

TEST REPORT

Report No. : KES-RF250578 Page **1** / **44** KES Co., Ltd.

#3002, #3503, #3701, 40, Simin-daero365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Republic of Korea Tel: +82-31-425-6200, Fax: +82-31-425-6200

■ FCC TEST REPORT

KES(K

1. Client

o Name : Ronfic. Co.,Ltd.

o Address: A-1411, 97, Centum jungang-ro, Haeundae-gu, Busan, South Korea

2. Sample Description

Product item : RONFIC MODULEModel name : RONFIC KMOD-05

o Manufacturer etc.: China Dragon Technology Limited.

3. Date of test: 2025.09.04 ~ 2025.09.19

4. Location of Test: ☑ Permanent Testing Lab ☐ On Site Testing

o Adress: 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

5. Test method used: Part 15 Subpart C 15.247

6. Test result: PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This laboratory is not accredited for the test results marked *.

This test report is not related to KOLAS accreditation.

Affirmation	Tested by		Technical Manager	
	Name : Myeong-Ho, Lee	(Signature)	Name: Yeong-Jun Cho	(Signature)

2025 . 09. 23.

KES Co., Ltd.

Accredited by KOLAS, Republic of KOREA

REPORT REVISION HISTORY

Date	Test Report No.	Revision History
2025.09.23	KES-RF250578	Initial

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KES Co., Ltd. will constitute fraud and shall nullify the document.

Use of uncertainty of measurement for decisions on conformity (decision rule):
■ No decision rule is specified by the standard, when comparing the measurement result with the
applicable limit according to the specification in that standard. The decisions on conformity are made
without applying the measurement uncertainty("simple acceptance" decision rule, previously known as "accuracy method").
accuracy memory.
Other (to be experified for everyla when required by the etenderd or client)
☐ Other (to be specified, for example when required by the standard or client)

TABLE OF CONTENTS

 Gen 	neral information	4
1.1.		
1.2.	·	
1.3.	Information about derivative model	5
1.4.	Accessory information	5
1.5.	Device modifications	5
1.6.	Requirements for Bluetooth transmitter	6
1.7.	Sample calculation	7
1.8.	Measurement Uncertainty	7
1.9.	Frequency/channel operations	8
2. Sun	mmary of tests	9
Test	st results	10
3.1.	99% Occupied Bandwidth	10
3.2.	20 dB bandwidth	12
3.3.	Output power	14
3.4.	·	
3.5.	· · ·	
3.6.		
3.7.		
3.8.	Conducted band edge and out of band emissions	36
3.9.		
3.10	0. Antenna Requirement	42
Appendix	ix A Measurement equipment	43

Report No. : KES-RF250578 Page 4 / 44

1. General information

Applicant: Ronfic. Co.,Ltd.

Applicant address: A-1411, 97, Centum jungang-ro, Haeundae-gu, Busan, South Korea

Test site: KES Co., Ltd.

Test site address: #3002, #3503, #3701, 40, Simin-daero365beon-gil,

Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Republic of Korea

Test Facility FCC Accreditation Designation No.: KR0100, Registration No.: 444148

FCC rule part(s): 15.247

FCC ID: 2BOSX-RONFICKMOD-05

Test device serial No.: Production Pre-production Engineering

1.1. EUT description

Equipment under test RONFIC MODULE

Frequency range & Number of channels

2 402 Mb ~ 2 480 Mb (EDR 3 Mbps): 79 ch

2 402 \mbox{MHz} ~ 2 480 \mbox{MHz} (LE 1 Mbps) : 40 ch

2 412 \mbox{MHz} ~ 2 462 \mbox{MHz} (802.11b/g/n_HT20) : 11 ch 5 180 \mbox{MHz} ~ 5 240 \mbox{MHz} (802.11ac_VHT20) : 4 ch 5 190 \mbox{MHz} ~ 5 230 \mbox{MHz} (802.11ac_VHT40) : 2 ch

Model RONFIC KMOD-05

Modulation technique **8DPSK**, GFSK, DSSS, OFDM

Antenna specification 2.4 GHz band FPCB Antenna // Peak gain: 2.10 dBi

5 GHz band FPCB Antenna // Peak gain: 2.56 dBi

Power source DC 3.3 V

H/W version 1.1

S/W version v5.12.0-8-g39bbb8dd2.20201015

Report No. : KES-RF250578 Page **5 / 44**

1.2. Test configuration

The Ronfic. Co.,Ltd. // RONFIC MODULE // RONFIC KMOD-05 // FCC ID: 2BOSX-RONFICKMOD-05 was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents.

FCC Part 15.247 KDB 558074 D01 v05 r02 ANSI C63.10-2020

1.3. Information about derivative model

N/A

1.4. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
-	-	-	-	-

1.5. Device modifications

N/A

1.6. Requirements for Bluetooth transmitter

15.247(a)(1) that the rx input bandwidths shift frequencies in synchronization with the transmitted signals.

Pseudorandom frequency hopping sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

Equal hopping frequency use

The channels of this system will be used equally over the long-term distribution of the hopsets.

Example of a 79 hopping sequence in data mode:

7, 42, 53, 75, 3, 36, 71, 60, 67, 43, 41, 51, 13, 33, 40, 11, 8, 31, 12, 26, 28, 76, 69, 57, 74, 34, 19, 17, 22, 58, 54, 47, 30, 48, 65, 23, 64, 55, 78, 73, 59, 72, 4, 20, 0, 45, 70, 6, 49, 21, 1, 15, 9, 2, 39, 50, 44, 18, 32, 62, 24, 35, 66, 37, 61, 16, 25, 68, 14, 27, 52, 38, 5, 46, 77, 63, 10, 56, 29, 75, 24, 14, 69, 11, 20, 5, 68, 49, 46, 17, 56, 62, 60, 16, 44, 25, 39, 27, 0, 65, 34, 52, 7, 53, 42, 13, 67, 43, 61, 78, 71, 21, 59, 29, 70, 76, 73, 9, 33, 64, 15, 30, 74, 37, 8, 51, 72, 2, 66, 55, 57, 36, 38, 6, 63, 10, 19, 3, 48, 4, 35, 26, 28, 45, 41, 58, 40, 47, 54, 77, 12, 22, 32, 31, 50, 18, 23, 1

System receiver input bandwidth

Each channel bandwidth is 1 Mb.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

1.7. Sample calculation

Where relevant, the following sample calculation is provided For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$1.55 + 20 = 21.55$$
 (dB)

For Radiation test:

Field strength level ($^{dB}\mu V/m$) = Measured level ($^{dB}\mu V$) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB)

1.8. Measurement Uncertainty

Test Item	Uncertainty	
Uncertainty for Conduction em	2.22 dB (SHIELD ROOM #6)	
Uncertainty for Radiation emission test	Below 1 GHz	4.04 dB (SAC #6)
(include Fundamental emission)	Above 1 GHz	5.32 dB (SAC #5)

Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No. : KES-RF250578 Page **8** / **44**

1.9. Frequency/channel operations

Ch.	Frequency (Mb)	Rate(Mbps)
00	2 402	EDR 3 Mbps
40	2 442	EDR 3 Mbps
	:	·
78	2 480	EDR 3 Mbps

Ch.	Frequency (Mb)	Rate(Mbps)
00	2 402	LE 1 Mbps
	·	
20	2 442	LE 1 Mbps
:		:
39	2 480	LE 1 Mbps

Ch.	Frequency (Mb)	Mode	
1	2 412	802.11b/g/n_HT20	
	÷		
6	2 437	802.11b/g/n_HT20	
	:		
11 2 462		802.11b/g/n_HT20	

Ch.	Frequency (Mb)	Mode
36	5 180	802.11ac_VHT20
	:	
44	5 220	802.11ac_VHT20
	·	
48	5 240	802.11ac_VHT20

Ch.	Frequency (贻)	Mode
38	5 190	802.11ac_VHT40
46	5 230	802.11ac_VHT40

Report No. : KES-RF250578 Page **9** / **44**

2. Summary of tests

Section in FCC Part 15	Test description	
-	99% Occupied bandwidth	Pass
15.247(a)(1)(iii)	20 dB bandwidth	Pass
15.247(b)(1)	Output power	Pass
15.247(a)(1)	Channel separation	Pass
15.247(a)(1)(iii)	Number of channels	Pass
15.247(a)(1)(iii)	Time of occupancy	Pass
15.205, 15.209	Radiated restricted band and emission	Pass
15.207(a)	AC Conducted emissions	Pass
15.247(d)	Conducted spurious emission and band edge	Pass
15.203	Antenna Requirement	Pass

Note.

1. By the request of applicant, test is performed with power setting value below :

Mode	Frequency (₩)	Setting value
EDR 3 Mbps	2 402 ~ 2 480	default

Report No. : KES-RF250578 Page **10** / **44**

3. Test results

3.1. 99% Occupied Bandwidth

Test procedure

ANSI C63.10-2020 clause 6.9.2 and 6.9.3

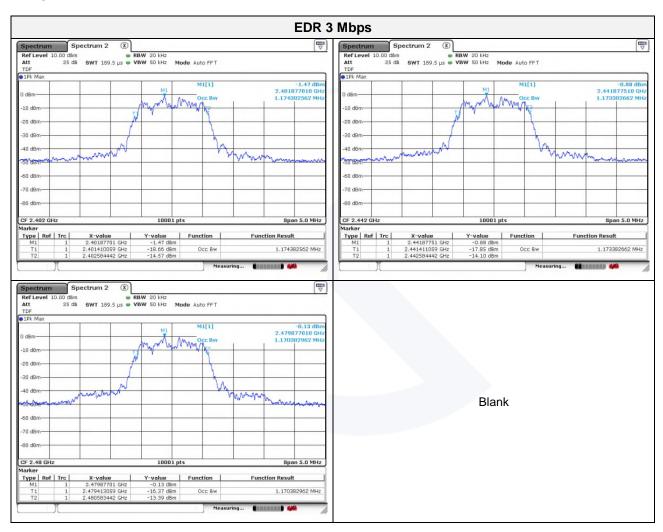
Test setup	,		
EUT		Attenuator	Spectrum analyzer
			,

Test setting

- 1. Span = The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- 2. RBW = The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW
- 3. VBW = shall be approximately three times the RBW
- 4. Sweep = auto
- 5. Detector function = Peak
- 6. Trace = Max hold

Limit

None; for reporting purpose only.



Mode: EDR 3 Mbps

Frequency(ℍz)	99% occupied bandwidth(Mb)	Limit(雕)
2 402	1.17	
2 442	1.17	-
2 480	1.17	

Test plots

Report No. : KES-RF250578 Page **12** / **44**

3.2. 20 dB bandwidth

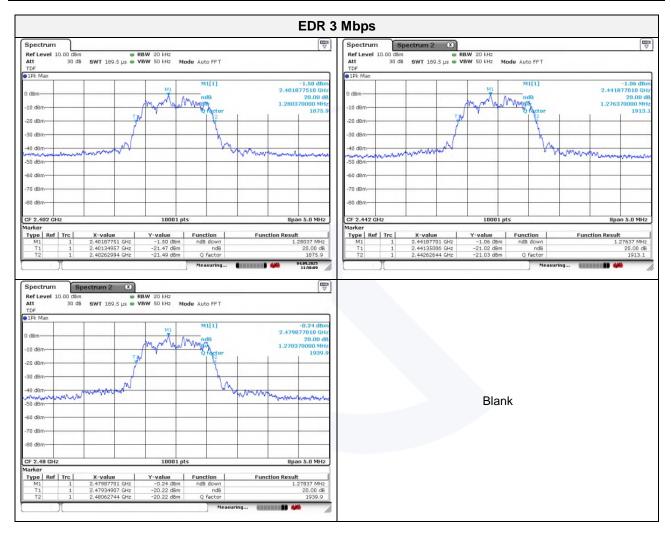
Test procedure ANSI 63.10-2020

Test setup

EUT Attenuator Spectrum analyzer

Test setting

- 1. Span = Set between two times and five times the OBW
- 2. RBW \geq 1 % to 5 % of the OBW
- 3. VBW \geq 3 * RBW
- 4. Sweep = Auto
- 5. Detector function = Peak
- 6. Sweep = Auto couple
- 7. Trace mode = Max hold
- 8. All the trace to stabilize


Limit

Not applicable

Frequency(灺)	Channel no.	Data rate(Mbps)	Measured bandwidth(地)
2 402	00		1.28
2 442	40	EDR 3 Mbps	1.28
2 480	78		1.28

Report No. : KES-RF250578 Page **14 / 44**

3.3. Output power

Test procedure

KDB 558074 v05r02 & ANSI C63.10-2020 - Section 11.9.1.3 and 11.9.2.3.2

Test setup	_		_	
EUT		Attenuator		Power meter, Power sensor
				1 GWGI GGIIGGI

ANSI C63.10-2020

- Section 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast responding diode detector.

ANSI C63.10-2020

- Section 11.9.2.3.2

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

FCC Limit

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to §15.247(b)(1), For frequency hopping systems operating in the 2 400 \sim 2 483.5 Mb employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 \sim 5 805 Mb band: 1 Watt.

According to §15.247(a)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test results

Frequency(船)	Channel no.	Data rate(Mbps)	Average Power (dBm)	Peak Power (dBm)	Power Limit (dBm)
2 402	00		5.22	8.32	20.97
2 442	40	EDR 3 Mbps	5.59	8.58	20.97
2 480	78		6.35	9.41	20.97

Report No. : KES-RF250578 Page 16 / 44

3.4. Carrier frequency separation

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2020

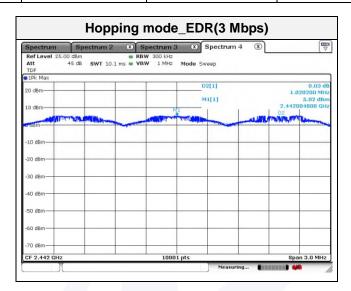
Test setup		_	
EUT	Attenuator		Spectrum analyzer

Test Setting

- 1. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:
- 2. Span = wide enough to capture the peaks of two adjacent channels
- 3. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 4. Video (or Average) Bandwidth (VBW) ≥ RBW
- 5. Sweep = auto
- 6. Detector function = peak
- 7. Trace = max hold
- 8. Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

FCC Limit


According to 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 klk or the 20 klk bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping system operating in 2 400 \sim 2 483.5 klk. Band may have hopping channel carrier frequencies that are separated by 25 klk or two-third of 20 klk bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 klk.

Test results

Frequency(쌘)	Channel no.	Data rate(Mbps)	Channel Separation (쌘)	Limit (∰z)
2 442	40	EDR 3 Mbps	1.020	≥ 0.54

Report No. : KES-RF250578 Page 18 / 44

3.5. Number of hopping frequency

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2020

Test setup		
EUT	Attenuator	Spectrum analyzer

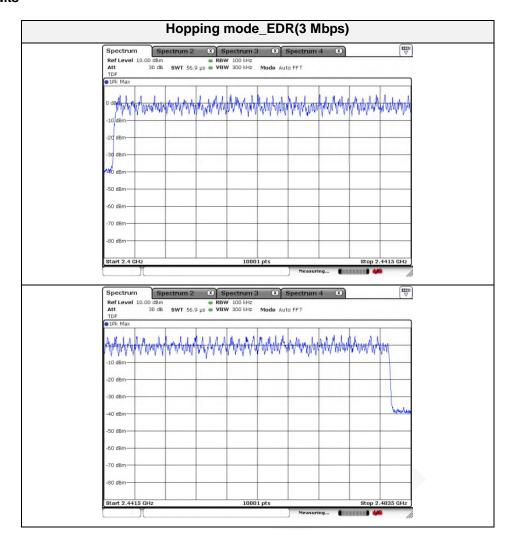
Test setting

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings.

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW ≥ RBW.
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

FCC Limit


According to 15.247(a)(1)(iii), for frequency hopping system operating in the 2 400 ~ 2 483.5 Mb bands shall use at least 15 hopping frequencies.

requency	Data rate(Mbps)	Number of hopping frequency	Limit
2 402 ~ 2 480 Mbz	EDR 3 Mbps	79	≥ 15

Test results

Page 20 / 44 Report No.: KES-RF250578

3.6. Time of occupancy

Test procedure

KDB 558074 v05r02 & ANSI 63.10-2020

Test setup	_		_	
EUT		Attenuator		Spectrum analyzer

Test setting

- 1. The EUT must have its hopping function enabled.
- 2. Span = zero span, centered on a hopping channel
- 3. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 4. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 5. Detector function = peak
- 6. Trace = max hold

FCC Limit

According to 15.247(a)(1)(iii), for frequency hopping system operating in the 2 400 ~ 2 483.5 Mb band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = $0.4(s) \times 79 = 31.6(s)$

Time of occupancy on the TX channel in 31.6 sec

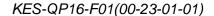
= time domain slot length × (hop rate ÷ number of hop per channel) × 31.6

Report No. : KES-RF250578 Page 21 / 44

Test results

Packet type	Frequency (Mb)	Dwell time (ms)	Time of occupancy on the Tx channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx channel in 31.6 sec (ms)
3-DH1	2 442	0.392	125.44	400
3-DH3	2 442	1.644	263.04	400
3-DH5	2 442	2.897	309.01	400

Operation mode: 8DPSK

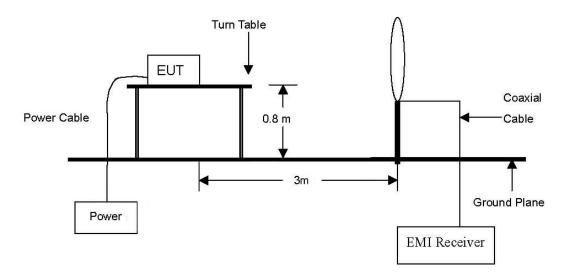

Note:

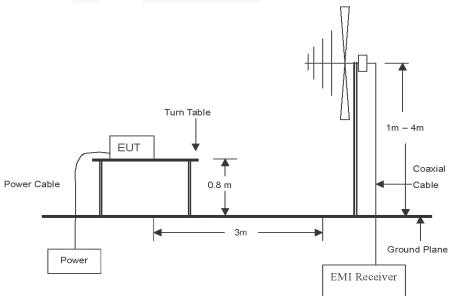
Normal Mode

3-DH1: Dwell time (ms) \times [(1 600 \div 2) \div 79] \times 31.6(s) = 125.12 (ms)


3-DH3: Dwell time (ms) \times [(1 600 ÷ 4) ÷ 79] \times 31.6(s) = 262.80 (ms)

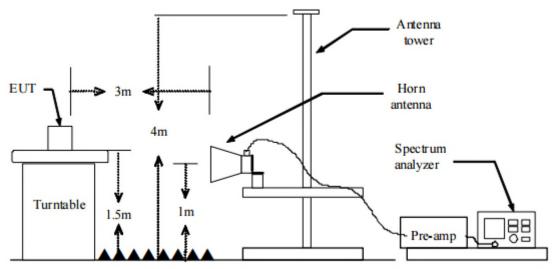
3-DH5: Dwell time (ms) \times [(1 600 ÷ 6) ÷ 79] \times 31.6(s) = 308.75 (ms)




Report No. : KES-RF250578 Page 23 / 44

3.7. Radiated restricted band and emissions Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\mathrm{kll}$ to 30 $\,\mathrm{ml}$ Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\text{Mz}$ to 1 $\,\text{GHz}$ emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 to the tenth harmonic of the highest fundamental frequency or to 40 messions, whichever is lower.

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2020.

Test procedure below 30 Mbz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel, ground parallel and perpendicular of the antenna are set to make the measurement. It was determined that **parallel** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **parallel**.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mb

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The antenna is a bi-log antenna, a horn antenna, and its height are varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 5. Spectrum analyzer settings for f < 1 GHz:
 - ① Span = wide enough to fully capture the emission being measured
 - ② RBW = 100 kHz
 - ③ VBW ≥ RBW
 - 4 Detector = quasi peak
 - 5 Sweep time = auto
 - 6 Trace = max hold

Report No. : KES-RF250578 Page **25 / 44**

- - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - ② RBW = 1 Mbz
 - ③ VBW ≥ 3 Mbz
 - 4 Detector = peak
 - Sweep time = auto
 - 6 Trace = max hold
 - Trace was allowed to stabilize
- 7. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - ② RBW = 1 Mbz
 - ③ VBW ≥ 3 × RBW
 - ④ Detector = RMS, if span/(# of points in sweep) ≤ (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - S Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - 7 Trace = max hold
 - Perform a trace average of at least 100 traces.
 - A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step \mathfrak{S} , then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step \mathfrak{S} , then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Report No.: KES-RF250578 Page **26 / 44**

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40 \log(D_m/Ds)$ $f \ge 30 \text{ MHz}$, extrapolation factor of 20 dB/decade of distance. $F_d = 20 \log(D_m/Ds)$ Where:

F_d = Distance factor in dB

 D_m = Measurement distance in meters D_s = Specification distance in meters

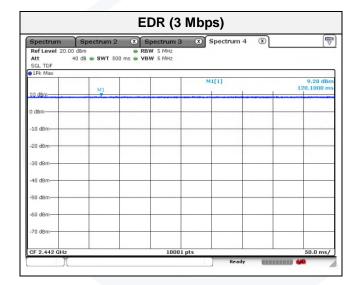
- 2. Field strength($dB\mu V/m$) = Level($dB\mu V$) + CF (dB) + or DCF(dB)
- 3. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 4. Emissions below 18 were measured at a 3 meter test distance while emissions above 18 were measured at a 1 meter test distance with the application of a distance correction factor.
- 5. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>X orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>X orientation</u>.
- 6. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 7. According to exploratory test no any obvious emission were detected from 9 klb to 30 Mb. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

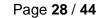
FCC Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (Mbz)	Distance (Meters)	Radiated (μV/m)
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kllz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 ~ 72 Mz, 76 ~ 88 Mz, 174 ~ 216 Mz or 470 ~ 806 Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

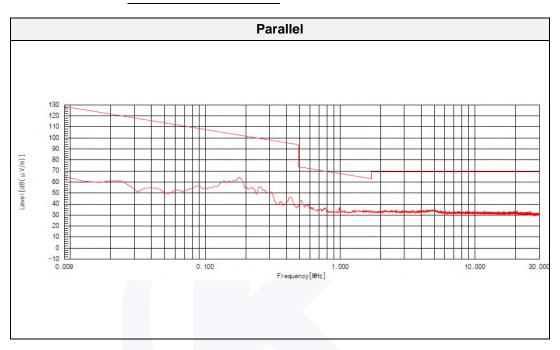

Duty cycle


Regarding to KDB 558074 D01_v05 r02, 6. Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

- a) A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on- and off-times of the transmitted signal.
- b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on- and off-times of the transmitted signal.

Mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
EDR(3 Mbps)	500	500	1	100	-

Duty cycle (Linear) = T_{on} time/Period DCF(Duty cycle correction factor (dB)) = $10log(1/duty\ cycle)$


Test results (Below 30 灺)

Mode: EDR

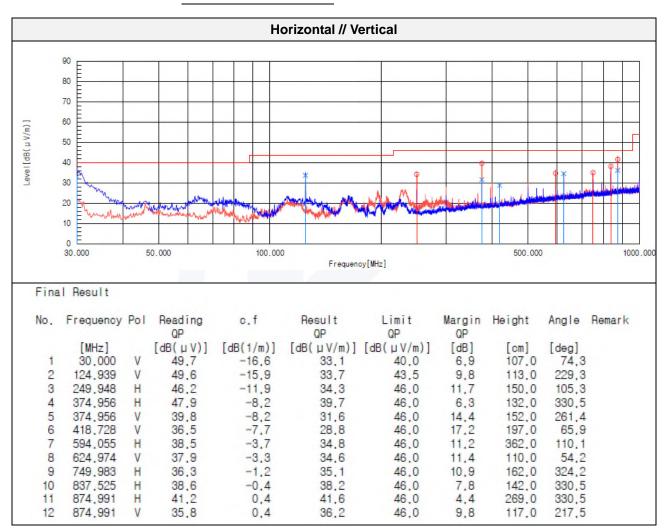
Transfer rate: 3 Mbps

Distance of measurement: 3 meter

Channel: 79 (Worst case)

Note.

- 1. No spurious emission were detected under 30 Mz.
- 2. Above data is peak result.


Test results (Below 1 000 贮)

Mode: EDR (Worst case)

Transfer rate: 3 Mbps

Distance of measurement: 3 meter

Channel: 79 (Worst case)

Test results (Above 1 000 №)

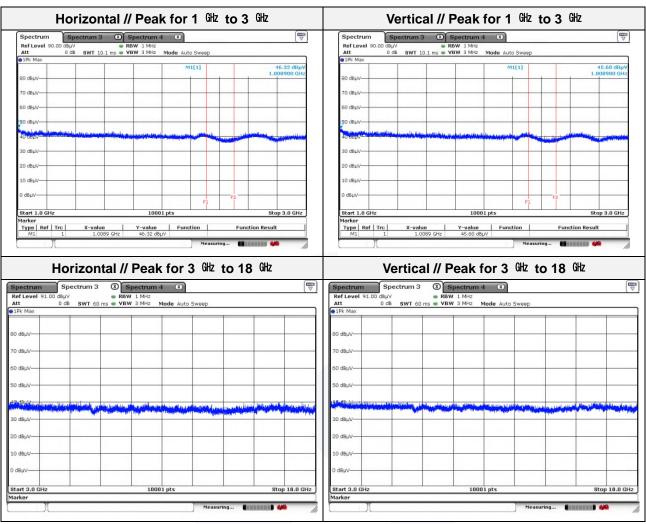
Mode: EDR (3 Mbps)

Distance of measurement: 3 meter

Channel: 00

- Spurious

Frequency (MEz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1 008.90	46.32	Peak	Н	-8.09	-	38.23	74.00	35.77
1 008.90	45.60	Peak	V	-8.09	-	37.51	74.00	36.49

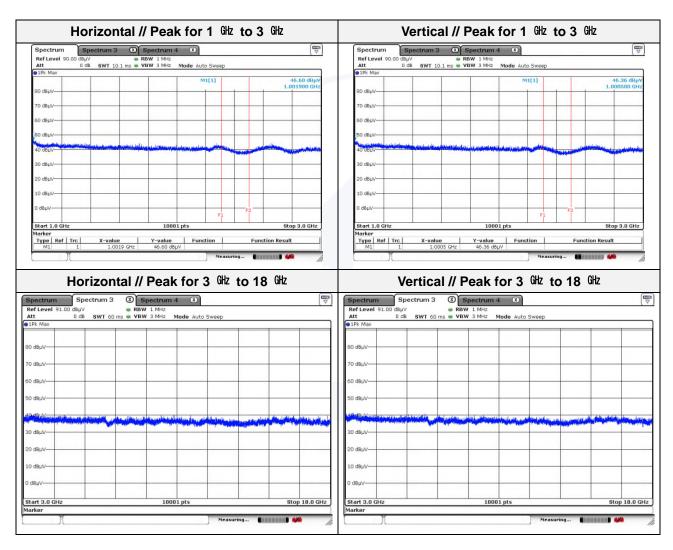

- Band edge

Dana dago								
Frequency (脈)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 316.34	42.95	Peak	Н	0.55	-	43.50	74.00	30.50
2 355.15	42.80	Peak	V	0.79	-	43.59	74.00	30.41

Note.

1. Average test would be performed if the peak result were greater than the average limit.

Report No. : KES-RF250578 Page **32** / **44**


Mode: EDR (3 Mbps)

Distance of measurement: 3 meter

Channel: 40

Spurious

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 000.50	46.36	Peak	V	-8.14	-	38.22	74.00	35.78
1 001.90	46.60	Peak	Н	-8.13	-	38.47	74.00	35.53

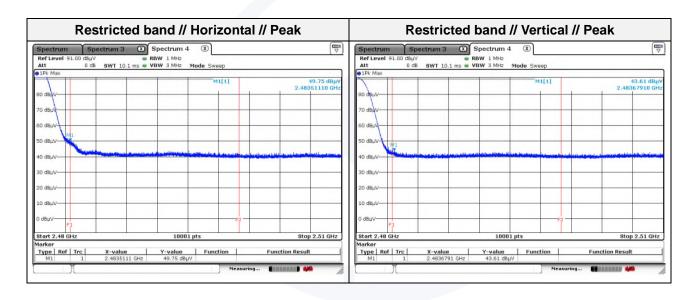
Note.

1. Average test would be performed if the peak result were greater than the average limit.

Report No. : KES-RF250578 Page **33 / 44**

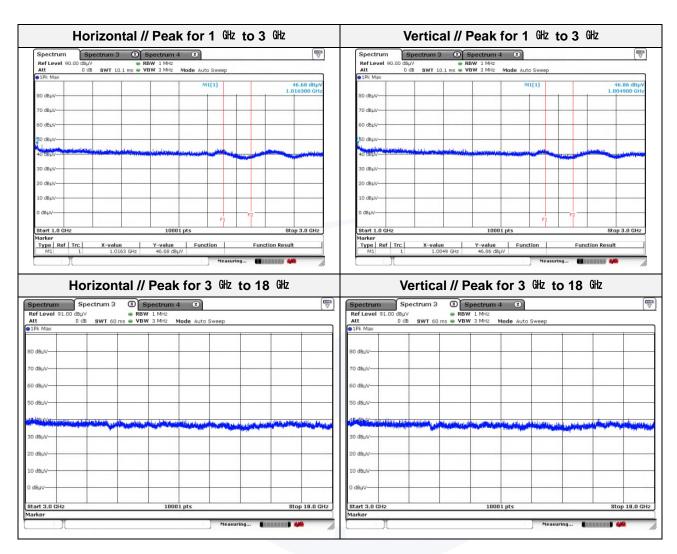
Mode: EDR (3 Mbps)

Distance of measurement: 3 meter

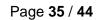

Channel: 78

- Spurious

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
1 004.90	46.86	Peak	V	-8.12	-	38.74	74.00	35.26
1 016.30	46.68	Peak	Н	-8.05	-	38.63	74.00	35.37

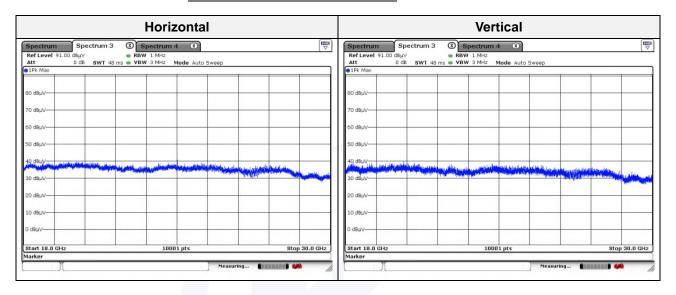

- Band edge

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 483.51	49.75	Peak	Н	1.31	-	51.06	74.00	22.94
2 483.68	43.61	Peak	V	1.31	-	44.92	74.00	29.08



Note.

- 1. No spurious emission were detected above 3 GHz.
- 2. Average test would be performed if the peak result were greater than the average limit.



Test results (18 ∰ to 30 ∰)

Mode: EDR (3 Mbps)

Distance of measurement: 3 meter

Channel: 79 (Worst case)

Note.

1. No spurious emission were detected above 18 GHz.

Report No. : KES-RF250578 Page 36 / 44

3.8. Conducted band edge and out of band emissions

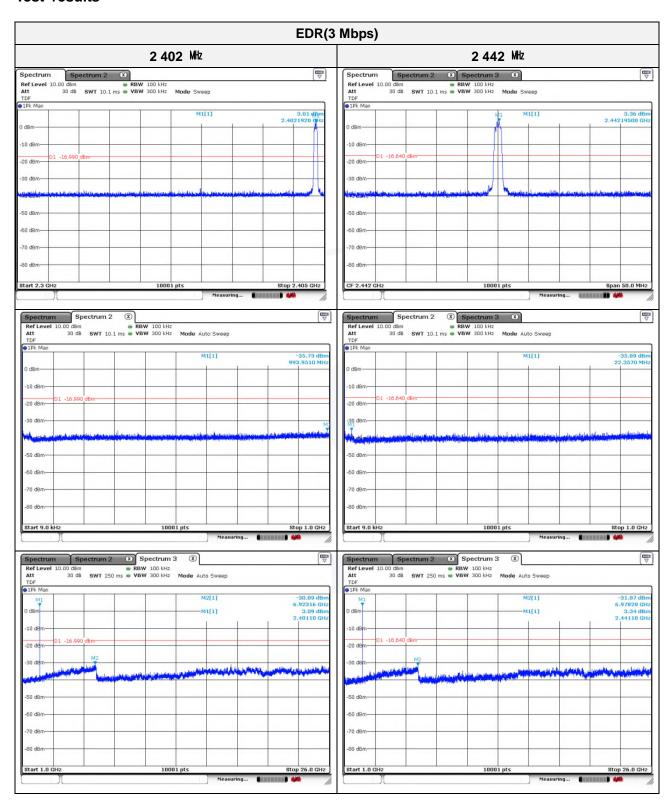
Test procedure

KDB 558074 v05r02 & ANSI 63.10-2020

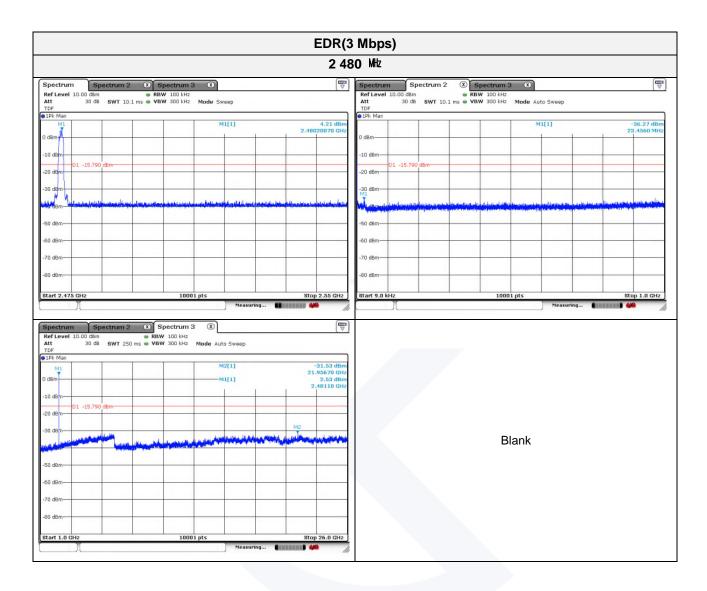
Test setup		_	
EUT	Attenuator		Spectrum analyzer

Test setting

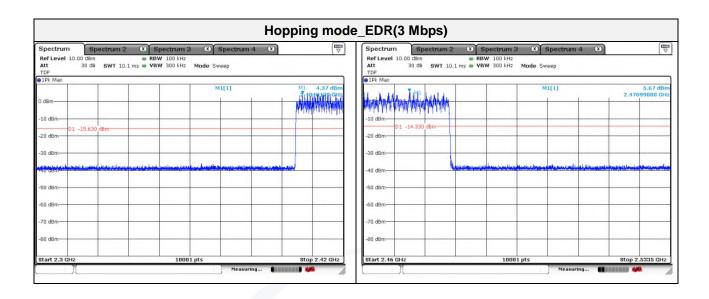
- 1. Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.
- 2. RBW = 100 kHz
- 3. VBW ≥ 300 kHz
- 4. Detector = Peak
- 5. Number of sweep points ≥ 2 × Span/RBW
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize


FCC Limit

According to 15.247(d), in any 100 \(\text{Mz}\) bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 \(\text{Mz}\) bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))



Test results



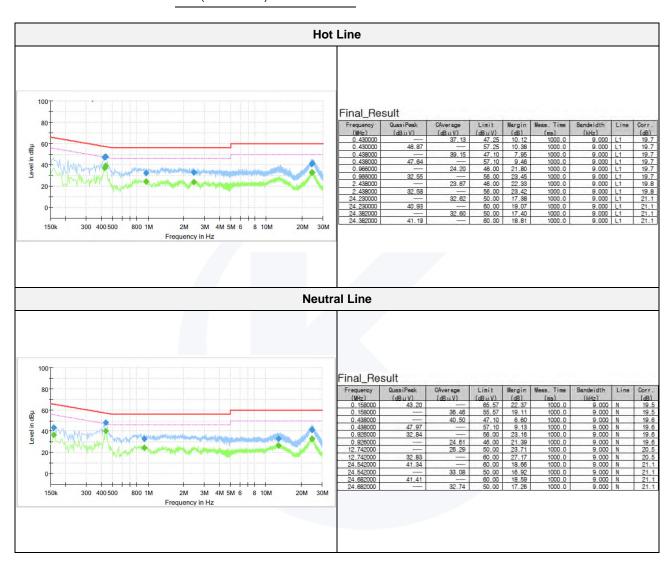
Report No. : KES-RF250578 Page **40 / 44**

3.9. AC conducted emissions

FCC Limit

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 kHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Execution of Emission (Mile)	Conducted	limit (dBμN)
Frequency of Emission (账)	Quasi-peak	Average
0.15 – 0.50	66 - 56*	56 - 46*
0.50 - 5.00	56	46
5.00 – 30.0	60	50



Test results

Mode: EDR

Transfer rate: 3 Mbps

Channel: 79 (Worst case)

Report No. : KES-RF250578 Page **42** / **44**

3.10. Antenna Requirement

According to 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Page 43 / 44 Report No.: KES-RF250578

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum analyzer	R&S	FSV40	101725	1 year	2026.06.10
SIGNAL & SPECTRUM ANALYZER	R&S	FSVA3050	101857	1 year	2026.08.19
SIGNAL GENERATOR	KEYSIGHT	N5182B	MY59100115	1 year	2026.04.16
SIGNAL GENERATOR	Anritsu	68369B	002118	1 year	2026.04.21
Power Meter	Anritsu	ML2495A	2010001	1 year	2026.04.16
Pulse Power Sensor	Anritsu	MA2411B	1911111	1 year	2026.04.16
Attenuator	Mini-Circuits	BW-S20-2W263A+	Y1	1 year	2026.02.10
BAND REJECT FILTER	MICRO-TRONICS	BRM50716	G199	1 year	2026.01.08
BAND REJECT FILTER	MICRO-TRONICS	BRM50702	G272	1 year	2026.01.08
LOOP ANTENNA	TESEQ	HLA6121	66547	2 years	2026.01.22
TRILOG-BROADBAND ANTENNA	Schwarzbeck	VULB 9163	714	2 years	2026.04.19
Attenuator	HUBER+SHHNER	6806.17.A	NONE	1 year	2026.02.13
ATTENUATOR	HP	8491B	23094	1 year	2026.02.13
HORN ANTENNA	A.H.	SAS-571	414	1 year	2026.01.13
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA 9170550	1 year	2026.01.13
Amplifier	SONOMA INSTRUMENT	310N	401123	1 year	2026.02.13
PREAMPLIFIER	HP	8449B	3008A00899	1 year	2026.03.05
BROADBAND AMPLIFIER	SCHWARZBECK	BBV9721	PS9721-003	1 year	2026.01.09
DC POWER SUPPLY	AGILENT	6632B	MY43004090	1 year	2026.06.12
EMI TEST RECEIVER	R&S	ESR7	101190	1 year	2026.04.30
EMI Test Receiver	R&S	ESR3	101783	1 year	2025.11.06
PULSE LIMITER	R&S	ESH2-Z2	101915	1 year	2025.11.06
LISN	R&S	ENV216	101786	1 year	2026.01.09
Cable	-	-	#5	1 year	2025.11.01
Cable (SR #6)	RG 400	-	-	0.5 year	2026.01.25
	SUCOFLEX106	HUBER_SUHNER	-		
Cable (SAC #5)	SUCOFLEX106	HUBER_SUHNER	-	0.5 year	2026.01.25
	LH21D/2xSMA	OSI Cable	-	1	
	TCLH21D-SMSM- 2.5M 0222	OSI Cable	-		
Cable (SAC #6)	TCLH21D-NMNM- 10.0M 0222	OSI Cable	-	0.5 year	2026.01.25
	TCLH21D-SMSM- 7.0M 0222	OSI Cable	-		

^{*} Statement of Traceability: KES Co., Ltd. attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No. : KES-RF250578 Page **44** / **44**

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook computer	Samsung Electronics Suzhou Computer Co.,Ltd.	Nt500r5w	NT500R5W-KD5S
Test Jig Board	N/A	N/A	N/A

The End.

