	1 year	2026/07/16
Pre-Amplifier	Tonscend	TAP0118048	FWXGJC-2024-056	1 year	2026/06/21
Pre-Amplifier	Chengyi	EMC184055SE	FWXGJC-2018-018	1 year	2026/07/16
Thermohygrometer	Yuhuaze	HTC-1	FWXDA-2016-387	1 year	2025/09/03
Anechoic Chamber	SAEMC	FSAC318	FWXGJC-2024-035	3 year	2027/06/02

Test Software

Test Software	Manufacturer	Version	Asset No.	Function
JS32	tonscend	V5.0.0	/	Radiated Emission

Auxiliary Equipment

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Filter	Tonscend	ZBSF6	07247867	1 year	2026/07/16
Filter	Tonscend	ZHPF6	07233297	1 year	2026/07/16
Attenuator	Tonscend	10dB	/	1 year	2026/07/16
RF Cable	Tonscend	T-1	/	1 year	2026/07/16

6. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 2.68dB
Radiated Emission Measurement (9kHz - 30MHz)
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 3.06dB
Radiated Emission Measurement (30MHz -1GHz)
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 4.01dB
Radiated Emission Measurement (1-18GHz)
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 4.97dB
Radiated Emission Measurement (18-40GHz)
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 5.32dB
Spurious Emissions, Conducted
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 30MHz-1GHz: 1.00 dB 1GHz-12.75GHz: 1.30 dB
Output Power
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 0.60dB
Power Spectrum Density
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 0.80dB
Occupied Bandwidth
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 0.20MHz
Frequency Stability
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 0.1×10^{-6} MHz

7. Test Result

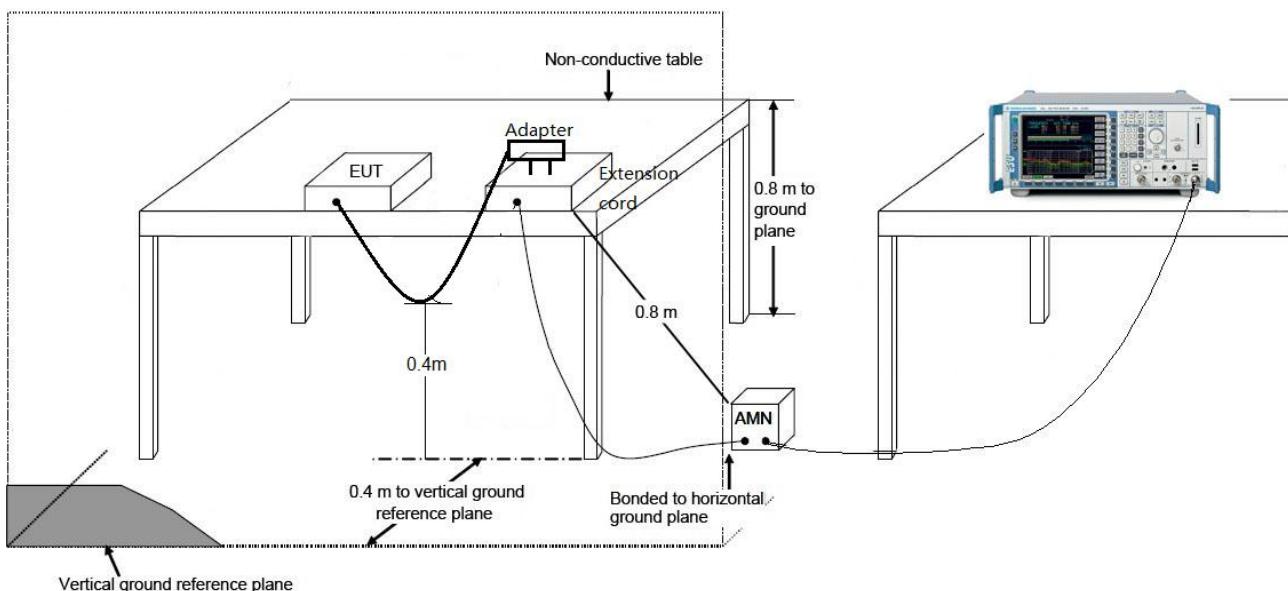
7.1. Summary

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.203	Antenna Requirement	Must meet the antenna requirement in 15.203	Radiated	Pass	Section 4
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.2
15.205 15.209	Radiated Spurious Emissions	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.3
15.215	20dB Emission Bandwidth	Must meet the requirement in 15.215	Radiated	Report only	Section 7.4

Notes:

- 1) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) N/A is not applicable to this Equipment. This EUT is no AC mains power ports.

7.2. AC Conducted Emissions Measurement


7.2.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits		
Frequency (MHz)	QP (dB μ V)	Average (dB μ V)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.2.2. Test Setup

7.2.3. Test Result

Note: Test is not applicable to this Equipment. This EUT is no AC mains power ports.

7.3. Radiated Spurious Emissions

7.3.1. Test Limits

Frequency (MHz)	Quasi-peak(μ V/m)	Measurement distance(m)	Quasi-peak(dB μ V/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

NOTE: (1) The lower limit shall apply at the transition frequencies.

7.3.2. Test Procedures

1) Sequence of testing 9kHz to 30MHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Pre measurement:

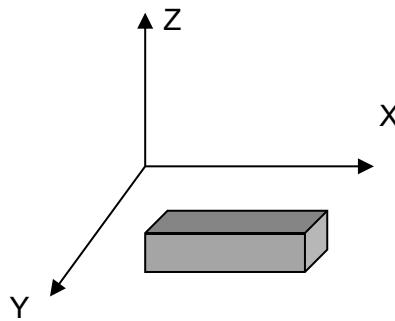
- The turntable rotates from 0° to 360°.
- The antenna height is 1 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30MHz to 1GHz**Setup:**

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The measurement distance is 3 meter.
- The EUT was set into operation.


Pre measurement:

- The turntable rotates from 0° to 360°.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 4 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

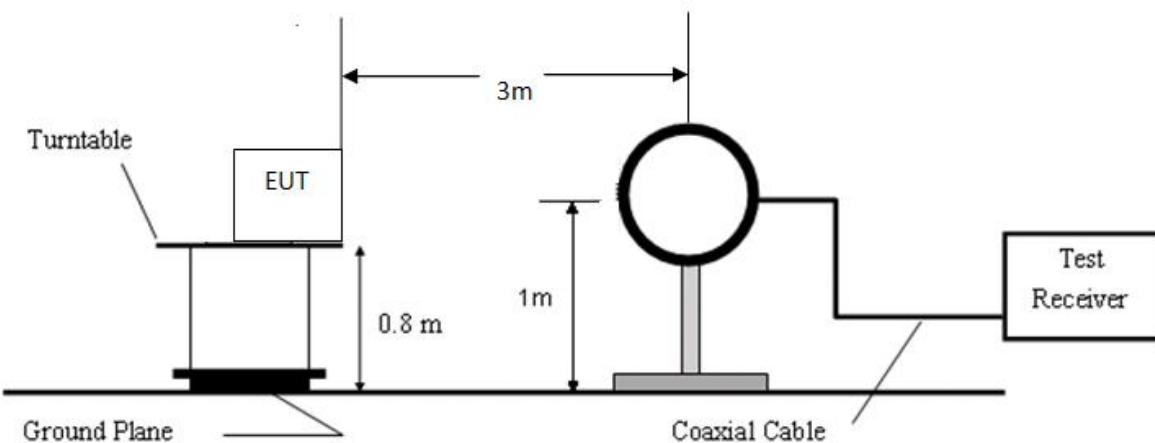
- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0° to 360° and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP detector with an EMI receiver.
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Y position. So the data shown was the Y position only.

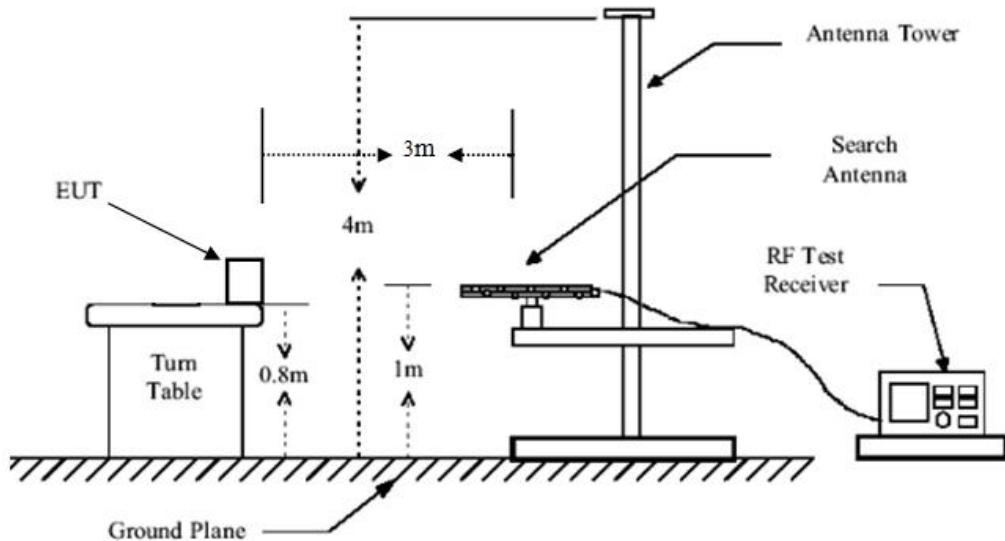
MEASURING INSTRUMENTS SETTING

9kHz to 150kHz

Receiver parameters	Setting
RBW	200Hz
VBW	200Hz
Start frequency	9kHz
Stop frequency	150kHz
Sweep time	Auto
Detector	QP
Trace mode	Max Hold


150kHz to 30MHz

Receiver parameters	Setting
RBW	9kHz
VBW	10kHz
Start frequency	150kHz
Stop frequency	30MHz
Sweep time	Auto
Detector	QP
Trace mode	Max Hold


30MHz to 1GHz

Receiver parameters	Setting
RBW	100kHz
VBW	300kHz
Start frequency	30MHz
Stop frequency	1GHz
Sweep time	Auto
Detector	QP
Trace mode	Max Hold

7.3.3. Test Setup

Figure 1. 9kHz to 30MHz radiated emissions test configuration

Figure 2. 30MHz to 1GHz radiated emissions test configuration

7.3.4. Test Data Sample

0.009MHz to 30MHz

NO.	Freq. [MHz]	Reading [dB μ V/m]	Level [dB μ V/m]	Factor [dB]	Limit [dB μ V/m]	Margin [dB]	Trace	Height [cm]	Angle [°]	Polarity	Verdict
1	XXX	28.60	50.34	21.74	112.63	62.29	PK	100	93	X	PASS
2	XXX	29.88	51.89	22.01	107.25	55.36	PK	100	93	X	PASS

Frequency (MHz) = Emission frequency in MHz

Ant.Pol. (Coplanar/ Coaxial) = Antenna polarization

Reading (dB μ V/m) = Uncorrected Analyzer / Receiver reading

Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Level (dB μ V/m) = Reading (dB μ V/m) + Factor (dB)

Limit (dB μ V/m) = Limit stated in standard

Margin (dB) = Limit (dB μ V/m) – Level (dB μ V/m)

PK = Peak Reading

30MHz to 1GHz

Suspected Data List										
NO.	Freq. [MHz]	Reading [dB μ V/m]	Level [dB μ V/m]	Factor [dB]	Limit [dB μ V/m]	Margin [dB]	Trace	Height [cm]	Angle [°]	Polarity
xxxx	xxxx	62.87	34.23	-28.64	40.00	5.77	PK	200	351	Horizontal

Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Reading [dB μ V/m]	Level [dB μ V/m]	QP Limit [dB μ V/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	
xxxx	xxxx	-28.64	54.02	25.38	40.00	14.62	100	196	Horizontal	

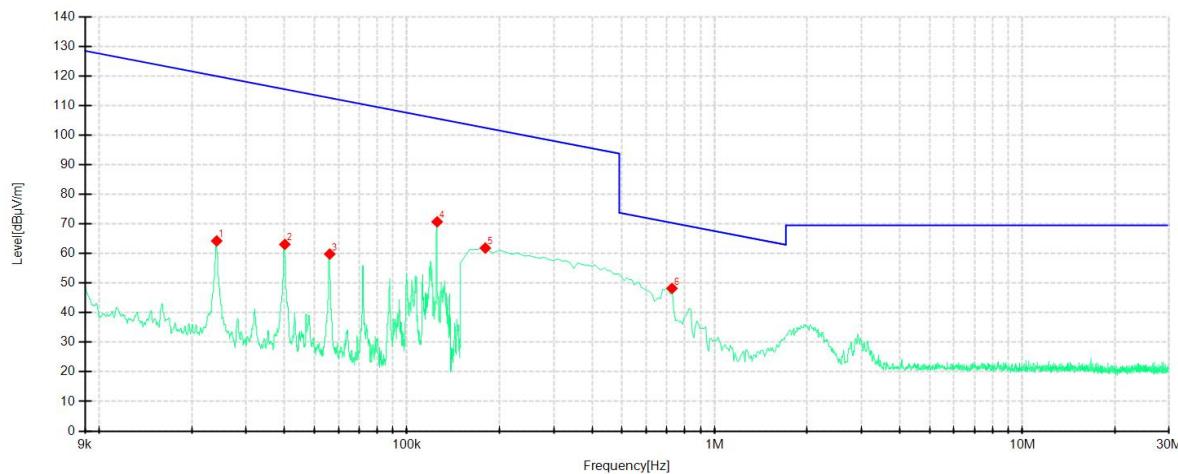
Frequency (MHz) = Emission frequency in MHz

Reading (dB μ V/m) = Uncorrected Analyzer / Receiver reading

Level (dB μ V/m) = Reading (dB μ V/m) + Factor (dB)

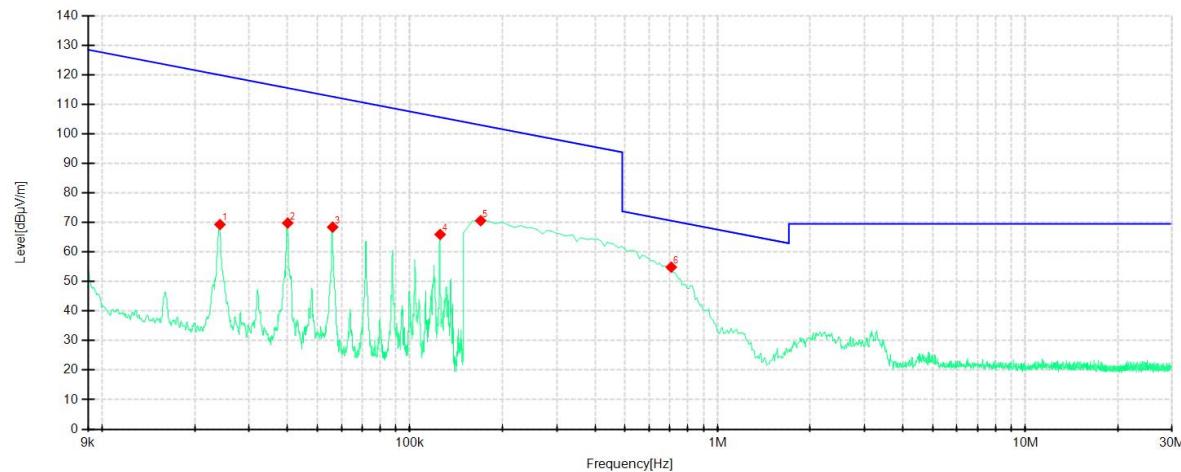
Limit (dB μ V/m) = Limit stated in standard

Margin (dB) = Limit(dB μ V/m)- Level(dB μ V/m)


QP = Quasi-peak Reading

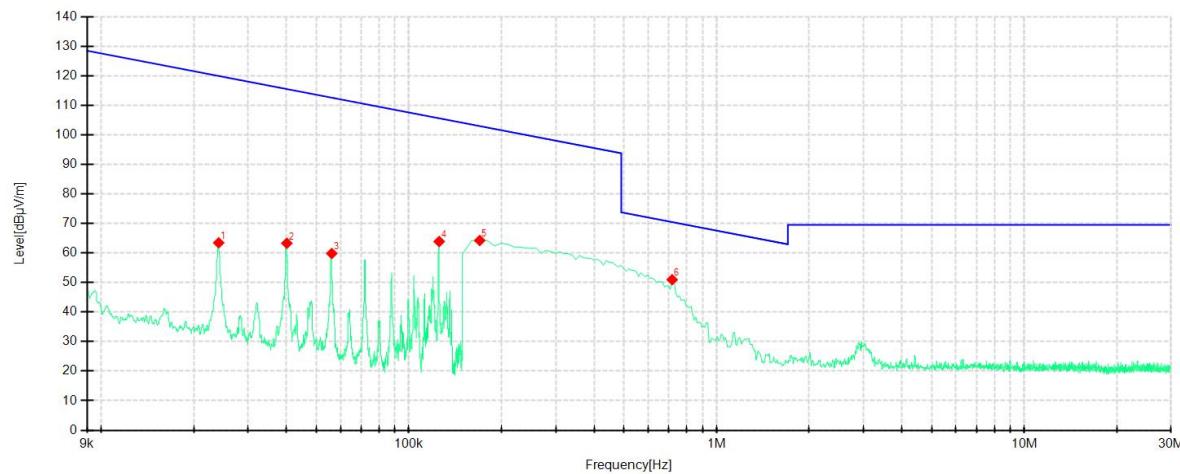
7.3.5. Test Result

9kHz-30MHz


Note: If the margin of the pre-test results is greater than 6dB, it meets the requirements of quasi peak or average values, and final testing is no longer required.

Project Information			
EUT:	IMMO	Model:	IMMO-A
Test Date:	2025-06-30	Voltage:	DC 12V
Environment:	Temp: 22.1°C; Humi:57%	Engineer:	Stone Zhang

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBμV/m]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Trace	Height [cm]	Angle [°]	Polarity
1	0.0241	44.26	64.26	20.00	119.97	55.71	PK	100	187	X
2	0.0401	42.80	63.10	20.30	115.54	52.44	PK	100	174	X
3	0.0561	39.34	59.83	20.49	112.62	52.79	PK	100	152	X
4	0.1254	50.49	70.73	20.24	105.64	34.91	PK	100	21	X
5	0.1799	41.66	61.86	20.20	102.51	40.65	PK	100	257	X
6	0.7271	27.96	48.22	20.26	70.37	22.15	PK	100	233	X


Note: The No.4 is the operating frequency.

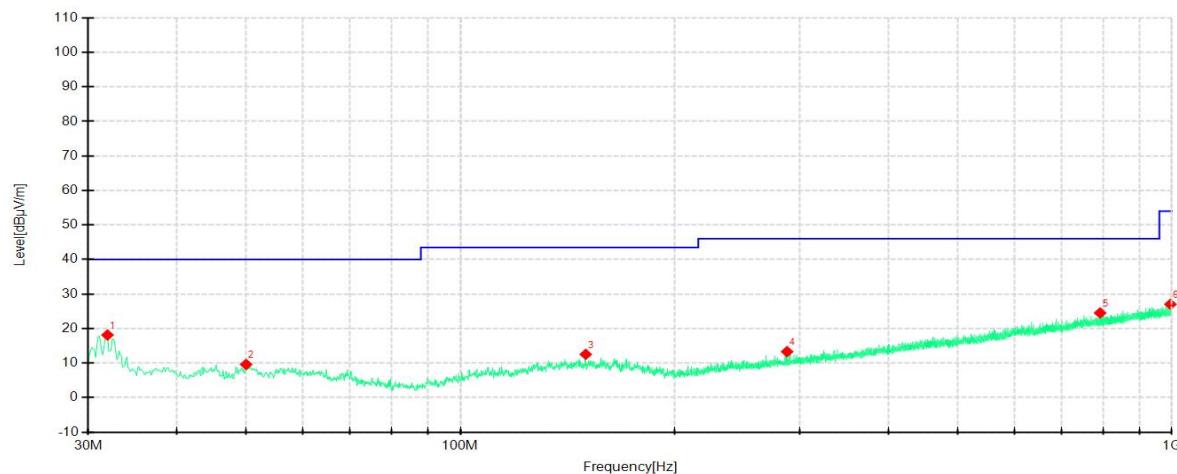
Suspected Data List

NO.	Freq. [MHz]	Reading [dBμV/m]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Trace	Height [cm]	Angle [°]	Polarity
1	0.0241	49.32	69.32	20.00	119.95	50.63	PK	100	149	Y
2	0.0401	49.52	69.82	20.30	115.55	45.73	PK	100	290	Y
3	0.0561	47.95	68.44	20.49	112.63	44.19	PK	100	315	Y
4	0.1254	45.72	65.96	20.24	105.64	39.68	PK	100	102	Y
5	0.1699	50.40	70.61	20.21	103.00	32.39	PK	100	328	Y
6	0.7072	34.64	54.88	20.24	70.61	15.73	PK	100	340	Y

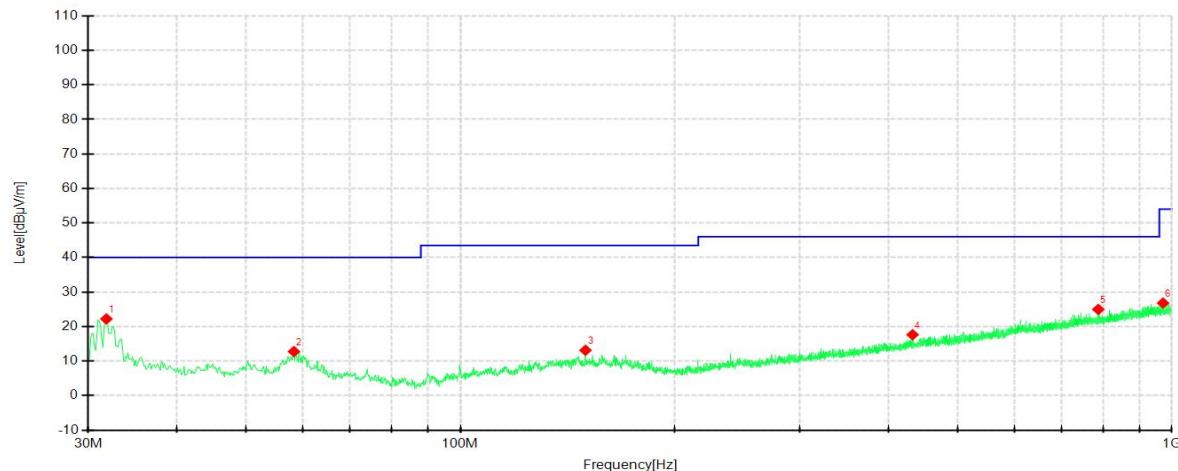
Note: The No.4 is the operating frequency.

Suspected Data List

NO.	Freq. [MHz]	Reading [dBμV/m]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Trace	Height [cm]	Angle [°]	Polarity
1	0.0241	43.48	63.48	20.00	119.97	56.49	PK	100	186	Z
2	0.0401	43.01	63.31	20.30	115.54	52.23	PK	100	81	Z
3	0.0561	39.36	59.85	20.49	112.62	52.77	PK	100	68	Z
4	0.1254	43.67	63.91	20.24	105.64	41.73	PK	100	353	Z
5	0.1699	44.05	64.26	20.21	103.00	38.74	PK	100	315	Z
6	0.7172	30.73	50.98	20.25	70.49	19.51	PK	100	325	Z


Note: The No.4 is the operating frequency.

30MHz- 1GHz


Note: If the margin of the pre test results is greater than 6db, it meets the requirements of quasi peak values, and final testing is no longer required.

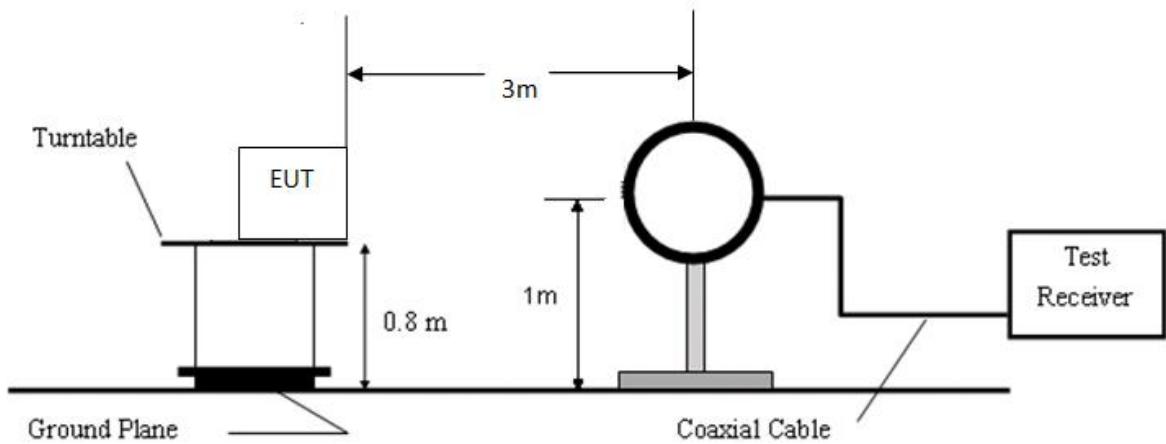
The chart below shows the highest readings taken from the final data.

Project Information			
EUT:	IMMO	Model:	IMMO-A
Test Date:	2025-06-30	Voltage:	DC 12V
Environment:	Temp: 22.1°C; Humi:57%	Engineer:	Stone Zhang

Suspected Data List										
NO.	Freq. [MHz]	Reading [dB μ V/m]	Level [dB μ V/m]	Factor [dB]	Limit [dB μ V/m]	Margin [dB]	Trace	Height [cm]	Angle [°]	Polarity
1	31.9402	47.46	18.12	-29.34	40.00	21.88	PK	200	339	Horizontal
2	50.0088	38.43	9.60	-28.83	40.00	30.40	PK	100	286	Horizontal
3	150.0525	40.89	12.53	-28.36	43.50	30.97	PK	200	50	Horizontal
4	287.8097	41.24	13.29	-27.95	46.00	32.71	PK	100	21	Horizontal
5	792.6366	41.46	24.51	-16.95	46.00	21.49	PK	200	300	Horizontal
6	995.0281	41.39	27.01	-14.38	54.00	26.99	PK	100	206	Horizontal

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBμV/m]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Trace	Height [cm]	Angle [°]	Polarity
1	31.8190	51.54	22.20	-29.34	40.00	17.80	PK	100	312	Vertical
2	58.3760	42.17	12.76	-29.41	40.00	27.24	PK	100	115	Vertical
3	149.9312	41.48	13.12	-28.36	43.50	30.38	PK	100	207	Vertical
4	431.9940	40.66	17.62	-23.04	46.00	28.38	PK	100	142	Vertical
5	787.9072	41.96	24.96	-17.00	46.00	21.04	PK	100	312	Vertical
6	971.5027	41.36	26.80	-14.56	54.00	27.20	PK	100	115	Vertical

7.4. 20dB Bandwidth Measurement

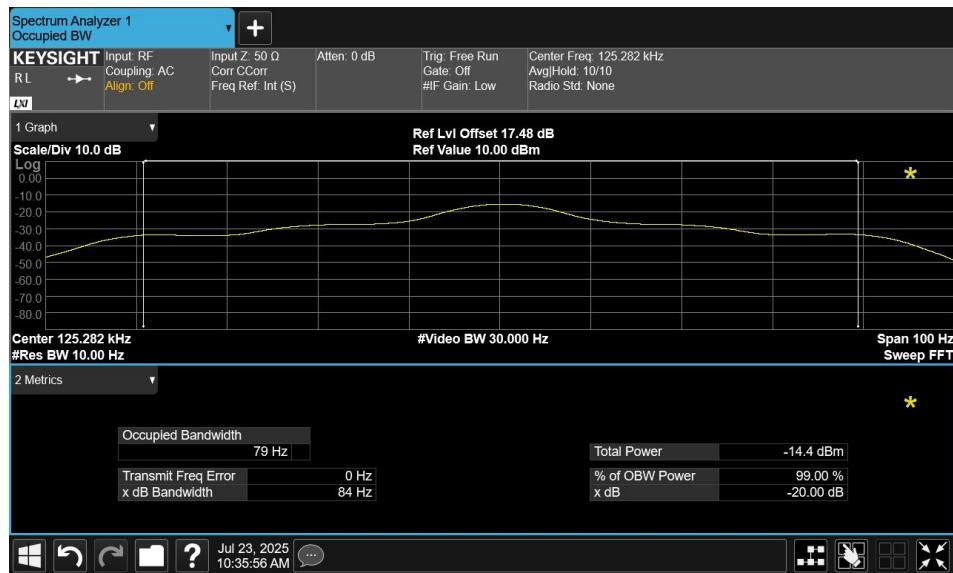

7.4.1. Test Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

7.4.2. Test Procedures

- 1) The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- 2) If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- 3) If the EUT is a floor standing device, it is placed on the ground.
- 4) Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- 5) The measurement distance is 3 meter.
- 6) The EUT was set into operation.
- 7) Adjust the test instrument for the following setting.
RBW: 1Hz.
VBW: 3 times of the RBW.
Detector: Peak.
Sweep time: Auto.
- 8) Allow trace to fully stabilize.

7.4.3. Test Setup



7.4.4. Test Result

Project Information			
EUT:	IMMO	Model:	IMMO-A
Test Date:	2025-07-23	Voltage:	DC 12V
Environment:	Temp: 23.4°C; Humi:57%	Engineer:	Stone Zhang

Note: This report records the worst polarity results of the loop antenna.

Frequency (kHz)	20dB Bandwidth (Hz)	limit	Test Result
125	84	Report only	Report only

8. Conclusion

The data collected relate only the item(s) tested and show that the **IMMO** is in compliance with Part 15C of the FCC Rules.

Statement

1. This report is invalid for the following states: without the special inspection and testing stamp or the official stamp of our institution; without the signature of the report authorized officer; if the report is altered.
2. It is forbidden to copy partial contents of the report except in full without the approval of our institution.
3. The client shall provide the test sample(s) and commission information and be responsible for their authenticity.
4. The report content is only applicable to the tested sample(s) this time.
5. If there are any objections to the report content, please submit them to our company in writing within 15 days from the date of receiving the report.
6. If the reports include both Chinese and English versions, when there are any inconsistencies caused by language, the Chinese version shall prevail.
7. This report is issued by the following laboratory premises:
3/F., Comprehensive Laboratory Building, No.8, Ningyun Road, Xinwu District, Wuxi, Jiangsu, China (Ningyun Road Laboratory)

—This page is blank below this line —