

July 25, 2025

Bloodhound Tracking Device, Inc.
Marco Maldonado
309 Henrietta St
Webster, TX 77598

Dear Marco Maldonado,

Enclosed is the Electromagnetic Compatibility for the Bloodhound Tracking Device, Inc., Instrumentation Unit, tested to the requirements of:

- FCC Part 15.247 (per ANSI C63.10: 2020)
- Innovation, Science, and Economic Development (ISED) Canada RSS-247 Issue 3

Thank you for using the services of Eurofins E&E Testing NA, LLC. Please contact me if you have any questions regarding these results or if Eurofins E&E can be of further service to you.

Sincerely,

Documentation Department
Eurofins E&E Testing NA, LLC.

Reference: WIRS135499-FCC 15.247 Rev. 1

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins E&E Testing NA, LLC. While use of the A2LA symbol in this report reflects Eurofins E&E Testing NA, LLC. accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA, or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Eurofins E&E Testing NA, LLC. is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	July 16, 2025	Initial Issue.
1	July 25, 2025	Configuration Form Updated.

Table of Contents

1.0	Testing Summary	6
2.0	Overview.....	7
2.1	Test Site	7
2.2	Equipment Overview and Test Configuration	7
2.3	Modifications to the EUT	9
2.4	Modifications to the Standard.....	9
2.5	Disposition of EUT.....	9
3.0	Electromagnetic Compatibility Criteria for Intentional Radiators	10
3.1	Antenna-Port Conducted Measurements	10
3.1.1	Duty Cycle.....	11
3.1.2	6dB DTS Bandwidth.....	12
3.1.3	99% Occupied Bandwidth	14
3.1.4	Maximum Peak Conducted Output Power	16
3.1.5	Maximum Peak Power Spectral Density Test Results	18
3.1.6	Conducted Spurious Emissions	20
3.1.7	Band Edge.....	24
3.2	Radiated Spurious Emissions.....	27

List of Tables

Table 1. Antenna-Port Conducted Measurements, Duty Cycle Test Results	11
Table 2. Antenna-Port Conducted Measurements, 6dB DTS Bandwidth Test Results.....	12
Table 3. Antenna-Port Conducted Measurements, 99% Occupied Bandwidth Test Results	14
Table 4. Antenna-Port Conducted Measurements, Maximum Peak Conducted Output Power Test Results.....	16
Table 5. Antenna-Port Conducted Measurements, Maximum Peak Power Spectral Density Test Results	18
Table 6. Antenna-Port Conducted Measurements, Conducted Spurious Emissions Test Results.....	20
Table 7. Antenna-Port Conducted Measurements, Band Edge Test Results.....	24
Table 8. Antenna-Port Conducted Measurements, Test Equipment	26
Table 9. Radiated Spurious Emissions, LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results.....	31
Table 10. Radiated Spurious Emissions, LoRa Low Channel 902.5 MHz (1 – 10 GHz) Test Results	32
Table 11. Radiated Spurious Emissions, LoRa Mid Channel 908.7 MHz (30 MHz – 1 GHz) Test Results	33
Table 12. Radiated Spurious Emissions, LoRa Mid Channel 908.7 MHz (1 – 10 GHz) Test Results.....	34
Table 13. Radiated Spurious Emissions, LoRa High Channel 914.9 MHz (30 MHz – 1 GHz) Test Results	35
Table 14. Radiated Spurious Emissions, LoRa High Channel 914.9 MHz (1 – 10 GHz) Test Results	36
Table 15. Radiated Spurious Emissions, Test Equipment.....	37

List of Figures

Figure 1. Antenna-Port Conducted Measurements, Duty Cycle: Low Channel, 902.5 MHz Plot	11
Figure 2. Antenna-Port Conducted Measurements, 6dB DTS Bandwidth: Low Channel, 902.5 MHz Plot.....	12
Figure 3. Antenna-Port Conducted Measurements, 6dB DTS Bandwidth: Mid Channel, 908.7 MHz Plot	13
Figure 4. Antenna-Port Conducted Measurements, 6dB DTS Bandwidth: High Channel, 914.9 MHz Plot	13
Figure 5. Antenna-Port Conducted Measurements, 99% OBW: Low Channel, 902.5 MHz Plot	14
Figure 6. Antenna-Port Conducted Measurements, 99% OBW: Mid Channel, 908.7 MHz Plot	15
Figure 7. Antenna-Port Conducted Measurements, 99% OBW: High Channel, 914.9 MHz Plot	15
Figure 8. Antenna-Port Conducted Measurements, Maximum Peak Conducted Output Power: Low Channel, 902.5 MHz Plot	16
Figure 9. Antenna-Port Conducted Measurements, Maximum Peak Conducted Output Power: Mid Channel, 908.7 MHz Plot	17
Figure 10. Antenna-Port Conducted Measurements, Maximum Peak Conducted Output Power: High Channel, 914.9 MHz Plot	17
Figure 11. Antenna-Port Conducted Measurements, Maximum Peak Power Spectral Density: Low Channel, 902.5 MHz Plot	18
Figure 12. Antenna-Port Conducted Measurements, Maximum Peak Power Spectral Density: Mid Channel, 908.7 MHz Plot	19
Figure 13. Antenna-Port Conducted Measurements, Maximum Peak Power Spectral Density: High Channel, 914.9 MHz Plot	19
Figure 14. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: Low Channel, 902.5 MHz Plot..	20
Figure 15. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: Low Channel, 902.5 MHz Plot..	21
Figure 16. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: Mid Channel, 908.7 MHz Plot ..	21
Figure 17. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: Mid Channel, 908.7 MHz Plot ..	22
Figure 18. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: High Channel, 914.9 MHz Plot ..	22
Figure 19. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: High Channel, 914.9 MHz Plot ..	23
Figure 20. Antenna-Port Conducted Measurements, Lower Band Edge: Low Channel, 902.5 MHz Plot	24
Figure 21. Antenna-Port Conducted Measurements, Upper Band Edge: High Channel, 914.9 MHz Plot	25
Figure 22. Radiated Spurious Emissions, LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot.....	31
Figure 23. Radiated Spurious Emissions, LoRa Low Channel 902.5 MHz (1 – 10 GHz) Plot.....	32
Figure 24. Radiated Spurious Emissions, LoRa Mid Channel 908.7 MHz (30 MHz – 1 GHz) Plot	33
Figure 25. Radiated Spurious Emissions, LoRa Mid Channel 908.7 MHz (1 – 10 GHz) Plot	34
Figure 26. Radiated Spurious Emissions, LoRa High Channel 914.9 MHz (30 MHz – 1 GHz) Plot	35
Figure 27. Radiated Spurious Emissions, LoRa High Channel 914.9 MHz (1 – 10 GHz) Plot	36

1.0 Testing Summary

The Bloodhound Tracking Device, Inc., Instrumentation Unit was found to be compliant to the following specification(s).

- FCC Part 15.247 (per ANSI C63.10: 2020)
- RSS-247 Issue 3

Chin Ming Lui
Senior Wireless Test Engineer

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements.

David Trevayne-Smith
Commercial Director-Wireless, California

2.0 Overview

Eurofins E&E Testing NA, LLC. was contracted by Bloodhound Tracking Device, Inc. to perform testing on the Instrumentation Unit, under purchase order number 0018.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of Bloodhound Tracking Device, Inc., Instrumentation Unit.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	Instrumentation Unit
-------------------------	----------------------

FCC ID and IC:

FCC ID: 2BP2A-BTDIU1
IC: 34083-BTDIU1

2.1 Test Site

All testing was performed at Eurofins E&E Testing NA, LLC., 3162 Belick St. Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology. Eurofins E&E Testing NA, LLC. has been accredited by the American Association for Laboratory Accreditation (A2LA) (Certificate #: 0591.02) in accordance with ISO/IEC 17025:2017.

2.2 Equipment Overview and Test Configuration

Name of EUT/Model:	Instrumentation Unit
Additional Models Covered, but not tested:	N/A
Description of EUT and Intended Use:	Container Asset Tracking
Mode(s) of Operation:	LoRa
Other Included Radio(s)	LTE CAT-M1
Configuration(s):	Test mode
EUT Power Requirement	
Voltage:	2.8 – 3.6 V
AC or DC	DC
Voltage Frequency:	N/A
Number of Phases:	N/A
Amperage:	N/A
Uses an external AC/DC Adapter:	No
Battery Return Configuration (DC-C, DC-I, or either):	DC-C
Physical Description	
EUT Arrangement:	Mounted
System with Multiple Chassis:	N/A

Size (HxWxD) inches:	411.97 x 154.70 x 49.65mm
Weight (lbs):	2670 grams
Emissions Class Declaration:	B
Other Info:	
EUT Software (internal to EUT):	Custom firmware by Bloodhound Tracking Device
Support Software (used by support PC to exercise EUT):	Tera Term

Note: EUT information was provided by Bloodhound Tracking Device

Antenna Information

Radio	Antenna Type	Manufacturer	Part No	Frequency Range	Peak Gain
LoRa	Embedded - PCB Mount	PT. HESHENG INDUSTRY ELECTRONIC	BTEE000300	902 – 928 MHz	1.36 dBi
LTE	Embedded - PCB Mount	PT. HESHENG INDUSTRY ELECTRONIC	BTEE000200	0.617 - 0.96GHz 1.71 - 2.2GHz	1.99dBi 3.48dBi

Note: Antenna information was provided by Bloodhound Tracking Device. Eurofins E&E Testing NA, LLC did not test or verify the accuracy of the antenna information.

Test Configuration

The LoRa radio was configured to a fixed channel continuous transmission mode for testing.

Channel	Frequency (MHz)	Power Setting
Low	902.5	22
Mid	908.7	22
High	914.9	22

2.3 Modifications to the EUT

No modifications were made to the EUT.

2.4 Modifications to the Standard

No modifications were made to the Test Standard.

2.5 Disposition of EUT

The test sample including all support equipment (if any), submitted to the Electromagnetic Compatibility Lab for testing was returned to Bloodhound Tracking Device, Inc. upon completion of testing.

3.0 Electromagnetic Compatibility Criteria for Intentional Radiators

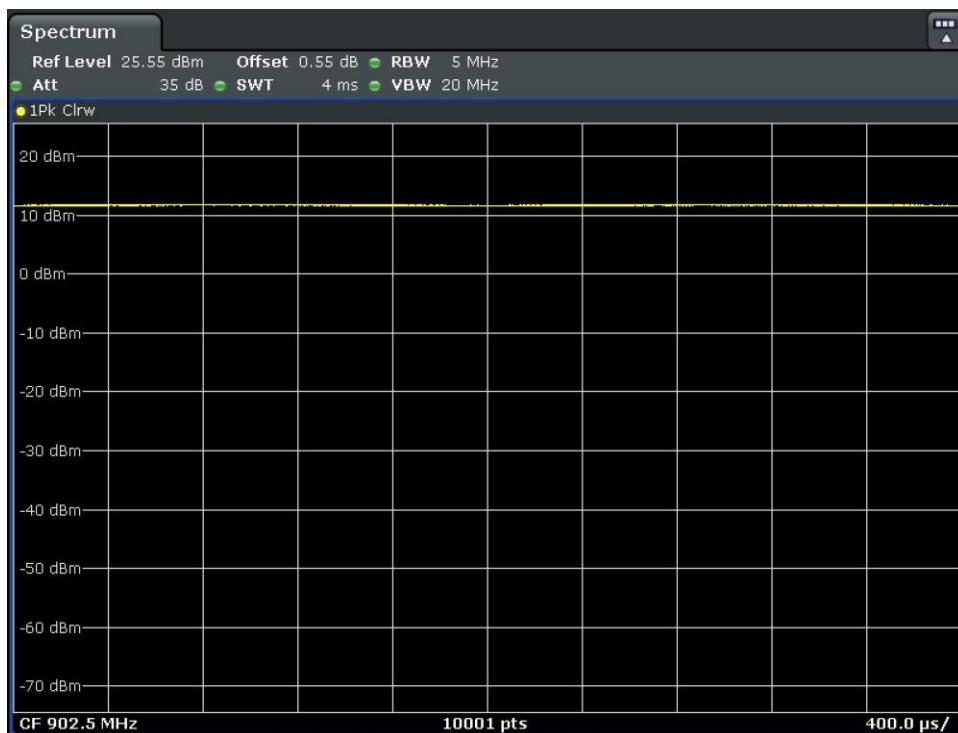
3.1 Antenna-Port Conducted Measurements

Test Method: ANSI C63.10: 2020; FCC KDB 558074 D01 15.247 Meas Guidance v05r02

Test Requirements: The following standards are covered under this test:

- FCC Part 15 Subpart C §15.247
- ISED RSS-247 Issue 3 §5.2, §5.4, §5.5

Test Procedure: The EUT was configured to operate in continuous transmission mode on LoRa channels using its lowest, middle, and highest frequencies (902.5 MHz, 908.7 MHz, and 914.9 MHz).


- Conducted measurements were performed at the antenna port of the EUT using a spectrum analyzer. Procedures for testing DTS devices operating in the 902 MHz to 928 MHz band per Section 11 of ANSI C63.10: 2020 were followed.
- The reference level was set based on the peak power of the fundamental channel.
- Emissions outside the 902-928 MHz band were measured and compared to the 20 dB attenuation requirement per FCC §15.247(d) and RSS-247 Section 5.5, using a resolution bandwidth (RBW) of 100 kHz and video bandwidth (VBW) of 300 kHz.
- Measurement traces were recorded for each tested channel.

Test Results:

Test Standard:	FCC Part 15 Subpart C §15.247 (Per FCC KDB 558074 D01 15.247 Meas Guidance v05r02; ANSI C63.10-2020), ISED RSS-247 Issue 3 §5.2, §5.4, §5.5
Test Name	Antenna-Port Conducted Measurements
Test Dates:	06/19/2025
Laboratory	Eurofins E&E Testing NA, LLC.
Test Engineer:	Chin Ming Lui
Test Results:	Compliant

Test Data (FCC 15.247 & RSS-247 Antenna-Port Conducted Measurements)**3.1.1 Duty Cycle**

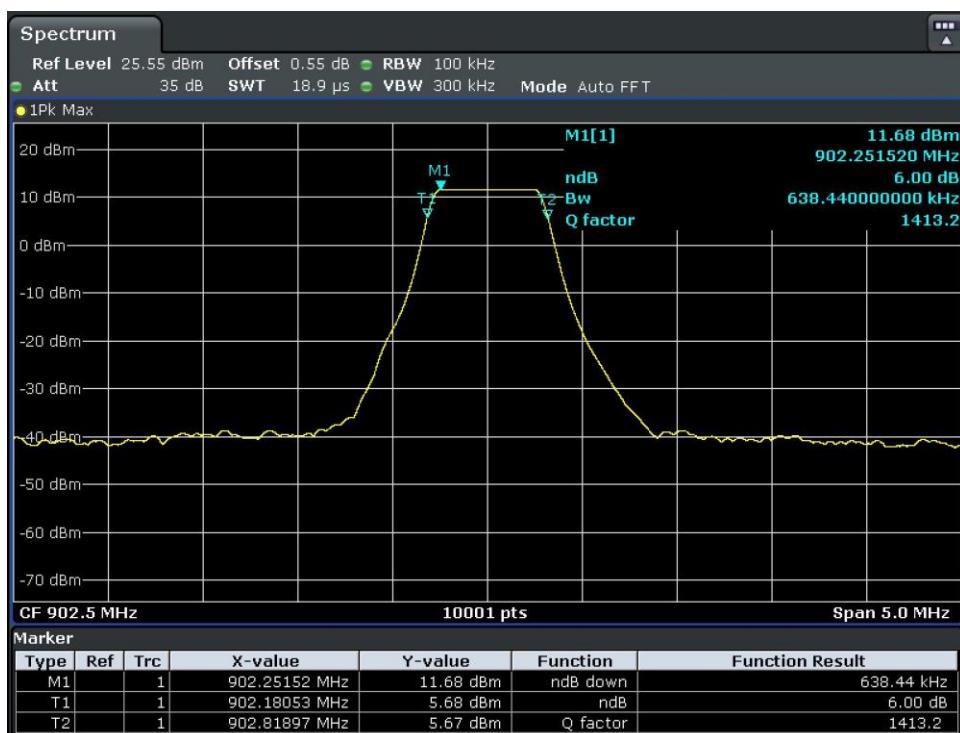

Frequency (MHz)	Channel	Duty Cycle	Duty Cycle Correction Factor
902.5	Low	100%	0

Table 1. Antenna-Port Conducted Measurements, Duty Cycle Test Results**Figure 1. Antenna-Port Conducted Measurements, Duty Cycle: Low Channel, 902.5 MHz Plot**

3.1.2 6dB DTS Bandwidth

Frequency (MHz)	Channel	Measured 6dB BW (kHz)	Minimum 6dB BW (kHz)
902.5	Low	638.44	≥ 500
908.7	Mid	640.44	≥ 500
914.9	High	642.94	≥ 500

Table 2. Antenna-Port Conducted Measurements, 6dB DTS Bandwidth Test Results

Figure 2. Antenna-Port Conducted Measurements, 6dB DTS Bandwidth: Low Channel, 902.5 MHz Plot

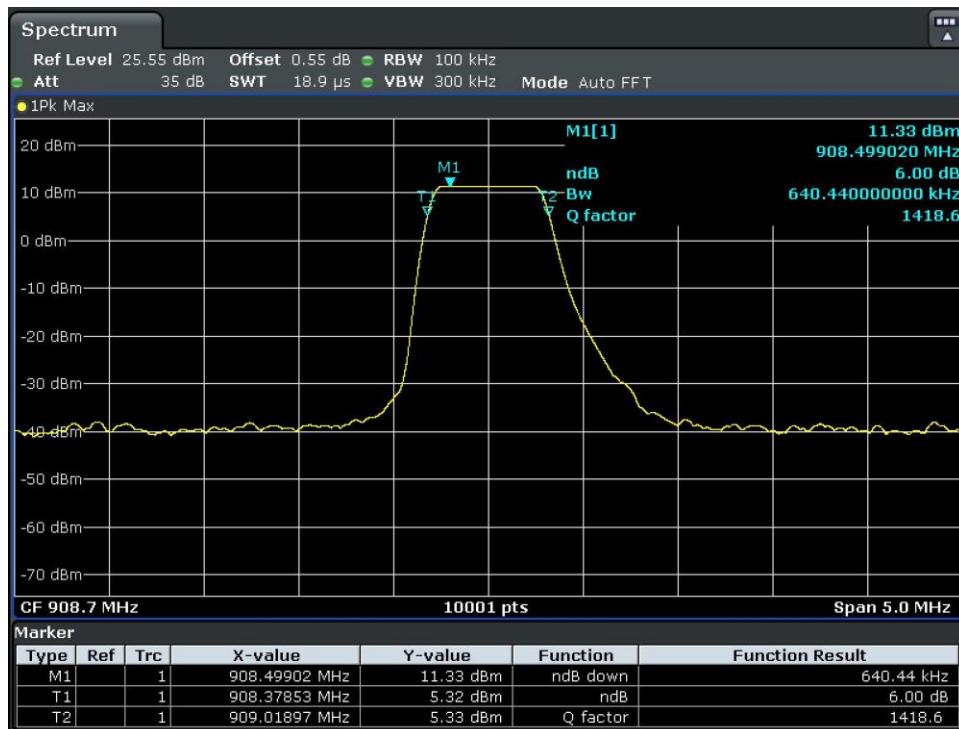


Figure 3. Antenna-Port Conducted Measurements, 6dB DTS Bandwidth: Mid Channel, 908.7 MHz Plot

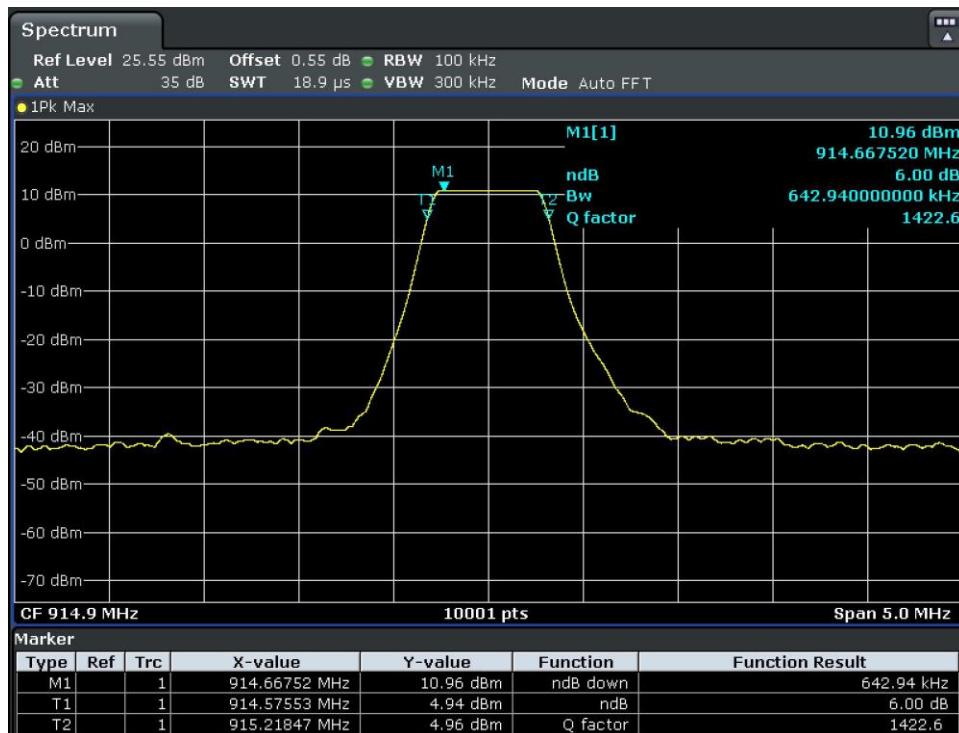


Figure 4. Antenna-Port Conducted Measurements, 6dB DTS Bandwidth: High Channel, 914.9 MHz Plot

3.1.3 99% Occupied Bandwidth

Frequency (MHz)	Channel	99% OBW (MHz)
902.5	Low	517.95
908.7	Mid	518.45
914.9	High	519.95

Table 3. Antenna-Port Conducted Measurements, 99% Occupied Bandwidth Test Results

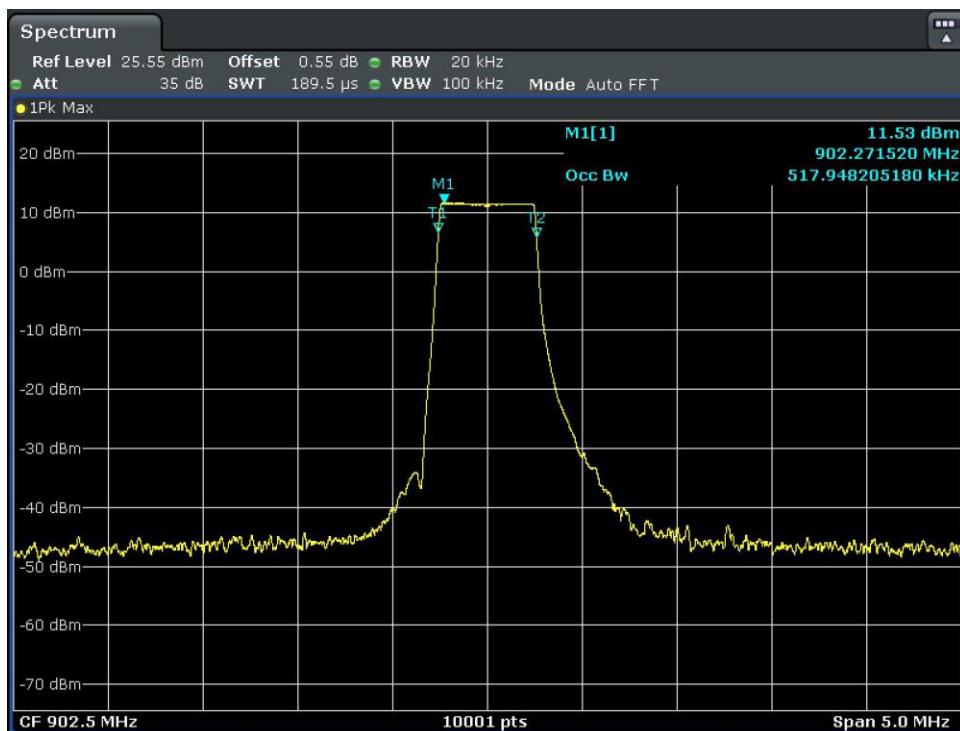


Figure 5. Antenna-Port Conducted Measurements, 99% OBW: Low Channel, 902.5 MHz Plot

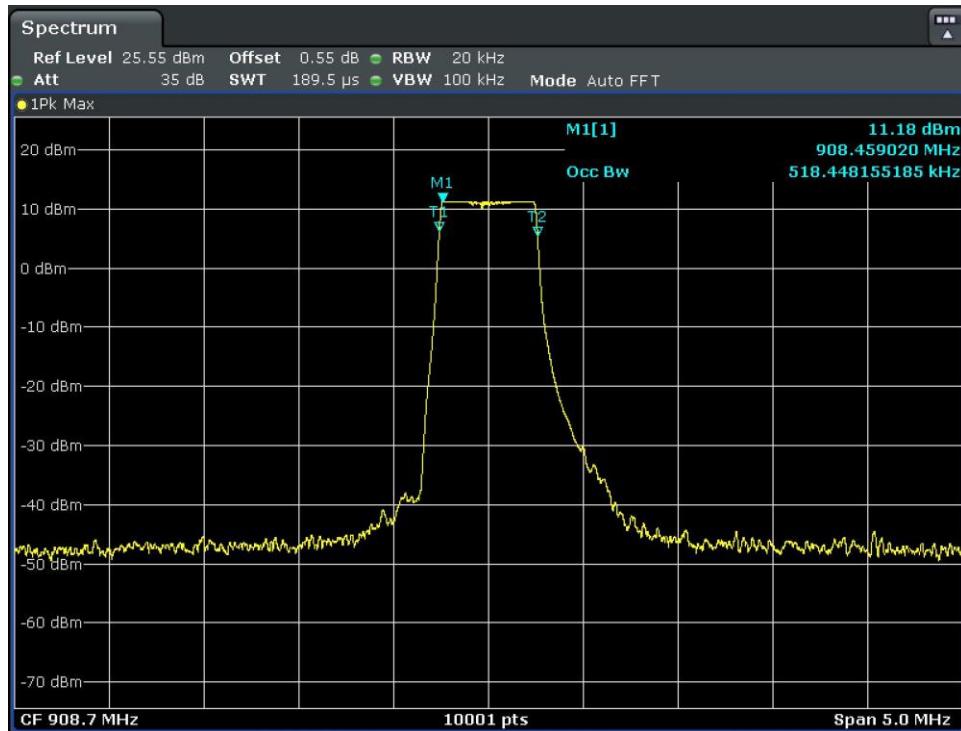


Figure 6. Antenna-Port Conducted Measurements, 99% OBW: Mid Channel, 908.7 MHz Plot

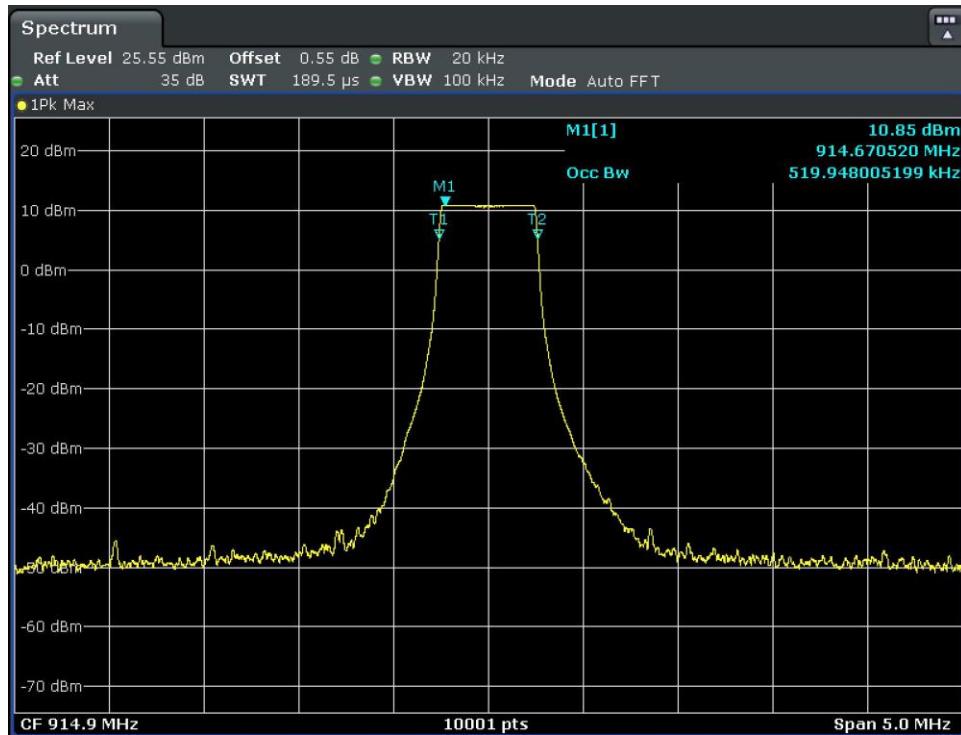
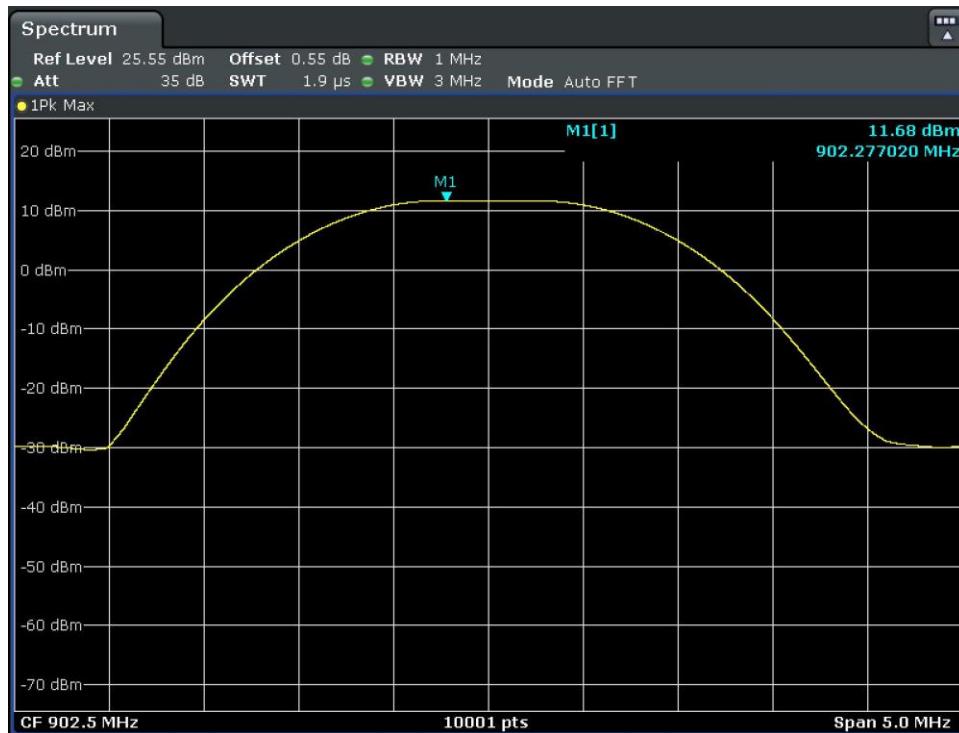
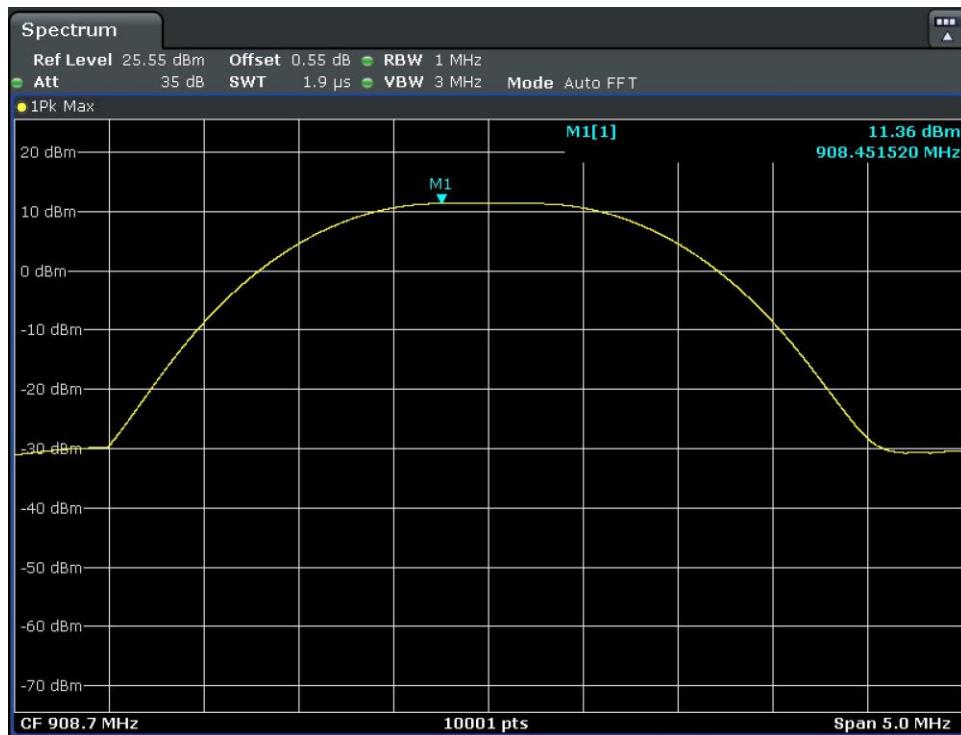



Figure 7. Antenna-Port Conducted Measurements, 99% OBW: High Channel, 914.9 MHz Plot


3.1.4 Maximum Peak Conducted Output Power

Frequency (MHz)	Channel	Measured Max Peak Conducted Output Power (dBm)	Max Peak Conducted Output Power Limit (dBm)
902.5	Low	11.68	30
908.7	Mid	11.36	30
914.9	High	10.98	30

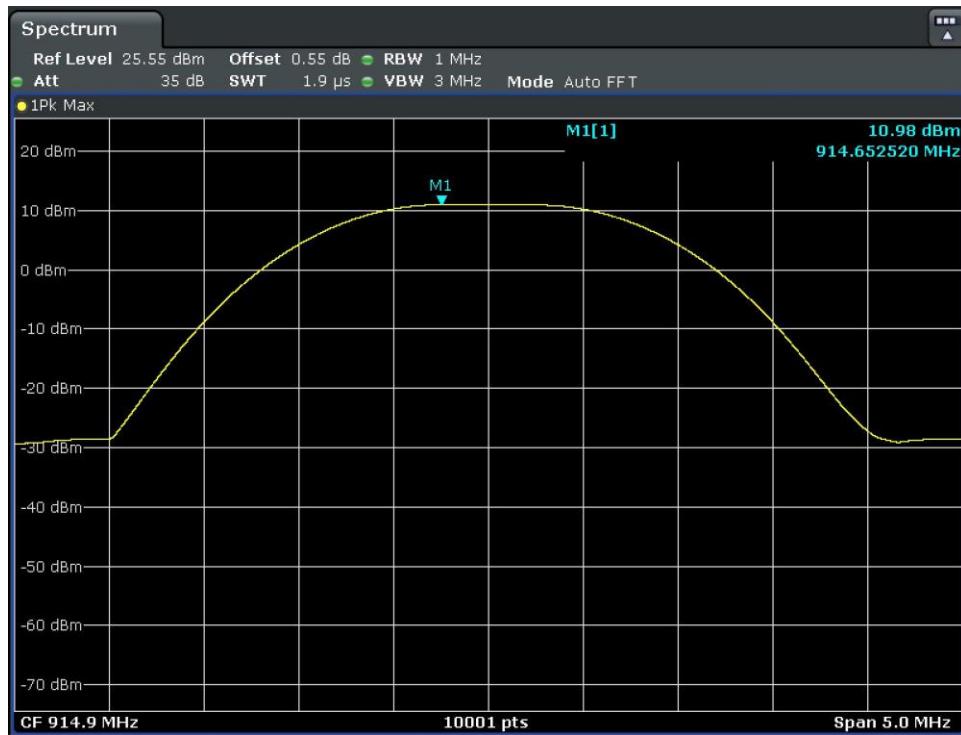

Table 4. Antenna-Port Conducted Measurements, Maximum Peak Conducted Output Power Test Results

Figure 8. Antenna-Port Conducted Measurements, Maximum Peak Conducted Output Power: Low Channel, 902.5 MHz Plot

Figure 9. Antenna-Port Conducted Measurements, Maximum Peak Conducted Output Power: Mid Channel, 908.7 MHz Plot

Figure 10. Antenna-Port Conducted Measurements, Maximum Peak Conducted Output Power: High Channel, 914.9 MHz Plot

3.1.5 Maximum Peak Power Spectral Density Test Results

Frequency (MHz)	Channel	Measured Max Peak Conducted Power Spectral Density (dBm / 3 kHz)	Max Peak Conducted Power Spectral Density Limit (dBm / 3 kHz)
902.5	Low	2.02	8
908.7	Mid	1.68	8
914.9	High	1.49	8

Table 5. Antenna-Port Conducted Measurements, Maximum Peak Power Spectral Density Test Results

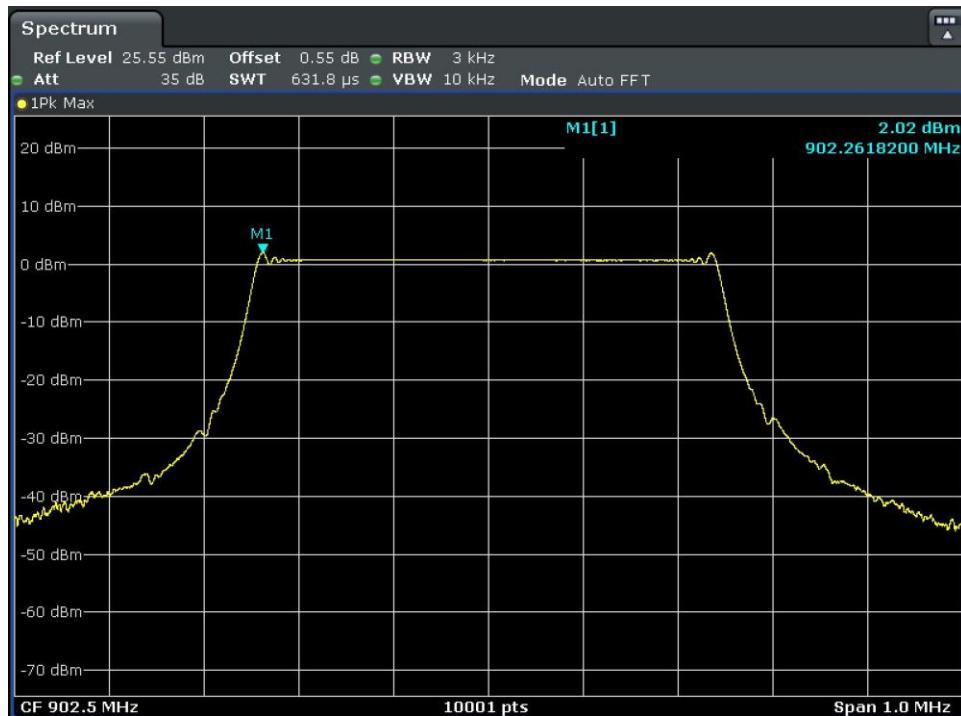
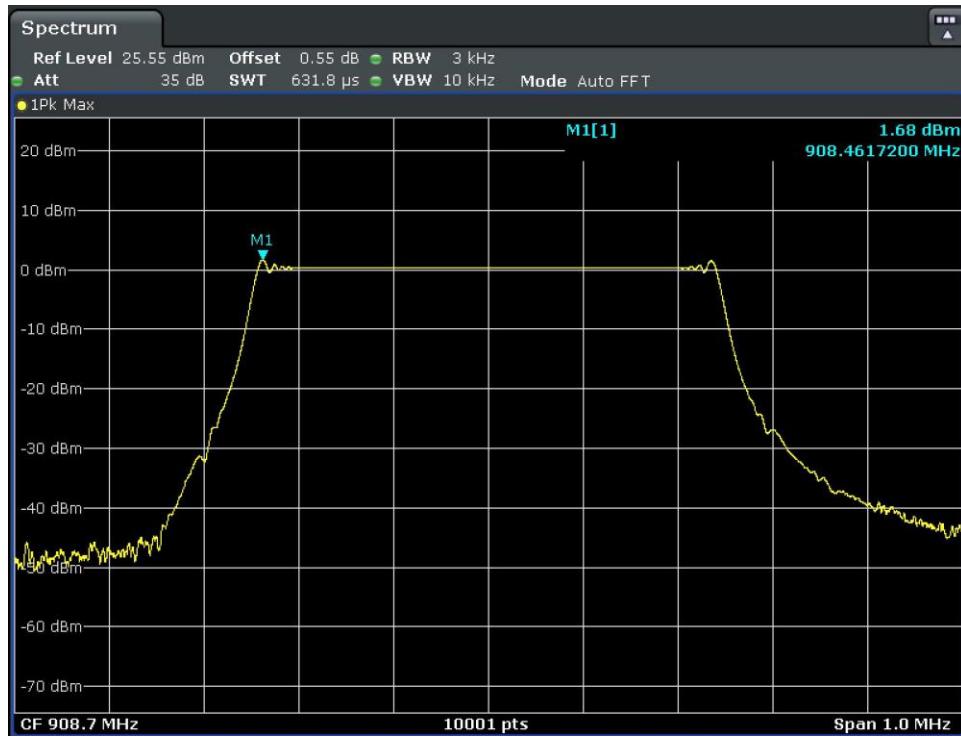
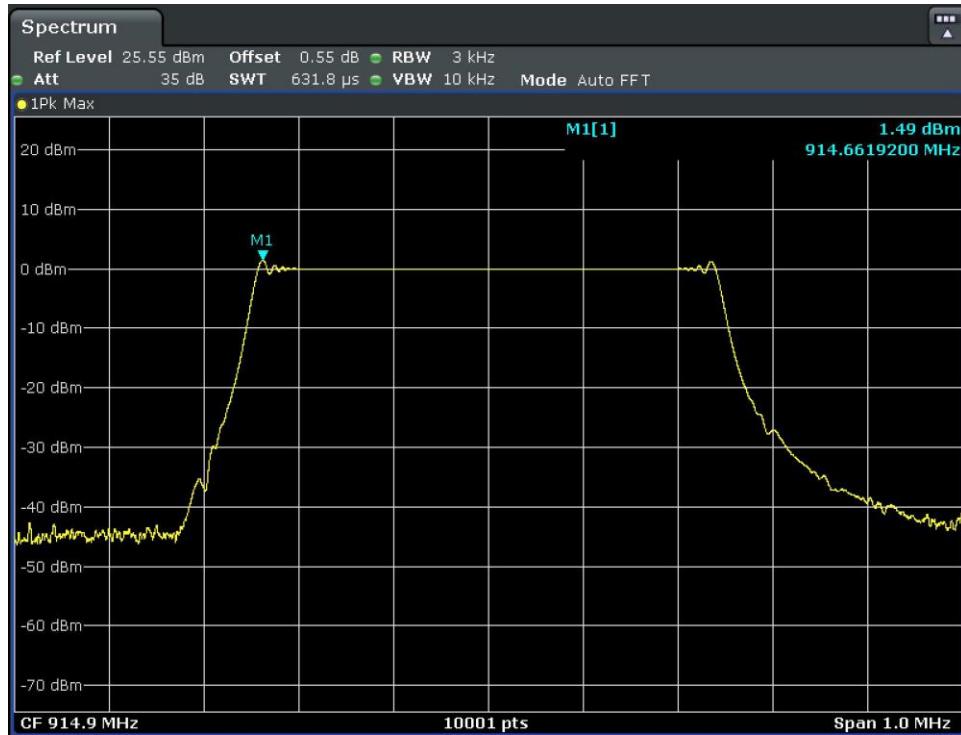




Figure 11. Antenna-Port Conducted Measurements, Maximum Peak Power Spectral Density: Low Channel, 902.5 MHz Plot

Figure 12. Antenna-Port Conducted Measurements, Maximum Peak Power Spectral Density: Mid Channel, 908.7 MHz Plot

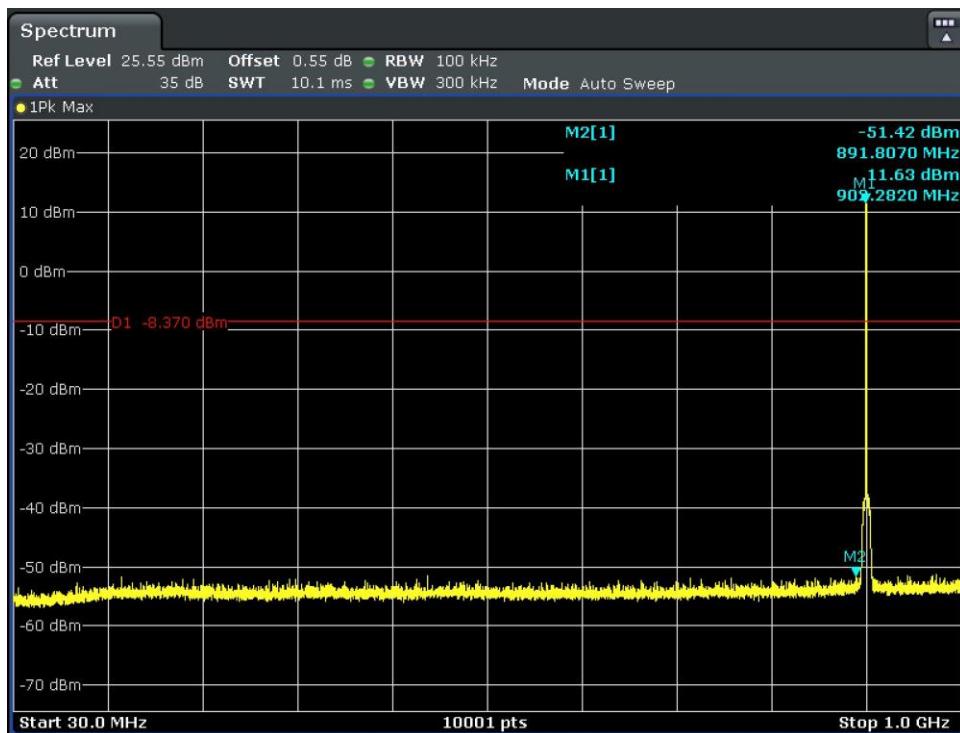
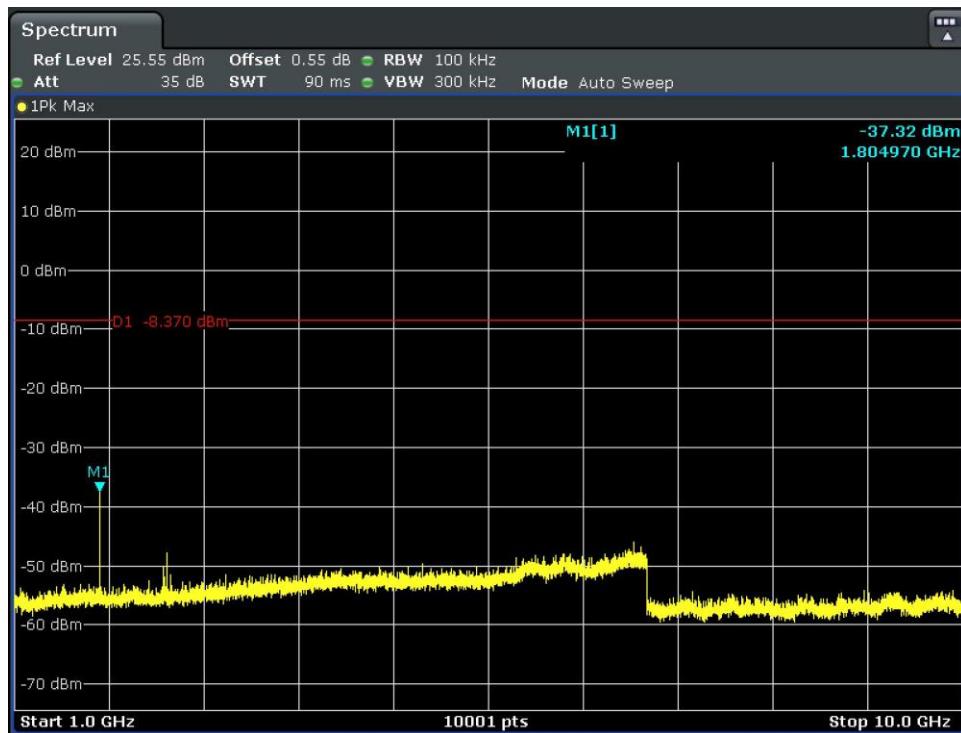
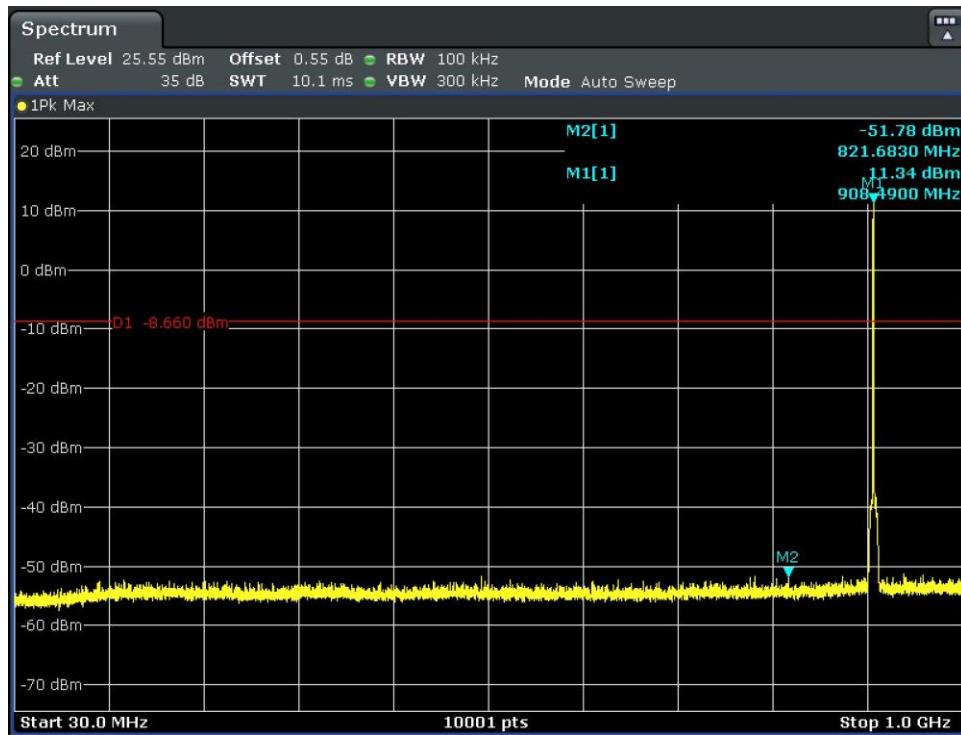
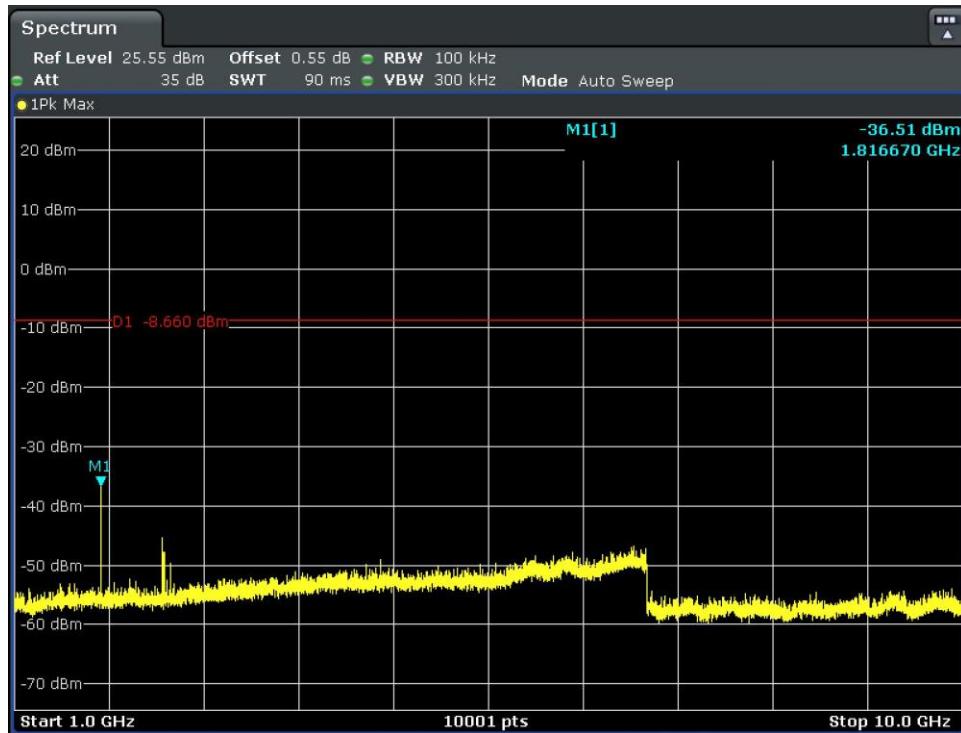


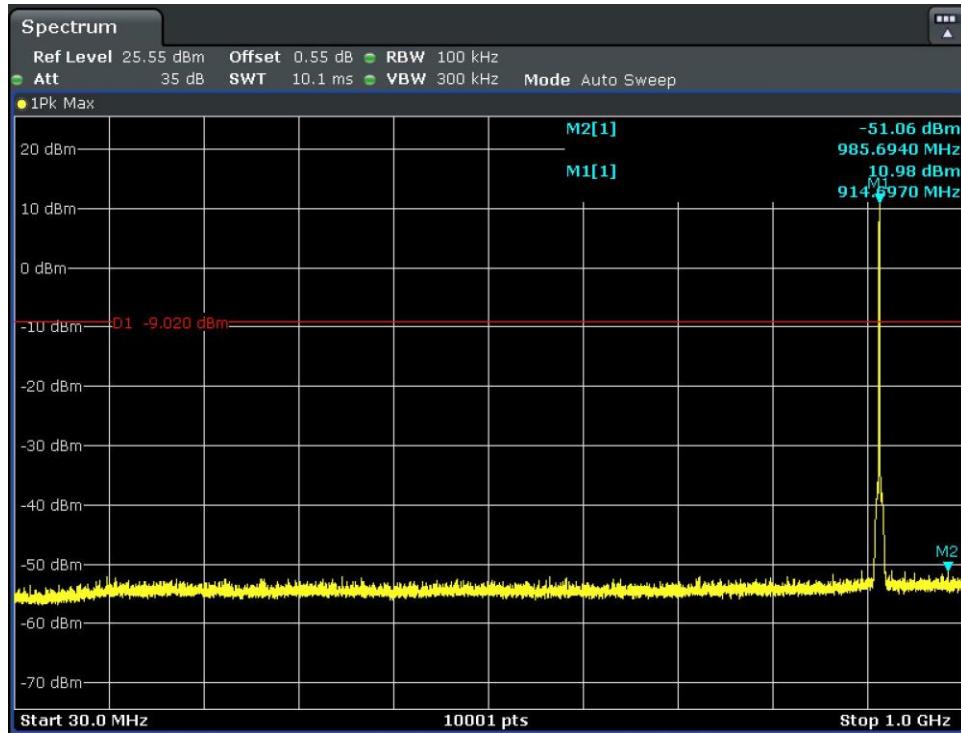
Figure 13. Antenna-Port Conducted Measurements, Maximum Peak Power Spectral Density: High Channel, 914.9 MHz Plot


3.1.6 Conducted Spurious Emissions

Frequency (MHz)	Channel	Fundamental Peak (dBm)	Max Spurious Emission Freq (MHz)	Max Spurious Emission Level (dBm)	Peak-to-Unwanted Emission Delta (Δ) (dBc)	Limit (dBc)
902.5	Low	11.63	1804.97	-37.32	48.95	≥ 20
908.7	Mid	11.34	1816.67	-36.51	47.85	≥ 20
914.9	High	10.98	1829.27	-35.48	46.46	≥ 20


Table 6. Antenna-Port Conducted Measurements, Conducted Spurious Emissions Test Results


Figure 14. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: Low Channel, 902.5 MHz Plot


Figure 15. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: Low Channel, 902.5 MHz Plot

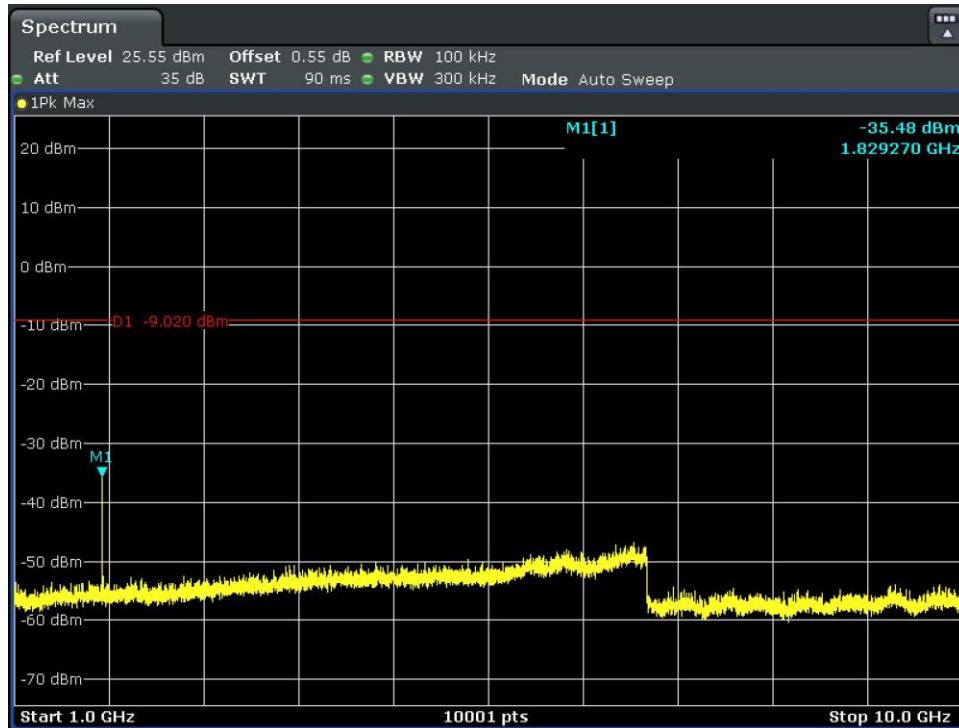

Figure 16. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: Mid Channel, 908.7 MHz Plot

Figure 17. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: Mid Channel, 908.7 MHz Plot

Figure 18. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: High Channel, 914.9 MHz Plot

Figure 19. Antenna-Port Conducted Measurements, Conducted Spurious Emissions: High Channel, 914.9 MHz Plot

3.1.7 Band Edge

Frequency (MHz)	Channel	Fundamental Peak (dBm)	Unwanted Emission Level (dBm)	Peak-to-Unwanted Emission Delta (Δ) (dBc)	Limit (dBc)
902.5	Low	11.64	-30.16	41.8	≥ 20
914.9	High	11.00	-52.66	63.66	≥ 20

Table 7. Antenna-Port Conducted Measurements, Band Edge Test Results

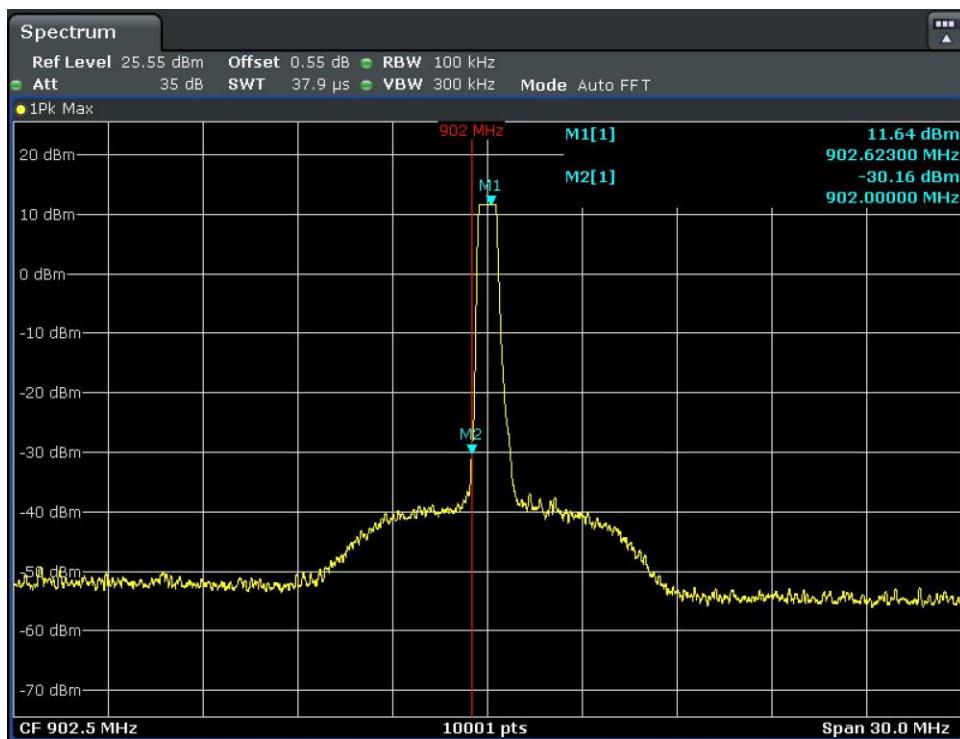
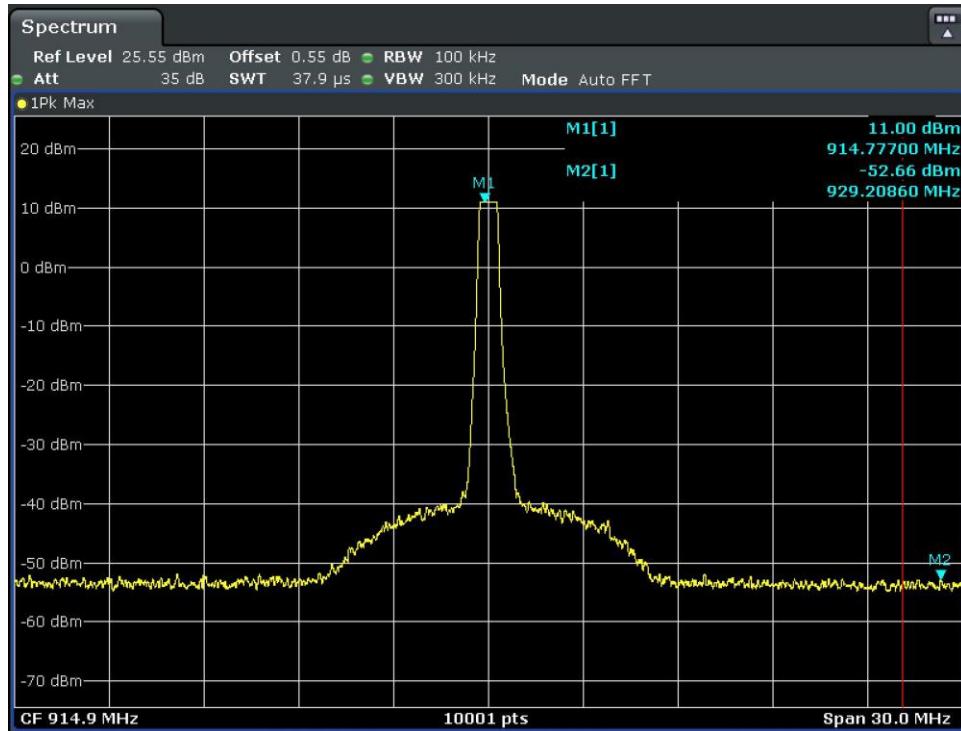



Figure 20. Antenna-Port Conducted Measurements, Lower Band Edge: Low Channel, 902.5 MHz Plot

Figure 21. Antenna-Port Conducted Measurements, Upper Band Edge: High Channel, 914.9 MHz Plot

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Test Name: FCC 15.247 & RSS-247			Test Date(s): 06/19/2025		
Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S3812	Signal Analyzer	Rohde & Schwarz	FSV	01/10/2025	01/10/2027

Note 1: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.
Note 2: Latest NSA and VSWR data available upon request.

Table 8. Antenna-Port Conducted Measurements, Test Equipment

3.2 Radiated Spurious Emissions

Test Method: ANSI C63.10: 2020; FCC KDB 558074 D01 15.247 Meas Guidance v05r02

Test Requirement(s): The following standards specified below are covered in the scope of this section of the test report:

- FCC Part 15 Subpart C §15.247
- RSS-247 Issue 3

FCC – §15.209 Radiated emission limits; general requirements.

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (dB μ V/m)	Measurement Distance (m)
30 - 88	40	3
88 - 216	43.5	3
216 - 960	46	3
Above 960	54	3

ISED – Transmitter emission limits:

Refer to RSS-Gen Issue 5 Section 8.9 Transmitter emission limits Table 5 – General field strength limits at frequencies above 30 MHz.

FCC – §15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹ Until February, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

ISED – Restricted frequency bands:

Refer to RSS-Gen Issue 5 Section 8.10 Restricted frequency bands Table 7 – Restricted frequency bands.

Sample Calculation for Distance Correction factor (DCF) measurement:

$F_d = 20 \cdot \log_{10} (D_m/D_s)$
 where:
 F_d = Distance Factor in dB
 D_m = Measurement Distance in meters
 D_s = Specification Distance in meters

Sample formula for calculating the Corrected Data for the Radiated Emissions Measurements:

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dB μ V)	ACF (dB/m) (+)	Pre Amp Gain (dB)(-)	CBL (dB) (+)	DCF (dB) (+)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
249.99	V	359.9	240.7	55.46	11.4	28.335	0	0	38.505	47	-8.495

$$\begin{aligned}
 \text{Corrected Amplitude (dB}\mu\text{V/m)} &= \text{Uncorrected Amplitude (dB}\mu\text{V)} + \text{ACF (dB/m)} - \text{Preamp Gain (dB)} + \text{CBL (dB)} + \text{DCF (dB)} \\
 &= 55.46 + 11.4 - 28.335 + 0 + 0 = \mathbf{38.505}
 \end{aligned}$$

Test Procedure:

The method of testing, test conditions, and test procedures of ANSI C63.10: 2020 were used in addition to FCC KDB 558074 D01 15.247 Meas Guidance v05r02. Any measured frequency that exhibits a margin of compliance that is less than 3 dB below the specification limit is marked. Eurofins E&E recommends that every emission measured, has at least a 3 dB margin to allow for deviations in the emission characteristics that may occur during the production process.

For emissions between 30 MHz and 1000 MHz, the EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber a biconilog antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated, and the antenna height was varied between 1 m and 4 m to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz resolution bandwidth.

For emissions between 1 GHz and 18 GHz, a double ridged guide horn was located 3 m from the EUT on an adjustable mast. The EUT as placed on a non-metallic table 150 cm above the ground plane inside a semi-anechoic chamber. A pre-scan was performed and used to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated, and the antenna height was varied depending on the geometry of the EUT. To ensure maximized emissions, the horn antenna was positioned both vertically and horizontally. Unless otherwise specified, measurements were made using a peak and average detector with a 1 MHz resolution bandwidth.

For emission between 18 GHz and 26 GHz, a high frequency standard gain horn antenna was located 3 m from the EUT on an adjustable mast. The EUT as placed on a non-metallic table 150 cm above the ground plane inside a semi-anechoic chamber. A pre-scan was performed and used to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated, and the antenna height was varied depending on the geometry of the EUT. To ensure maximized emissions, the horn antenna was positioned both vertically and horizontally. Unless otherwise specified, measurements were made using a peak and average detector with a 1 MHz resolution bandwidth.

Due to the size of the EUT, pre-liminary measurements were performed with the EUT rotated on different axis (X, Y, Z). The worst-case data is presented in this report.

Test Software Used:

Nexio BAT-EMC was used to perform this test.

Test Results:

Test Standard:	FCC Part 15.247 (Per FCC KDB 558074 D01 15.247 Meas Guidance v05r02; ANSI C63.10-2020) RSS-247 Issue 3
Test Name	Radiated Spurious Emissions
Test Dates:	06/20/2025
Laboratory	Eurofins E&E Testing NA, LLC.
Test Engineer:	Chin Ming Lui
Test Results:	Compliant

Test Data (FCC 15.247 & RSS-247 Radiated Spurious Emissions)

LoRa Low Channel 902.5 MHz

Frequency (MHz)	Source	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
57.87	QuasiPeak (PASS)	7.979	40	-32.021	3.483	229	Vertical	120000	0.1	-14.07
134.097	QuasiPeak (PASS)	26.923	43.522	-16.599	3.755	5	Horizontal	120000	0.1	-11.425
451.17	QuasiPeak (PASS)	30.453	46.021	-15.568	3.26	242	Horizontal	120000	0.1	-4.87
870.601	QuasiPeak (PASS)	37.97	46.021	-8.051	1.03	147	Horizontal	120000	0.1	-0.357

Table 9. Radiated Spurious Emissions, LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Test Results

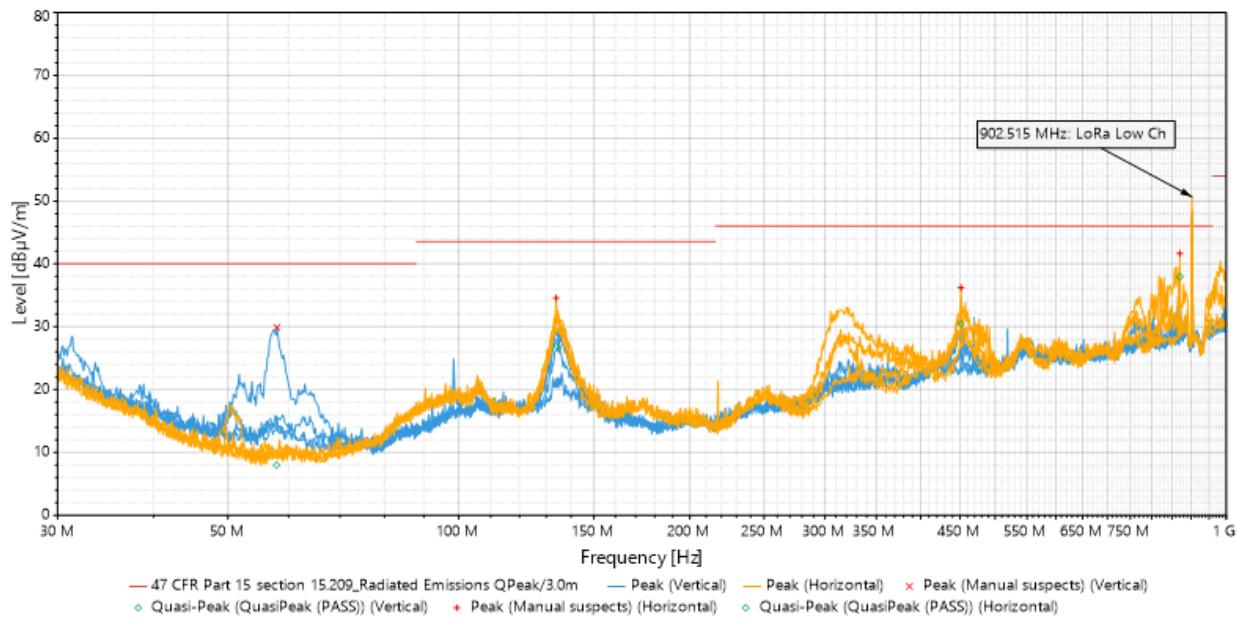
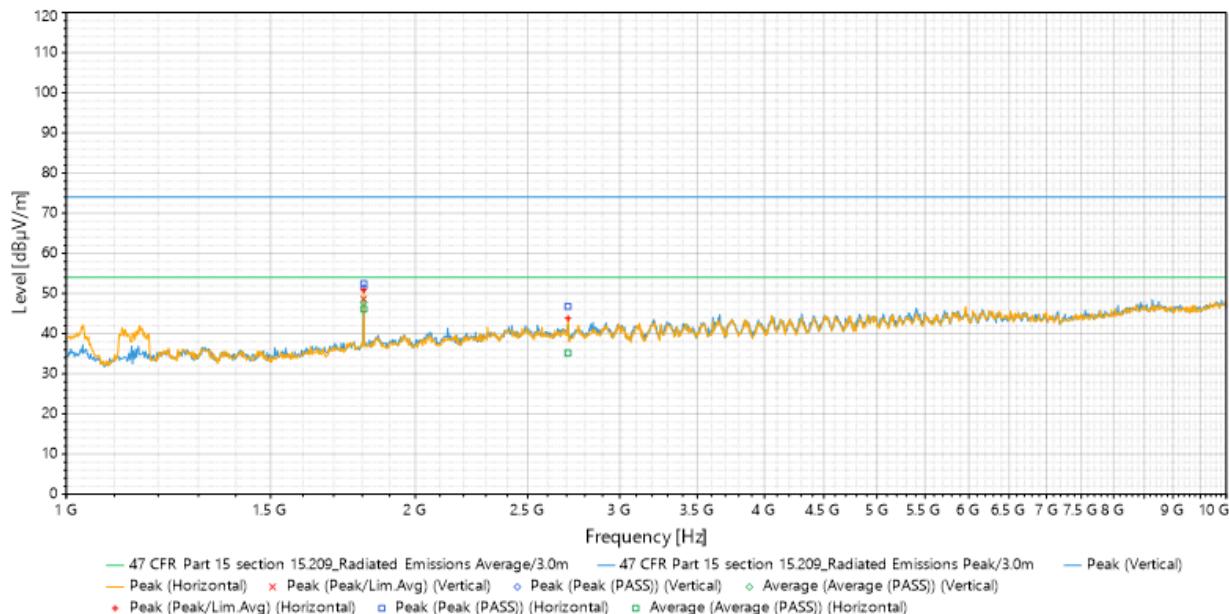



Figure 22. Radiated Spurious Emissions, LoRa Low Channel 902.5 MHz (30 MHz – 1 GHz) Plot

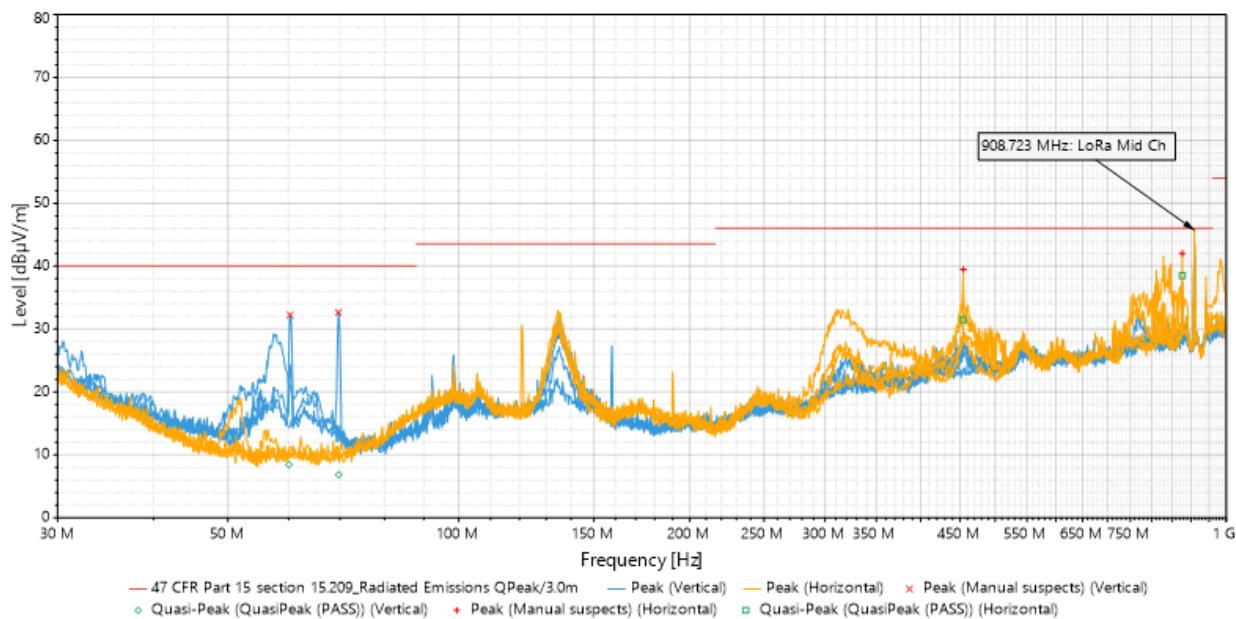

Frequency (MHz)	Source	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
1804.9	Peak (PASS)	51.419	74	-22.581	2.272	261	Vertical	1000000	0.1	-1.551
1804.9	Average (PASS)	47.779	54	-6.221	2.272	261	Vertical	1000000	0.1	-1.551
1805.4	Peak (PASS)	52.483	74	-21.517	1	236	Horizontal	1000000	0.1	-1.462
1805.4	Average (PASS)	46.172	54	-7.828	1	236	Horizontal	1000000	0.1	-1.462
2707	Peak (PASS)	46.783	74	-27.217	4	193	Horizontal	1000000	0.1	0.156
2707	Average (PASS)	35.203	54	-18.797	4	193	Horizontal	1000000	0.1	0.156

Table 10. Radiated Spurious Emissions, LoRa Low Channel 902.5 MHz (1 – 10 GHz) Test Results

Figure 23. Radiated Spurious Emissions, LoRa Low Channel 902.5 MHz (1 – 10 GHz) Plot

LoRa Mid Channel 908.7 MHz

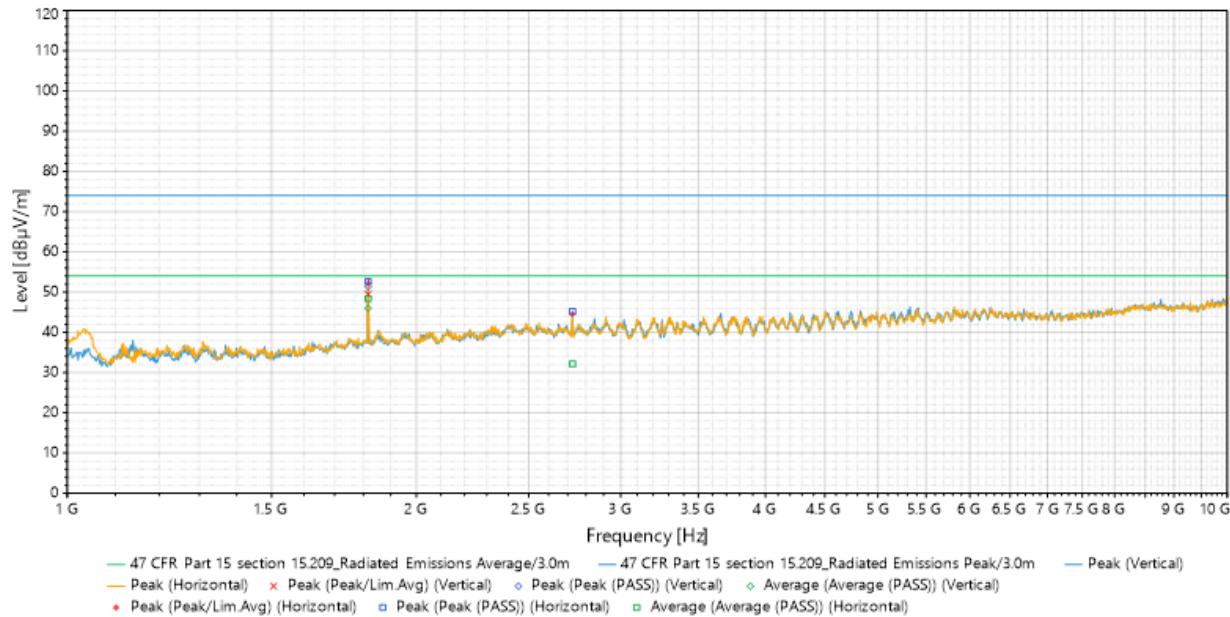

Frequency (MHz)	Source	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
60.06	QuasiPeak (PASS)	8.431	40	-31.569	2.696	359	Vertical	120000	0.1	-14.545
69.739	QuasiPeak (PASS)	6.827	40	-33.173	3.254	68	Vertical	120000	0.1	-16.349
454.298	QuasiPeak (PASS)	31.446	46.021	-14.575	2.944	234	Horizontal	120000	0.1	-4.459
876.606	QuasiPeak (PASS)	38.512	46.021	-7.509	1.032	260	Horizontal	120000	0.1	0.277

Table 11. Radiated Spurious Emissions, LoRa Mid Channel 908.7 MHz (30 MHz – 1 GHz) Test Results

Figure 24. Radiated Spurious Emissions, LoRa Mid Channel 908.7 MHz (30 MHz – 1 GHz) Plot

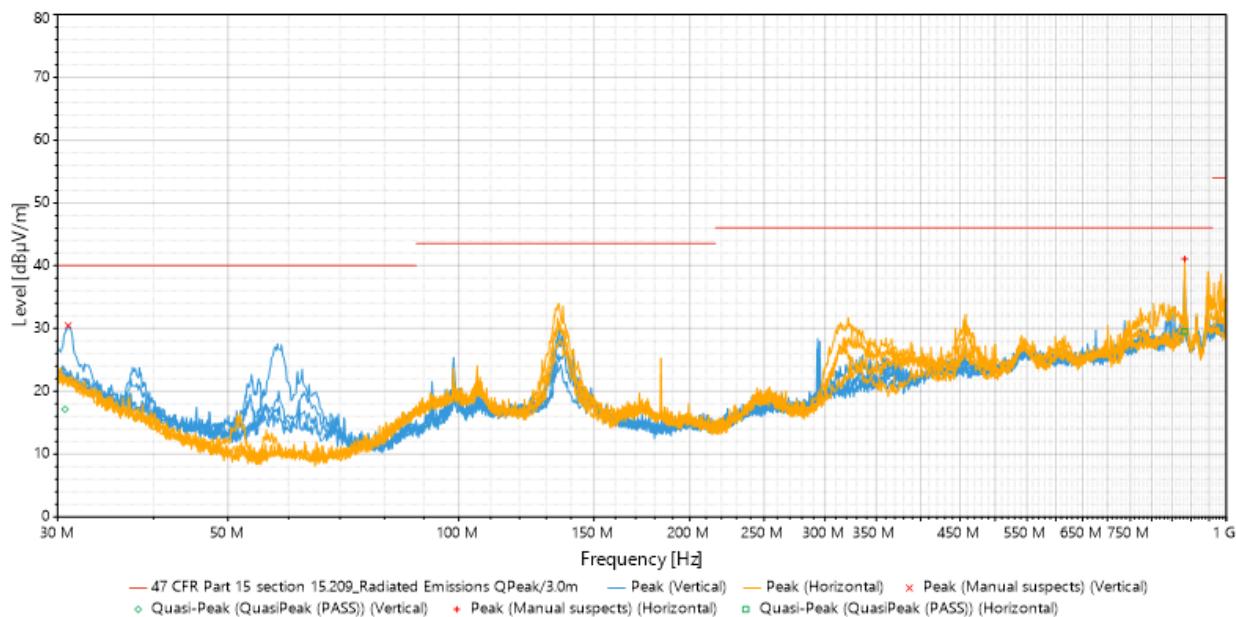

Frequency (MHz)	Source	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
1817.1	Peak (PASS)	51.37	74	-22.63	2.14	252	Vertical	1000000	0.1	-1.399
1817.1	Average (PASS)	46.011	54	-7.989	2.14	252	Vertical	1000000	0.1	-1.399
1817.2	Peak (PASS)	52.648	74	-21.352	1.035	237	Horizontal	1000000	0.1	-1.399
1817.2	Average (PASS)	48.372	54	-5.628	1.035	237	Horizontal	1000000	0.1	-1.399
2726.8	Peak (PASS)	45.198	74	-28.802	1	124	Horizontal	1000000	0.1	0.018
2726.8	Average (PASS)	32.182	54	-21.818	1	124	Horizontal	1000000	0.1	0.018

Table 12. Radiated Spurious Emissions, LoRa Mid Channel 908.7 MHz (1 – 10 GHz) Test Results

Figure 25. Radiated Spurious Emissions, LoRa Mid Channel 908.7 MHz (1 – 10 GHz) Plot

LoRa High Channel 914.9 MHz

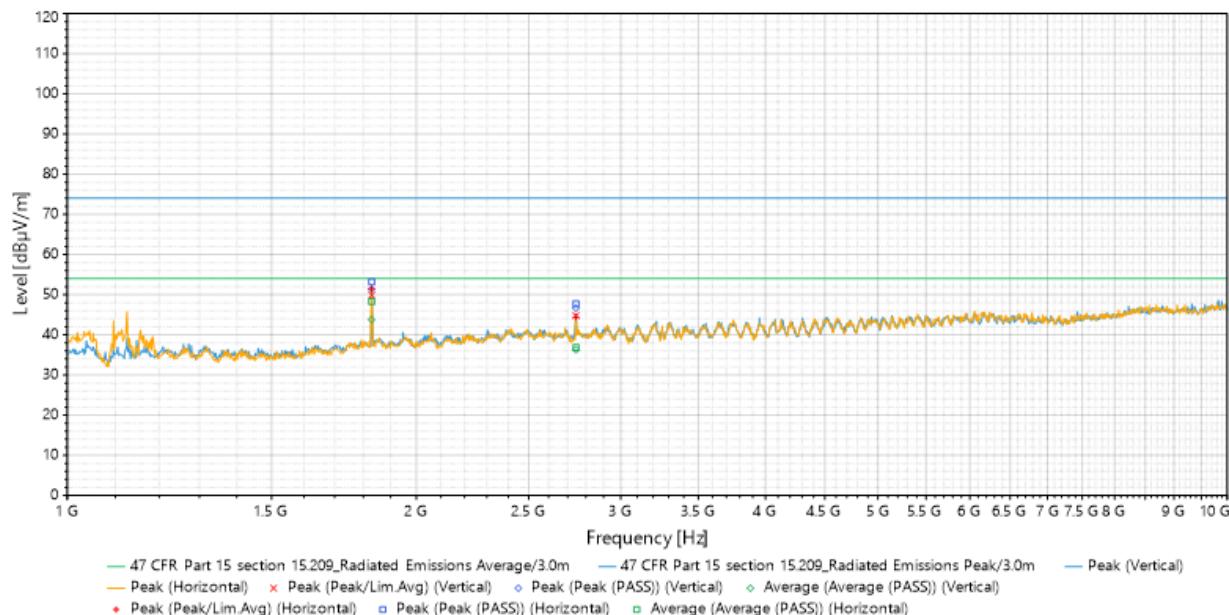

Frequency (MHz)	Source	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
30.67	QuasiPeak (PASS)	17.14	40	-22.86	2.92	224	Vertical	120000	0.1	-5.467
883.116	QuasiPeak (PASS)	29.513	46.021	-16.508	1.47	43	Horizontal	120000	0.1	0.742

Table 13. Radiated Spurious Emissions, LoRa High Channel 914.9 MHz (30 MHz – 1 GHz) Test Results

Figure 26. Radiated Spurious Emissions, LoRa High Channel 914.9 MHz (30 MHz – 1 GHz) Plot

Frequency (MHz)	Source	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (m)	Azimuth (°)	Pol.	RBW (Hz)	Meas. Time (s)	Correction (dB)
1829.3	Peak (PASS)	51.362	74	-22.638	2.157	80	Vertical	1000000	0.1	-1.3
1829.3	Average (PASS)	43.797	54	-10.203	2.157	80	Vertical	1000000	0.1	-1.3
1830.1	Peak (PASS)	53.226	74	-20.774	1.032	50	Horizontal	1000000	0.1	-1.365
1830.1	Average (PASS)	48.291	54	-5.709	1.032	50	Horizontal	1000000	0.1	-1.365
2745.2	Peak (PASS)	46.655	74	-27.345	2.713	99	Vertical	1000000	0.1	0.141
2745.2	Average	36.267	54	-17.733	2.713	99	Vertical	1000000	0.1	0.141
2745.3	Peak (PASS)	47.722	74	-26.278	3.634	2	Horizontal	1000000	0.1	0.047
2745.3	Average (PASS)	36.843	54	-17.157	3.634	2	Horizontal	1000000	0.1	0.047

Table 14. Radiated Spurious Emissions, LoRa High Channel 914.9 MHz (1 – 10 GHz) Test Results

Figure 27. Radiated Spurious Emissions, LoRa High Channel 914.9 MHz (1 – 10 GHz) Plot

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Test Name: FCC 15.247 & RSS-247			Test Date(s): 06/20/2025		
Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2399	Turntable Controller	Sunol Sciences	SC99V	See Note 1	
1S4856	Antenna Positioning Tower	ETS-Lindgren	2171B	See Note 1	
1S2482	5 Meter Chamber	Panashield - ETS	5 Meter Semi-Anechoic Chamber	See Note 2	
1S4804	EMI Test Receiver	Rohde & Schwarz	ESW44	08/07/2024	08/07/2025
1S2485	Bilog Antenna	Teseq	CBL6112D	11/27/2024	11/27/2026
1S2435	Horn Antenna	ETS-Lindgren	3117	03/17/2025	03/17/2027
1S2668	Pre-Amplifier	Sonoma Instruments	310 N	03/18/2025	03/18/2027
1S4802	Pre-Amplifier	EMC Instruments Corporation	EMC118A45SE	See Note 1	

Note 1: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.
Note 2: Latest NSA and VSWR data available upon request.

Table 15. Radiated Spurious Emissions, Test Equipment

END OF REPORT