

RADIO TEST REPORT

FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
Product name	AC REMOTE
Brand Name	TARUIE
Model No.	TE-ACRT
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Dally Hong
Sr. Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.
除非另有說明，此報告結果僅對測試之樣品負責，同時此樣品僅保留90天。本報告未經本公司書面許可，不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com.tw/Terms-and-Conditions> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com.tw/Terms-and-Conditions>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	May 9, 2025	Initial Issue	ALL	Peggy Tsai
01	June 3, 2025	See the following Note Rev. (01)	P.1, 5	Peggy Tsai

Note:

Rev. (01)

1. Modify FCC ID.
2. Modify modulation type in section 1.2.

Table of contents

1.	GENERAL INFORMATION	4
1.1	EUT INFORMATION	4
1.2	EUT CHANNEL INFORMATION	5
1.3	ANTENNA INFORMATION	5
1.4	MEASUREMENT UNCERTAINTY.....	6
1.5	FACILITIES AND TEST LOCATION	6
1.6	INSTRUMENT CALIBRATION	7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	8
1.8	TEST SET UP DIAGRAM.....	8
1.9	TEST PROGRAM.....	9
1.10	TEST METHODOLOGY AND APPLIED STANDARDS	9
2.	TEST SUMMERY	10
3.	DESCRIPTION OF TEST MODES.....	11
3.1	THE WORST MODE OF OPERATING CONDITION	11
3.2	THE WORST MODE OF MEASUREMENT	12
3.3	EUT DUTY CYCLE.....	13
4.	TEST RESULT	14
4.1	AC POWER LINE CONDUCTED EMISSION	14
4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)	15
4.3	OUTPUT POWER MEASUREMENT	18
4.4	POWER SPECTRAL DENSITY	20
4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	23
4.6	RADIATION BANDEdge AND SPURIOUS EMISSION	26
APPENDIX 1 - PHOTOGRAPHS OF EUT		

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	DUCTECH Co., Ltd 8F, No.202-16, Zhonghua Rd., Yongkang Dist., Tainan City 710, Taiwan
Manufacturer	GOOD WAY TECHNOLOGY CO., LTD. 3F, No. 135, Ln. 235, Baociao Rd., Sindian Dist., New Taipei City 231, Taiwan
Equipment	AC REMOTE
Model No.	TE-ACRT
Model Discrepancy	N/A
Trade Name	TARUIE
Received Date	March 24, 2025
Date of Test	April 9 ~ 11, 2025
Power Operation	Power from Host System (DC 3.6V)
HW Version	V1.0.0
FW Version	V1.0.0

Remark:

1. For more details, please refer to the User's manual of the EUT.
2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

1.2 EUT CHANNEL INFORMATION

Frequency Range	2405MHz-2475MHz
Modulation Type	O-QPSK
Number of channel	15 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested		
Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
<input type="checkbox"/> 1 MHz or less	1	Middle
<input type="checkbox"/> 1 MHz to 10 MHz	2	1 near top and 1 near bottom
<input checked="" type="checkbox"/> More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

1.3 ANTENNA INFORMATION

Antenna Type	<input type="checkbox"/> PIFA <input checked="" type="checkbox"/> PCB <input type="checkbox"/> Dipole <input type="checkbox"/> Coils
Antenna Gain	Gain: 0.26 dBi

Notes:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203.

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 2.21 dB
Channel Bandwidth	+/- 2.79 dB
RF output power (Power Meter + Power sensor)	+/- 0.24 dB
Power Spectral density	+/- 2.74 dB
Conducted Bandedge	+/- 2.74 dB
Conducted Spurious Emission	+/- 2.74 dB
Radiated Emission_9kHz-30MHz	+/- 3.492 dB
Radiated Emission_30MHz-200MHz	+/- 3.62 dB
Radiated Emission_200MHz-1GHz	+/- 3.899 dB
Radiated Emission_1GHz-6GHz	+/- 5.063 dB
Radiated Emission_6GHz-18GHz	+/- 5.122 dB
Radiated Emission_18GHz-26GHz	+/- 3.032 dB
Radiated Emission_26GHz-40GHz	+/- 3.271 dB

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2
2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	-	Not applicable, because EUT not connect to AC Main Source direct.
Radiation	Ben Yang	-
RF Conducted	Jerry Chang	-

Remark: The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC public Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

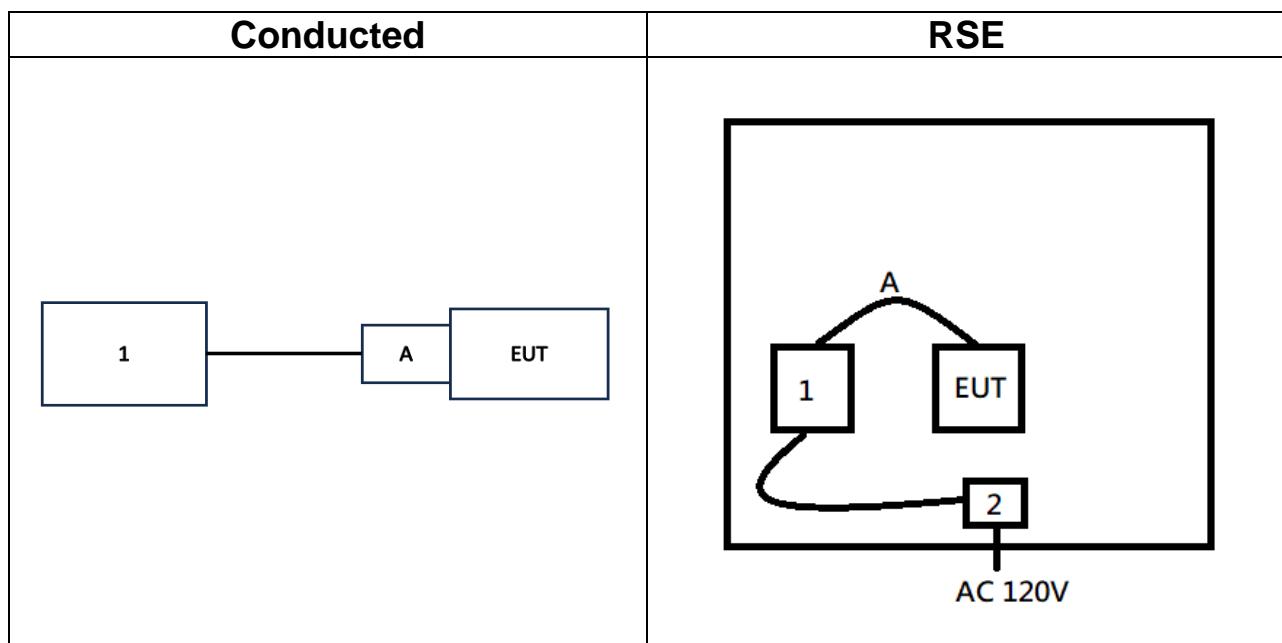
1.6 INSTRUMENT CALIBRATION

Conducted_FCC/IC/NCC (All)					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
PXA Signal Analyzer	Keysight	N9030B	MY62291089	2024-10-04	2025-10-03
Power Sensor	Anritsu	MA2411B	1911387	2024-08-30	2025-08-29
Power Sensor	Anritsu	MA2411B	1911386	2024-07-19	2025-07-18
Power Meter	Anritsu	ML2496A	2136002	2024-07-19	2025-07-18
DC Blocks	Marvelous Microwave	MVE6411	MVE-001	2024-08-08	2025-08-07
Software	Radio Test Software Ver. 21				

966A_Radiated					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Signal Analyzer	KEYSIGHT	N9010A	MY52220817	2025-03-05	2026-03-04
Active Loop Antenna	SCHWARZBEC K	FMZB 1513-60	1513-60-028	2024-12-11	2025-12-10
Thermo-Hygro Meter	WISEWIND	1206	D07	2024-11-26	2025-11-25
Bi-Log Antenna	Sunol Sciences	JB3	A030105	2024-07-12	2025-07-11
Preamplifier	EMEC	EM330	060609	2025-02-20	2026-02-19
Cable	Huber+Suhner	104PEA	20995+21000+ 182330	2024-08-07	2025-08-06
Horn Antenna	ETC	MCTD 1209	DRH13M02003	2024-12-20	2025-12-19
Preamplifier	HP	8449B	3008A00965	2024-12-18	2025-12-17
Cable	EMCI	EMC101G	221012+230205 +250204	2025-03-03	2026-03-02
Attenuator	Mini-Circuits	BW-S9W5	BWS9W5-09- 966A-01	2025-02-06	2026-02-05
Site Validation	CCS	966A	N/A	2024-08-03	2025-08-02
High Pass Filters	Titan Microwave	T04H30001800 070S01	22011402-4	2024-06-12	2025-06-11
Pre-Amplifier	EMCI	EMC184045SE	980860	2024-12-02	2025-12-01
Horn Antenna	SCHWARZBEC K	BBHA9170	1047	2024-12-06	2025-12-05
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Software	e3 V9-210616c				

Remark:

1. Each piece of equipment is scheduled for calibration once a year.
2. N.C.R. = No Calibration Required.


1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	Equipment	Brand	Model	Series No.	FCC ID	IC
	N/A					

Support Equipment (Conducted)					
No.	Equipment	Brand	Model	Series No.	FCC ID
1	NB(B)	Lenovo	T470	N/A	N/A
A	Test kit	NA	N/A	N/A	N/A

Support Equipment (RSE)					
No.	Equipment	Brand	Model	Series No.	FCC ID
1	NB(D)	Lenovo	ThinkPad X260	N/A	N/A
2	Adapter	Lenovo	ADLX45DLC3A	N/A	N/A
A	4Pin to USB Cable	N/A	N/A	N/A	N/A

1.8 TEST SET UP DIAGRAM

1.9 TEST PROGRAM

The EUT connection corresponds to the surrounding fixture control board. This EUT uses "nRF Connect for Desktop" software to set the frequency, modulation, and power to allow the sample to continuously transmit.

1.10 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074.

2. TEST SUMMARY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	N/A
15.247(a)(2)	4.2	6 dB Bandwidth	Pass
-	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(3)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Band Edge	Pass
15.247(d)	4.5	Conducted Spurious Emission	Pass
15.247(d) 15.205, 15.209	4.6	Radiation Band Edge	Pass
15.247(d) 15.205, 15.209	4.6	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	Thread 2.4G (2Mbps)
Test Channel Frequencies	1.Lowest Channel : 2405MHz 2.Middle Channel : 2435MHz 3.Highest Channel : 2475MHz

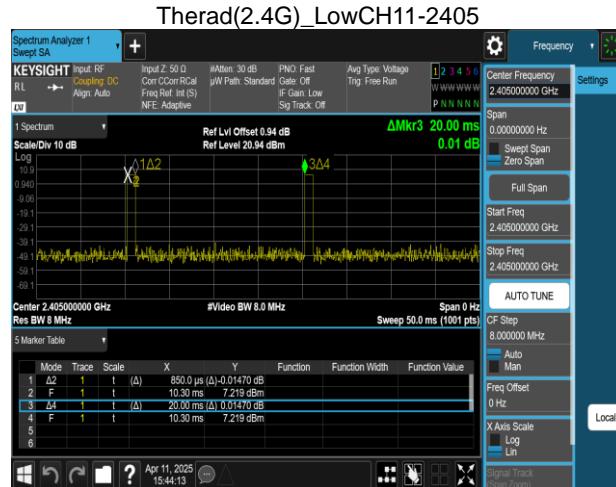
Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G	
Test Condition	Radiated Emission Above 1G
Power supply Mode	Mode 1: EUT power by Host System
Worst Mode	<input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4
Worst Position	<input type="checkbox"/> Placed in fixed position. <input checked="" type="checkbox"/> Placed in fixed position at X-Plane (E2-Plane) <input type="checkbox"/> Placed in fixed position at Y-Plane (E1-Plane) <input type="checkbox"/> Placed in fixed position at Z-Plane (H-Plane)

Radiated Emission Measurement Below 1G	
Test Condition	Radiated Emission Below 1G
Power supply Mode	Mode 1: EUT power by Host System
Worst Mode	<input checked="" type="checkbox"/> Mode 1 <input type="checkbox"/> Mode 2 <input type="checkbox"/> Mode 3 <input type="checkbox"/> Mode 4


Remark:

1. The worst mode was record in this test report.
2. EUT pre-scanned in three axis ,X, Y, Z and two polarity, for radiated measurement. The worst case(X-Plane) were recorded in this report

3.3 EUT DUTY CYCLE

Temperature: 20.1 ~ 20.8°C **Test date:** April 10 ~ 11, 2025
Humidity: 62 ~ 64% RH **Tested by:** Jerry Chang

Mode	Duty Cycle (%) = Ton / (Ton+Toff)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)
Therad (2.4G)	4.25	13.72	1.18	2.00

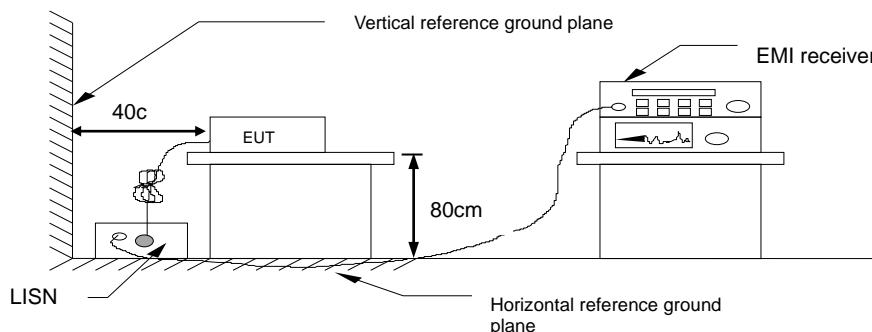
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a),

Frequency Range (MHz)	Limits(dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
2. EUT connected to the line impedance stabilization network (LISN)
3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

4.1.4 Test Result

Not applicable, because EUT not connect to AC Main Source direct.

4.2 6dB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.247(a)(2),

6 dB Bandwidth :

Limit	Shall be at least 500kHz
-------	--------------------------

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2.

1. The EUT RF output connected to the spectrum analyzer by RF cable.
2. Setting maximum power transmit of EUT
3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

Refer to section 1.8.

4.2.4 Test Result

Temperature: 20.1 ~ 20.8°C **Test date:** April 10 ~ 11, 2025
Humidity: 62 ~ 64% RH **Tested by:** Jerry Chang

6dB BANDWIDTH

Therad (2.4G) mode

Frequency (MHz)	6dB BW (MHz)	Required BW (MHz)	Result
2405	1.117	≥ 0.5	PASS
2435	1.101	≥ 0.5	PASS
2475	1.116	≥ 0.5	PASS

BANDWIDTH 99%

Therad (2.4G) mode

Frequency (MHz)	99% Bandwidth (MHz)
2405	2.2349
2435	2.2404
2475	2.2152

Test Data

6dB BANDWIDTH

OBW_Therad(2.4G)_LowCH11-2405MHz

OBW_Therad(2.4G)_MidCH17-2435MHz

OBW_Therad(2.4G)_HighCH25-2475MHz

BANDWIDTH 99%

IC OBW_Therad(2.4G)_LowCH11-2405 MHz

IC OBW_Therad(2.4G)_MidCH17-2435MHz

IC OBW_Therad(2.4G)_HighCH25-2475 MHz

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b)(3),

Peak output power :

FCC

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

Limit	<input checked="" type="checkbox"/> Antenna not exceed 6 dBi : 30dBm <input type="checkbox"/> Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)] <input type="checkbox"/> Point-to-point operation
-------	---

Average output power : For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01

1. The EUT RF output connected to the power meter by RF cable.
2. Setting maximum power transmit of EUT.
3. The path loss was compensated to the results for each measurement.
4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

Refer to section 1.8.

4.3.4 Test Result

Temperature: 20.1 ~ 20.8°C **Test date:** April 10 ~ 11, 2025
Humidity: 62 ~ 64% RH **Tested by:** Jerry Chang

Peak & Average output power :

Therad (2.4G) mode:

CH	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	Required Limit (dBm)
11	2405	50	7.40	30
17	2435	50	7.10	30
25	2475	50	6.58	30

CH	Frequency (MHz)	Power Setting	Avg. Output Power (dBm)	Required Limit (dBm)
11	2405	50	7.38	30
17	2435	50	7.08	30
25	2475	50	6.56	30

*Note:

1. Measured by power meter, cable loss 0.94 dB + Duty cycle factor has been offseted to the power meter for Avg. power and cable loss has been offseted for Peak power measurement.

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	<input checked="" type="checkbox"/> Antenna not exceed 6 dBi : 8dBm <input type="checkbox"/> Antenna with DG greater than 6 dBi [Limit = 8 – (DG – 6)] <input type="checkbox"/> Point-to-point operation :
-------	---

4.4.2 Test Procedure

Test method Refer as KDB 558074 D01

1. The EUT RF output connected to the spectrum analyzer by RF cable.
2. Setting maximum power transmit of EUT
3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
4. The path loss was compensated to the results for each measurement by SA.
5. Mark the maximum level.
6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

Refer to section 1.8.

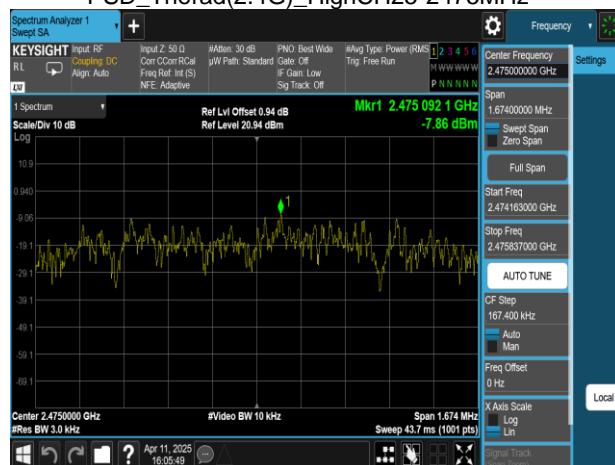
4.4.4 Test Result

Temperature: 20.1 ~ 20.8°C**Test date:** April 10 ~ 11, 2025**Humidity:** 62 ~ 64% RH**Tested by:** Jerry Chang**Therad (2.4G) mode**

Frequency (MHz)	RF Power Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2405	-7.40	8	PASS
2435	-7.10	8	PASS
2475	-7.86	8	PASS

Note:1. cable loss as dB that offsets in the spectrum*

Test Data


PSD_Therad(2.4G)_LowCH11-2405MHz

PSD_Therad(2.4G)_MidCH17-2435MHz

PSD_Therad(2.4G)_HighCH25-2475MHz

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

4.5.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5,

FCC: In any 100 kHz bandwidth outside the authorized frequency band, Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.5.2 Test Procedure

Test method Refer as KDB 558074 D01

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.5.3 Test Setup

Refer to section 1.8.

4.5.4 Test Result

Temperature: 20.1 ~ 20.8°C

Test date: April 10 ~ 11, 2025

Humidity: 62 ~ 64% RH

Tested by: Jerry Chang

Test Data

Reference Level

Reference Level_Therad(2.4G)_LowCH11-2405MHz

Reference Level_Therad(2.4G)_MidCH17-2435MHz

Reference Level_Therad(2.4G)_HighCH25-2475MHz

Band Edge

Band Edge_Therad(2.4G)_LowCH11-2405MHz

Band Edge_Therad(2.4G)_HighCH25-2475MHz

Spurious Emission

Spurious Emission_Therad(2.4G)_LowCH11-2405MHz

Spurious Emission_Therad(2.4G)_MidCH17-2435MHz

Spurious Emission_Therad(2.4G)_HighCH25-2475MHz

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency (MHz)	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)	
	Transmitters	Receivers
30-88	100 (3 nW)	100 (3 nW)
88-216	150 (6.8 nW)	150 (6.8 nW)
216-960	200 (12 nW)	200 (12 nW)
Above 960	500 (75 nW)	500 (75 nW)

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

4.6.2 Test Procedure

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
3. Span shall wide enough to full capture the emission measured. The SA from 9KHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.
4. No emission found between lowest internal used/generated frequency to 30MHz (9KHz~30MHz).

Radiated emission below 30MHz is measured in a 9m*6m*6m semi-ane choic chamber, the measurements correspond to those obtained at an open-field test site. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

5. The SA setting following :

(1) Below 30MHz :

- (1.1) 9KHz-490KHz : RBW=200Hz / VBW=1kHz / Sweep=AUTO
- (1.2) 490KHz-30MHz : RBW=10kHz / VBW=30kHz / Sweep=AUTO

(2) 30MHz to 1GHz : RBW = 100kHz, VBW \geq 3*RBW, Sweep = Auto,

Detector = Peak, Trace = Max hold.

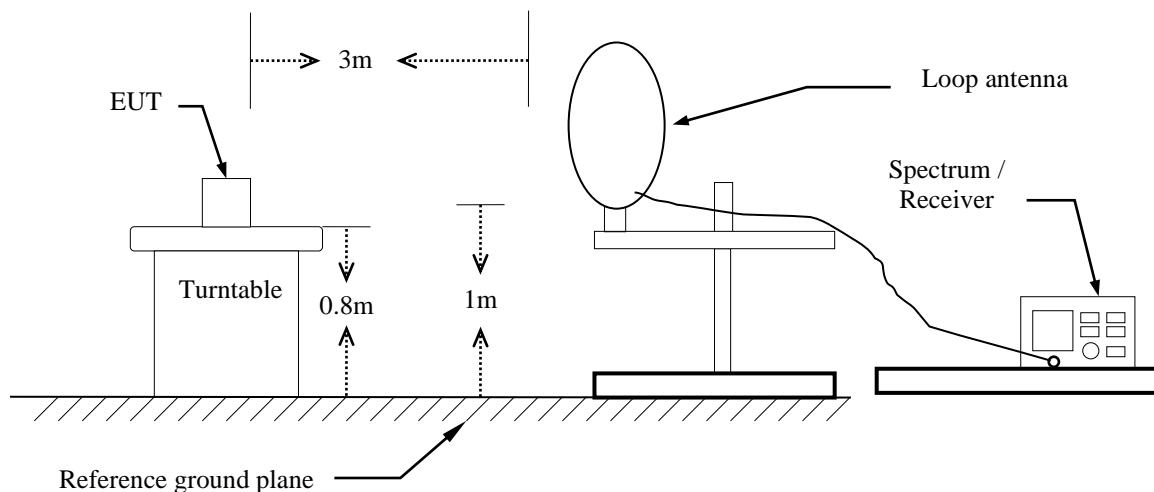
(3) Above 1GHz :

- (3.1) For Peak measurement : RBW = 1MHz, VBW \geq 3 RBW, Sweep = Auto,
Detector = Peak, Trace = Max hold.

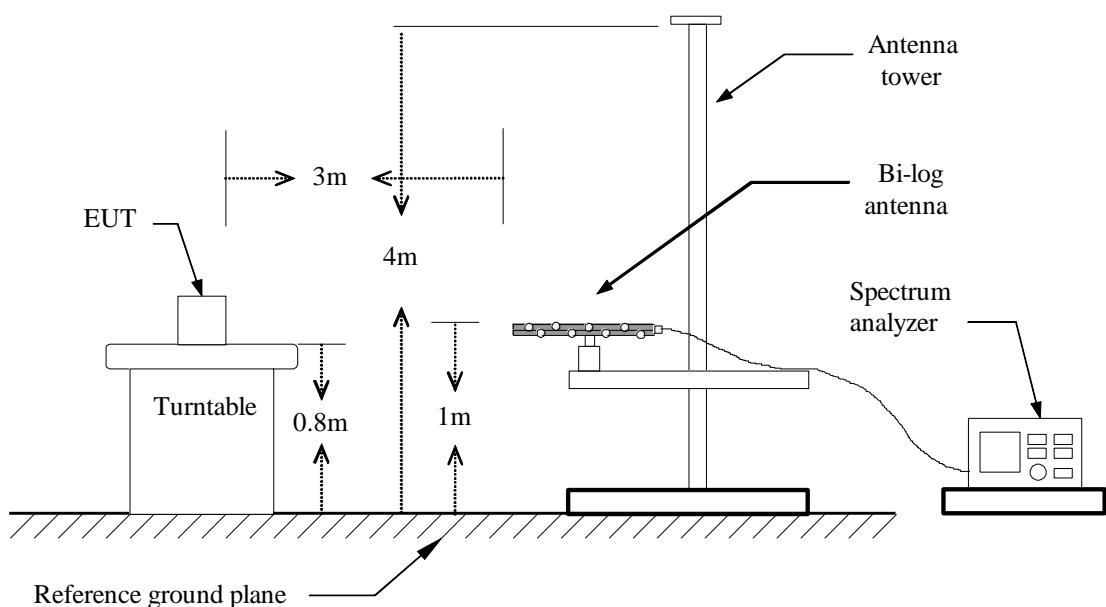
- (3.2) For Average measurement : RBW = 1MHz, VBW

·If Duty Cycle \geq 98%, VBW=10Hz.

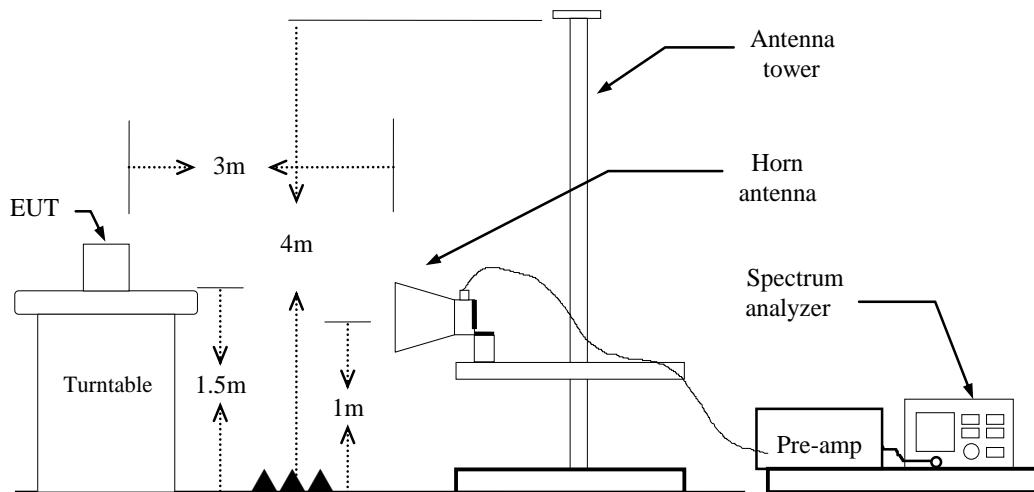
·If Duty Cycle < 98%, VBW=1/T.


6. Data result :

Actual FS=Spectrum Reading Level + Factor

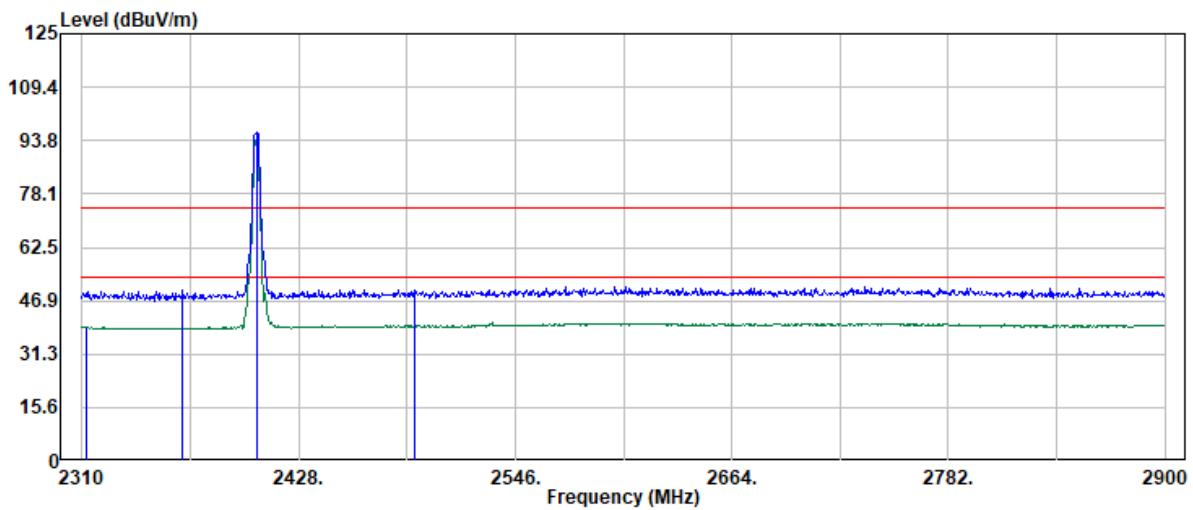

Margin=Actual FS- Limit

4.6.3 Test Setup


9kHz ~ 30MHz

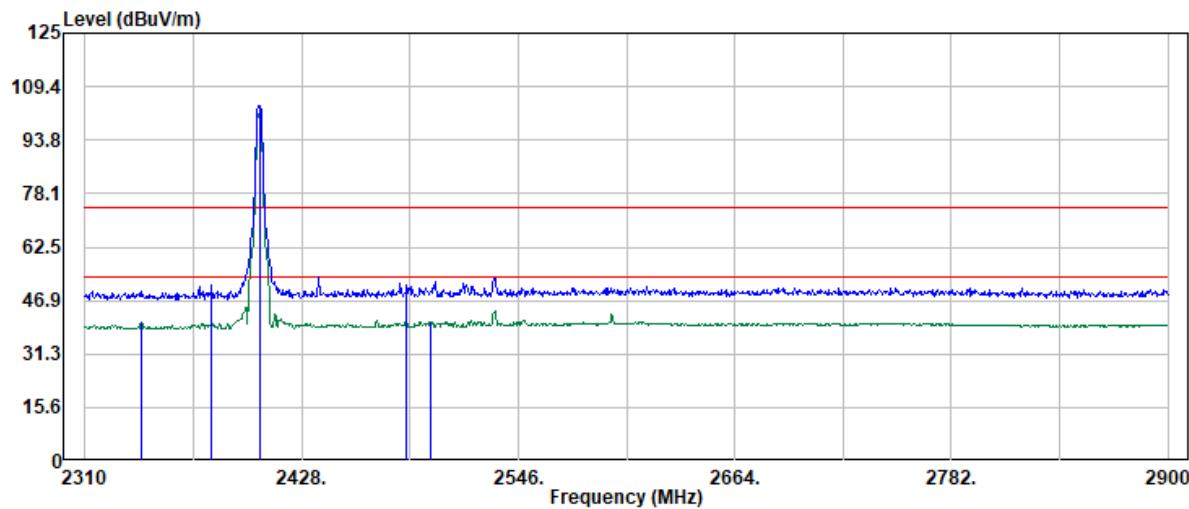
30MHz ~ 1GHz

Above 1 GHz



4.6.4 Test Result

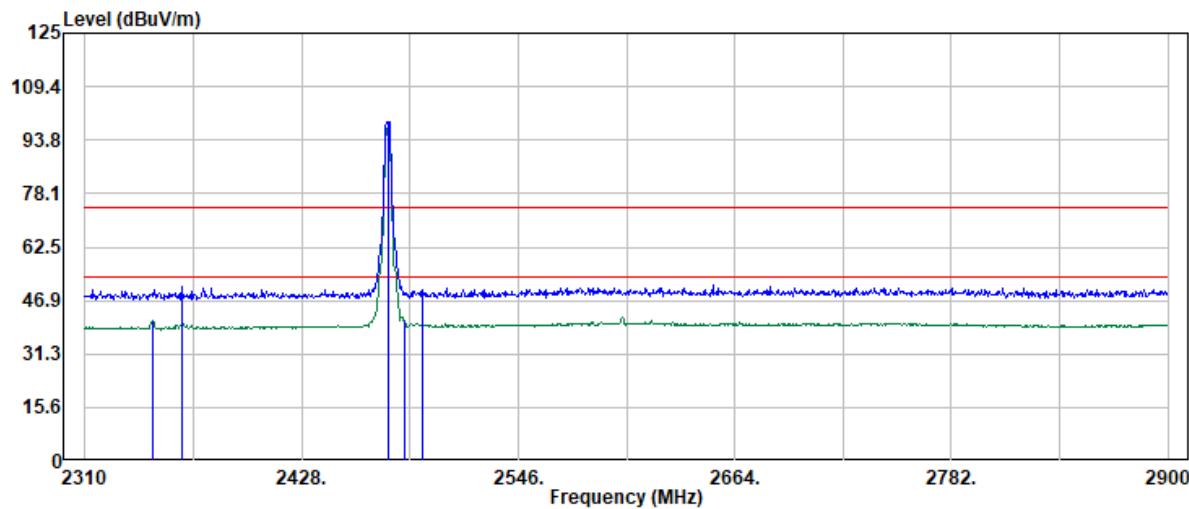
Band Edge Test Data


Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2405 MHz
Operation Mode : Bandedge
EUT Pol : E2
Setting : 50

Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : Vertical
Engineer : Ben.Yang
Test Chamber : 966A

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2405 MHz
Operation Mode : Bandedge
EUT Pol : E2
Setting : 50

Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : HORIZONTAL
Engineer : Ben.Yang
Test Chamber : 966A

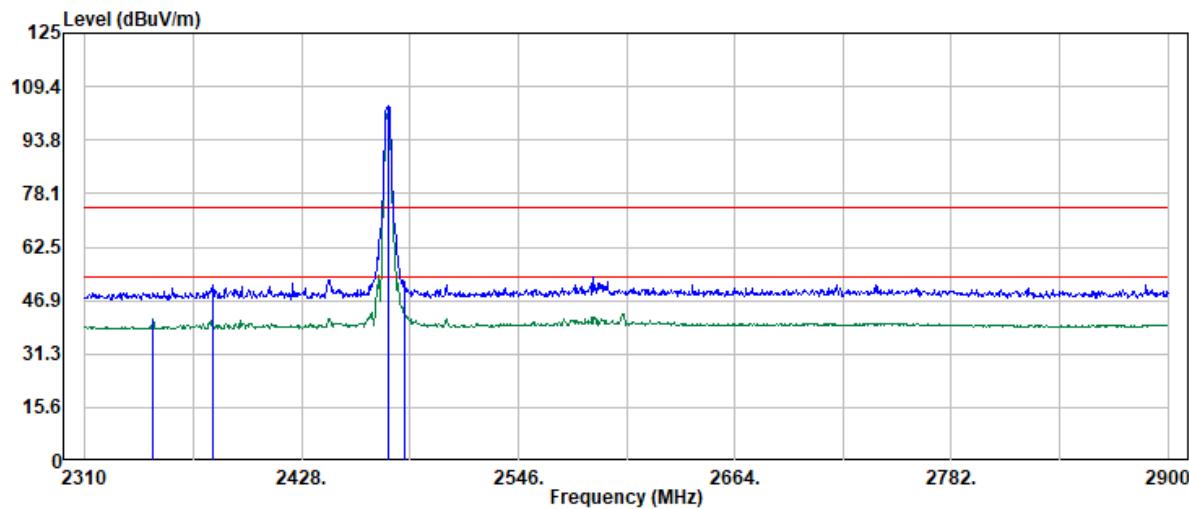


Trace: 1

Freq	Read Level	Actual Factor	Limit FS	Margin @3m	Detector	Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
2340.97	34.56	6.08	40.64	54.00	-13.36	Average
2378.94	45.49	6.15	51.64	74.00	-22.36	Peak
2405.00	97.31	6.27	103.58	--	--	Peak
2405.00	95.78	6.27	102.05	--	--	Average
2485.35	44.93	6.66	51.59	74.00	-22.41	Peak
2498.34	34.02	6.69	40.71	54.00	-13.29	Average

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2475 MHz
Operation Mode : Bandedge
EUT Pol : E2
Setting : 50

Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : VERTICAL
Engineer : Ben.Yang
Test Chamber : 966A

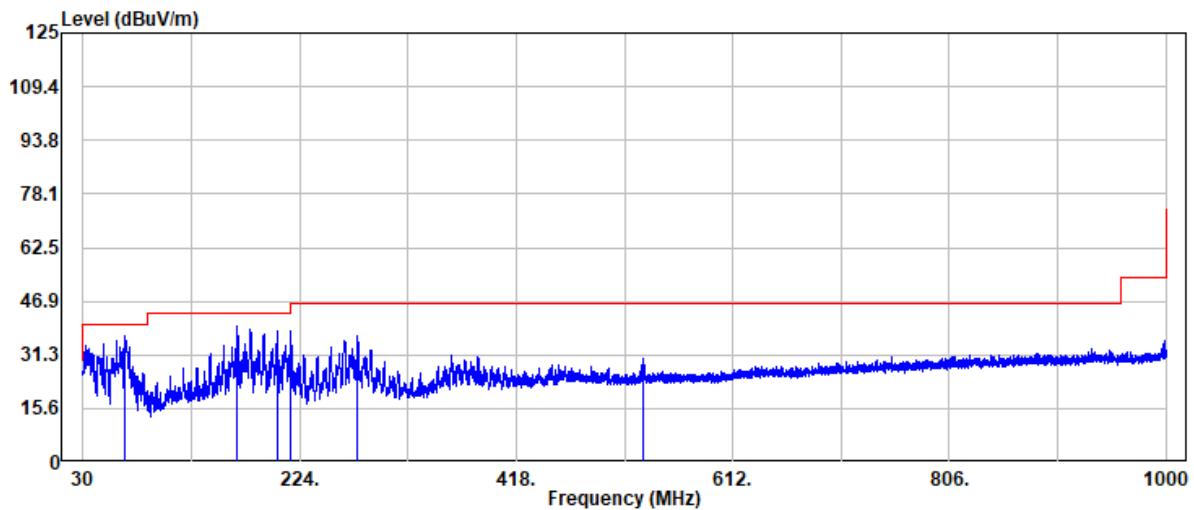


Trace: 1

Freq	Read Level	Actual Factor	Limit FS	Margin @3m	Detector	Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
2346.47	35.00	6.02	41.02	54.00	-12.98	Average
2362.46	44.69	6.04	50.73	74.00	-23.27	Peak
2475.00	92.65	6.51	99.16	--	--	Peak
2475.00	91.14	6.51	97.65	--	--	Average
2483.85	34.49	6.66	41.15	54.00	-12.85	Average
2493.84	43.07	6.70	49.77	74.00	-24.23	Peak

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2475 MHz
Operation Mode : Bandedge
EUT Pol : E2
Setting : 50

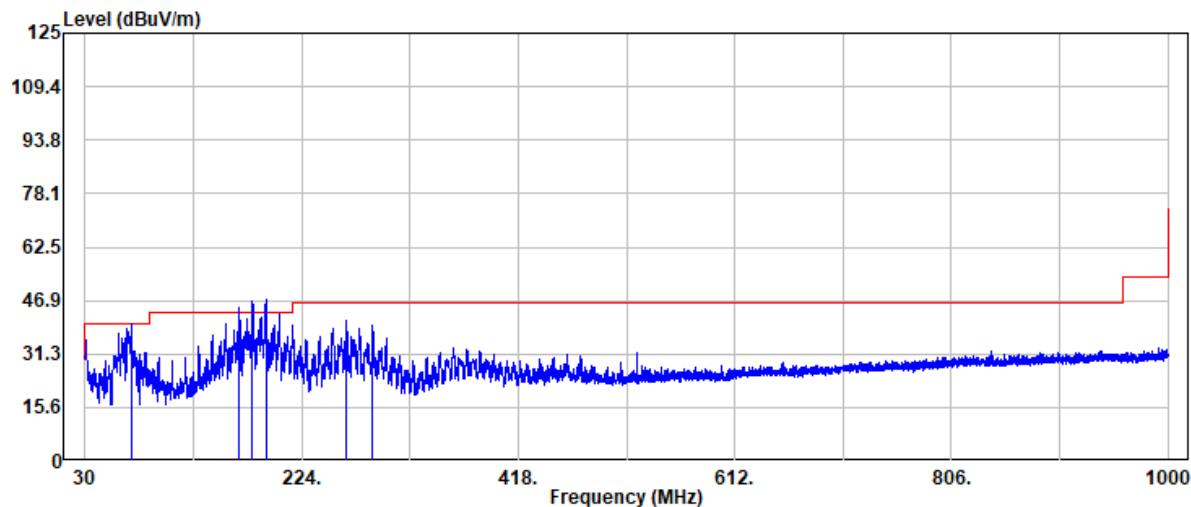
Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : HORIZONTAL
Engineer : Ben.Yang
Test Chamber : 966A


Trace: 1

Freq	Read Level	Actual Factor	Limit FS	Margin @3m	Detector	Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
2346.97	35.44	6.00	41.44	54.00	-12.56	Average
2379.44	45.19	6.15	51.34	74.00	-22.66	Peak
2475.00	97.09	6.51	103.60	--	--	Peak
2475.00	95.59	6.51	102.10	--	--	Average
2483.85	45.59	6.66	52.25	74.00	-21.75	Peak
2484.35	36.21	6.65	42.86	54.00	-11.14	Average

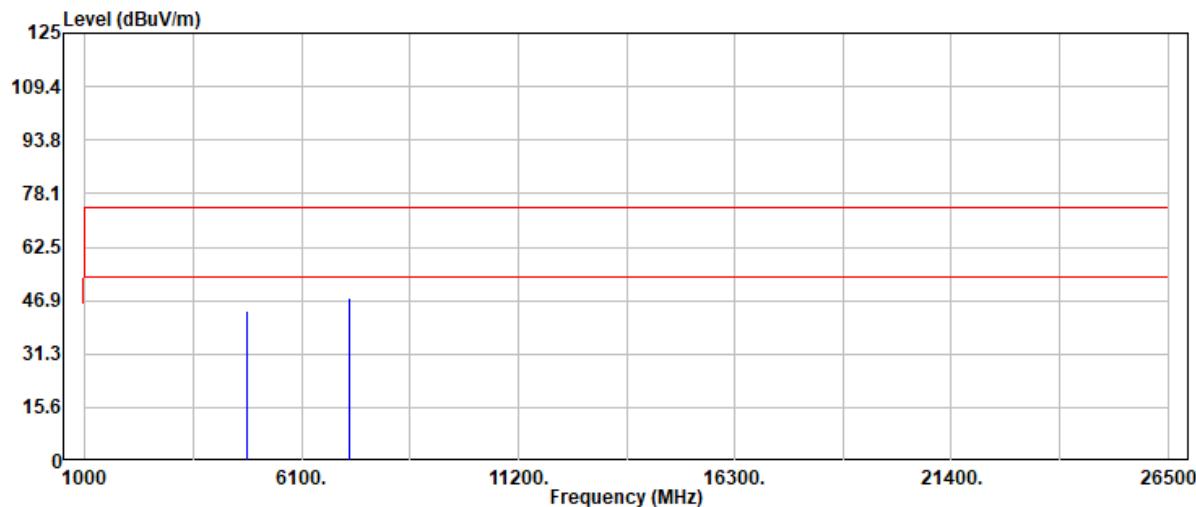
TX Test Data

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2435 MHz
Operation Mode : TX
EUT Pol : E2
Setting :


Test Date : 2025-04-10
Temp./Humi. : 24.7/56
Antenna Pol. : VERTICAL
Engineer : Ben.Yang
Test Chamber : 966A

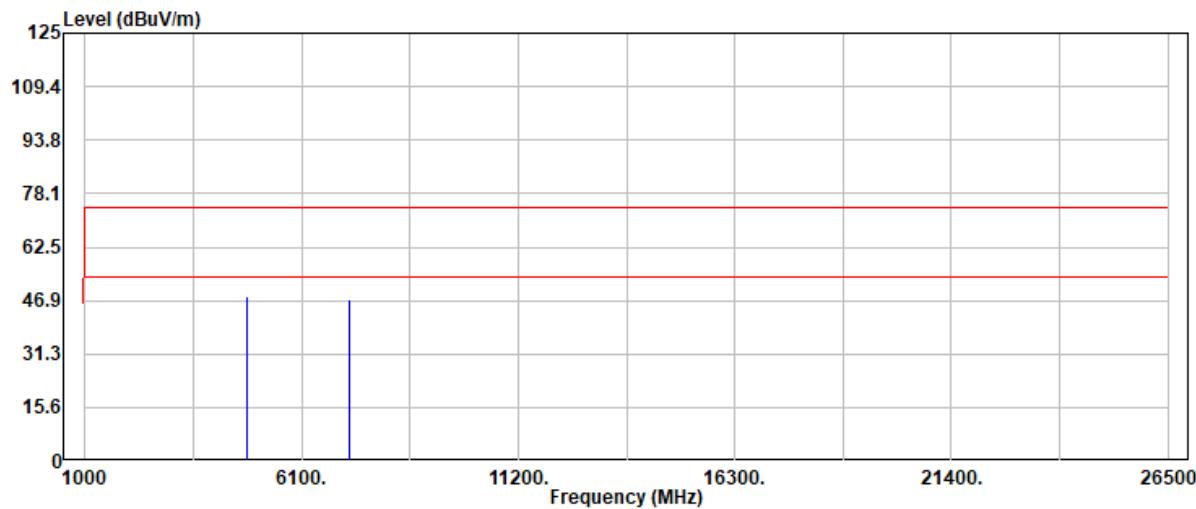
Freq	Read Level	Actual Factor	Actual FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
67.35	52.58	-15.71	36.87	40.00	-3.13	Peak
168.10	51.35	-11.62	39.73	43.50	-3.77	Peak
204.12	50.41	-12.05	38.36	43.50	-5.14	Peak
215.88	50.86	-12.70	38.16	43.50	-5.34	Peak
275.90	46.19	-9.60	36.59	46.00	-9.41	Peak
531.98	34.31	-3.97	30.34	46.00	-15.66	Peak

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2435 MHz
Operation Mode : TX
EUT Pol : E2
Setting :


Test Date : 2025-04-10
Temp./Humi. : 24.7/56
Antenna Pol. : HORIZONTAL
Engineer : Ben.Yang
Test Chamber : 966A

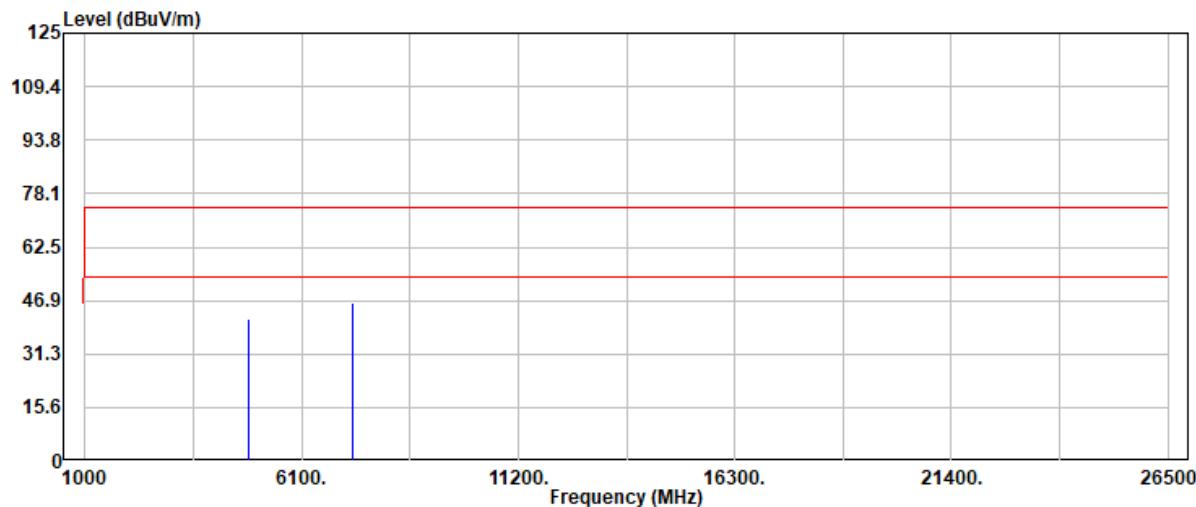
Freq	Read Level	Actual Factor	Actual FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
72.07	55.49	-15.61	39.88	40.00	-0.12	Peak
168.10	52.92	-11.62	41.30	43.50	-2.20	QP
180.11	52.55	-12.25	40.30	43.50	-3.20	QP
191.87	54.31	-11.68	42.63	43.50	-0.87	QP
263.89	51.30	-10.28	41.02	46.00	-4.98	Peak
287.66	48.95	-9.52	39.43	46.00	-6.57	Peak

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2405 MHz
Operation Mode : TX
EUT Pol : E2
Setting : 50


Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : VERTICAL
Engineer : Ben.Yang
Test Chamber : 966A

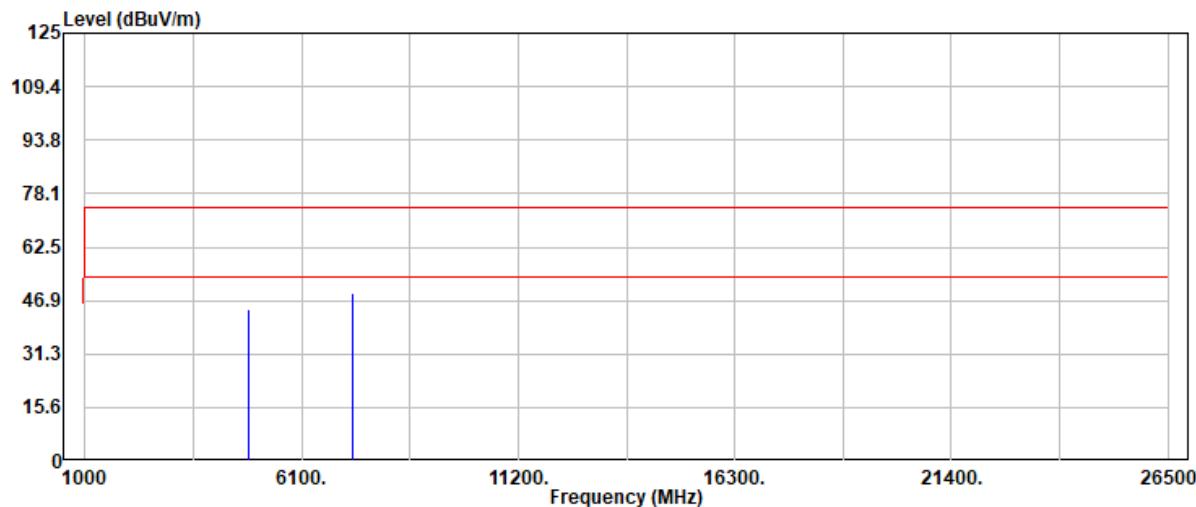
Freq	Read Level	Actual Factor	Limit FS	Detector	
MHz	dBuV	dB	dBuV/m	@3m Margin dB	Mode
4810.00	41.58	2.26	43.84	74.00	-30.16 Peak
4810.00	40.47	2.26	42.73	54.00	-11.27 Average
7215.00	38.84	8.85	47.69	74.00	-26.31 Peak
7215.00	36.72	8.85	45.57	54.00	-8.43 Average

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2405 MHz
Operation Mode : TX
EUT Pol : E2
Setting : 50


Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : HORIZONTAL
Engineer : Ben.Yang
Test Chamber : 966A

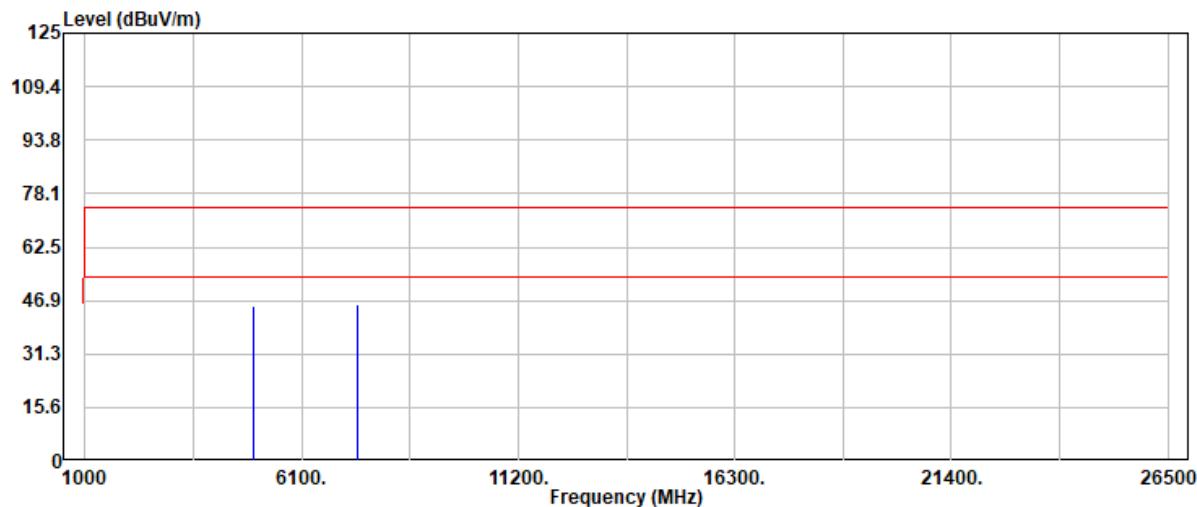
Freq	Read Level	Actual Factor	Actual FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
4810.00	46.07	2.26	48.33	74.00	-25.67	Peak
4810.00	43.05	2.26	45.31	54.00	-8.69	Average
7215.00	38.52	8.85	47.37	74.00	-26.63	Peak
7215.00	36.56	8.85	45.41	54.00	-8.59	Average

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2435 MHz
Operation Mode : TX
EUT Pol : E2
Setting : 50


Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : Vertical
Engineer : Ben.Yang
Test Chamber : 966A

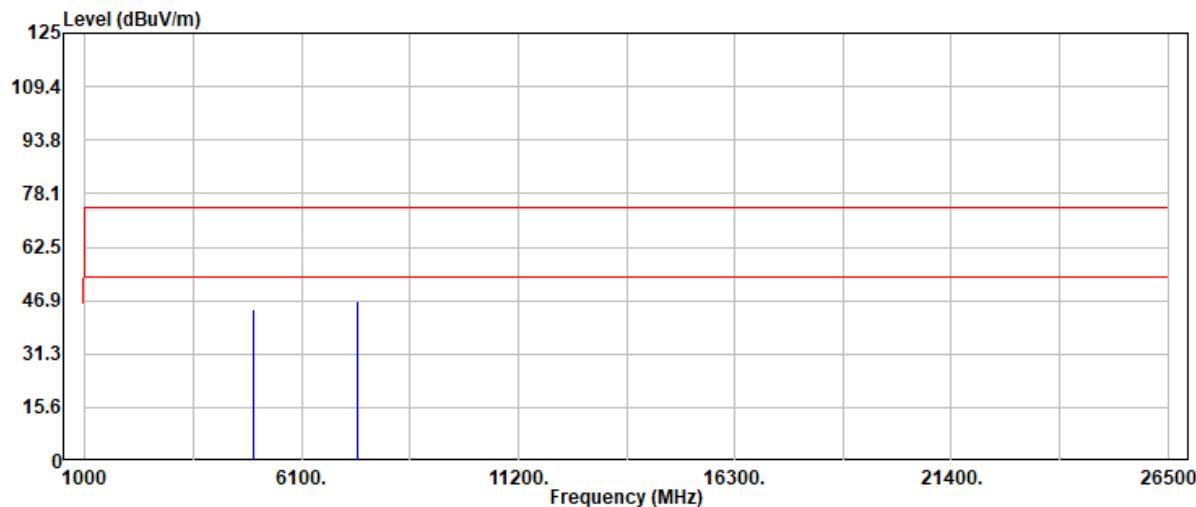
Freq	Read Level	Actual Factor	FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
4870.00	38.86	2.42	41.28	74.00	-32.72	Peak
4870.00	38.72	2.42	41.14	54.00	-12.86	Average
7305.00	37.28	9.10	46.38	74.00	-27.62	Peak
7305.00	35.55	9.10	44.65	54.00	-9.35	Average

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2435 MHz
Operation Mode : TX
EUT Pol : E2
Setting : 50


Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : Horizontal
Engineer : Ben.Yang
Test Chamber : 966A

Freq	Read Level	Actual Factor	Limit FS	Detector @3m	Margin	Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
4870.00	41.90	2.42	44.32	74.00	-29.68	Peak
4870.00	39.53	2.42	41.95	54.00	-12.05	Average
7305.00	39.90	9.10	49.00	74.00	-25.00	Peak
7305.00	37.86	9.10	46.96	54.00	-7.04	Average

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2475 MHz
Operation Mode : TX
EUT Pol : E2
Setting : 50


Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : Vertical
Engineer : Ben.Yang
Test Chamber : 966A

Freq	Read Level	Actual Factor	Actual FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
4950.00	41.80	3.31	45.11	74.00	-28.89	Peak
4950.00	40.52	3.31	43.83	54.00	-10.17	Average
7425.00	36.37	9.32	45.69	74.00	-28.31	Peak
7425.00	34.26	9.32	43.58	54.00	-10.42	Average

Project No : TM-2503000385P
Operation Band : Thread 2.4G
Frequency : 2475 MHz
Operation Mode : TX
EUT Pol : E2
Setting : 50

Test Date : 2025-04-09
Temp./Humi. : 24.7/56
Antenna Pol. : Horizontal
Engineer : Ben.Yang
Test Chamber : 966A

Freq	Read Level	Actual Factor	FS	Limit @3m	Margin	Detector Mode
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	PK/QP/AV
4950.00	41.14	3.31	44.45	74.00	-29.55	Peak
4950.00	41.08	3.31	44.39	54.00	-9.61	Average
7425.00	37.47	9.32	46.79	74.00	-27.21	Peak
7425.00	37.07	9.32	46.39	54.00	-7.61	Average

- End of Test Report -