

July 25, 2025

Bloodhound Tracking Device, Inc.
Marco Maldonado
309 Henrietta St
Webster, TX 77598

Dear Marco Maldonado,

Enclosed is the Electromagnetic Compatibility for the Bloodhound Tracking Device, Inc., Instrumentation Unit, tested to the requirements of:

- FCC Part 22H, 24E, 27 and 90

Thank you for using the services of Eurofins E&E Testing NA, LLC. Please contact me if you have any questions regarding these results or if Eurofins E&E can be of further service to you.

Sincerely,

Documentation Department
Eurofins E&E Testing NA, LLC.

Reference: EMCS135499- FCC Part 22H, 24E, 27 and 90 Rev. 1

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins E&E Testing NA, LLC. While use of the A2LA symbol in this report reflects Eurofins E&E Testing NA, LLC. accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA, or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Eurofins E&E Testing NA, LLC. is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	July 16, 2025	Initial Issue.
1	July 25, 2025	Configuration Form Updated.

Table of Contents

1.0	Testing Summary	6
2.0	Overview.....	7
2.1	Test Site	7
2.2	FCC ID	7
2.2	Equipment Overview and Test Configuration	8
2.3	Modifications to the EUT	9
2.4	Modifications to the Standard.....	9
2.5	Disposition of EUT	9
3.0	Electromagnetic Compatibility Criteria for Intentional Radiators	10
3.1	Radiated Spurious Emissions.....	10

List of Tables

Table 1. Radiated Spurious Emissions, LTE CAT-M1 Band 5 Mid Channel 836.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results.....	12
Table 2. Radiated Spurious Emissions, LTE CAT-M1 Band 5 Mid Channel 836.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 10 GHz) Test Results.....	13
Table 3. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results.....	14
Table 4. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Test Results.....	15
Table 5. Radiated Spurious Emissions, LTE CAT-M1 Band 4 Mid Channel 1732.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results	17
Table 6. Radiated Spurious Emissions, LTE CAT-M1 Band 4 Mid Channel 1732.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Test Results	18
Table 7. Radiated Spurious Emissions, LTE CAT-M1 Band 12 Mid Channel 707.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results	19
Table 8. Radiated Spurious Emissions, LTE CAT-M1 Band 12 Mid Channel 707.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Test Results	20
Table 9. Radiated Spurious Emissions, LTE CAT-M1 Band 13 Mid Channel 782 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results.....	21
Table 10. Radiated Spurious Emissions, LTE CAT-M1 Band 13 Mid Channel 782 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Test Results	22
Table 11. Radiated Spurious Emissions, LTE CAT-M1 Band 26 Mid Channel 819 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results	23
Table 12. Radiated Spurious Emissions, LTE CAT-M1 Band 26 Mid Channel 819 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 10 GHz) Test Results	24
Table 13. Radiated Spurious Emissions, Test Equipment.....	25

List of Figures

Figure 1. Radiated Spurious Emissions, LTE CAT-M1 Band 5 Mid Channel 836.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot	12
Figure 2. Radiated Spurious Emissions, LTE CAT-M1 Band 5 Mid Channel 836.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 10 GHz) Plot.....	13
Figure 3. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot	14
Figure 4. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Plot.....	15
Figure 5. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (18 – 20 GHz) Plot.....	16
Figure 6. Radiated Spurious Emissions, LTE CAT-M1 Band 4 Mid Channel 1732.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot	17
Figure 7. Radiated Spurious Emissions, LTE CAT-M1 Band 4 Mid Channel 1732.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Plot.....	18
Figure 8. Radiated Spurious Emissions, LTE CAT-M1 Band 12 Mid Channel 707.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot	19
Figure 9. Radiated Spurious Emissions, LTE CAT-M1 Band 12 Mid Channel 707.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Plot.....	20
Figure 10. Radiated Spurious Emissions, LTE CAT-M1 Band 13 Mid Channel 782 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot	21
Figure 11. Radiated Spurious Emissions, LTE CAT-M1 Band 13 Mid Channel 782 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Plot.....	22
Figure 12. Radiated Spurious Emissions, LTE CAT-M1 Band 26 Mid Channel 819 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot	23
Figure 13. Radiated Spurious Emissions, LTE CAT-M1 Band 26 Mid Channel 819 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 10 GHz) Plot.....	24

1.0 Testing Summary

The Bloodhound Tracking Device, Inc., Instrumentation Unit was found to be compliant to the following specification(s).

- FCC Part 22H, 24E, 27 & 90 and KDB 996369 D04 V.02 Module Integration Guide

Chin Ming Lui
EMC Laboratory Engineer

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements.

David Trevayne-Smith
Commercial Director-Wireless, California

2.0 Overview

Eurofins E&E Testing NA, LLC. was contracted by Bloodhound Tracking Device, Inc. to perform testing on the Instrumentation Unit, under purchase order number 0018.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of Bloodhound Tracking Device, Inc., Instrumentation Unit.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	Instrumentation Unit
Equipment Emissions Class:	B

2.1 Test Site

All testing was performed at Eurofins E&E Testing NA, LLC., 3162 Belick St. Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology. Eurofins E&E Testing NA, LLC. has been accredited by the American Association for Laboratory Accreditation (A2LA) (Certificate #: 0591.02) in accordance with ISO/IEC 17025:2017.

2.2 FCC ID

FCC ID: 2BP2A-BTDIU1
IC: 34083-BTDIU1

2.2 Equipment Overview and Test Configuration

Name of EUT/Model:		Instrumentation Unit
Additional Models Covered, but not tested:		N/A
Description of EUT and Intended Use:		Container Asset Tracking
Mode(s) of Operation:		LTE CAT M1 co-transmission with LoRa
Other Included Radio(s)		N/A
Configuration(s):		Test Mode
EUT Power Requirement		
Voltage:	2.8 – 3.6 V	
AC or DC	DC	
Voltage Frequency:	N/A	
Number of Phases:	N/A	
Amperage:	N/A	
Uses an external AC/DC Adapter:	No	
Battery Return Configuration (DC-C, DC-I, or either):	DC-C	
Physical Description		
EUT Arrangement:	Mounted	
System with Multiple Chassis:	N/A	
Size (HxWxD) mm:	411.97 x 154.70 x 49.65mm	
Weight:	2670 grams	
Emissions Class Declaration:	B	
Other Info:		
EUT Software (internal to EUT):	Custom firmware by Bloodhound Tracking Device	
Support Software (used by support PC to exercise EUT):	Tera Term	

Note: EUT information was provided by Bloodhound Tracking Device

Antenna Information

Radio	Antenna Type	Manufacturer	Part No	Frequency Range	Peak Gain
LoRa	Embedded - PCB Mount	PT. HESHENG INDUSTRY ELECTRONIC	BTEE000300	902 – 928 MHz	1.36 dBi
LTE	Embedded - PCB Mount	PT. HESHENG INDUSTRY ELECTRONIC	BTEE000200	0.617 - 0.96GHz 1.71 - 2.2GHz	1.99dBi 3.48dBi

Note: Antenna information was provided by Bloodhound Tracking Device. Eurofins E&E Testing NA, LLC did not test or verify the accuracy of the antenna information.

2.3 Modifications to the EUT

No modifications were made to the EUT.

2.4 Modifications to the Standard

No modifications were made to the Test Standard.

2.5 Disposition of EUT

The test sample including all support equipment (if any), submitted to the Electromagnetic Compatibility Lab for testing was returned to Bloodhound Tracking Device, Inc. upon completion of testing.

3.0 Electromagnetic Compatibility Criteria for Intentional Radiators

3.1 Radiated Spurious Emissions

Test Method: ANSI C63.26:2015; FCC KDB 996369 D04 V.02 Module Integration Guide

Test Requirement(s): The following standards specified below are covered in the scope of this section of the test report:

- FCC Part 22H, 24E & 27 and KDB 996369 D04 V.02 Module Integration Guide

22.917 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

27.53(c)(1) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log(P)$ dB.

27.53(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log(P)$ dB.

27.53(h)(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log(P)$ dB.

FCC §90.210 – Emission mask limits for applicable Part 90 bands.

Sample Calculation for Distance Correction factor (DCF) measurement:

$$F_d = 20 \cdot \log_{10} (D_m/D_s)$$

where:

- F_d = Distance Factor in dB
- D_m = Measurement Distance in meters
- D_s = Specification Distance in meters

Sample formula for calculating the Corrected Data for the Radiated Emissions Measurements:

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dB μ V)	ACF (dB/m) (+)	Pre Amp Gain (dB)(-)	CBL (dB) (+)	DCF (dB) (+)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
249.99	V	359.9	240.7	55.46	11.4	28.335	0	0	38.505	47	-8.495

$$\begin{aligned} \text{Corrected Amplitude (dB}\mu\text{V/m)} &= \text{Uncorrected Amplitude (dB}\mu\text{V)} + \text{ACF (dB/m)} - \text{Preamp Gain (dB)} + \text{CBL (dB)} + \text{DCF (dB)} \\ &= 55.46 + 11.4 - 28.335 + 0 + 0 = 38.505 \end{aligned}$$

Test Procedure:

The method of testing, test conditions, and test procedures of ANSI C63.26:2015 were used in addition to FCC KDB 996369 D04 Module Integration Guide. Any measured frequency that exhibits a margin of compliance that is less than 3 dB below the specification limit is marked. Eurofins E&E recommends that every emission measured has at least a 3 dB margin to allow for deviations in the emission characteristics that may occur during the production process.

For emissions between 30 MHz and 1000 MHz, the EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber a biconilog antenna was located 10m from the EUT on an adjustable mast. A pre-scan was first performed to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated, and the antenna height was varied between 1 m and 4 m to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz resolution bandwidth.

For emissions between 1 GHz and 18 GHz, a double ridged guide horn was located 3 m from the EUT on an adjustable mast. The EUT was placed on a non-metallic table 150 cm above the ground plane inside a semi-anechoic chamber. A pre-scan was performed and used to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated, and the antenna height was varied depending on the geometry of the EUT. To ensure maximized emissions, the horn antenna was positioned both vertically and horizontally. Unless otherwise specified, measurements were made using a peak and average detector with a 1 MHz resolution bandwidth.

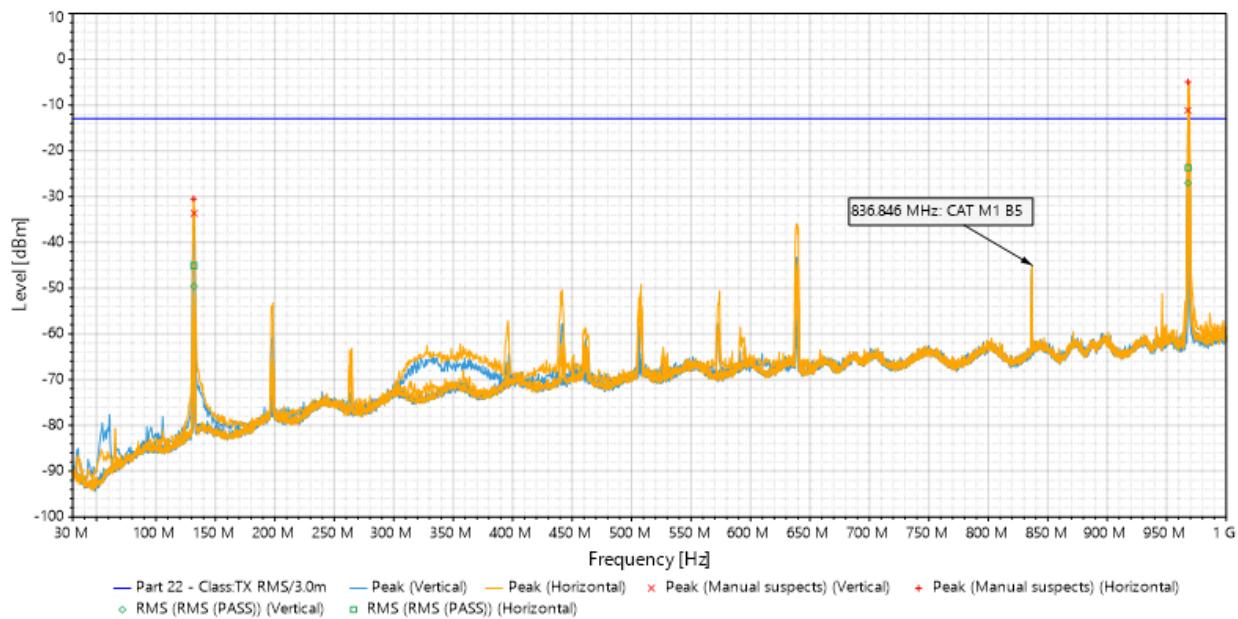
For emission between 18 GHz and 20 GHz, a high frequency standard gain horn antenna was located 3 m from the EUT on an adjustable mast. The EUT was placed on a non-metallic table 150 cm above the ground plane inside a semi-anechoic chamber. A pre-scan was performed and used to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated, and the antenna height was varied depending on the geometry of the EUT. To ensure maximized emissions, the horn antenna was positioned both vertically and horizontally. Unless otherwise specified, measurements were made using a peak and average detector with a 1 MHz resolution bandwidth.

Due to the size of the EUT, pre-liminary measurements were performed with the EUT rotated on different axis (X, Y, Z). The worst-case data is presented in this report.

Test Software Used:

Nexio BAT-EMC MSSQL Version: V2023.0.5.0 was used to perform this test.

Test Results:


Test Standard:	FCC Part 22H, 24E and 27 (Per FCC KDB 996369 D04 Module Integration Guide v02; ANSI C63.26:2015)
Test Name	Radiated Spurious Emissions
Test Dates:	06/25/2025 – 06/27/2025
Laboratory	Eurofins E&E Testing NA, LLC.
Test Engineer:	Chin Ming Lui
Test Results:	Compliant

Test Data (KDB 996369 D04 – LTE CAT-M1 Co-Transmission with LoRa)

FCC Part 22

Frequency (MHz)	Source	RMS (dBm)	RMS Limit (dBm)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
131.901	RMS (PASS)	-45.065	-13	-32.065	3.289	326	Horizontal	100000	0.1	-2.59
132.013	RMS (PASS)	-49.606	-13	-36.606	3.868	259	Vertical	100000	0.1	-2.579
968.006	RMS (PASS)	-27.024	-13	-14.024	3.523	49	Vertical	100000	0.1	18.187
968.07	RMS (PASS)	-23.728	-13	-10.728	3.161	48	Horizontal	100000	0.1	18.189

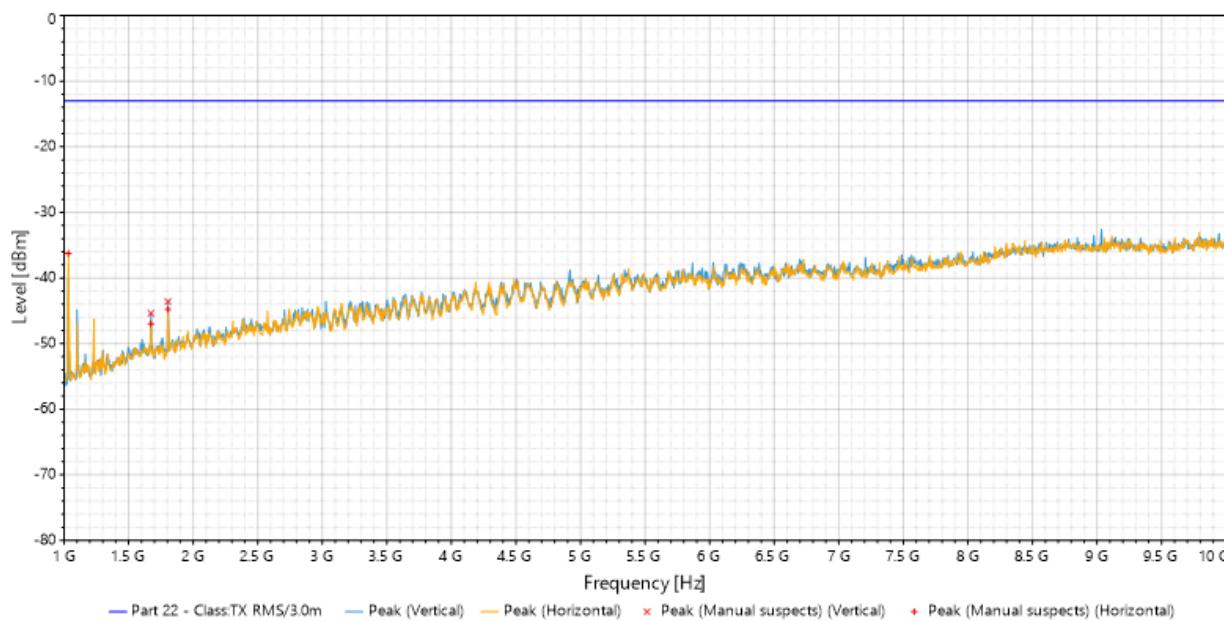

Table 1. Radiated Spurious Emissions, LTE CAT-M1 Band 5 Mid Channel 836.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results

Figure 1. Radiated Spurious Emissions, LTE CAT-M1 Band 5 Mid Channel 836.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot

Frequency (MHz)	Source	Peak (dBm)	Lim.RMS (dBm)	Height (m)	Azimuth (°)	Polarization	Correction (dB)
1033.3	Manual suspects	-36.236	-13	4	268	Horizontal	9.443
1673.2	Manual suspects	-45.367	-13	1.5	270	Vertical	14.032
1673.2	Manual suspects	-46.983	-13	4	305	Horizontal	14.032
1804.6	Manual suspects	-43.579	-13	2.5	94	Vertical	14.64
1804.6	Manual suspects	-44.788	-13	1	55	Horizontal	14.64

Table 2. Radiated Spurious Emissions, LTE CAT-M1 Band 5 Mid Channel 836.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 10 GHz) Test Results

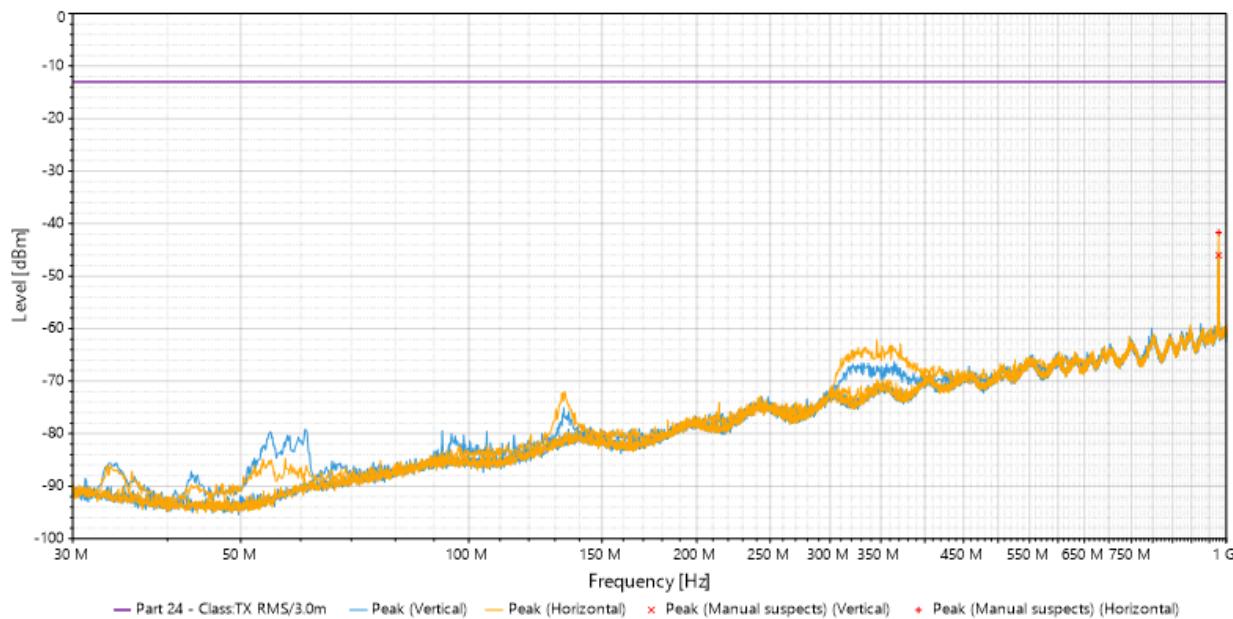
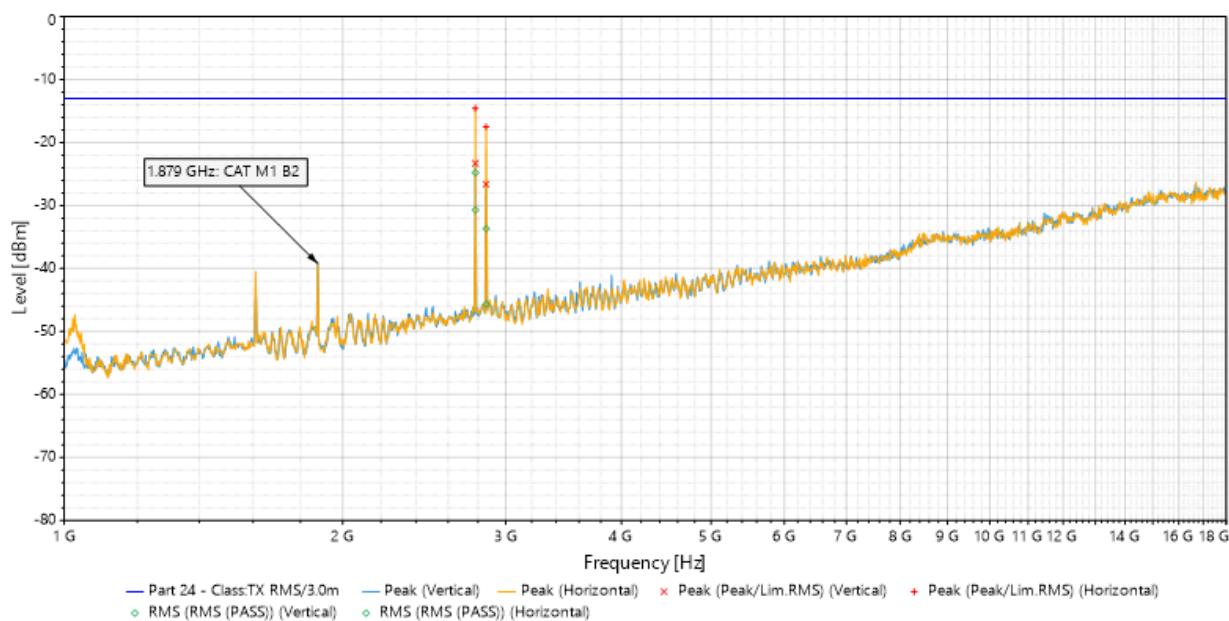
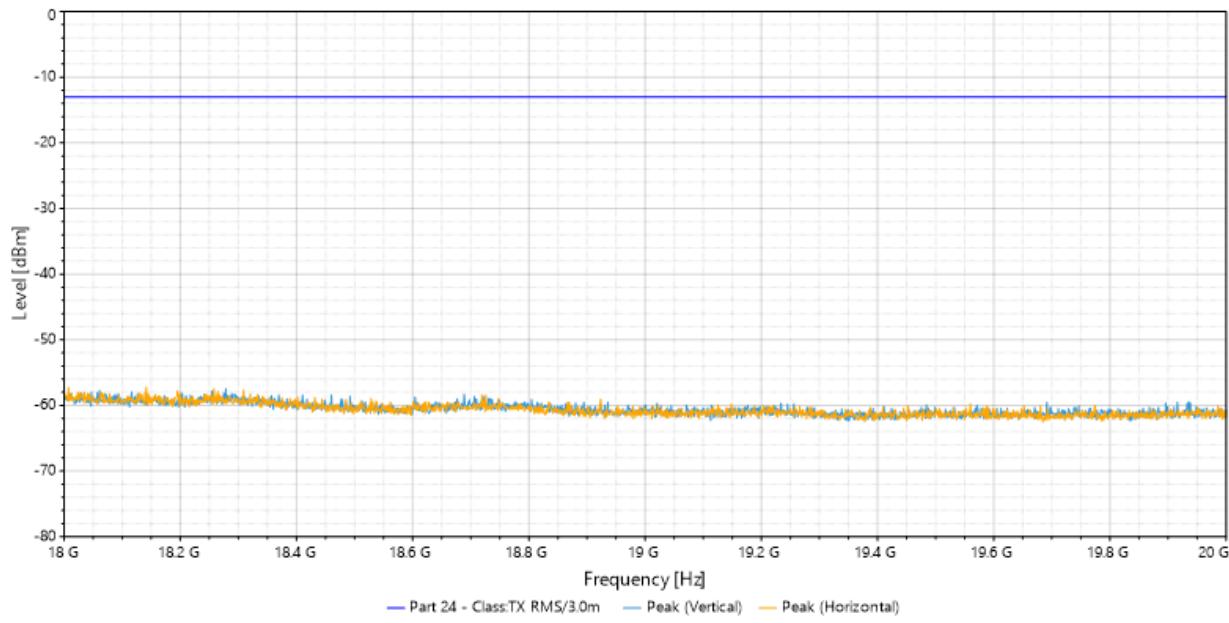


Figure 2. Radiated Spurious Emissions, LTE CAT-M1 Band 5 Mid Channel 836.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 10 GHz) Plot

FCC Part 24

Frequency (MHz)	Source	Peak (dBm)	Lim.RMS (dBm)	Height (m)	Azimuth (°)	Polarization	Correction (dB)
977.593	Manual suspects	-41.693	-13	1	309	Horizontal	18.549
977.981	Manual suspects	-46.01	-13	4	192	Vertical	18.564

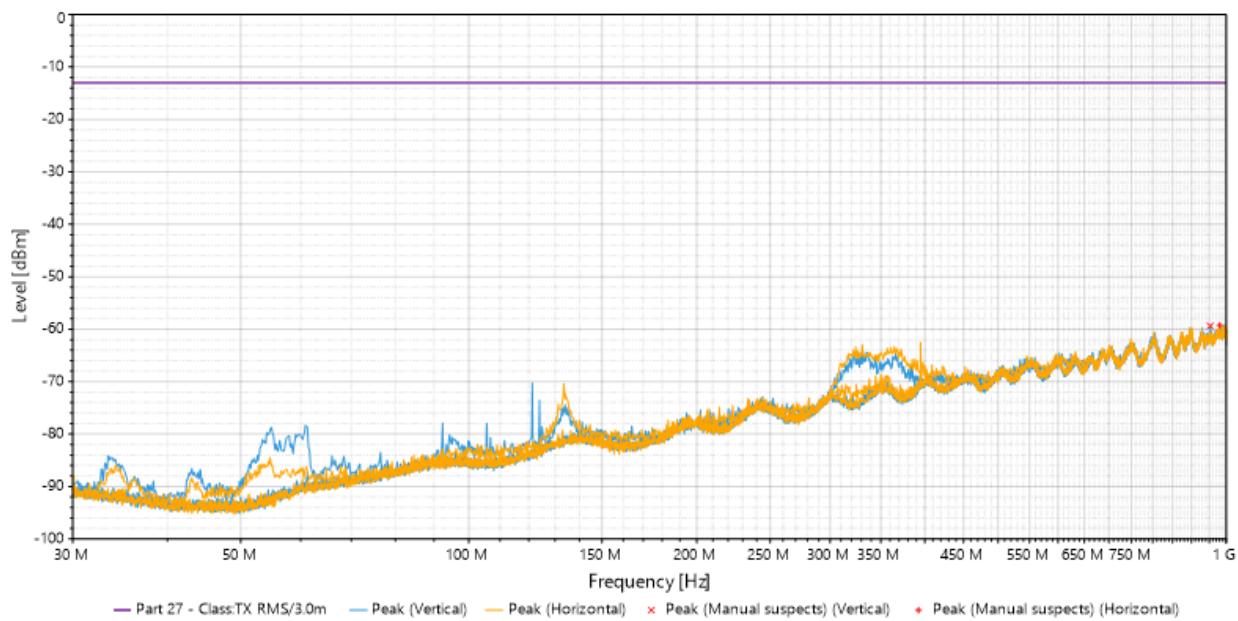

Table 3. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results


Figure 3. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot

Frequency (MHz)	Source	RMS (dBm)	RMS Limit (dBm)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
2782.3	RMS (PASS)	-24.804	-13	-11.804	1.245	245	Horizontal	1000000	0.1	18.763
2782.5	RMS (PASS)	-30.705	-13	-17.705	2.489	69	Vertical	1000000	0.1	18.764
2857.8	RMS (PASS)	-33.672	-13	-20.672	1.131	249	Horizontal	1000000	0.1	19.09
2858	RMS (PASS)	-45.667	-13	-32.667	1.796	121	Vertical	1000000	0.1	19.091

Table 4. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Test Results

Figure 4. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Plot


Figure 5. Radiated Spurious Emissions, LTE CAT-M1 Band 2 Mid Channel 1880 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (18 – 20 GHz) Plot

Note: Emissions verified to be noise floor

FCC Part 27

Frequency (MHz)	Source	Peak (dBm)	Lim.RMS (dBm)	Height (m)	Azimuth (°)	Polarization	Correction (dB)
952.567	Manual suspects	-59.369	-13	2	232	Vertical	17.635
980.891	Manual suspects	-59.278	-13	4	97	Horizontal	18.653

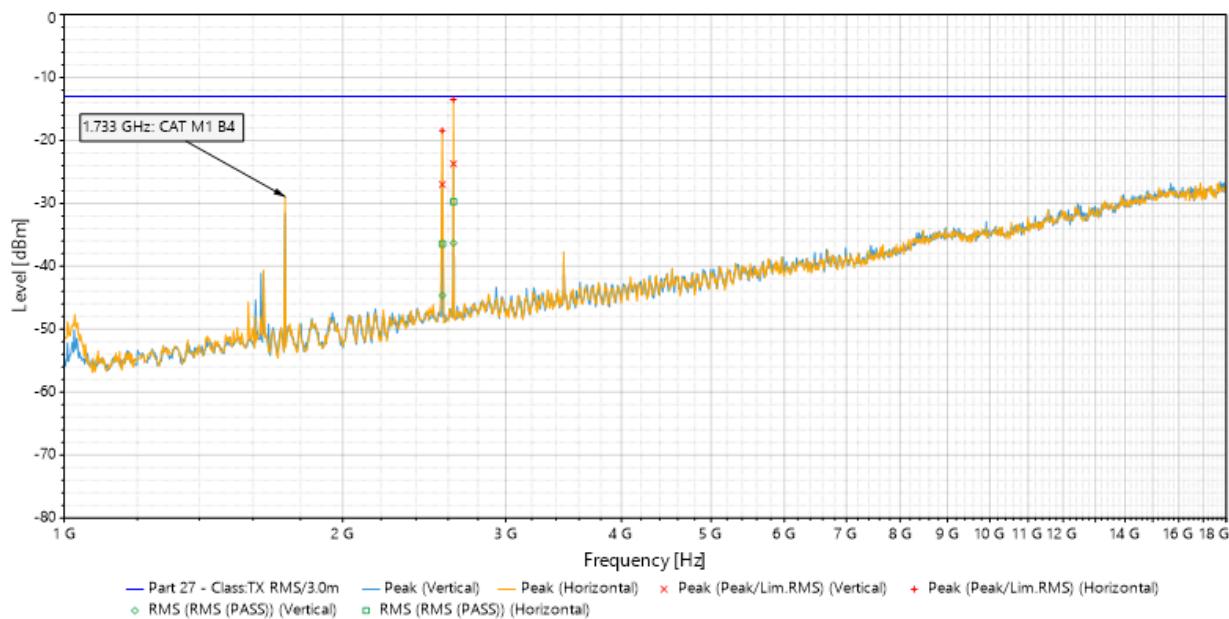

Table 5. Radiated Spurious Emissions, LTE CAT-M1 Band 4 Mid Channel 1732.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results

Figure 6. Radiated Spurious Emissions, LTE CAT-M1 Band 4 Mid Channel 1732.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot

Frequency (MHz)	Source	RMS (dBm)	RMS Limit (dBm)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
2562.4	RMS (PASS)	-36.431	-13	-23.431	1.131	260	Horizontal	1000000	0.1	17.742
2562.9	RMS (PASS)	-44.628	-13	-31.628	1.129	125	Vertical	1000000	0.1	17.743
2635	RMS (PASS)	-36.321	-13	-23.321	2.492	71	Vertical	1000000	0.1	17.974
2635.3	RMS (PASS)	-29.741	-13	-16.741	4	264	Horizontal	1000000	0.1	17.975

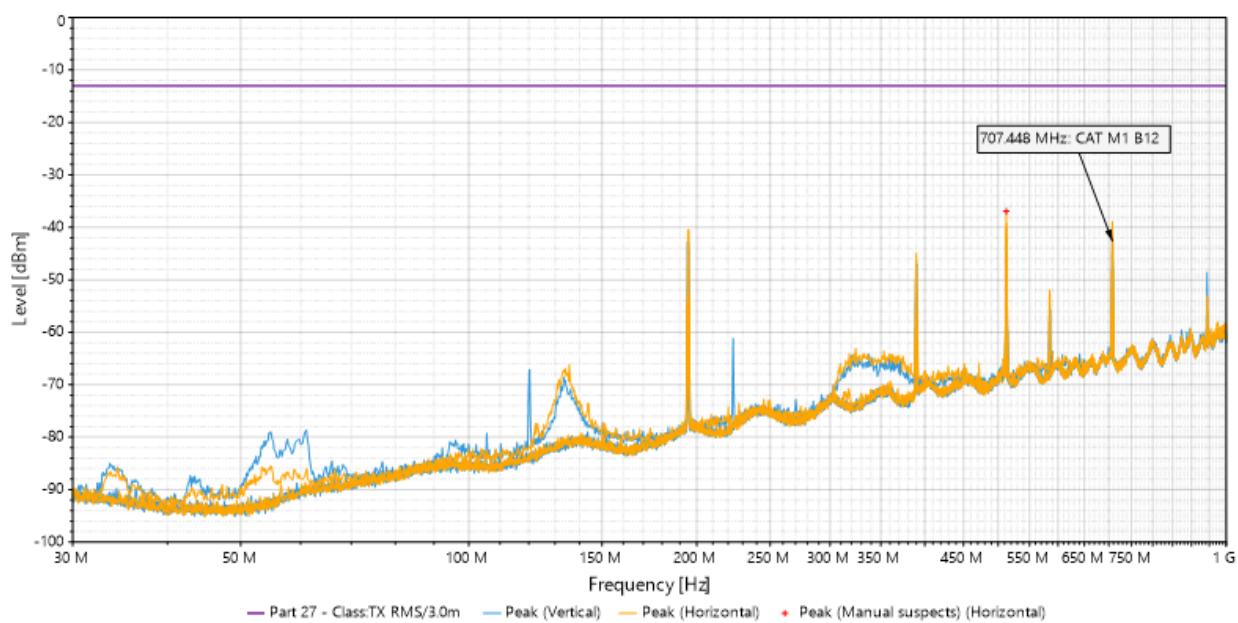

Table 6. Radiated Spurious Emissions, LTE CAT-M1 Band 4 Mid Channel 1732.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Test Results

Figure 7. Radiated Spurious Emissions, LTE CAT-M1 Band 4 Mid Channel 1732.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Plot

Frequency (MHz)	Source	Peak (dBm)	Lim.RMS (dBm)	Height (m)	Azimuth (°)	Polarization	Correction (dB)
512.575	Manual suspects	-36.931	-13	2	317	Horizontal	10.433

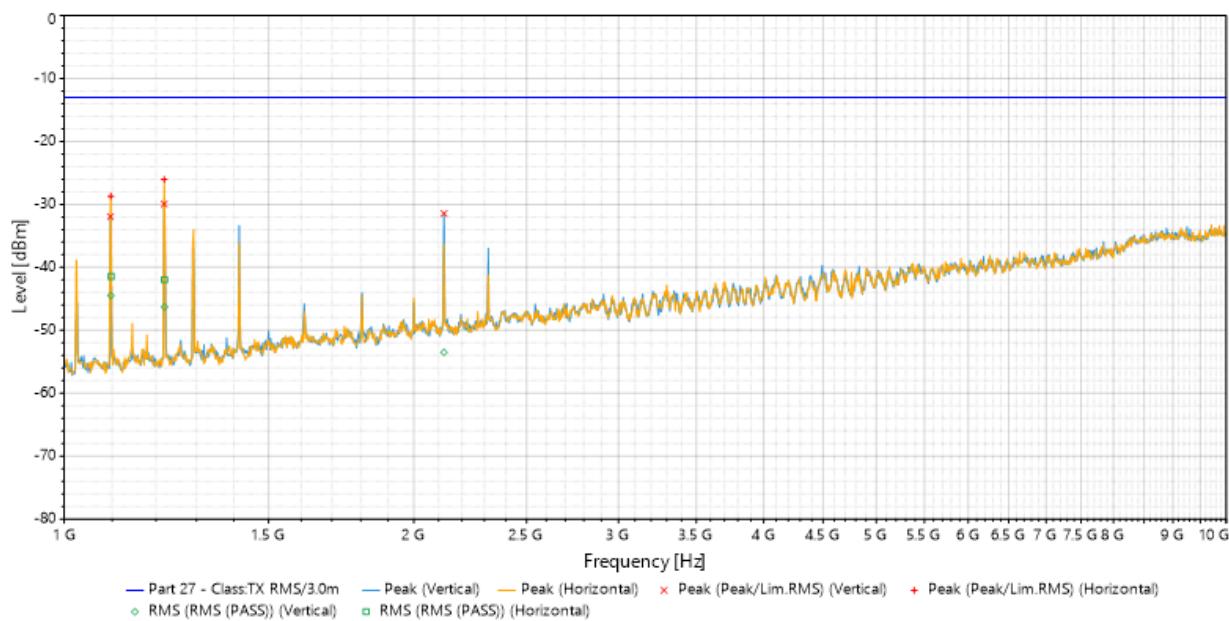

Table 7. Radiated Spurious Emissions, LTE CAT-M1 Band 12 Mid Channel 707.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results

Figure 8. Radiated Spurious Emissions, LTE CAT-M1 Band 12 Mid Channel 707.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot

Frequency (MHz)	Source	RMS (dBm)	RMS Limit (dBm)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
1097.2	RMS (PASS)	-44.503	-13	-31.503	2.832	68	Vertical	1000000	0.1	9.899
1097.8	RMS (PASS)	-41.435	-13	-28.435	1.245	164	Horizontal	1000000	0.1	9.904
1220.2	RMS (PASS)	-46.315	-13	-33.315	2.277	53	Vertical	1000000	0.1	10.742
1220.2	RMS (PASS)	-41.982	-13	-28.982	1.134	132	Horizontal	1000000	0.1	10.742
2122.8	RMS (PASS)	-53.511	-13	-40.511	1.236	127	Vertical	1000000	0.1	16.097

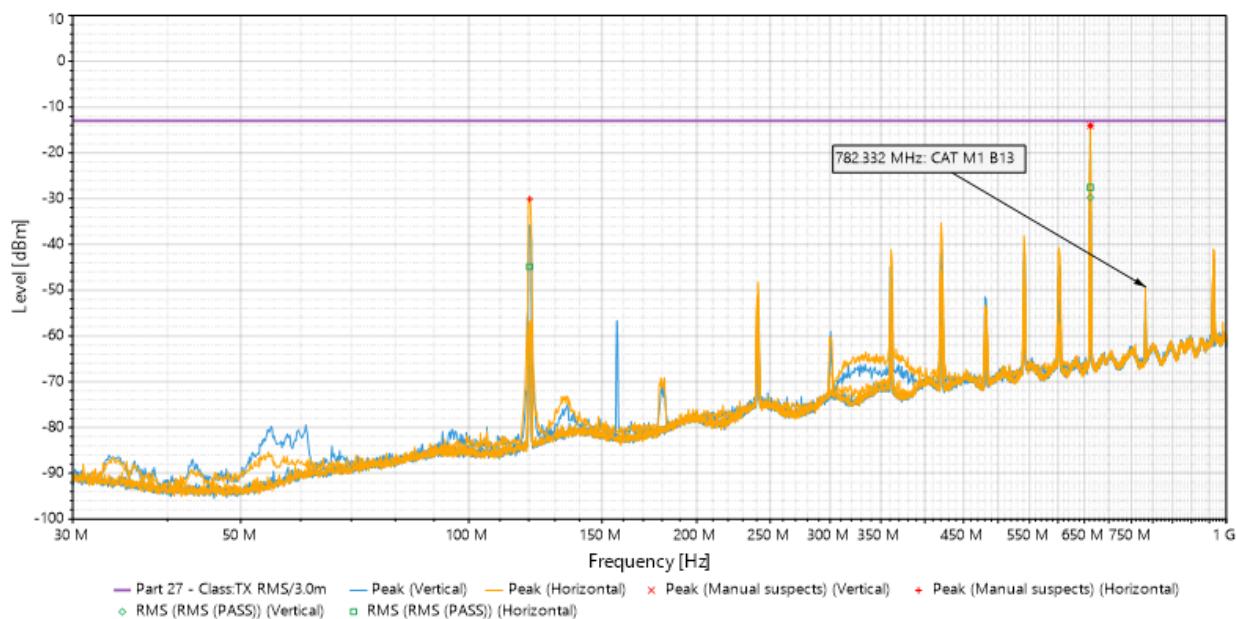

Table 8. Radiated Spurious Emissions, LTE CAT-M1 Band 12 Mid Channel 707.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Test Results

Figure 9. Radiated Spurious Emissions, LTE CAT-M1 Band 12 Mid Channel 707.5 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Plot

Frequency (MHz)	Source	RMS (dBm)	RMS Limit (dBm)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
120.319	RMS (PASS)	-44.893	-13	-31.893	3.969	204	Horizontal	100000	0.1	-3.652
661.82	RMS (PASS)	-27.543	-13	-14.543	3.969	332	Horizontal	100000	0.1	12.925
661.823	RMS (PASS)	-29.761	-13	-16.761	3.525	56	Vertical	100000	0.1	12.925

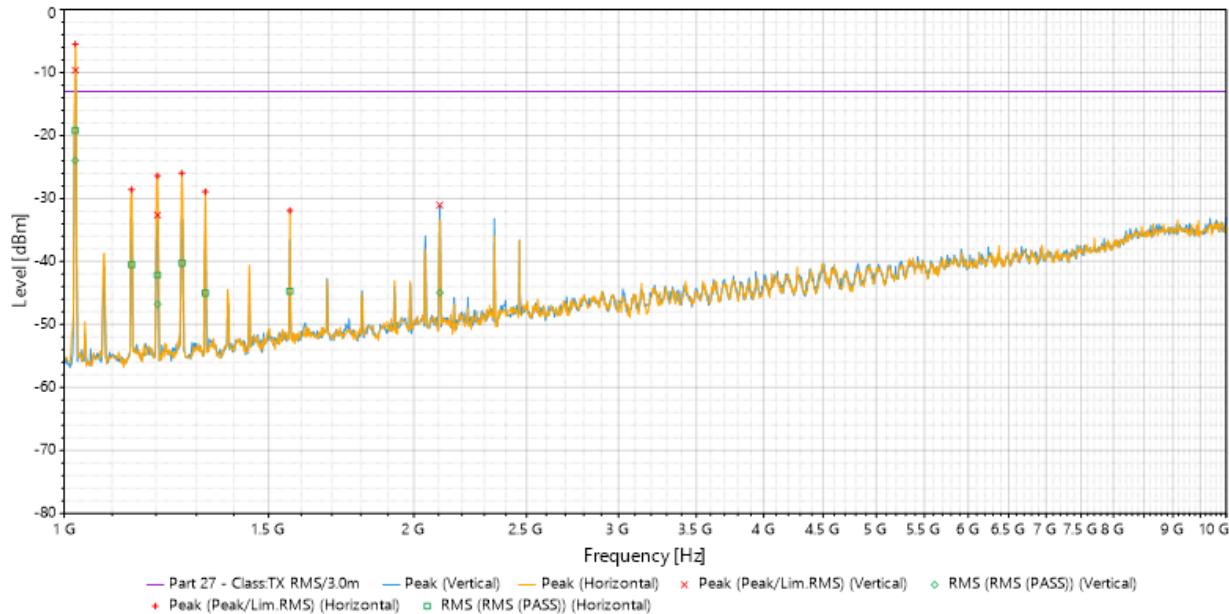

Table 9. Radiated Spurious Emissions, LTE CAT-M1 Band 13 Mid Channel 782 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results

Figure 10. Radiated Spurious Emissions, LTE CAT-M1 Band 13 Mid Channel 782 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot

Frequency (MHz)	Source	RMS (dBm)	RMS Limit (dBm)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
1022.3	RMS (PASS)	-23.967	-13	-10.967	4	121	Vertical	1000000	0.1	9.369
1022.4	RMS (PASS)	-19.201	-13	-6.201	1.589	43	Horizontal	1000000	0.1	9.37
1143.3	RMS (PASS)	-40.504	-13	-27.504	1.584	39	Horizontal	1000000	0.1	10.316
1203.6	RMS (PASS)	-42.163	-13	-29.163	1.478	138	Horizontal	1000000	0.1	10.645
1203.8	RMS (PASS)	-46.784	-13	-33.784	2.369	60	Vertical	1000000	0.1	10.647
1263.3	RMS (PASS)	-40.244	-13	-27.244	1	135	Horizontal	1000000	0.1	11.118
1322.9	RMS (PASS)	-45.001	-13	-32.001	1	78	Horizontal	1000000	0.1	11.567
1564.2	RMS (PASS)	-44.739	-13	-31.739	1.126	65	Horizontal	1000000	0.1	13.523
2105.6	RMS (PASS)	-44.954	-13	-31.954	1.58	293	Vertical	1000000	0.1	16.054

Table 10. Radiated Spurious Emissions, LTE CAT-M1 Band 13 Mid Channel 782 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Test Results

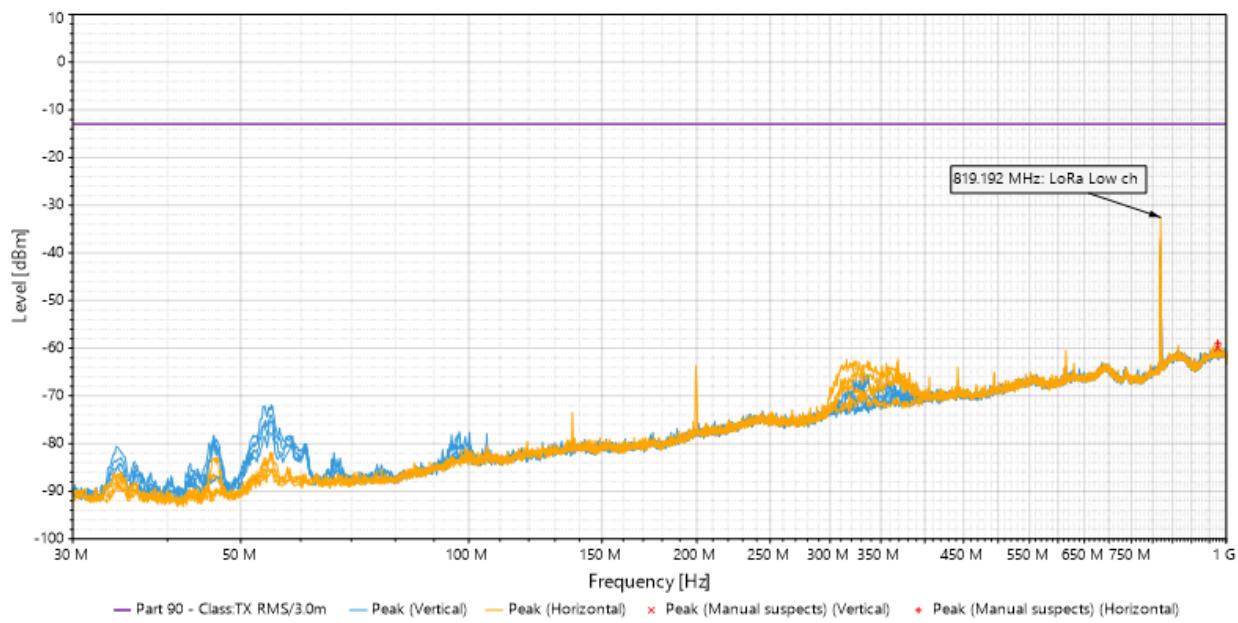


Figure 11. Radiated Spurious Emissions, LTE CAT-M1 Band 13 Mid Channel 782 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 18 GHz) Plot

FCC Part 90

Frequency (MHz)	Source	Peak (dBm)	Lim.RMS (dBm)	Height (m)	Azimuth (°)	Polarization	Correction (dB)
975.168	Manual suspects	-59.953	-13	3	251	Vertical	18.458
975.168	Manual suspects	-58.859	-13	1	298	Horizontal	18.458

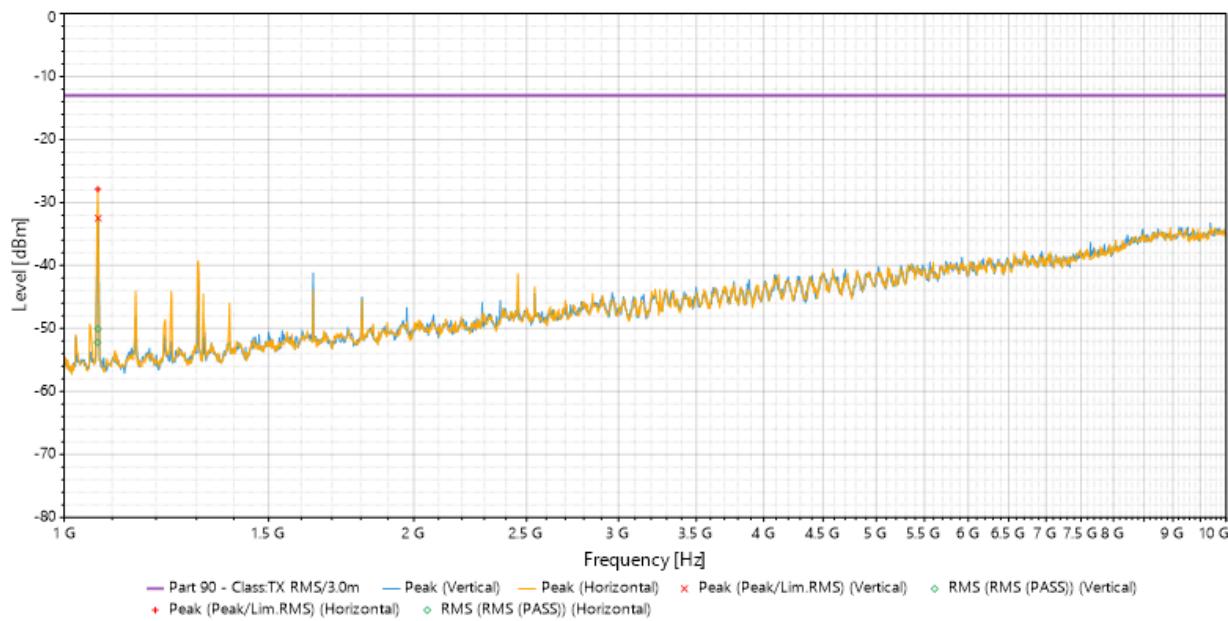

Table 11. Radiated Spurious Emissions, LTE CAT-M1 Band 26 Mid Channel 819 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results

Figure 12. Radiated Spurious Emissions, LTE CAT-M1 Band 26 Mid Channel 819 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot

Frequency (MHz)	Source	RMS (dBm)	RMS Limit (dBm)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
1068.7	RMS (PASS)	-52.217	-13	-39.217	1.26	49	Horizontal	1000000	0.1	9.658
1069.5	RMS (PASS)	-50.067	-13	-37.067	1.133	68	Vertical	1000000	0.1	9.664

Table 12. Radiated Spurious Emissions, LTE CAT-M1 Band 26 Mid Channel 819 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 10 GHz) Test Results

Figure 13. Radiated Spurious Emissions, LTE CAT-M1 Band 26 Mid Channel 819 MHz Co-Transmission with LoRa Low Channel 902.5 MHz (1 – 10 GHz) Plot

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Test Name: KDB 996369 D04 RSE			Test Date(s): 06/25/2025 – 06/27/2025		
Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2399	Turntable Controller	Sunol Sciences	SC99V	See Note 1	
1S4856	Antenna Positioning Tower	ETS-Lindgren	2171B	See Note 1	
1S2482	5 Meter Chamber	Panashield - ETS	5 Meter Semi-Anechoic Chamber	See Note 2	
1S4852	Radio Communicator Analyzer	Anritsu	MT8821C	N/A	
1S4804	EMI Test Receiver	Rohde & Schwarz	ESW44	08/07/2024	08/07/2025
1S2485	Bilog Antenna	Teseq	CBL6112D	11/27/2024	11/27/2026
1S2435	Horn Antenna	ETS-Lindgren	3117	03/17/2025	03/17/2027
1U0327	DRG Horn Antenna	A.H. Systems, Inc.	SAS-574	11/28/2024	11/28/2026
1S2668	Pre-Amplifier	Sonoma Instruments	310 N	03/18/2025	03/18/2027
1S4802	Pre-Amplifier	EMC Instruments Corporation	EMC118A45SE	See Note 1	
1S3865	Table Top Amplifier	MITEQ	TTA1840-35-HG	See Note 1	

Note 1: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.
Note 2: Latest NSA and VSWR data available upon request.

Table 13. Radiated Spurious Emissions, Test Equipment

END OF REPORT