

### Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

### FCC PART 15 SUBPART C TEST REPORT

### **FCC PART 15.247**

Report Reference No. ...... CTA25031901801 FCC ID. ...... : 2BOVV-YX-8201J

Compiled by

( position+printed name+signature) .: File administrators Zoey Cao

Supervised by

( position+printed name+signature) . : Project Engineer Ace Chai

Approved by

( position+printed name+signature) .: RF Manager Eric Wang

Date of issue ...... Apr. 14, 2025

Testing Laboratory Name...... Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name ....... Jinhua Lantu Supply Chain Link Co., Ltd.

Address ....... No. 6, East Building, No. 12, Kechuang Road, Dongcheng Sub-district,

Yongkang City, Jinhua City, Zhejiang Province, China

Test specification....:

Standard..... FCC Part 15.247

### Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description...... Drift car

Trade Mark...... JIENIU

Manufacturer ...... Jinhua Lantu Supply Chain Link Co., Ltd.

Model/Type reference .....: YX-8201J

Modulation ...... GFSK, Π/4DQPSK

Frequency ...... From 2402MHz to 2480MHz

Ratings ...... DC 36V From battery and DC 42V From external circuit

CTATESTING

Result .....: PASS

Page 2 of 29 Report No.: CTA25031901801

### TEST REPORT

**Equipment under Test** Drift car

Model /Type YX-8201J

Listed Models YX-8201A, YX-8201C, YJG-8201, YX-7201, YX-7201Z

The PCB board, circuit, structure and internal of these models are the Model difference

same, Only model number and colour is different for these model.

Applicant Jinhua Lantu Supply Chain Link Co., Ltd.

No. 6, East Building, No. 12, Kechuang Road, Dongcheng Sub-district, Address

Yongkang City, Jinhua City, Zhejiang Province, China

Jinhua Lantu Supply Chain Link Co., Ltd. Manufacturer

Address = No. 6, East Building, No. 12, Kechuang Road, Dongcheng Sub-district,

Yongkang City, Jinhua City, Zhejiang Province, China

PASS Test Result:

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

### Report No.: CTA25031901801

### **Contents**

|      | 1  | TEST  | STANDARDS                                                    | 4  |
|------|----|-------|--------------------------------------------------------------|----|
|      | 2  | SUM   | MARY                                                         |    |
|      |    | 2.1   | General Remarks                                              | 5  |
|      |    | 2.2   | Product Description                                          | 5  |
|      |    | 2.3   | Equipment Under Test                                         | 5  |
|      |    | 2.4   | Short description of the Equipment under Test (EUT)          |    |
|      |    | 2.5   | EUT configuration                                            | 6  |
|      |    | 2.6   | EUT operation mode                                           | 6  |
|      |    | 2.7   | Block Diagram of Test Setup                                  |    |
|      |    | 2.8   | Related Submittal(s) / Grant (s)                             | 6  |
|      |    | 2.9   | Modifications                                                |    |
|      | 3  |       | ENVIRONMENT                                                  |    |
|      | 51 | 3.1   | Address of the test laboratory                               |    |
| TATE |    | 3.2   | Test Facility                                                | 7  |
| CAL  |    | 3.3   | Environmental conditions                                     |    |
| j    |    | 3.4   | Summary of measurement results                               | 8  |
|      |    | 3.5   | Statement of the measurement uncertainty                     |    |
|      |    | 3.6   | Equipments Used during the Test                              | 9  |
|      | 4  | TEST  |                                                              |    |
|      |    | 4.1   | AC Power Conducted Emission                                  |    |
|      |    | 4.2   | Radiated Emission                                            |    |
|      |    | 4.3   | Maximum Peak Output Power                                    |    |
|      |    | 4.4   | 20dB Bandwidth                                               |    |
|      |    | 4.5   | Frequency Separation                                         |    |
|      |    | 4.6   | Number of hopping frequency                                  |    |
|      |    | 4.7   | Time of Occupancy (Dwell Time)                               |    |
|      |    | 4.8   | Out-of-band Emissions                                        |    |
|      |    | 4.9   | Pseudorandom Frequency Hopping Sequence  Antenna Requirement | ∠೮ |
|      |    | 4.10  | On Time and Duty Cycle                                       | 20 |
|      | 5  | 4.11  | On Time and Duty Cycle                                       | ∠c |
|      | 6  |       | Setup Photos of the EUTnal and Internal Photos of the EUT    |    |
|      | O  | Exten | nai and internal Photos of the EOT                           | ∠8 |
|      |    |       | CIA                                                          |    |
|      |    |       |                                                              |    |
|      |    |       |                                                              |    |
|      |    |       |                                                              |    |

Page 4 of 29 Report No.: CTA25031901801

#### 1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 29 Report No.: CTA25031901801

### SUMMARY

### 2.1 General Remarks

| Date of receipt of test sample | :         | Mar. 19, 2025 | . Ca |
|--------------------------------|-----------|---------------|------|
|                                | 112       | CIP           | TING |
| Testing commenced on           |           | Mar. 19, 2025 | TEST |
|                                | Ou Strike |               | CTA  |
| Testing concluded on           | :         | Apr. 14, 2025 |      |

### 2.2 Product Description

| C.\r                                                                   |
|------------------------------------------------------------------------|
| : Apr. 14, 2025                                                        |
| otion                                                                  |
| Drift car                                                              |
| YX-8201J                                                               |
| DC 36V From battery and DC 42V From external circuit                   |
| Model: DCSP420200<br>Input: AC 100-240V 50-60Hz<br>Output: DC 42V 2.0A |
| V1.0                                                                   |
| V1.0                                                                   |
| CTA250319018-1# (Engineer sample)<br>CTA250319018-2# (Normal sample)   |
|                                                                        |
| Bluetooth BR/EDR                                                       |
| GFSK, π/4DQPSK                                                         |
| 2402MHz~2480MHz                                                        |
| 79                                                                     |
| 1MHz                                                                   |
| PCB antenna                                                            |
| 0.78dBi                                                                |
|                                                                        |

### 2.3 Equipment Under Test

| 2.3 Equipment Under Test    |    |                |                              |         |              |
|-----------------------------|----|----------------|------------------------------|---------|--------------|
| Power supply system utilise | d  | $\overline{a}$ | 2007/12011-                  |         | 1400///00/1- |
| Power supply voltage        | :: | $\cup$         | 230V / 50 Hz                 | $\circ$ | 120V / 60Hz  |
|                             |    | 0              | 12 V DC                      | 0       | 24 V DC      |
|                             |    | •              | Other (Refer to section 2.2) |         | CIL          |

### Short description of the Equipment under Test (EUT)

This is a Drift car.

For more details, refer to the user's manual of the EUT.

| Test Software Version | Tools s  | software(FCC_assist_ | 1.0.2.2) |
|-----------------------|----------|----------------------|----------|
| Frequency             | 2402 MHz | 2441MHz              | 2480 MHz |
| GFSK                  | 3        | 3                    | 3        |
| π/4-DQPSK             | 3        | 3                    | 3        |
| 8-DPSK                | 3        | 3                    | 3        |

Report No.: CTA25031901801 Page 6 of 29

### 2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

| 0 | <ul> <li>supplied</li> </ul> | by the | manufacturer |
|---|------------------------------|--------|--------------|
|---|------------------------------|--------|--------------|

| Supplied by the lab |   | A 1      |       |
|---------------------|---|----------|-------|
| 1                   | C | <b>F</b> | STING |

#### 2.6 **EUT operation mode**

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

| Operation Frequency: |                           |                 |     |  |
|----------------------|---------------------------|-----------------|-----|--|
| Operation Frequency: | Frequency (MHz) 2402 2403 |                 |     |  |
| Channel              |                           | Frequency (MHz) |     |  |
| 00                   |                           | 2402            |     |  |
| 01                   | Carlo V                   | 2403            | 114 |  |
| i i                  |                           | CTATA           |     |  |
| 38                   |                           | 2440            |     |  |
| 39                   |                           | 2441            |     |  |
| 40                   |                           | 2442            |     |  |
| TING                 |                           | <u>:</u>        |     |  |
| 77 77                | . C.                      | 2479            |     |  |
| 78                   |                           | 2480            |     |  |

### Block Diagram of Test Setup



## CTATESTING Related Submittal(s) / Grant (s) 2.8

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part CTA TESTING 15, Subpart C Rules.

#### 2.9 **Modifications**

No modifications were implemented to meet testing criteria.

Report No.: CTA25031901801 Page 7 of 29

### TEST ENVIRONMENT

### 3.1 Address of the test laboratory

### Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

#### 3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

### A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

#### ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 3.3 **Environmental conditions**

CTA TESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

| Temperature:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 ° C       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                       | The state of the s |              |
| Humidity:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 %         |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Atmospheric pressure: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 950-1050mbar |

### AC Power Conducted Emission:

| 9 : 0::0: 00::00:00 =::::00:0::: |              |
|----------------------------------|--------------|
| Temperature:                     | 25 ° C       |
| TIN                              | G            |
| Humidity:                        | 46 %         |
| CTA                              |              |
| Atmospheric pressure:            | 950-1050mbar |

### Conducted testing:

| Conducted testing.    |              |
|-----------------------|--------------|
| Temperature:          | 25 ° C       |
|                       | 23 100       |
| Humidity:             | 44 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |
| CTA TESTING           | CTATESTING   |

Report No.: CTA25031901801 Page 8 of 29

### 3.4 Summary of measurement results

|      | Test<br>Specification<br>clause | Test case                                                | Test<br>Mode     | Test Channel                                                  |                  | orded<br>eport                                                | Test result |
|------|---------------------------------|----------------------------------------------------------|------------------|---------------------------------------------------------------|------------------|---------------------------------------------------------------|-------------|
|      | §15.247(a)(1)                   | Carrier<br>Frequency<br>separation                       | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>Π/4DQPSK | ⊠ Middle                                                      | Compliant   |
|      | §15.247(a)(1)                   | Number of<br>Hopping<br>channels                         | GFSK<br>Π/4DQPSK | ⊠ Full                                                        | GFSK             | ⊠ Full                                                        | Compliant   |
|      | §15.247(a)(1)                   | Time of<br>Occupancy<br>(dwell time)                     | GFSK<br>Π/4DQPSK | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | GFSK<br>Π/4DQPSK | ⊠ Middle                                                      | Compliant   |
| ATES | §15.247(a)(1)                   | Spectrumbandwidth<br>of aFHSS<br>system20dB<br>bandwidth | GFSK<br>П/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | Compliant   |
|      | §15.247(b)(1)                   | Maximum output peak power                                | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | Compliant   |
|      | §15.247(d)                      | Band<br>edgecompliance<br>conducted                      | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | Compliant   |
|      | §15.205                         | Band<br>edgecompliance<br>radiated                       | GFSK<br>Π/4DQPSK |                                                               | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | Compliant   |
|      | §15.247(d)                      | TX<br>spuriousemissions<br>conducted                     | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | Compliant   |
|      | §15.247(d)                      | TX<br>spuriousemissions<br>radiated                      | GFSK<br>Π/4DQPSK | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | GFSK             | <ul><li>✓ Lowest</li><li>✓ Middle</li><li>✓ Highest</li></ul> | Compliant   |
|      | §15.209(a)                      | TX spurious<br>Emissions<br>radiated<br>Below 1GHz       | GFSK<br>П/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK             | ⊠ Middle                                                      | Compliant   |
|      | §15.107(a)<br>§15.207           | Conducted<br>Emissions<br>9KHz-30 MHz                    | GFSK<br>Π/4DQPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK             | ⊠ Middle                                                      | Compliant   |

### Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report
- RF Conducted test Offset= cable loss, For conducted spurious emission test, cable loss is the maximum value in the range of test.

#### Statement of the measurement uncertainty 3.5

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

| Test              | Range      | Measurement<br>Uncertainty | Notes |
|-------------------|------------|----------------------------|-------|
| Radiated Emission | 9KHz~30MHz | 3.02 dB                    | (1)   |
| Radiated Emission | 30~1000MHz | 4.06 dB                    | (1)   |
| Radiated Emission | 1~18GHz    | 5.14 dB                    | (1)   |
| Radiated Emission | 18-40GHz   | 5.38 dB                    | (1)   |

Page 9 of 29 Report No.: CTA25031901801

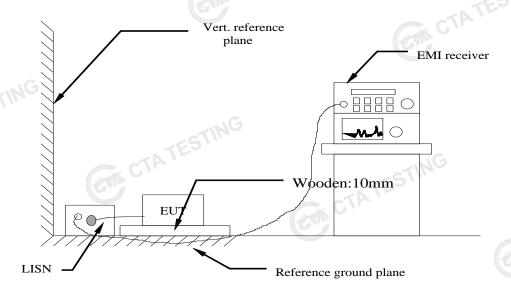
| Conducted Disturbance                    | 0.15~30MHz  | 2.14 dB | (1) |
|------------------------------------------|-------------|---------|-----|
| Output Peak power                        | 30MHz~18GHz | 0.55 dB | (1) |
| Power spectral density                   | /           | 0.57 dB | (1) |
| Spectrum bandwidth                       |             | 1.1%    | (1) |
| Radiated spurious emission (30MHz-1GHz)  | 30~1000MHz  | 4.10 dB | (1) |
| Radiated spurious emission (1GHz-18GHz)  | 1~18GHz     | 4.32 dB | (1) |
| Radiated spurious emission (18GHz-40GHz) | 18-40GHz    | 5.54 dB | (1) |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

### 3.6 Equipments Used during the Test

| Test Equipment                            | Manufacturer   | Model No.          | Equipment<br>No. | Calibration<br>Date | Calibration<br>Due Date |
|-------------------------------------------|----------------|--------------------|------------------|---------------------|-------------------------|
| LISN                                      | R&S            | ENV216             | CTA-308          | 2024/08/03          | 2025/08/02              |
| LISN                                      | R&S            | ENV216             | CTA-314          | 2024/08/03          | 2025/08/02              |
| EMI Test Receiver                         | R&S            | ESPI               | CTA-307          | 2024/08/03          | 2025/08/02              |
| EMI Test Receiver                         | R&S            | ESCI               | CTA-306          | 2024/08/03          | 2025/08/02              |
| Spectrum Analyzer                         | Agilent        | N9020A             | CTA-301          | 2024/08/03          | 2025/08/02              |
| Spectrum Analyzer                         | R&S            | FSU                | CTA-337          | 2024/08/03          | 2025/08/02              |
| Vector Signal generator                   | Agilent        | N5182A             | CTA-305          | 2024/08/03          | 2025/08/02              |
| Analog Signal<br>Generator                | R&S            | SML03              | CTA-304          | 2024/08/03          | 2025/08/02              |
| WIDEBAND RADIO<br>COMMUNICATION<br>TESTER | CMW500         | R&S                | CTA-302          | 2024/08/03          | 2025/08/02              |
| Temperature and humidity meter            | Chigo          | ZG-7020            | CTA-326          | 2024/08/03          | 2025/08/02              |
| Ultra-Broadband<br>Antenna                | Schwarzbeck    | VULB9163           | CTA-310          | 2023/10/17          | 2026/10/16              |
| Horn Antenna                              | Schwarzbeck    | BBHA 9120D CTA-309 |                  | 2023/10/13          | 2026/10/12              |
| Loop Antenna                              | Zhinan         | ZN30900C           | CTA-311          | 2023/10/17          | 2026/10/16              |
| Broadband Horn<br>Antenna                 | A-INFOMW       | LB-180500H-2.4F    | CTA-336          | 2023/09/13          | 2026/09/12              |
| Amplifier                                 | Schwarzbeck    | BBV 9745           | CTA-312          | 2024/08/03          | 2025/08/02              |
| Amplifier                                 | Taiwan chengyi | EMC051845B         | CTA-313          | 2024/08/03          | 2025/08/02              |
| Directional coupler                       | NARDA          | 4226-10            | CTA-303          | 2024/08/03          | 2025/08/02              |
| High-Pass Filter                          | XingBo         | XBLBQ-GTA18        | CTA-402          | 2024/08/03          | 2025/08/02              |
| High-Pass Filter                          | XingBo         | XBLBQ-GTA27        | CTA-403          | 2024/08/03          | 2025/08/02              |
| Automated filter bank                     | Tonscend       | JRUQI-MH8R06-<br>F | CTA-404          | 2024/08/03          | 2025/08/02              |
| Power Sensor                              | Agilent        | U2021XA            | CTA-405          | 2024/08/03          | 2025/08/02              |

Report No.: CTA25031901801 Page 10 of 29


|       |                   | T            | T           |                   | ı                   |                         |
|-------|-------------------|--------------|-------------|-------------------|---------------------|-------------------------|
|       | Amplifier         | Schwarzbeck  | BBV9719     | CTA-406           | 2024/08/03          | 2025/08/02              |
|       | TES               |              |             |                   |                     |                         |
|       | Test Equipment    | Manufacturer | Model No.   | Version<br>number | Calibration<br>Date | Calibration<br>Due Date |
|       | EMI Test Software | Tonscend     | TS®JS32-RE  | 5.0.0.2           | N/A                 | N/A                     |
|       | EMI Test Software | Tonscend     | TS®JS32-CE  | 5.0.0.1           | N/A                 | N/A                     |
|       | RF Test Software  | Tonscend     | TS®JS1120-3 | 3.1.65            | N/A                 | N/A                     |
|       | RF Test Software  | Tonscend     | TS®JS1120   | 3.1.46            | N/A                 | N/A                     |
| CTATE | 3,                | CTATESTING   |             | TING              |                     |                         |
|       |                   |              |             | TESTING           |                     |                         |

Report No.: CTA25031901801 Page 11 of 29

### 4 TEST CONDITIONS AND RESULTS

### 4.1 AC Power Conducted Emission

### **TEST CONFIGURATION**



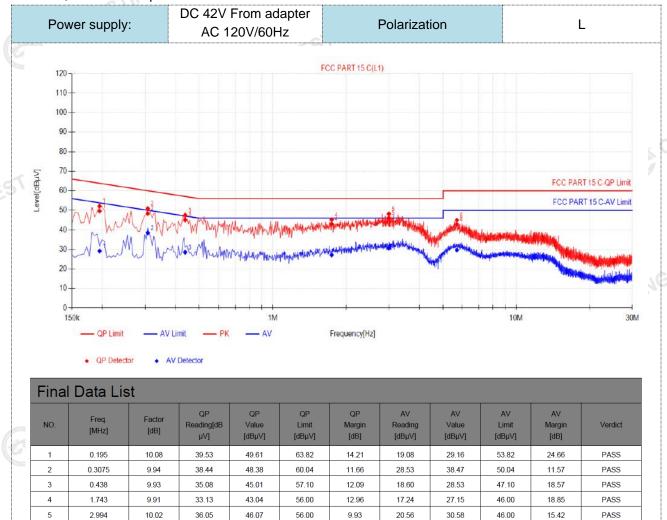
### **TEST PROCEDURE**

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 10mm is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

### **AC Power Conducted Emission Limit**

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

| Fraguency range (MHz) | Limit (dBuV) |           |  |  |
|-----------------------|--------------|-----------|--|--|
| Frequency range (MHz) | Quasi-peak   | Average   |  |  |
| 0.15-0.5              | 66 to 56*    | 56 to 46* |  |  |
| 0.5-5                 | 56           | 46        |  |  |
| 5-30                  | 60           | 50        |  |  |

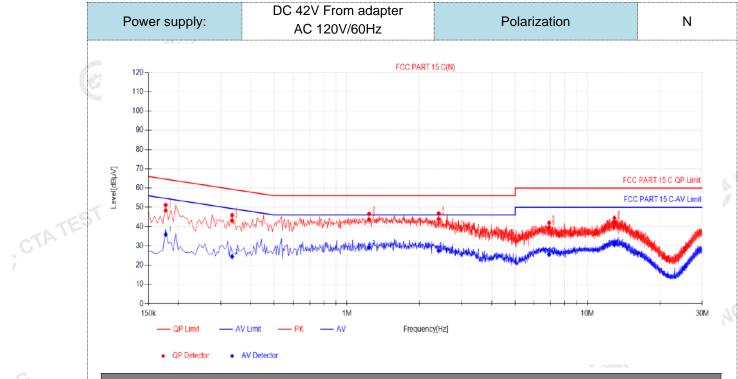

### TEST RESULTS

### Remark:

1. All modes of GFSK, Π/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Page 12 of 29 Report No.: CTA25031901801

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:




PASS

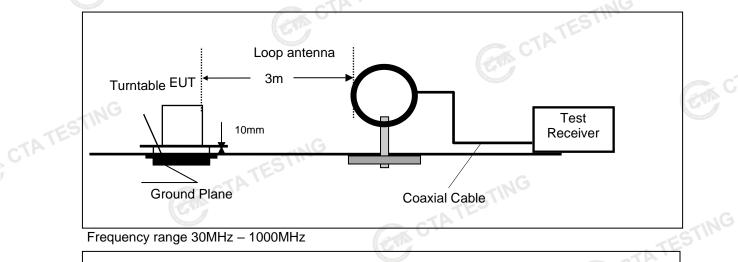
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3).  $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$ 
  - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTA TESTING

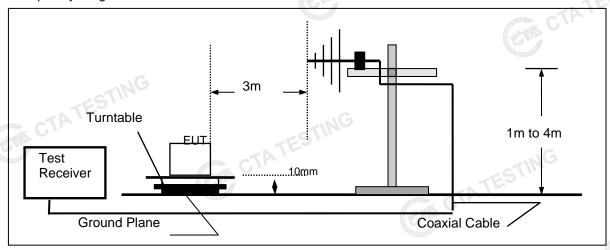
Report No.: CTA25031901801 Page 13 of 29

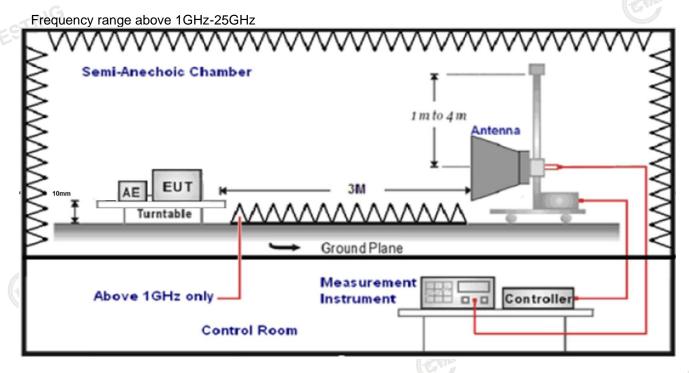


|                                                                                                                                                                                                                                    | Fina | l Data Lis     | st             |                         |                       |                       |                      |                         |                       |                       |                      |         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|----------------|-------------------------|-----------------------|-----------------------|----------------------|-------------------------|-----------------------|-----------------------|----------------------|---------|--|
|                                                                                                                                                                                                                                    | NO.  | Freq.<br>[MHz] | Factor<br>[dB] | QP<br>Reading[dB<br>μV] | QP<br>Value<br>[dBµV] | QP<br>Limit<br>[dBµV] | QP<br>Margin<br>[dB] | AV<br>Reading<br>[dBμV] | AV<br>Value<br>[dBµV] | AV<br>Limit<br>[dΒμV] | AV<br>Margin<br>[dB] | Verdict |  |
|                                                                                                                                                                                                                                    | 1    | 0.177          | 10.05          | 38.32                   | 48.37                 | 64.63                 | 16.26                | 25.87                   | 35.92                 | 54.63                 | 18.71                | PASS    |  |
|                                                                                                                                                                                                                                    | 2    | 0.3345         | 9.86           | 33.25                   | 43.11                 | 59.34                 | 16.23                | 14.59                   | 24.45                 | 49.34                 | 24.89                | PASS    |  |
|                                                                                                                                                                                                                                    | 3    | 1.2345         | 10.17          | 33.61                   | 43.78                 | 56.00                 | 12.22                | 18.83                   | 29.00                 | 46.00                 | 17.00                | PASS    |  |
|                                                                                                                                                                                                                                    | 4    | 2.4045         | 10.13          | 33.86                   | 43.99                 | 56.00                 | 12.01                | 17.32                   | 27.45                 | 46.00                 | 18.55                | PASS    |  |
|                                                                                                                                                                                                                                    | 5    | 6.9225         | 10.41          | 29.14                   | 39.55                 | 60.00                 | 20.45                | 15.17                   | 25.58                 | 50.00                 | 24.42                | PASS    |  |
|                                                                                                                                                                                                                                    | 6    | 12.9345        | 10.41          | 31.90                   | 42.31                 | 60.00                 | 17.69                | 20.15                   | 30.56                 | 50.00                 | 19.44                | PASS    |  |
| Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)  2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)  3). QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV)  4). AVMargin(dB) = AV Limit (dBµV) - AV Value (dBµV) |      |                |                |                         |                       |                       |                      |                         |                       |                       | CTATE                |         |  |


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB $\mu$ V) QP Value (dB $\mu$ V)
  - 4).  $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTING

Page 14 of 29 Report No.: CTA25031901801


### 4.2 Radiated Emission


### **TEST CONFIGURATION**

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz





Report No.: CTA25031901801 Page 15 of 29

### TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 10mm above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 10mm above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

| Test Frequency range | Test Antenna Type          | Test Distance |
|----------------------|----------------------------|---------------|
| 9KHz-30MHz           | Active Loop Antenna        | 3             |
| 30MHz-1GHz           | Ultra-Broadband Antenna    | 3             |
| 1GHz-18GHz           | Double Ridged Horn Antenna | 3             |
| 18GHz-25GHz          | Horn Anternna              | 1             |

7. Setting test receiver/spectrum as following table states:

| Test Frequency | Test Receiver/Spectrum Setting                                                                   | Detector |
|----------------|--------------------------------------------------------------------------------------------------|----------|
| range          | C I                                                                                              | GTIN     |
| 9KHz-150KHz    | RBW=200Hz/VBW=3KHz,Sweep time=Auto                                                               | QP       |
| 150KHz-30MHz   | RBW=9KHz/VBW=100KHz,Sweep time=Auto                                                              | QP       |
| 30MHz-1GHz     | RBW=120KHz/VBW=1000KHz,Sweep time=Auto                                                           | QP       |
| 1GHz-40GHz     | Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto | Peak     |

### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

### FS = RA + AF + CL - AG

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |
|---------------------------|--------------------------------------------|
| RA = Reading Amplitude    | AG = Amplifier Gain                        |
| AF = Antenna Factor       |                                            |
| ansd=AF +CL-AG            |                                            |

RA = Read
AF = Anter

Transd=AF +CL-AG

### RADIATION LIMIT

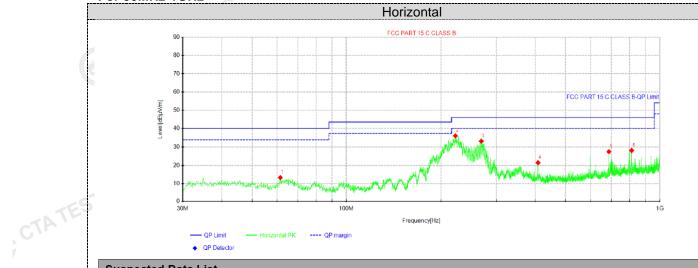
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

|   | Frequency (MHz) | Distance<br>(Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|---|-----------------|----------------------|----------------------------------|-----------------|
|   | 0.009-0.49      | 3                    | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
|   | 0.49-1.705      | 3                    | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
|   | 1.705-30        | 3                    | 20log(30)+ 40log(30/3)           | 30              |
| Γ | 30-88           | 3                    | 40.0                             | 100             |
| Γ | 88-216          | 3                    | 43.5                             | 150             |
|   | 216-960         | 3                    | 46.0                             | 200             |

Page 16 of 29 Report No.: CTA25031901801

| A I 000   | ^  | 540   | F00 |
|-----------|----|-------|-----|
| Above 960 | .5 | 54 () | 500 |
| 710000000 | •  | 0 1.0 | 000 |


### **TEST RESULTS**

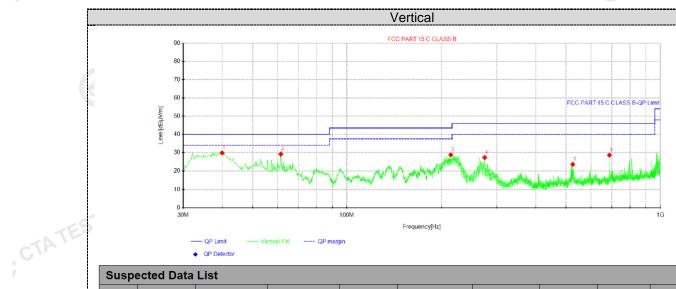
### Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK,π/4 DQPSK mode from 9 KHz to 25GHz and recorded worst 2. case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- CTATE Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTATESTING

Report No.: CTA25031901801 Page 17 of 29

### For 30MHz-1GHz




| Susp | Suspected Data List |          |          |        |          |        |        |       |            |  |  |
|------|---------------------|----------|----------|--------|----------|--------|--------|-------|------------|--|--|
| NO.  | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Height | Angle | Dolority   |  |  |
| NO.  | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | [cm]   | [°]   | Polarity   |  |  |
| 1    | 61.525              | 31.91    | 13.30    | -18.61 | 40.00    | 26.70  | 200    | 20    | Horizontal |  |  |
| 2    | 222.181             | 54.91    | 36.18    | -18.73 | 46.00    | 9.82   | 100    | 123   | Horizontal |  |  |
| 3    | 268.862             | 50.98    | 33.29    | -17.69 | 46.00    | 12.71  | 100    | 81    | Horizontal |  |  |
| 4    | 408.057             | 36.96    | 21.49    | -15.47 | 46.00    | 24.51  | 200    | 166   | Horizontal |  |  |
| 5    | 687.538             | 39.26    | 27.52    | -11.74 | 46.00    | 18.48  | 100    | 234   | Horizontal |  |  |
| 6    | 812.547             | 38.55    | 28.19    | -10.36 | 46.00    | 17.81  | 100    | 358   | Horizontal |  |  |

CTATES

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)

Report No.: CTA25031901801 Page 18 of 29



| Susp | Suspected Data List |          |          |        |          |        |        |       |          |  |  |  |
|------|---------------------|----------|----------|--------|----------|--------|--------|-------|----------|--|--|--|
| NO   | Freq.               | Reading  | Level    | Factor | Limit    | Margin | Height | Angle | Delevity |  |  |  |
| NO.  | [MHz]               | [dBµV/m] | [dBµV/m] | [dB]   | [dBµV/m] | [dB]   | [cm]   | [°]   | Polarity |  |  |  |
| 1    | 39.9425             | 47.03    | 29.87    | -17.16 | 40.00    | 10.13  | 200    | 131   | Vertical |  |  |  |
| 2    | 61.525              | 47.78    | 29.17    | -18.61 | 40.00    | 10.83  | 100    | 4     | Vertical |  |  |  |
| 3    | 213.936             | 47.74    | 28.76    | -18.98 | 43.50    | 14.74  | 100    | 48    | Vertical |  |  |  |
| 4    | 274.682             | 45.01    | 27.31    | -17.70 | 46.00    | 18.69  | 200    | 0     | Vertical |  |  |  |
| 5    | 525.063             | 37.47    | 23.57    | -13.90 | 46.00    | 22.43  | 100    | 140   | Vertical |  |  |  |
| 6    | 687.538             | 40.37    | 28.63    | -11.74 | 46.00    | 17.37  | 100    | 64    | Vertical |  |  |  |

CTATESTING

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)

### For 1GHz to 25GHz

Note: GFSK ,  $\pi/4$  DQPSK all have been tested, only worse case GFSK is reported.

### GFSK (above 1GHz)

| Frequency(MHz):    |       |                      | 2402              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le    | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 61.83 | PK                   | 74                | 12.17          | 66.10                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 4804.00            | 44.93 | AV                   | 54                | 9.07           | 49.20                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 7206.00            | 53.97 | PK                   | 74                | 20.03          | 54.49                  | 36.6                        | 6.49                    | 43.61                     | -0.52                          |
| 7206.00            | 43.11 | AV                   | 54                | 10.89          | 43.63                  | 36.6                        | 6.49                    | 43.61                     | -0.52                          |

| Frequency(MHz):    |       |                      | 2402              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le    | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 60.28 | PK                   | 74                | 13.72          | 64.55                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 4804.00            | 42.93 | AV                   | 54                | 11.07          | 47.20                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 7206.00            | 52.35 | PK                   | 74                | 21.65          | 52.87                  | 36.6                        | 6.49                    | 43.61                     | -0.52                          |
| 7206.00            | 41.16 | AV                   | 54                | 12.84          | 41.68                  | 36.6                        | 6.49                    | 43.61                     | -0.52                          |

| Frequency(MHz):    |                    |     | 2441              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |  |
|--------------------|--------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4882.00            | 61.15              | PK  | 74                | 12.85          | 65.03                  | 32.6                        | 5.34                    | 41.82                     | -3.88                          |  |
| 4882.00            | 44.28              | AV  | 54                | 9.72           | 48.16                  | 32.6                        | 5.34                    | 41.82                     | -3.88                          |  |
| 7323.00            | 53.39              | PK  | 74                | 20.61          | 53.50                  | 36.8                        | 6.81                    | 43.72                     | -0.11                          |  |
| 7323.00            | 42.61              | AV  | 54                | 11.39          | 42.72                  | 36.8                        | 6.81                    | 343.72                    | -0.11                          |  |

| Frequency(MHz):    |       |                      | 2441              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le    | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4882.00            | 59.28 | PK                   | 74                | 14.72          | 63.16                  | 32.6                        | 5.34                    | 41.82                     | -3.88                          |
| 4882.00            | 41.93 | AV                   | 54                | 12.07          | 45.81                  | 32.6                        | 5.34                    | 41.82                     | -3.88                          |
| 7323.00            | 51.71 | PK                   | 74                | 22.29          | 51.82                  | 36.8                        | 6.81                    | 43.72                     | -0.11                          |
| 7323.00            | 40.89 | AV                   | 54                | 13.11          | 41.00                  | 36.8                        | 6.81                    | 43.72                     | -0.11                          |

| Frequency(MHz):    |       |                      | 2480              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le    | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 60.30 | PK                   | 74                | 13.70          | 63.38                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 4960.00            | 43.60 | AV                   | 54                | 10.40          | 46.68                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 7440.00            | 52.75 | PK                   | 74                | 21.25          | 52.30                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |
| 7440.00            | 42.05 | AV                   | 54                | 11.95          | 41.60                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |

| Frequency(MHz):    |                      |     | 2480              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|----------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 58.73                | PK  | 74                | 15.27          | 61.81                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 4960.00            | 41.57                | AV  | 54                | 12.43          | 44.65                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 7440.00            | 50.75                | PK  | 74                | 23.25          | 50.30                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |
| 7440.00            | 40.23                | AV  | 54                | 13.77          | 39.78                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |

Page 20 of 29 Report No.: CTA25031901801

### REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Note: GFSK, π/4 DQPSK all have been tested, only worse case GFSK is reported.

| Freque             | ncy(MHz)             | :   | 2402              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|----------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu  | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 61.71                | PK  | 74                | 12.29          | 72.13                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| 2390.00            | 42.95                | AV  | 54                | 11.05          | 53.37                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| Freque             | ncy(MHz)             | :   | 24                | 02             | Pola                   | rity:                       |                         | VERTICAL                  |                                |
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu  | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 59.85                | PK  | 74                | 14.15          | 70.27                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| 2390.00            | 41.03                | AV  | 54                | 12.97          | 51.45                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| Freque             | ncy(MHz)             | :   | 2480              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu  | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 61.06                | PK  | 74                | 12.94          | 71.17                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |
| 2483.50            | 42.05                | AV  | 54                | 11.95          | 52.16                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |
| Freque             | ncy(MHz)             | :   | 24                | 80             | Pola                   | rity:                       | VERTICAL                |                           |                                |
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 59.40                | PK  | 74                | 14.60          | 69.51                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |
| 2483.50            | 40.54                | AV  | 54                | 13.46          | 50.65                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |

### **REMARKS:**

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- CTA TESTING 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 21 of 29 Report No.: CTA25031901801

### 4.3 Maximum Peak Output Power

### Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

### **Test Procedure**

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

### **Test Configuration**



## CTATESTING **Test Results**

Please refer to Appendix RF Test Data for BT

Note: 1. The test results including the cable loss.

Report No.: CTA25031901801 Page 22 of 29

### 20dB Bandwidth

### Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

### **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

### **Test Configuration**



### **Test Results**

Please refer to Appendix RF Test Data for BT

#### 4.5 **Frequency Separation**

### LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3\*20dB bandwidth of the hopping channel, whichever is greater.

### **TEST PROCEDURE**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the CTATE fundamental frequency was measured by spectrum analyzer with 300 KHz RBW and 300 KHz VBW.

### **TEST CONFIGURATION**



### **TEST RESULTS**

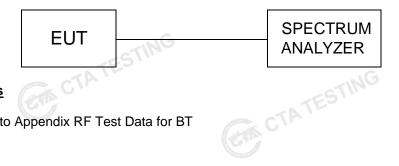
Please refer to Appendix RF Test Data for BT

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Page 23 of 29 Report No.: CTA25031901801

### Number of hopping frequency


### Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

### **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer CTATE start 2400MHz to 2483.5MHz with 300 KHz RBW and 300 KHz VBW.

# **Test Configuration** CTATESTING



### **Test Results**

Please refer to Appendix RF Test Data for BT

Report No.: CTA25031901801 Page 24 of 29

### Time of Occupancy (Dwell Time)

### Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

### **Test Procedure**

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

### **Test Configuration**



### **Test Results**

Please refer to Appendix RF Test Data for BT

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms)  $\times$  (1600  $\div$  2  $\div$  79)  $\times$ 31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms)  $\times$  (1600  $\div$  4  $\div$  79)  $\times$ 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms)  $\times$  (1600  $\div$  6  $\div$  79)  $\times$ 31.6 Second for DH5, 2-DH5, 3-DH5

Page 25 of 29 Report No.: CTA25031901801

### **Out-of-band Emissions**

### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

### **Test Procedure**

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

### **Test Configuration**



# Test Results 25 TMG

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

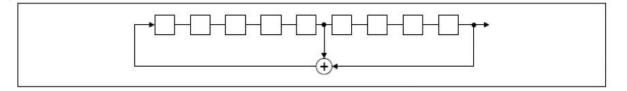
We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Please refer to Appendix RF Test Data for BT

Page 26 of 29 Report No.: CTA25031901801

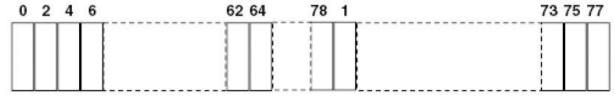
### 4.9 Pseudorandom Frequency Hopping Sequence

### **TEST APPLICABLE**


### For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

### **EUT Pseudorandom Frequency Hopping Sequence Requirement**


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5<sup>th</sup> and 9<sup>th</sup> stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:



Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Page 27 of 29 Report No.: CTA25031901801

### 4.10 Antenna Requirement

### **Standard Applicable**

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain CTATE greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

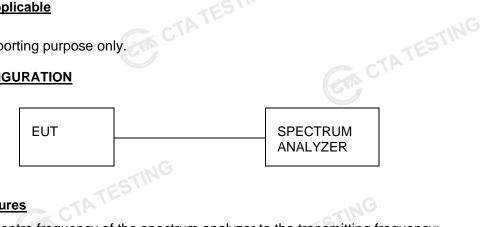
### Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not CTA TESTING apply to intentional radiators that must be professionally installed.

### Antenna Connected Construction

The maximum gain of antenna was 0.78dBi

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTA TESTING


Page 28 of 29 Report No.: CTA25031901801

### 4.11 On Time and Duty Cycle

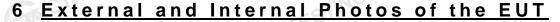
### Standard Applicable

None; for reporting purpose only.

### **TEST CONFIGURATION**



## CTATESTING **Test Procedures**


- CTATESTING 1). Set the Centre frequency of the spectrum analyzer to the transmitting frequency;
- 2). Set the span=0MHz, RBW=1MHz, VBW=1MHz, Sweep time=10ms;
- 3). Detector = peak;
- 4). Trace mode = Single hold.

Please refer to Appendix RF Test Data for BT

Page 29 of 29 Report No.: CTA25031901801

### Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.



Please refer to separated files for External Photos & Internal Photos of the EUT. .....End of Report..