

# Report on the FCC and IC Testing of the Giesecke+Devrient GmbH

Model: IoTgo® Track-Solar rail

In accordance with FCC 47 CFR Part 1.1310,  
Part 2.1093 and RSS-102



Product Service

Choose certainty.  
Add value.

Prepared for: Giesecke+Devrient GmbH  
Prinzregentenstr. 161  
81677 München  
Germany

FCC ID: 2BP32-GDTSR2501  
Contains FCC ID: XMR202005BG95M5  
IC: 34086-GDTSR2501  
Contains IC: 10224A-BG95M5

## COMMERCIAL-IN-CONFIDENCE

Date: 2025-07-23

Document Number: TR-713356368-01 | Revision 3

| RESPONSIBLE FOR      | NAME            | DATE       | SIGNATURE                                                                                                |
|----------------------|-----------------|------------|----------------------------------------------------------------------------------------------------------|
| Project Management   | Alexander Deese | 2025-07-23 | <br>SIGN-ID 1061342 |
| Authorised Signatory | Alex Fink       | 2025-07-24 | <br>SIGN-ID 1061448 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

### ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 1.1310, Part 2.1093 and RSS 102 Issue 6 (December 2023). The sample tested was found to comply with the requirements defined in the applied rules.

| RESPONSIBLE FOR | NAME            | DATE       |                                                                                                          |
|-----------------|-----------------|------------|----------------------------------------------------------------------------------------------------------|
| Testing         | Alexander Deese | 2025-07-23 | <br>SIGN-ID 1061342 |

Laboratory Accreditation Laboratory recognition ISED Canada test site registration  
DAkkS Reg. No. D-PL-11321-11-03 Registration No. BNetzA-CAB-16/21-15 3050A-2  
DAkkS Reg. No. D-PL-11321-11-04

### EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 1.1310 : 2020 Part 2.1093 : 2021 and RSS 102 Issue 6 (December 2023)

### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2025 TÜV SÜD Product Service.

Trade Register Munich  
HRB 85742  
VAT ID No. DE129484267  
Information pursuant to Section 2(1)  
DL-InfoV (Germany) at  
[www.tuev-sued.com/im](http://www.tuev-sued.com/im)

Managing Directors:  
Walter Reithmaier (CEO)  
Patrick van Welj

Phone: +49 (0) 9421 55 22-0  
Fax: +49 (0) 9421 55 22-199  
[www.tuev-sued.de](http://www.tuev-sued.de)

TÜV SÜD Product Service GmbH  
Äußere Frühlingstraße 45  
94315 Straubing  
Germany



## Contents

|          |                                        |           |
|----------|----------------------------------------|-----------|
| <b>1</b> | <b>Report Summary .....</b>            | <b>2</b>  |
| 1.1      | Report Modification Record.....        | 2         |
| 1.2      | Introduction .....                     | 2         |
| 1.3      | Brief Summary of Results.....          | 3         |
| 1.4      | Product Information.....               | 4         |
| 1.5      | Test Configuration.....                | 5         |
| 1.6      | Modes of Operation.....                | 5         |
| 1.7      | EUT Modification Record .....          | 6         |
| 1.8      | Test Location .....                    | 6         |
| <b>2</b> | <b>Test Details.....</b>               | <b>7</b>  |
| 1.1      | RF Exposure Exemption .....            | 7         |
| <b>3</b> | <b>Photographs of Test Setups.....</b> | <b>13</b> |
| <b>4</b> | <b>Measurement Uncertainty .....</b>   | <b>14</b> |

## 1 Report Summary

### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Revision | Description of Change                                                                                                                                            | Date of Issue |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 0        | First Issue                                                                                                                                                      | 2025-06-26    |
| 1        | Type designation changed to "IoTgo® Track-Solar rail"<br>Hardware and Software Version added                                                                     | 2025-06-27    |
| 2        | Antenna type and gain added to info in 1.4.<br>Chapter 1.6 and 2.1, mode for GSM corrected to band 850.<br>Exemption calculation at 20cm and ERP for part 47CFR. | 2025-07-17    |
| 3        | MPE calculation according to 47 CFR, Part 1, § 1.1310(e)(1) and RSS-102, section 5.3.2.                                                                          | 2025-07-23    |

Table 1

### 1.2 Introduction

|                               |                                                                                         |
|-------------------------------|-----------------------------------------------------------------------------------------|
| Applicant                     | Giesecke+Devrient GmbH                                                                  |
| Manufacturer                  | Giesecke+Devrient GmbH                                                                  |
| Model Number(s)               | IoTgo® Track-Solar rail                                                                 |
| Serial Number(s)              | ---                                                                                     |
| Hardware Version(s)           | HWR: 101 (V1.01)                                                                        |
| Software Version(s)           | APP Firmware Version: R00A03V04                                                         |
| Number of Samples Tested      | 1                                                                                       |
| Test Specification/Issue/Date | FCC 47 CFR Part 1.1310 : 2020 and Part 2.1093 : 2021<br>RSS 102 Issue 6 (December 2023) |
| Test Plan/Issue/Date          | ---                                                                                     |
| Order Number                  | 8185527-a                                                                               |
| Date                          | 2025-04-29                                                                              |
| Date of Receipt of EUT        | 2025-04-08                                                                              |
| Start of Test                 | 2025-05-08                                                                              |
| Finish of Test                | 2025-06-12                                                                              |
| Name of Engineer(s)           | Alexander Deese                                                                         |
| Related Document(s)           | 447498 D04 Interim General RF Exposure Guidance v01<br>ANSI C63.10 (2013)               |



### 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 1.1310, Part 2.1093 and RSS-102 is shown below.

| Section                                                           | Specification Clause | Test Description       | Result | Comments/Base Standard |
|-------------------------------------------------------------------|----------------------|------------------------|--------|------------------------|
| Configuration and Mode: Continuously Transmitting with modulation |                      |                        |        |                        |
| 2.1                                                               | 1.1310<br>5.3.2      | RF Exposure Evaluation | Pass   | KDB 447498 D01 v07     |

**Table 2**



#### 1.4 Product Information

Solar-based IoT Tracking Devices with Bluetooth and LTE-M / GSM.

*Supply Voltage:* 3.7 V, Battery supplied

*Supply Frequency:* DC

*Highest clock frequency (radio part):* 2480 MHz

*Highest clock frequency (non-radio part):* ---

*Antenna Gain:* Bluetooth: Chip Antenna ACA-5036-A2-CC-S, Peak Gain 3 dBi  
Cellular: Quectel YYW00A2BA



Giesecke+Devrient IoT Solutions GmbH, Max-Planck-Str. 8, D-85716 Unterschleissheim



## 1.5 Test Configuration

The EUT was 3.7 V / DC battery supplied. The radio modules were transmitting continuously. Radio frequency of Bluetooth was configured via serial commands provided by the customer. Radio Bands and Channels of the Cellular were configured via test base station (CMW500).

## 1.6 Modes of Operation

### Mode 1:

Ch 37; 2402 MHz; BW 2 MHz; Power setting “7”; Continuously modulated carrier  
LTE-M, Band 2, 1880 MHz, BW 1.4 MHz

### Mode 2:

Ch 17; 2440 MHz; BW 2 MHz; Power setting “7”; Continuously modulated carrier  
LTE-M, Band 5, 836.5 MHz, BW 1.4 MHz

### Mode 3:

BLE, Ch 37; 2402 MHz; BW 2 MHz; Power setting “7”; Continuously modulated carrier  
GSM, Band 850, 837 MHz

### 1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.  
The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State | Description of Modification still fitted to EUT | Modification Fitted By | Date Modification Fitted |
|--------------------|-------------------------------------------------|------------------------|--------------------------|
| 0                  | As supplied by the customer (S/N: ---)          | Not Applicable         | Not Applicable           |

**Table 3**

### 1.8 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

| Test Name                                                         | Name of Engineer(s) |
|-------------------------------------------------------------------|---------------------|
| Configuration and Mode: Continuously Transmitting with modulation |                     |
| RF Exposure Evaluation                                            | Alexander Deese     |

**Table 4**

Office Address:

Äußere Frühlingstraße 45  
94315 Straubing  
Germany



## 2 Test Details

### 1.1 RF Exposure Exemption

#### 1.1.1 Specification Reference

47 CFR, Part 1, § 1.1310 : 2020  
RSS-102, Issue 6 (2023)

#### 1.1.2 Equipment under Test and Modification State

IoTgo® Track-Solar rail; S/N ---; Modification state 0

#### 1.1.3 Date of Test

2025-05-08 to 2025-06-12

#### 1.1.4 Environmental Conditions

|                     |       |
|---------------------|-------|
| Ambient Temperature | 21 °C |
| Relative Humidity   | 39 %  |



### 1.1.5 Specification Limits

#### 47 CFR, Part 1, § 1.1310(e)(1)

Table 1 to [§ 1.1310\(e\)\(1\)](#) — Limits for Maximum Permissible Exposure (MPE)

| Frequency range (MHz)                                           | Electric field strength (V/m) | Magnetic field strength (A/m) | Power density (mW/cm <sup>2</sup> ) | Averaging time (minutes) |
|-----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|--------------------------|
| <b>(i) Limits for Occupational/Controlled Exposure</b>          |                               |                               |                                     |                          |
| 0.3-3.0                                                         | 614                           | 1.63                          | *(100)                              | ≤6                       |
| 3.0-30                                                          | 1842/f                        | 4.89/f                        | *(900/f <sup>2</sup> )              | <6                       |
| 30-300                                                          | 61.4                          | 0.163                         | 1.0                                 | <6                       |
| 300-1,500                                                       |                               |                               | f/300                               | <6                       |
| 1,500-100,000                                                   |                               |                               | 5                                   | <6                       |
| <b>(ii) Limits for General Population/Uncontrolled Exposure</b> |                               |                               |                                     |                          |
| 0.3-1.34                                                        | 614                           | 1.63                          | *(100)                              | <30                      |
| 1.34-30                                                         | 824/f                         | 2.19/f                        | *(180/f <sup>2</sup> )              | <30                      |
| 30-300                                                          | 27.5                          | 0.073                         | 0.2                                 | <30                      |
| 300-1,500                                                       |                               |                               | f/1500                              | <30                      |
| 1,500-100,000                                                   |                               |                               | 1.0                                 | <30                      |

f = frequency in MHz. \* = Plane-wave equivalent power density.

### RSS-102, section 5.3.2

Table 7: RF field strength and power density limits for devices used by the general public (uncontrolled environment)

| Frequency range (MHz) | Electric field (V <sub>RMS</sub> /m) | Magnetic field (A <sub>RMS</sub> /m) | Power density (W/m <sup>2</sup> ) | Reference period (minutes) |
|-----------------------|--------------------------------------|--------------------------------------|-----------------------------------|----------------------------|
| 10-20                 | 27.46                                | 0.0728                               | 2                                 | 6                          |
| 20-48                 | 58.07 / $f^{0.25}$                   | 0.1540 / $f^{0.25}$                  | 8.944 / $f^{0.5}$                 | 6                          |
| 48-300                | 22.06                                | 0.05852                              | 1.291                             | 6                          |
| 300-6000              | 3.142 $f^{0.3417}$                   | 0.008335 $f^{0.3417}$                | 0.02619 $f^{0.6834}$              | 6                          |
| 6000-15000            | 61.4                                 | 0.163                                | 10                                | 6                          |
| 15000-150000          | 61.4                                 | 0.163                                | 10                                | 616000/ $f^{1.2}$          |
| 150000-300000         | 0.158 $f^{0.5}$                      | $4.21 \times 10^{-4} f^{0.5}$        | $6.67 \times 10^{-5} f$           | 616000/ $f^{1.2}$          |

**Note:**  $f$  is frequency in MHz.

### 1.1.6 Test Method

MPE calculation for a test separation distance of 20 cm. The calculations are based on values taken from test reports TR-713356368-00 and R2005A0283-M1.

### 1.1.7 Test Results

#### 47 CFR

Evaluation according to 47 CFR, Part 1, § 1.1310(e)(1)

##### Bluetooth:

| Frequency [MHz] | EIRP [dBm] | EIRP [mW] | Power Spectral Density at 20 cm [mW/cm <sup>2</sup> ] | Limit [mW/cm <sup>2</sup> ] | Ratio     |
|-----------------|------------|-----------|-------------------------------------------------------|-----------------------------|-----------|
| 2402            | 4.604      | 2.887     | 0.0005744                                             | 1.0                         | 0.0005744 |
| 2440            | 4.666      | 2.928     | 0.0005825                                             | 1.0                         | 0.0005825 |
| 2480            | 4.735      | 2.975     | 0.0005919                                             | 1.0                         | 0.0005919 |

##### Cellular:

| Band           | Frequency [MHz] | Conducted Output Power [dBm] | Antenna Gain [dBi] | EIRP [dBm] | EIRP [mW] | Power Spectral Density at 20 cm [mW/cm <sup>2</sup> ] | Limit [mW/cm <sup>2</sup> ] | Ratio   |
|----------------|-----------------|------------------------------|--------------------|------------|-----------|-------------------------------------------------------|-----------------------------|---------|
| GSM850         | 836.6           | 25.970                       | 1.71               | 27.68      | 586.1     | 0.1166                                                | 2.788                       | 0.04181 |
| GSM1900        | 1879.8          | 22.970                       | 3.74               | 26.71      | 468.8     | 0.09327                                               | 1.0                         | 0.09326 |
| NB-IOT Band 2  | 1880            | 25.000                       | 3.74               | 28.74      | 748.2     | 0.1488                                                | 1.0                         | 0.1488  |
| NB-IOT Band 4  | 1732.5          | 25.000                       | 3.74               | 28.74      | 748.2     | 0.1488                                                | 1.0                         | 0.1488  |
| NB-IOT Band 5  | 836.5           | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 2.788                       | 0.03344 |
| NB-IOT Band 12 | 707.5           | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 2.358                       | 0.03954 |
| NB-IOT Band 13 | 782             | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 2.606                       | 0.03578 |
| NB-IOT Band 25 | 1882.5          | 25.000                       | 3.74               | 28.74      | 748.2     | 0.1488                                                | 1.0                         | 0.1488  |
| NB-IOT Band 66 | 1745            | 25.000                       | 3.74               | 28.74      | 748.2     | 0.1488                                                | 1.0                         | 0.1488  |
| NB-IOT Band 71 | 680.5           | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 2.268                       | 0.04111 |
| NB-IOT Band 85 | 707             | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 2.356                       | 0.03957 |

##### Evaluation of multiple frequency sources:

$$0.0005919 + 0.1488 = 0.1494 < 1$$

No further evaluation necessary.



## RSS-102

Evaluation according to RSS 102 section 5.3.2

### Bluetooth:

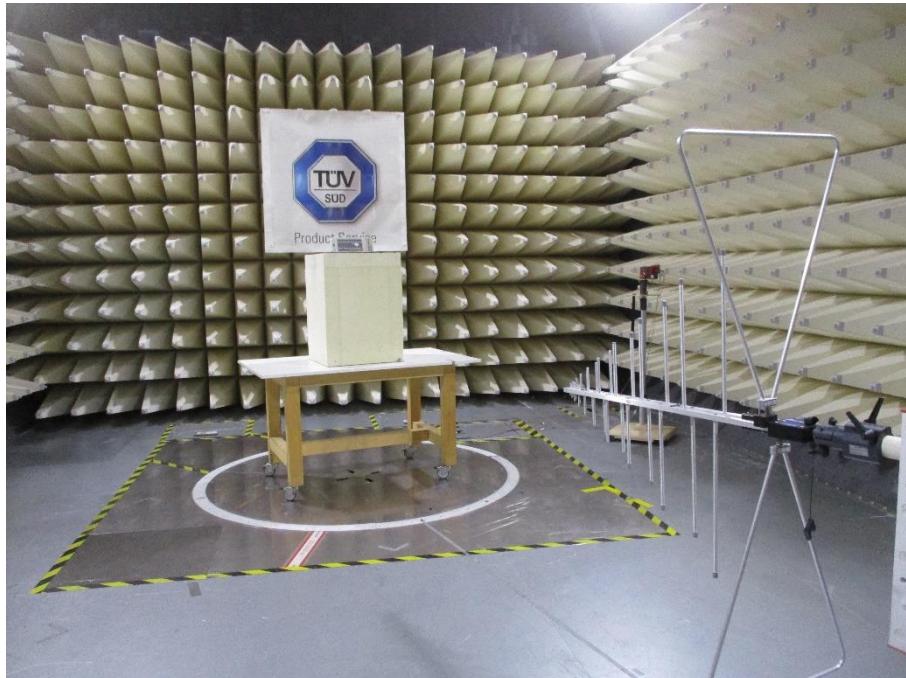
| Frequency [MHz] | EIRP [dBm] | EIRP [mW] | Power Spectral Density at 20 cm [mW/cm <sup>2</sup> ] | Limit [mW/cm <sup>2</sup> ] | Ratio    |
|-----------------|------------|-----------|-------------------------------------------------------|-----------------------------|----------|
| 2402            | 4,604      | 2,887     | 0,0005744                                             | 0.5350                      | 0.001073 |
| 2440            | 4,666      | 2,928     | 0,0005825                                             | 0.5408                      | 0.001077 |
| 2480            | 4,735      | 2,975     | 0,0005919                                             | 0.5468                      | 0.001082 |

### Cellular:

| Band           | Frequency [MHz] | Conducted Output Power [dBm] | Antenna Gain [dBi] | EIRP [dBm] | EIRP [mW] | Power Spectral Density at 20 cm [mW/cm <sup>2</sup> ] | Limit [mW/cm <sup>2</sup> ] | Ratio  |
|----------------|-----------------|------------------------------|--------------------|------------|-----------|-------------------------------------------------------|-----------------------------|--------|
| GSM850         | 836.6           | 25.970                       | 1.71               | 27.68      | 586.1     | 0.1166                                                | 0.2602                      | 0.4480 |
| GSM1900        | 1879.8          | 22.970                       | 3.74               | 26.71      | 468.8     | 0.09327                                               | 0.4525                      | 0.2060 |
| NB-IOT Band 2  | 1880            | 25.000                       | 3.74               | 28.74      | 748.2     | 0.1488                                                | 0.4525                      | 0.3288 |
| NB-IOT Band 4  | 1732.5          | 25.000                       | 3.74               | 28.74      | 748.2     | 0.1488                                                | 0.4280                      | 0.3477 |
| NB-IOT Band 5  | 836.5           | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 0.2602                      | 0.3584 |
| NB-IOT Band 12 | 707.5           | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 0.2320                      | 0.4018 |
| NB-IOT Band 13 | 782             | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 0.2485                      | 0.3752 |
| NB-IOT Band 25 | 1882.5          | 25.000                       | 3.74               | 28.74      | 748.2     | 0.1488                                                | 0.4529                      | 0.3285 |
| NB-IOT Band 66 | 1745            | 25.000                       | 3.74               | 28.74      | 748.2     | 0.1488                                                | 0.4301                      | 0.3460 |
| NB-IOT Band 71 | 680.5           | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 0.2259                      | 0.4127 |
| NB-IOT Band 85 | 707             | 25.000                       | 1.71               | 26.71      | 468.8     | 0.09327                                               | 0.2319                      | 0.4020 |

### Evaluation of multiple frequency sources:

$$0.001082 + 0.4480 = 0.4491 < 1$$


No further evaluation necessary.

### 1.1.8 Test Location and Test Equipment

The test was carried out in a non-shielded room and in semi anechoic room no. 3:

| Instrument                   | Manufacturer    | Type No     | TE No | Calibration Period (months) | Calibration Due |
|------------------------------|-----------------|-------------|-------|-----------------------------|-----------------|
| Signal and Spectrum Analyzer | Rohde & Schwarz | FSV40       | 20219 | 24                          | 2026-03-31      |
| Switching device             | Rohde & Schwarz | OSP120      | 20248 | 36                          | 2026-07-31      |
| Switching device             | Rohde & Schwarz | OSP120      | 38807 | 36                          | 2026-08-31      |
| Climatic test chamber        | ESPEC           | PL-4 J      | 38958 | 18                          | 2026-09-06      |
| EMI test receiver            | Rohde & Schwarz | ESR7        | 61814 | 12                          | 2025-06-30      |
| Signal and Spectrum Analyser | Rohde & Schwarz | FSW43       | 53496 | 12                          | 2026-04-30      |
| Loop antenna                 | Schwarzbeck     | FMZB 1519 C | 72526 | 36                          | 2028-01-31      |
| TRILOG Broadband Antenna     | Schwarzbeck     | VULB 9163   | 19691 | 36                          | 2027-04-30      |
| Double Ridged Horn Antenna   | Rohde & Schwarz | HF907       | 64145 | 24                          | 2025-06-30      |

### 3 Photographs of Test Setups



## 4 Measurement Uncertainty

For a 95% confidence level. the measurement uncertainties for defined systems are:

| Radio Testing                           |      |                                     |      |
|-----------------------------------------|------|-------------------------------------|------|
| Test Name                               | kp   | Expanded Uncertainty                | Note |
| Occupied Bandwidth                      | 2.0  | $\pm 1.14 \%$                       | 2    |
| RF-Frequency error                      | 1.96 | $\pm 1 \cdot 10^{-7}$               | 7    |
| RF-Power. conducted carrier             | 2    | $\pm 0.079 \text{ dB}$              | 2    |
| RF-Power uncertainty for given BER      | 1.96 | $+0.94 \text{ dB} / -1.05$          | 7    |
| RF power. conducted. spurious emissions | 1.96 | $+1.4 \text{ dB} / -1.6 \text{ dB}$ | 7    |
| RF power. radiated                      |      |                                     |      |
| 25 MHz – 4 GHz                          | 1.96 | $+3.6 \text{ dB} / -5.2 \text{ dB}$ | 8    |
| 1 GHz – 18 GHz                          | 1.96 | $+3.8 \text{ dB} / -5.6 \text{ dB}$ | 8    |
| 18 GHz – 26.5 GHz                       | 1.96 | $+3.4 \text{ dB} / -4.5 \text{ dB}$ | 8    |
| 40 GHz – 170 GHz                        | 1.96 | $+4.2 \text{ dB} / -7.1 \text{ dB}$ | 8    |
| Spectral Power Density. conducted       | 2.0  | $\pm 0.53 \text{ dB}$               | 2    |
| Maximum frequency deviation             |      |                                     |      |
| 300 Hz – 6 kHz                          | 2    | $\pm 2.89 \%$                       | 2    |
| 6 kHz – 25 kHz                          | 2    | $\pm 0.2 \text{ dB}$                | 2    |
| Maximum frequency deviation for FM      | 2    | $\pm 2.89 \%$                       | 2    |
| Adjacent channel power 25 MHz – 1 GHz   | 2    | $\pm 2.31 \%$                       | 2    |
| Temperature                             | 2    | $\pm 0.39 \text{ K}$                | 4    |
| (Relative) Humidity                     | 2    | $\pm 2.28 \%$                       | 2    |
| DC- and low frequency AC voltage        |      |                                     |      |
| DC voltage                              | 2    | $\pm 0.01 \%$                       | 2    |
| AC voltage up to 1 kHz                  | 2    | $\pm 1.2 \%$                        | 2    |
| Time                                    | 2    | $\pm 0.6 \%$                        | 2    |

Table 5

| Radio Interference Emission Testing               |    |                      |      |
|---------------------------------------------------|----|----------------------|------|
| Test Name                                         | kp | Expanded Uncertainty | Note |
| Conducted Voltage Emission                        |    |                      |      |
| 9 kHz to 150 kHz (50Ω/50µH AMN)                   | 2  | ± 3.8 dB             | 1    |
| 150 kHz to 30 MHz (50Ω/50µH AMN)                  | 2  | ± 3.4 dB             | 1    |
| 100 kHz to 200 MHz (50Ω/5µH AMN)                  | 2  | ± 3.6 dB             | 1    |
| Discontinuous Conducted Emission                  |    |                      |      |
| 9 kHz to 150 kHz (50Ω/50µH AMN)                   | 2  | ± 3.8 dB             | 1    |
| 150 kHz to 30 MHz (50Ω/50µH AMN)                  | 2  | ± 3.4 dB             | 1    |
| Conducted Current Emission                        |    |                      |      |
| 9 kHz to 200 MHz                                  | 2  | ± 3.5 dB             | 1    |
| Magnetic Fieldstrength                            |    |                      |      |
| 9 kHz to 30 MHz (with loop antenna)               | 2  | ± 3.9 dB             | 1    |
| 9 kHz to 30 MHz (large-loop antenna 2 m)          | 2  | ± 3.5 dB             | 1    |
| Radiated Emission                                 |    |                      |      |
| Test distance 1 m (ALSE)                          |    |                      |      |
| 9 kHz to 150 kHz                                  | 2  | ± 4.6 dB             | 1    |
| 150 kHz to 30 MHz                                 | 2  | ± 4.1 dB             | 1    |
| 30 MHz to 200 MHz                                 | 2  | ± 5.2 dB             | 1    |
| 200 MHz to 2 GHz                                  | 2  | ± 4.4 dB             | 1    |
| 2 GHz to 3 GHz                                    | 2  | ± 4.6 dB             | 1    |
| Test distance 3 m                                 |    |                      |      |
| 30 MHz to 300 MHz                                 | 2  | ± 4.9 dB             | 1    |
| 300 MHz to 1 GHz                                  | 2  | ± 5.0 dB             | 1    |
| 1 GHz to 6 GHz                                    | 2  | ± 4.6 dB             | 1    |
| Test distance 10 m                                |    |                      |      |
| 30 MHz to 300 MHz                                 | 2  | ± 4.9 dB             | 1    |
| 300 MHz to 1 GHz                                  | 2  | ± 4.9 dB             | 1    |
| Radio Interference Power                          |    |                      |      |
| 30 MHz to 300 MHz                                 | 2  | ± 3.5 dB             | 1    |
| Harmonic Current Emissions                        |    |                      | 4    |
| Voltage Changes. Voltage Fluctuations and Flicker |    |                      | 4    |

Table 6

| Immunity Testing                                         |      |                      |      |
|----------------------------------------------------------|------|----------------------|------|
| Test Name                                                | kp   | Expanded Uncertainty | Note |
| Electrostatic Discharges                                 |      |                      | 4    |
| Radiated RF-Field                                        |      |                      |      |
| Pre-calibrated field level                               | 2    | +32.2 / -24.3 %      | 5    |
| Dynamic feedback field level                             | 2.05 | +21.2 / -17.5 %      | 3    |
| Electrical Fast Transients (EFT) / Bursts                |      |                      | 4    |
| Surges                                                   |      |                      | 4    |
| Conducted Disturbances. induced by RF-Fields             |      |                      |      |
| via CDN                                                  | 2    | +15.1 / -13.1 %      | 6    |
| via EM clamp                                             | 2    | +42.6 / -29.9 %      | 6    |
| via current clamp                                        | 2    | +43.9 / -30.5 %      | 6    |
| Power Frequency Magnetic Field                           | 2    | +20.7 / -17.1 %      | 2    |
| Pulse Magnetic Field                                     |      |                      | 4    |
| Voltage Dips. Short Interruptions and Voltage Variations |      |                      | 4    |
| Oscillatory Waves                                        |      |                      | 4    |
| Conducted Low Frequency Disturbances                     |      |                      |      |
| Voltage setting                                          | 2    | ± 0.9 %              | 2    |
| Frequency setting                                        | 2    | ± 0.1 %              | 2    |
| Electrical Transient Transmission in Road Vehicles       |      |                      | 4    |

**Table 7**



Note 1:

The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of  $k_p = 2$ . providing a level of confidence of  $p = 95.45\%$

Note 2:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1. 2002-08) is based on a standard uncertainty multiplied by a coverage factor of  $k_p = 2$ . providing a level of confidence of  $p = 95.45\%$

Note 3:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1. 2002-08) is based on a standard uncertainty multiplied by a coverage factor of  $k_p = 2.05$ . providing a level of confidence of  $p = 95.45\%$

Note 4:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95%confidence.

Note 5:

The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of  $k_p = 2$ . providing a level of confidence of  $p = 95.45\%$

Note 6:

The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of  $k_p = 2$ . providing a level of confidence of  $p = 95.45\%$

Note 7:

The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) to is based on a standard uncertainty multiplied by a coverage factor of  $k_p = 1.96$ . providing a level of confidence of  $p = 95.45\%$

Note 8:

The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of  $k_p = 1.96$ . providing a level of confidence of  $p = 95.45\%$